USENIX Association

Proceedings of the
12th USENIX Security Symposium

Washington, D.C., USA
August 4-8, 2003

THE ADVANCED COMI

PUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Analyzing Integrity Protection in the SELinux Example Policy

Trent Jacger

Reiner Sailer

Xiaolan Zhang

IBM T. J. Watson Research Center
Hawthorne, NY 10532 USA
Email: {jaegert,sailer,cxzhang} @us.ibm.com

Abstract

In this paper, we present an approach for analyzing
the integrity protection in the SELinux example policy.
The SELinux example policy is intended as an exam-
ple from which administrators customize to create a pol-
icy for their site’s security goals, but the complexity of
the model and size of the policy make this quite com-
plex. Our aim is to provide an access control model to
express site security goals and resolve them against the
SELinux policy. Ultimately, we aim to define a mini-
mal trusted computing base (TCB) that satisfies Clark-
Wilson integrity, by first testing for the more restrictive
Biba integrity policy and resolving conflicts using Clark-
Wilson semantics. Our policy analysis tool, Gokyo, im-
plements the following approach: (1) it represents the
SELinux example policy and our integrity goals; (2) it
identifies conflicts between them; (3) it estimates the res-
olutions to these conflicts; and (4) provides information
for deciding upon a resolution. Using Gokyo, we de-
rive a proposal for a minimal TCB for SELinux includes
30 subject types, and we identify the work remaining
to ensure that TCB is integrity-protected. Our analysis
is performed on the SELinux example policy for Linux
24.19.

1 Introduction

A goal for many years has been effective mandatory ac-
cess control (MAC) for UNIX systems. By an effec-
tive MAC system, we envision that system administra-
tors can define access control policies that guarantee site
security goals while enabling the convenient execution
of applications. Early MAC policies, such as the Bell-
LaPadula secrecy policy [2] and the Biba integrity pol-
icy [4], defined clear security goals, but were too restric-
tive for convenient use for UNIX applications. Commer-
cial operating systems that were extended to meet Or-
ange Book B1 (i.e., MAC plus other features) were not
broadly applied (i.e., mainly aimed at government in-

stallations). Recent efforts at MAC systems use flexible
access control models to achieve convenient use (e.g.,
DTOS, Flask [17, 21], etc.), but demonstrating that par-
ticular security goals have been met is more difficult
(and these systems have not been widely used either).
Flexible access control models typically result in more
complex policies, so it is more difficult to determine if
these policies have the desired effect.

The recent addition of the Linux Security Modules
(LSM) framework [22] enables the MAC enforcement
for the Linux kernel. The LSM framework is designed
to be agnostic to the MAC approach, and it has been de-
signed to support modules with flexible MAC models.
The most comprehensive and flexible module for LSM
is the SELinux module [18]. While SELinux supports
a variety of policy models itself, an extended Type En-
forcement (TE) model [5] is used for most policy devel-
opment. An example policy is under development that
consists of a set of UNIX service and application poli-
cies that each aim to ensure effective operation while
preventing security vulnerabilities. The example policy
does not define a secure system, but serves as a basis for
developing a secure system once the security goals are
defined. The extended TE model is rather complex (i.e.,
consists of a large number of concepts) and the SELinux
example policy is large (e.g., 50,000+ policy statements
in the policy.conf for Linux 2.4.19), so customiza-
tion of the SELinux example policy to a policy that guar-
antees satisfaction of system security goals is an arduous
and error-prone task.

While the use of a simpler access control model might
make it easier to ensure that security goals are met,
we believe that this would result in applications fail-
ing to run conveniently, and ultimately, the circumven-
tion of these security goals. The comprehensive na-
ture of the SELinux policy model enables flexible trade-
off between application and security goals. For exam-
ple, the SELinux example policy itself is developed by
proposing application policies and refining them based
on the policy violations that may be generated. Thus,

USENIX Association

12th USENIX Security Symposium

59

the SELinux example policy itself is a direct result of
making these trade-offs.

The question is whether a manageable set of effec-
tive security goals can be described and verified for
SELinux policies. Obviously, it is highly unlikely that
the SELinux example policy adheres to a simple high-
level policy, such as the two-level integrity model of
LOMAC [9]. However, the policy may be sufficiently
close to such a policy that the conflicts can be managed
(i.e., either a small number or a small number of equiv-
alence classes). If so, then verification may be possible
by verifying the general goals and using ad hoc tech-
niques to resolve the conflicts. We have found that this
approach holds some promise for application policies,
in particular the Apache administrator [12], but do not
know whether this can work for the trusted computing
base (TCB) subjects in the SELinux policy. Obviously,
if we cannot prove that the TCB is integrity-protected,
its system cannot be considered secure.

In this paper, we propose a near-minimal TCB for
SELinux systems and examine how to verify that this
TCB is integrity-protected. First, we define integrity
relationships between the TCB subject types and less
trusted system and application subject types. Second,
we input these constraints into our policy analysis tool,
called Gokyo [12], and identify integrity conflicts be-
tween the TCB and the system. The Gokyo tool enables
flexible expression of conflict sets and their resolution,
so our next goal is to determine what resolutions appear
feasible for TCB integrity conflicts. Using Gokyo, we
classify conflicts into classes based on their likely res-
olution. Since most resolutions depend on ad hoc in-
formation, it is still a manual process to complete the
analysis. Using Gokyo, we identify a minimal TCB for
the SELinux example policy of 30 subject types, half of
which are infrequently-used administration subjects. To
use this TCB, 5 sanitization problems must be solved,
but we believe that most can be addressed in practice,
including the use of Gokyo itself to manage the broad
file access rights currently granted to trusted subjects.
Ultimately, Gokyo is useful in identifying problems in
meeting security goals, classifying these problems, and
providing information for resolving them.

The paper is structured as follows. In Section 2, we ex-
amine the SELinux extended Type Enforcement model
and outline our site security goals for that model, in-
tegrity protection of a minimal trusted computing base.
In Section 3 we describe our approach to resolving a pol-
icy against our integrity protection requirements. In Sec-
tion 4, we detail the implementation of our analysis us-
ing Gokyo and present our analysis results. In Section 5,

we present related work, and we conclude in Section 6.

2 SELinux Security Goals
2.1 SELinux Policy Model

While SELinux supports a variety of access control pol-
icy models [21], the main focus of SELinux policy de-
velopment has been an extended Type Enforcement (TE)
model [1, 5, 20]. In this section, we provide a brief
overview of the SELinux policy model concepts, focus-
ing only on the concepts that are relevant to the analysis
that we perform. A number of other concepts are repre-
sented in the SELinux extended TE model, such as roles
and identity descriptors, that we do not cover here. A de-
tailed description of the SELinux policy model is given
elsewhere [20].

The traditional TE model has subject types (e.g., pro-
cesses) and object types (e.g., files, sockets, etc.), and ac-
cess control is represented by the permissions of the sub-
ject types to the object types. In SELinux, the distinction
between subject and object types has been dropped, so
there is only one set of types that are object types and
may also act as subject types.

The SELinux extended TE model is shown in Figure 1.
All objects are labeled with a fype. All objects are an in-
stance of a particular class (i.e., data type) which has its
own set of operations. A permission associates a type, a
class, and an operation set (a subset of the class’s opera-
tions). Thus, permissions associated with SELinux types
can be applied independently to different classes. For
example, different rights can be granted to a user’s files
than to their directories. In fact, since the objects are of
different classes, they have different operations. Should
the administrator want to give different access rights to
two objects of the same class, then these objects must
belong to different types.

Permission for a (subject) type to perform operations on
a(n) (object) type are granted by the allow statement.
Any element of the permission relationship can be ex-
pressed using this statement, so the expression of least
privilege rights is possible. The dontaudit statement pro-
vides a variation on the basic permission assignment.
A combination of allow statements result in a union of
the rights specified, whereas a combination of dontau-
dit statements on the same type pair and class are inter-
sected.

In addition, the extended TE model also has type at-

60

12th USENIX Security Symposium

USENIX Association

(Object)
label ¥ Type

-~
instance-of Class

Object

Operation Set

A0

auditallow or allow (union)

(Subject)
Permission Type

dontaudit(intersection)

Figure 1: SELinux extended Type Enforcement (TE) policy model basics.

tributes that represent a set of types (i.e., all the types
with that attribute assigned). Type attributes enable as-
signment to multiple types at a time. For example, a per-
mission can be assigned to each subject type with that
attribute or a subject can be assigned permission to each
object type with that attribute.

Containment is enforced by limiting the permissions ac-
cessible to a subject type (as described above), limiting
the relabeling of object types, and limiting the domain
transitions that can be made by a subject type. Relabel
rights are controlled in SELinux by limiting access to
relabelfrom and relabelto operations. As the names in-
dicate, relabelfo enables objects to be relabeled to that
type and relabelfrom enables objects of a particular type
to be relabeled.

Domain transitions can occur when a subject type exe-
cutes a new program. Again, SELinux defines an oper-
ation, called transition, to perform these transitions. A
subject type must have a transition permission for the re-
sultant subject type in order to affect a domain transition.

The SELinux model also has statements for fype tran-
sition and type change. Type transition statements are
used by SELinux to automatically compute transitions,
but are not necessary for control (i.e., transition permis-
sions are always necessary). Type change statements al-
ter the type of an object upon access by the specified
subject type. Such statements are useful when a system
administrator logins in using a user’s tty. Type change
statements transition the object type of the tty to prevent
users from altering input.

In order to simplify the task of expressing policies, the

SELinux extended TE model also includes a large num-
ber of macros for expressing sets of policy statements
that commonly occur together. We do not examine the
policy macros in detail because policy analysis requires
us to understand the policy at the level of the type en-
forcement model statements (i.e., which subject types
can perform which operations on which object types).

2.2 SELinux Example Policy

The SELinux community is working jointly on the de-
velopment of UNIX application policies whose com-
position is called the SELinux example policy. The
SELinux example policy does not define a secure sys-
tem, but is intended as input to the development of a
custom policy for each site’s security goals, commonly
called a security target. Unfortunately, customization is
not simply composition of the policies for the applica-
tions of interest. The application policies themselves are
somewhat specialized to the environment in which they
were developed, and interactions between the policies of
multiple applications may lead to vulnerabilities. In gen-
eral, the composition of policies that are proven secure
may not result in a secure system.

The task of customization is further complicated by
the size of the example policy and the complexity of
the extended TE model described in Section 2.1. The
SELinux example policy for Linux 2.4.19 consists of
over 50,000 policy statements (i.e., the processed macro
statements in policy.conf). According to our anal-
ysis, this specification represents over 700 subject types
and 100,000 permission assignments. We believe that
size and complexity of the SELinux example policy

USENIX Association

12th USENIX Security Symposium

61

make it impractical to expect that typical administra-
tors can customize it to ensure protection of their trusted
computing base (TCB) and to satisfy their site’s security
goals on this TCB. This may seem obvious to some and
may seem insufficiently justified to others, but we will
describe a more detailed argument on why we believe
this in Section 2.3.

Despite this, we are convinced that the SELinux exam-
ple policy is valuable to building secure systems, for
these two reasons primarily: (1) it provides a flexible
enough representation to capture the permissions neces-
sary for UNIX applications to execute conveniently and
(2) it provides a comprehensive definition of a reference
monitor for UNIX. First, the SELinux example policy
is developed per application in a manner that identifies
a superset of the permissions required to run an applica-
tion conveniently while possibly meeting a particular se-
curity target. What typically happens is that a proposal is
made for an application policy, then this policy is tested
by the community when they use the application. Since
SELinux reports authorization failures (i.e., the lack of
a permission requested), it is much easier to determine
that insufficient permissions were assigned than whether
a security vulnerability is created. Thus, a verified pro-
posal for least privilege permissions for each application
is represented by the SELinux policy. What we need is
a better way to test whether our security goals are satis-
fied, such that conflicts can be identified and addressed.

Second, the SELinux example policy is a comprehensive
representation of UNIX access control. The SELinux
model aims to comprehensively control access to all
classes (i.e., kernel data types) that may be operated
upon by auser-level Linux process. There are 29 classes
defined in the SELinux example policy. Each class has
its own set of operations that are intended to capture
all the relevant subtleties in accessing and modifying a
class. Given the scope of the SELinux example policy
at this granularity, the SELinux example policy provides
as precise and comprehensive a repository of UNIX ap-
plication access control information as exists today. We
need to leverage this repository in the development and
refinement of security goals, but provide such leverage
through higher-level concepts that enable effective man-
agement.

2.3 SELinux Security

Unlike early MAC models like Bell-LaPadula [2] and
Biba [4], a TE model does not explicitly indicate the se-
curity goals of the policy. Thus, the policy implies the
security goals of the system. For a TE system, more

like an access matrix, we only learn that certain subjects
can only perform certain operations on certain objects.
The security goals of the policy are not represented at a
higher-level than this.

The SELinux model provides an approach by which se-
crecy and integrity properties may be achieved with least
privilege permissions and containment of services [16].
The system administrators create a policy that is restric-
tive with respect to granting rights that violate secrecy
and integrity properties and we use the notions of least
privilege and containment to minimize the damage due
to compromises where these occur.

From our perspective, the integrity of the TCB is the ba-
sis of security, so that is the focus of our analysis. In
general, it is preferable to have a “minimal” TCB. The
smaller the TCB, the easier it is to verify the compo-
nents. However, if the minimal TCB subjects are depen-
dent on other subjects, then these other subjects must be
added to the TCB or dependencies must be removed. In
this paper, we will identify dependencies and determine
how to resolve them to keep our TCB as small as is fea-
sible.

Since we are striving for a minimal TCB, we do not as-
sume a two-level integrity system (system and user) as
in LOMAC [9], but rather we start with the most fun-
damental system services and try to determine how the
integrity of these can be enforced. Applications may fur-
ther depend on other subjects. For example, Apache de-
pends on other system services and the Apache admin-
istrator. We believe these are at two distinct integrity
levels [13]. In this paper, we examine only explicitly
examine the TCB and non-TCB boundary.

Further, we note that the benefits of least privilege per-
missions and containment are not relevant to the protec-
tion of the TCB. Since the TCB subject types can legiti-
mately transition to any other subject type, containment
is not possible for the TCB subjects. Therefore, the fo-
cus is on the integrity of these services.

Figure 2 shows the SELinux example policy’s type
transition hierarchy for our proposed TCB subject
types |. kernel _t isthe primordial subject type in the
SELinux system. It transitions to init t which then
can start a variety of services. Key to our analysis are
the administrative (e.g., sysadm_t, load policy,
setfiles t, etc.) and authentication subject types
(e.g,sshd_t,local login_t,etc.) that determine
the basis for security decisions in SELinux. We also in-

I This hierarchy is generated by the transition permissions held by
each of these subject types.

62

12th USENIX Security Symposium

USENIX Association

Authentication Initialization

kernel_t

!

Administration

sysadm_t

T

/ getty_t ~———— init.t

local_login_t sshd_t

mount_t

initrc_t

N\

inetd_t

seffiles_t bootloader_t load_policy_t

Figure 2: SELinux Example Policy’s type transition hierarchy for our proposed TCB subject types.

clude initrc tand inetd t because these services
initiate many of the services in a UNIX system.

Of course, there are lots of other services upon which
the correct execution of applications is necessary (over
80 identified for the Apache administrator [13]), but we
chose this proposal for a minimal TCB based primarily
on the early appearance of these services in the type tran-
sition hierarchy and the amount of transition “fan-out.”
Both of these features indicate that vulnerabilities in that
subject type will be difficult to contain.

While this TCB represents a small number of subject
types, the complexity of their interactions with the rest
of the system in the SELinux policy makes manual ver-
ification impractical. First, each subject type is in-
cluded in around 500 to over 1000 policy statements
in policy.conf. Manual examination of this many
statements alone is impractical, but these statements
must be compared to the other thousands to determine
whether a significant conflict exists. Automated tools are
necessary to represent the security goals, identify con-
flicts, and provide as much support as possible to conflict
resolution.

2.4 Integrity Requirements

The goal of our analysis is to protect the integrity of
our trusted computing base (TCB), so we need to de-
fine more precisely what we mean by this. Traditional
policies for integrity protection include Biba [4] and
Clark-Wilson [6]. The Biba integrity property is ful-
filled if all the higher-integrity processes do not depend
on lower-integrity processes in any manner. This implies
that a high integrity process cannot read lower-integrity
data, execute lower-integrity programs, or otherwise ob-
tain lower-integrity data in any other manner. As a re-
sult, a process cannot write data above its integrity level.
Therefore, if high and low integrity processes write to

the same file, then it must be a low integrity file. Obvi-
ously, the high integrity process can no longer read from
this file and maintain Biba integrity.

Of course, UNIX applications do not obey a strict Biba
integrity. Often higher-integrity processes read input
generated by lower integrity processes, but in many
cases it is assumed that they can handle this input. When
they cannot, we often identify this as a vulnerability in
the supposedly high-integrity program 2. The Clark-
Wilson integrity model attempts to capture this no-
tion. In the Clark-Wilson model, constrained data items
(CDIs) are high-integrity data that are processed only
by certified transformation procedures (TPs). However,
TPs may also process unconstrained data items (UDIs).
This is similar to high integrity programs processing low
integrity data. The Clark-Wilson model also includes in-
tegrity verification procedures (IVPs) that can be used to
verify the integrity of CDIs at particular times.

The Clark-Wilson model is based partly on certifica-
tion of the components (IVPs and TPs) and partly on
their enforcement of particular properties. We do not
address certification here, but we examine the plausibil-
ity of meeting Clark-Wilson enforcement requirements
using SELinux (paraphrased from the Clark-Wilson pa-

per [6]):

o E1: Each TP operates on a particular list of CDIs
and CDIs are only manipulated by a TP.

e E2: The system must maintain a list of subjects,
TPs, and the CDIs those TPs may reference, and
only those references are permitted.

o E3: The system must authenticate the identity of
each user that attempts to execute a TP.

20f course, the use of so many root services gives has given a false
impression of the integrity of many programs.

USENIX Association

12th USENIX Security Symposium

63

e E4: The list of TPs and IVPs can only be changed
by a subject permitted to certify those TPs and
IVPs.

SELinux identifies object types, and thus, the objects
manipulated by programs as stated in E1. However, it
does not distinguish between CDIs and UDIs. Thus, we
know whether CDIs are only processed by TPs, nor do
we know which subjects are TPs, as required by E2. The
satisfaction of E3 must be provided by the authentication
infrastructure in a dependable manner (i.e., using TPs).
The mandatory nature of SELinux policies implicitly en-
force E4.

Thus, our task is to identify the TPs that define the
SELinux example policy’s TCB (to satisfy E2). Since
we want to ensure the integrity of our TCB, the only
CDlIs are those processed by the TCB subjects. As a re-
sult, we only need to ensure the integrity of these. How-
ever, the TCB may operate on UDIs, so we need to dis-
tinguish between UDIs and CDIs. Thus, we will perform
the following tasks: (1) propose TCB subjects; (2) iden-
tify possible low-integrity UDIs (i.e., data whose value
may depend on some low-integrity subject); (3) deter-
mine whether these are true UDIs; and (4) resolve cases
where we suspect that a CDI is processed by a non-TCB
subject (i.e., a subject that is not executing a TP).

Since the identification of the use of low-integrity data is
essentially Biba, we perform a Biba analysis on our pro-
posed TCB relative to the SELinux example policy. We
then perform analyses to classify possible UDIs based
on the possible resolutions to the integrity issue.

2.5 Low-Integrity Data

We first distinguish between two types of dependencies
on low-integrity data that violates Biba: (1) read in-
tegrity violations and (2) read-write integrity violations.
The difference is that, in the second case, writes by our
TCB may be revised by a lower integrity process. While
this is not strictly an issue in Clark-Wilson (i.e., these
data may be UDIs), we are not comfortable with the pos-
sibility that a TCB subject write UDI data. Thus, we
always classify read-write integrity violations as likely
CDIs.

If we believe data are likely to be CDIs, then we have the
following options to resolve the conflicts: (1) trusting the
low-integrity subject (i.e., add it to the TCB); (2) exclude
the low-integrity subject; (3) exclude the conflicted ob-
ject type; (4) policy override; and (5) change the policy.

It is possible to extend the proposed TCB, but since we
want to keep the TCB minimal and the addition of more
subject types will probably introduce more constraints,
this is a low priority option.

We can exclude either the conflicting object type or
the low-integrity subject type from the system to re-
solve an integrity conflict. Since we are analyzing the
SELinux example policy to create a security target, it is
perfectly reasonable to remove subject that cause sig-
nificant integrity issues that we do not trust. For ex-
ample, insmod_t installs modules into the kernel, but
for a high integrity system we will compile the modules
into the kernel. Thus, integrity conflicts caused by this
service can be ignored. The exclusion of object types
may be less plausible given that the object may be nec-
essary for correct processing, but there are some cases
where this makes sense. For example, we can elimi-
nate integrity conflicts if we preclude objects of the type
removable device t which may be acceptable for
a secure system.

Lastly, we can change the policy by adding overriding
statements (e.g., denying the violating read or write) or
by modifying the SELinux example policy itself. We
have found that handling integrity violations as excep-
tions or defining special handling for conflicting assign-
ments with common semantics are both effective in re-
ducing the need to express even more complex and fine-
grained policies [12]. Modifying the SELinux example
policy is a last resort: it is complex enough.

If we believe data are likely to be UDIs, we may assume
that the TP is protected or protects itself by sanitizing
its UDI inputs. Certification may depend on receiving
only specific inputs, in practice, so providing external
sanitization may also be an option. We may also identify
the need for other security processing, such as auditing
and intrusion detection, upon use of UDIs. We see this
simply as another alternative to denials.

3 Analysis Approach

The basic approach to evaluating the proposed TCB for
the SELinux example policy is as follows. First, we
identify Biba integrity violations between the TCB sub-
ject types and the rest of the SELinux example policy.
Second, we try to classify our conflicts based on the con-
cepts such as the type of integrity violation (i.e., read
or read-write), the proposed integrity of the conflicting
subject type (i.e., high or low), and the likelihood of ex-
clusion (i.e., of object type or subject type). Third, we

12th USENIX Security Symposium

USENIX Association

perform some manual analysis to determine the likely
solution and see if these results correlate with the clas-
sifications. This includes outlining implementations to
support these classifications, particularly where saniti-
zation or policy modification is the choice.

3.1 Gokyo Policy Analysis Tool

We have built a policy analysis tool called Gokyo that
is designed to identify and enable resolution of conflict-
ing policy specifications [12, 13]. The general concept
that Gokyo enforces is safery. A policy specification
is said to be safée if no subject can obtain an unautho-
rized permission [10]. If we take policy administration
into account, then any permission can be assigned to
any subject type by the administrator in a policy such as
TE. Therefore, we need an additional specification con-
cept, typically called constraints, to express the safety
requirements on the administrators to ensure that our
policy meets our goals.

Gokyo implements an approach called access control
spaces whereby semantically meaningful permission
sets are identified and handling can be associated with
each set independently. While there are a variety of se-
mantically meaningful permission sets, the most com-
mon to consider are: (1) those assigned to a subject type;
(2) those precluded from a subject type by a constraint;
and (3) the permissions whose assignment or preclusion
status is unknown. The overlapping regions of these
sets also form subspaces, so we can consider the set of
permissions that are both assigned and precluded. Of
course, these sets can be further decomposed to provide
more effective control. For example, we may deny all in-
tegrity conflicts, except log writes, which we allow, and
input from network objects, which we sanitize and audit.

The general idea is that by identifying semantics to the
subspaces it may be possible to attach handling seman-
tics with the entire subspace. This would permit ad-
ministrators to keep the basic, simpler constraints that
largely work and specify only the additional handling
semantics. We have found that the Apache administra-
tor policy for SELinux 2.4.16 largely adheres to a Biba
integrity model, such that 19 conflicting cases can be
handled as eight access control spaces [13].

Gokyo represents policies using a graphical access con-
trol model shown by example in Figure 3. Permissions
(i.e., object types and the permitted operations), subject
types, and subjects are represented by graph nodes. In
addition to this information, permission nodes also store
the object class (i.e., datatype) and operations permitted

by the permission. Note that object types are represented
by permissions with no rights. In general, a node repre-
sents a set, so it is possible to build set-hierarchies con-
sisting of aggregations of individual permissions, sub-
ject types, and subjects.

Example 1 Figure 3 shows an example of an access
control specification using this model. Subject s1 has
values S(s1) = sl, R(sl) = r2, and P(sl) = P(r2).
That is, s1 represents one subject, s1, and is assigned to
one subject type, r2. Since the only route from propaga-
tion of permissions is through r2, s1’s permissions are
defined by P(r2). The value of P(r2) = P(p6) and,
since p6 is an aggregate its permissions are P(p6) =
P(p4) U P(p5). Since pb is an aggregate as well, its
permissions can be further decomposed.

For expressing constraints in this model, we also use a
set-based approach [11]. In general, constraints are ex-
pressed in terms of two sets and a comparator function,
set1 > setq, where 1< represents some comparator func-
tion. Such comparators are set operations, such as dis-
jointness (i.e., null intersection), cardinality of intersec-
tion, subset relations, etc.

Example 2 We define a constraint type for integrity.
An integrity constraint z || y where z € RU S andy €
RU S means that the set of read and execute permissions
of x must not refer to any objects to which y has write
permissions.

For each subject type, Gokyo stores the assigned per-
missions and the prohibited permissions. The prohibited
permissions are the permissions whose assignment to the
subject would result in the violation of a constraint, so
these permissions are represented in terms of the con-
straint *. Further, Gokyo identifies the access control
space consisting of the intersection between the assigned
and prohibited spaces. It is this space where conflict res-
olution is necessary.

3.2 Identifying Integrity Conflicts

Returning to the problem of analyzing our proposed
TCB, the SELinux example policy represents the as-
signed permissions. We add Biba integrity constraints

3Details are beyond the scope of this paper. See the detailed Gokyo
writeup [13].

USENIX Association

12th USENIX Security Symposium

65

Legend

PR,

assignment attributes

—---* inheritance p: perms

<— constraint r:roles

—= aggregation

p:
Subjects2 |
s:82

s: subjects

s:s1l

.................... p p6 perms
p 2 perms Role 2 |rr2 Role r r r1
Subject s1 |rr2 si s

Figure 3: Example access control representation (the fields “p

subjects assigned to these entities, respectively)

between each of our TCB subject types and all other sub-
ject types in Gokyo. That is, for each TCB subject type,
we add a constraint that it cannot apply a read/execute
operation (i.e., an operation involving input of data to
the subject type’s processes) to any object type and class
combination that is written by any other subject type in
the system. Note that this constraint is more restric-
tive even than our original proposal, but understanding
which subject types actually have integrity relationships
may be useful in resolving conflicts.

Gokyo implements this constraint by computing
read/execute permissions for each object type and class
combination written by the other subject types. This set
of read permissions is the set of permissions that the
TCB subject type may not read. When the constraint
is tested, if the TCB subject type has a read/execute per-
mission that intersects one of the precluded permissions
then a constraint violation is generated. In some cases,
a single allow statement may result in several constraint
violations. This can occur when an allow is made on a
type attribute rather than a type directly. For example,
access to read a variety of network input is the result of
a single allow statement. Such assignments are prop-
agated to each object type that has this type attribute.
Gokyo shows only the unique assignments that result in
violations, but can print all the individual violations to
a file. In our results, we will also focus on the unique
assignment mainly.

p: r1 perms, r2 perms
Roler3 r r1 2,13 p: p4
...... Perm p4 r: p4 roles

p: p4, p5 perms, p6
R Perm p6 rr2
....... s: 12 subjs

s: p4 subjs
p: p1, p2, p3, p5
Perm p5 r pb roles
s: p6 subjs
P p1
Perm p1 r: p5roles
s: p5 subjs
p: p3 P p2
rrl, p5 roles r: p5roles
s: 11 subjs, s: p5 subjs

p5 subjs

LN TN “ R

T refer to the permissions, subject types, and

3.3 Classifying Conflicts

Once the conflicting subspace for a TCB subject type
is generated, we could choose a handler for this sub-
space. In general, Gokyo permits overriding the con-
flict by granting or denying the subspace. However, both
grants and denials can be augmented by arbitrary analy-
sis code ranging from audit to complex intrusion detec-
tion. Thus, if the integrity conflicts that we find are all
representative of the same situation we could choose a
single approach to handling them.

In Section 2.4 lists five approaches for dealing with in-
tegrity conflicts that are summarized in Table 1. The
problem is to determine which integrity conflicts imply
which resolutions; the SELinux example policy does not
provide any further input explicitly. To address this we
classify conflicts in a manner that does not unequivo-
cally identify the resolution, but does identify the possi-
ble resolutions. First, members of the TCB subject types
may be trusted writers, so if the subject type of an in-
tegrity conflict is a TCB subject type then all handling
options are possible. Further, some subject types may be
candidates to be added to the TCB. Subject types with
a significant number of conflicts should be considered.
We use the heuristic that subject types with an average
of greater than one conflict per TCB type are candidates
for trusted types.

Second, we propose that the analysis also include a se-
curity target definition that specifies the required subject
types. Rather than requiring that the system adminis-
trators enumerate all subject types individually, we can
use the type transition hierarchy to estimate the set of

66

12th USENIX Security Symposium

USENIX Association

|| Class Description ||
TCB or Candidate | Trusted subject types
Exclude Type Type can be excluded from secure system with this TCB
Sanitize A sanitized read may be used to protect TCB
Denial Denial of conflicting rights can be used to protect TCB
Modify Policy Policy must be edited to protect TCB

Table 1: Classifications for TCB integrity conflicts.

types required as all subject types that may transition to
a required subject type. Type attributes or other seman-
tically meaningful identifiers can be used to identify de-
sired subject type sets. If a subject type does not belong
to the set of required subject types it can be considered
for exclusion and the other remaining handling methods.

Identifying object types that may be excluded is more
difficult. If we are too ambitious, we may remove an ob-
ject type that is really needed by the system. In general,
when we exclude a subject type, we may remove ob-
ject types depend on the existence of this subject type.
For example, if we remove X windows subject types,
we no longer need X windows object types. This may
prevent integrity violations for TCB subject types with
broad rights, such as the system administrators. The de-
pendency of a subject type on the availability of particu-
lar object types is not currently identified. All we know
are the operations that can be performed. A conservative
approximation is the object types for which objects can
only be created by the excluded subject type. Without
the subject type, objects of this type would not exist in
the system. We have to account for all possible ways of
making objects of this object type, including relabeling
(specifically relabelto permission).

Third, some Biba integrity violations involve reading
low integrity that the subject type can actually handle,
such as requests for operations. The Clark-Wilson in-
tegrity policy accounts for these by allowing transfor-
mation processes (TPs) to operate low integrity data (un-
constrained data items or UDIs) and even convert them
to high integrity data (constrained data items or CDIs).
We refer to the ability to correctly function given UDI
input as sanitization of this input. In Clark-Wilson, TPs
must be certified to perform their tasks. We identify both
where TPs require sanitization and where they must han-
dle CDIs properly. Our initial assumption is that all data
used by TCB subject types are CDIs, but some data may
be downgraded to UDIs and used via sanitization.

Recall the distinction between read integrity and read-
write integrity violations. We state that read integrity

violations may be sanitized, but read-write integrity con-
flicts have no possibility of sanitization (i.e., data written
by a TCB subject type is always a CDI, in Clark-Wilson
terms). Recall that read-write integrity violations mean
that the subject type writes and reads data that can be
modified by a lower integrity subject type. Depending
on synchronization, a lower integrity subject type may
be able to change an objects as the higher integrity sub-
ject type is writing them. While sanitization may be pos-
sible in general, we flag these violations as being beyond
sanitization.

Fourth, the read-write integrity violations are classified
for ad hoc denial of rights. In many cases, more rights
are assigned than are really necessary for the application,
which is a problem of least privilege. In some cases, it
may be sufficient and simpler to simply deny the con-
flicting rights. Gokyo enables partitioning of conflicts,
and assigning independent handling to each partition.
Therefore, it is possible to simply denial these rights
without further modifying the SELinux example policy.
Application-specific examination is necessary to deter-
mine if these denials are really possible.

Lastly, if we find that the permission assignment is nec-
essary for the convenient execution of a required appli-
cation, then modification of the policy is the only re-
maining option.

3.4 Manual Analysis

Manual analysis involves starting at the highest level
handling method and determining whether it can actu-
ally be applied. If not, then the subsequent methods must
be considered.

Identifying trusted writers and excluded writers can be
done automatically, so the main effort here is on deter-
mining whether sanitization is possible and identifying
the sanitization method. This is a fairly ad hoc process,
s0 we examine it relative to our integrity analysis results
in Section 4.

USENIX Association

12th USENIX Security Symposium

67

If sanitization is not possible, then expressing a denial
for this exception or policy modifications are the remain-
ing options. Both of these must be done manually at
present.

4 Integrity Analysis

In this section, we use Gokyo to analyze our proposed
TCB to identify the integrity conflicts, classify accord-
ing to best possible resolution, and choose the likely res-
olution. The likely resolution is chosen based on manual
analysis of the conflict. The key results are the resultant
TCB (i.e., does it need to be expanded and how?) and
proposed SELinux policy changes needed to achieve this
TCB. Detailed discussion of the Gokyo tool itself is pro-
vided elsewhere [13].

4.1 Analysis Implementation

The integrity analysis for the proposed TCB in Sec-
tion 2.3 is performed on the SELinux example policy for
Linux 2.4.19. This policy consists of over 50,000 pol-
icy statements . In Gokyo, the SELinux example pol-
icy comprises over 700 subject types and type attributes,
over 40,000 individual permissions, and over 100,000
explicit assignments between subject types and permis-
sions.

The integrity of the SELinux system is represented by
two integrity constraints between the set of proposed
TCB subject types and the set of all other subject types
as shown in Figure 4. To represent this we create two
subject types, TCB subject types (high integrity) and
non-TCB subject types (low integrity), and aggregate the
subject types into their respective group. The permis-
sions assigned to each subject type node are automati-
cally propagated to the aggregate subject types.

Our integrity protection goal is expressed using two con-
straints: (1) read-integrity constraint and (2) read-write-
integrity constraint. Read-integrity constraints are vio-
lated if the low integrity subject has write permission
(i.e., a permission representing the ability to modify the
data in that SELinux class) to an object type and class
pair that high integrity subject type has read permission
to. Read-write integrity is violated if the high-integrity
subject also has write permission to the object type and
class pair in addition to read permission.

4Statement count is taken from the macroexpanded policy in
policy.cont.

To implement these constraints, Gokyo assigns the in-
valid permissions to the high integrity set. For read-
integrity, Gokyo creates a permission with all read per-
missions assigned for each object type and class pair
that the low integrity subject can write. Similarly, for
read-write-integrity, Gokyo creates a permission with all
write permissions assigned for each object type and class
pair that the low integrity subject can write. In this case,
constraint verification takes an intersection of the invalid
permissions and the ones assigned to the TCB subject
types (i.e., different types of constraints may have dif-
ferent algorithms).

Note that it may be more efficient to test this constraint in
the opposite manner by determining if the low integrity
set has write permissions to object type and class pairs
that the high integrity subject can read. At this point,
we actually create both integrity test sets, but we should
determine which is smaller and test only that one instead.

Analyzing integrity protection is basically a task of iden-
tifying all integrity conflicts and classifying them into
their best legal classification. We have found that the
number of conflicts that exist in the entire SELinux pol-
icy is too large to be effectively considered together.
Fortunately, conflicts are independent. That is, the ex-
istence of one conflict has no effect on another. This
means that a classification to eliminate one conflict can-
not be undone by another conflict. For example, if we
find that we can sanitize the use of a particular conflict-
ing permission, the emergence of a conflict later does
not impact this sanitization. This is true for all classifi-
cations. The one caveat is that we may find that a partic-
ular subject requires so many sanitizations that it should
be trusted or excluded, but these cases are not excessive
and easily handled. Usually, we determine whether a
subject should be trusted or excluded before we do the
hard work of figuring out a sanitization.

The result is that we can consider the conflicts in small
groups, and make classifications based on a subset of
the information. Currently, we use Gokyo in a mode
in which it identifies a single conflict for each invalid
permission (i.e., constraint-generated). Sometimes, at-
tribute assignments result in multiple, unique conflicts,
but Gokyo only presents the attribute assignment once.
Gokyo generates a log containing all conflicts and the
assignment paths between nodes involved in the conflict,
including the line numbers in which the assignments are
specified. This assists with the manual analysis phase.
However, addition metadata, such as the frequency of
conflict for a particular invalid permission, would also be
useful. The log of a constraint violation is shown below
(class.conf is SELinux policy file, kernel .cst

68

12th USENIX Security Symposium

USENIX Association

H -- High
Integrity
Subjects

P(H) Read Integrity P(L)

L -- Low
Integrity
Subjects

P(H) Read-Write Integrity P(L)
aggregate

assign assign assign assign

Figure 4: Gokyo graphical policy model implementation of integrity.

aggregate aggregate aggregate

|| Trusted Type | Conflict Type | Object Type & Op | Class | Resolution ||
dpkg t tmpreaper_t tmp_dpkg_t:file rw exclude exclude
initre_t many file_type:blk/chr/file r sanitize sanitize
initre_t useradd_t etc_tfile r trust trust
initre_t hwelock_t clock_device_t:chr/blk rw trust trust
initre_t gpm_t psaux_t:chr rw exclude exclude
initrc_t sound_t, xdm_t sound_device_t:chr rw trust exclude
initre_t httpd_admin_xserver_t framebuf_device_t:chr rw deny exclude
initre_t many initre_t:fifo rw deny sanitize
kernel_t slapd_t, squid_t, + **_socketr sanitize sanitize
kernel_t dhepe_t resolv_conf_t:filer trust exclude
kernel_t dhepd_t var_run_dhepd_t:file r trust exclude
kernel_t quota.t file_t:file r trust trust
local_login_t | many proc_t:file r sanitize sanitize
local_login_t | insmod_t local_login_t:process r exclude exclude
local_login_t | logrotate_t local_login_t:process r trust trust
mount_t automount_t autofs_t:dir rw exclude trust
mount_t bootloader_t, fsadm_t fixed_disk_device_t:* rw trust trust
sysadm_t user_t misc_device_t:* rw deny exclude obj
sysadm_t many sysadm_devpts_t/ptyfile:* rw deny change
sysadm_t sysadm_*_t sysadm_home_t:* rw deny change/sanitize one file
sysadm_t sysadm_*_t sysadm_tmp_t:file rw exclude change
sysadm_t sysadm_irc_t sysadm_irc_t:file rw exclude change/sanitize
sysadm_t sysadm_xserver_t sysadm_xserver_t:shm rw exclude exclude
sysadm_t sysadm_xauth_t sysadm_home_xauth_t:file rw | exclude exclude
sysadm_t admin kernel_t:system avc_toggle rw trust trust
sshd_t many sshd_devpts_t/userpty:* rw deny change

Table 2: Integrity conflicts in the initial TCB proposal.

USENIX Association

12th USENIX Security Symposium

69

is our constraint file, and kernel . cf£g contains aggre-
gate subject type definitions):

On constraint: kernel.cst (25)

Role 151: mount_t

has constraint: "integrity protected"
with node: Role 882: non-mount

Violating Assignments:
Permission 2876: autofs_t:dir 00110000

(1) From: class.conf (60810) Perm 2876:
autofs t:dir 00110000
(2) to: class.conf (60759) Role 151: mount_t

Violating Preclusions:
Permission 45131: autofs_t:dir O003fffff
(3) From: kernel.cst (25) Role 882: non-mount

(4) to: class.conf (60759) Role 151: mount_t
(5) to: class.conf (0) Perm 42608:

autofs t:dir 003elc7e
(6) to: class.conf (60639) Perm 2857:

autofs t:dir 003elc7f
(7) to: kernel.cfg (94) Role 148: automount_t
(8) to: kernel.cfg (91) Role 882: non-mount

The violating assignments is the permission assigned
to mount_t whose integrity may be violated. Line
(1) indicates where the permission was assigned to
mount_t, and line (2) indicates where mount_t was
identified as a subject. The file clags.conf is a trun-
cated version of policy.conf for SELinux 2.4.19.
For the violating preclusions, the path for the assign-
ment of the constraint-generated invalid permission is
shown. Line (3) refers to declaration of the aggregate
subject type (Gokyo-specific), and line (4) is the same
as line (2). Line (5) refers to the generated permis-
sion (no file line number because it is generated), and
line (6) shows the assignment of autofs_t permis-
sions to automount_t. Lines (7) and (8) show that
automount_t is assigned to the non-TCB aggregate.

For each conflict, Gokyo estimates the classifications
based on: (1) the number of subject type conflicts (for
trust); (2) whether the subject type or object type is
required, see below (for excluding subject types); and
(3) whether the conflict is read-integrity or read-write-
integrity (for considering sanitization). Our proposal for
removing object types based on whether the object type
is created by only excluded subject types has not been
implemented yet, so we use the object types required by
our focal subject type.

For required subject types, we assumed that the purpose
of our system was to run an Apache web server. Thus,
we include all Apache subject types (i.e., those starting
with httpd) and all those subject types that transition
to an Apache subject type, directly or indirectly. In ad-
dition to our TCB subject types, we require dpkg t
(i.e., the Debian package manager), rlogind, several
user subject types. Ultimately, we will choose to exclude
rlogind, but include user t in the analysis. Users

may be actively involved in script generation (e.g., for
personal pages in a corporate server). Because so few
other required subject types are found this way, we will
add others later. Note that the set of required object types
includes the types accessible to the Apache subject types
only.

4.2 Analysis Process

Table 2 shows the integrity conflicts that our proposed
TCB has with the remaining system subject types and
the possible resolutions of these conflicts. The trusted
type field shows a trusted type that reads input written
by an untrusted type. The conflict type field shows one
or more of the untrusted types in the conflict. The object
type & op field shows the conflicting data and the rights
of the TCB subject type (i.e., read or read-write integrity
conflict). The class field shows the classification of the
conflict. The resolution field shows the manual resolu-
tion to the conflict.

The integrity conflicts are collected into groups based
on the trusted type. First, dpkg t (debian package
management) has a common read-write integrity conflict
also because tmpreaper (cleans temporary file direc-
tories) is given broad file access for cleaning up tempo-
rary files. tmpreaper_t is responsible for few viola-
tions, so the classification is exclude. This specification
is consistent with tmpreaper’s task, so the only two
alternatives are to trust or exclude tmpreaper t. We
manually choose the latter.

Second, initrc t isinvolved in a read integrity con-
flict that affects most trusted types: it is given read ac-
cess to all file data in the system. Since it can read
all files, it certainly has an integrity conflict with the
lower integrity subjects. However, the read access is to
getattr for stat, so this can be sanitized.

Third, initrc_t has several other conflicts. The next
two are identified as required and seem necessary, so
we add useradd_t and hwclock_t are added to the
TCB. The next three are not really necessary (gpm_t
for mouse, sound_t, and xdm_t), so we choose to ex-
clude them. The X window server introduces a number
of other integrity issues, so much more work is necessary
to have an X windows system running on an integrity-
protected TCB. Thus, httpd _admin xserver tis
excluded. Lastly, we determine that read-write integrity
access to initrc_t’s fifo can be sanitized as neces-
sary. It should involve only simple communication (e.g.,
on process start). Note that this is a manual override of
our intended requirements.

70

12th USENIX Security Symposium

USENIX Association

Fourth, kernel t has several integrity conflicts with
receiving network data. This integrity conflict is com-
mon to most services in the TCB. Such interaction is
necessary for convenient execution, so we will examine
sanitization of network communication in Section 4.3.
The other conflicts are so common that the framework
assumes that they are trusted. Manual analysis keeps on
quota_t (file quota management) in the TCB and ex-
cludes dhcpc_t and dhcpd_t.

Fifth, the conflict over access to /proc is found for
local login_ t. Since this access is for reading
only, we will aim to sanitize this access. Next, we as-
sume that installing modules is not necessary for our se-
cure system, so insmod may be excluded. On the other
hand, logging is an important process, so logrotate
is added to the TCB.

Sixth, mount t has conflicts with automount t,
fsadm t, and bootloader t. Although only the
latter two are common conflicts, all of these are added to
the TCB.

Seventh, there are a wvariety of conflicts with
sysadm_t. sysadm_t has a conflict over ac-
cess to misc device t with user subjects. These
object types will be excluded. Also, access to
sysadm devpts_t is shared with many subject
types. Many of these subjects are application-specific
administrators which are intended to be of lower
integrity. A different object type should be designated
for these. Next, sysadm t has read-write integrity
conflicts with the application-specific administrators
over the sysadm home t. Conflicting access is
provided to permit lower-integrity administrative pro-
cesses to write to an error log (. xsession-errors).
We recommend breaking the object type into two
for the higher and lower integrity home objects, so
access to the latter can be sanitized. Since we have
excluded X windows this object type can also be
excluded in this case. Access to sysadm tmp t
and sysadm irc_ t should be changed similarly.
Finally, sysadm_t has conflicts that can be excluded
for X windows subject types and trusted for admin-
istrative subject types. The following subject types
are added to the TCB: ipsec _mgmt_t, apt_t, and
admin passwd _exec t. install menu t is
excluded.

Lastly, sshd_t has a read-write integrity conflict over
the use of pseudo-terminals. Type change is used for
some to change the subject type to a lower-integrity sub-
ject upon use of a user pty for sysadm_t, so we pre-
sume that this should be added for sshd_t as well.

After the trusted types, excluded types (including object
types), and sanitized accesses are added to their respec-
tive lists, the next iteration of the analysis can be per-
formed. After some number of iterations, 5 in our case,
all the exclusions, sanitizations, and trusted subject types
are accounted for, and no conflict remains unclassified.
However, resolving the efficacy of sanitizations and re-
duce file read permissions (or at least managing them)
remain.

4.3 Analysis Findings

The base TCB for the SELinux example policy for sup-
porting an Apache is shown in Table 3. Note that the set
of subject types that Apache must ultimately depend on
would be somewhat larger (around 50% larger given our
analysis [13]). Starting with our original 12 types, we
have found that 30 subject types must be trusted. The
correctness of this TCB depends on the resolution of the
full access that these subject have to application and user
files which they should probably rarely access, as dis-
cussed below. Also, not all forms of authentication are
necessary at once. Ultimately, it is probably possible to
reduce this set slightly, but this provides a good estimate
of most SELinux TCBs.

Interestingly, not long after this paper was submitted,
Wayne Salamon independently proposed a “core policy”
to the SELinux community [19]. The intent of this pro-
posal was to define a base system policy upon which
any other system policies would be derived. There is
some notion of usability here rather than TCB, as the in-
tent is for base function rather than base security. After
some discussion with the community he settled on 40
policy files (roughly equivalent to 40 subject types) to
comprise a core policy. 17 of the subject types in the
TCB are common to the two groups. The ones that we
include that are not in the core policy proposal are indi-
cated in Table 3. We think that many of the subject types
in our proposal are TCB subject types, although some
authentication subject types, such as sshd_t, and ad-
ministrative types, such as sysadm_t and dpkg, are
not necessarily core.

As part of the analysis, we identified subject types and
object types for exclusion from our system. The 25 sub-
ject types we excluded are listed in Table 4. We need
to verify empirically that such services are not actually
necessary for an Apache system on SELinux, but most
of these do not seem controversial.

In Table 5, we summarize the sanitizations required for
our TCB. Note that in Clark-Wilson terms, these saniti-

USENIX Association

12th USENIX Security Symposium

71

kernel _t* init_t initre_t sysadm_t* getty _t
mount_t fsadm_t load_policy_t dpkg t* checkpolicy_t
setfiles_t syslogd_t klogd_t automount_t sshd_t*
sshd_login_t* | local_login_t quota_t* Idconfig t useradd_t
hweclock_t* apt_t* cardmgrt* | ipsecmgmt_t* | admin_passwd_exec_t*
bootloader_t logrotate_t newrole_t snmpd_t* passwd_t*

Table 3: Final trusted computing base subject types (* indicates not in proposed SELinux core policy).

insmod_t rlogind_t remote_login_t sysadm_xserver_t xdm_t
sysadm_xauth_t sound_t tmpreaper_t httpd_admin_xserver_t kmod_t
Ipd_t xdm_xserver_t vmware_user_t sendmail_t procmail t
hotplug_t traceroute_t update_modules_t gatekeeper_t smbd._t
dhepe_t dhepd_t install_menu._t devtsd_t gpm_t

Table 4: Final excluded subject types.

zations indicate the unconstrained data items (UDIs) that
our TCB’s transformation procedures (TPs) must han-
dle. By sanitization, we envision that SELinux modules
can be annotated with sanitization policies to verify the
format of the inputs. This is a non-trivial endeavor, so
such a proposal is quite preliminary. However, such san-
itization services on top of a verified and simple integrity
policy can enable fulfilling of our security goals without
major policy tweaking.

Some of these sanitizations are focused and can be han-
dled as exceptions, but some (the first four) have many
instances. Our impression is that the fifos can be handled
because each instance serves the same purpose. Socket
access is both extensive in number of communicators
and variety of communications. Significant effort is re-
quired to comprehensively address these. Most of the in-
formation in /var and /proc does not seem to impact
the processing of our trusted subjects, but more investi-
gation is necessary.

The two conflicts that remain are: (1) between trusted
subject types and the pseudo-terminals that they share
with user process and (2) the permission assignments
that permit trusted subjects to access to all files (the first
and last entries in Table 2). The first conflict is proba-
bly best handled by a SELinux fype change statement.
These are used to change the type of an object based on
the subject type of the accessor. When a pseudo-terminal
is accessed by a high integrity subject, it gets a high in-
tegrity type and its previous state is cleared.

The second conflict could be addressed by leveraging
Gokyo. Using Gokyo’s conflict spaces, we could de-
clare auditing or intrusion detection to be initiated when

an integrity-conflicted file object is accessed by a high-
integrity subject. This would not require a modification
to the SELinux policy, but a Gokyo conflict space as-
signment would be necessary [13]. Such a solution de-
pends on infrequent use of conflicting permissions. If
there is frequent use of some conflicting permissions,
then alternative measures are needed. This task remains
as future work.

Note that a SELinux auditallow statement would not
quite work in this case because it would audit all file
accesses instead of the ones that violate integrity. Of
course, we could always modify the SELinux policy, but
this would take significant effort and perhaps lead to fur-
ther conflicts.

5 Related Work

SELinux includes tools for policy analysis. neverallow
statements enable the policy designer to express assign-
ments that should not be expressed in the policy. The
checkpolicy tool verifies that no neverallow statement is
violated when the policy is compiled. Such statement
enable the identification of conflicts, but any resolution
requires changing the SELinux policy directly. These
statements are suitable for expressing cases that should
not ever occur, but they are not suitable for expressing
high level security goals.

The Tresys Corporation has been developing tools for
analyzing SELinux policies for over one year [23].
Tresys defines tools for helping administrators under-
stand the SELinux policy (e.g., statements for a par-

72

12th USENIX Security Symposium

USENIX Association

|| Object Tipe Sanitization

*_tfifo Mainly for use following exec
*:*_socket Must be able to handle network data or big policy mod
proc_t:file Mainly expected to print this information
sysadm_home_t:* | Only need to read .xsession-errors log

Table 5: Sanitized conflicts and brief analysis.

ticular subject type) and helping perform administrative
tasks (e.g., correctly adding a new user). Such tools are
valuable for the development of SELinux policies, but
do not address the questions of whether the policies can
meet particular high-level goals.

We are aware of work ongoing at MITRE to analyze
SELinux policies for more complex relationships, such
as reachability [7]. The SELinux example policy is so
large that the theorem proving tools being used are not
efficient enough for effective analysis yet.

Access control policy analysis itself is a fairly recent
area of work. Bertino et al define a general frame-
work for representing and reasoning about access con-
trol models [3]. The goal here is to compare models
(e.g., for expressive power) rather than compare policies
to properties. We believe that their model is expressive
enough to do the latter, however.

Further, Jajodia et. al. [14] support conflict resolution in
their model. In their case, the goal is to find a general
strategy of conflict resolution, not to support different
strategies. Ferrari et. al. [§] examine conflict resolution
problems and strategies as well.

6 Conclusions

In this paper, we present an approach for analyzing in-
tegrity protection of the SELinux example policy. The
SELinux module supports the recent Linux Security
Modules (LSM) framework for implementing manda-
tory access control on the Linux kernel. The SELinux
example policy is undergoing active development and
is being applied in several installations. The aim is for
administrators to take the SELinux example policy and
customize it to their site’s security goals. This quite dif-
ficult, however, because the SELinux policy model is
quite complex and the SELinux example policy is large.

Our aim is to provide an access control model to express
site security goals and resolve them against the SELinux

policy. In particular, we want to identify a minimal sys-
tem TCB for the SELinux example policy that satisfies
Clark-Wilson integrity restrictions relative to the rest of
the system. UNIX systems are not designed to meet Biba
integrity, but the Clark-Wilson integrity policy enables a
description where key data can be identified (those data
used by TCB subject types), and sanitization of low in-
tegrity data is possible.

We have developed a tool called Gokyo that represents
the SELinux example policy and our integrity goals,
identifies conflicts between them, estimates the resolu-
tions to these conflicts, and provides information for de-
ciding upon a resolution. Further, Gokyo represents the
state of the integrity resolution which could be used by
the access control module to make authorization, au-
dit, and intrusion detection decisions. Using Gokyo,
we found a minimal TCB containing 30 subject types
that meets Clark-Wilson integrity including sanitization
requirements and resolution of overly broad file access
rights. More investigation is needed to verify the pro-
posed sanitization requirements and determine the effec-
tiveness of audit versus restriction of file rights, but the
Gokyo’s ability to support the analysis of integrity pro-
tection is helpful in understanding and managing higher
level security goals on complex policies.

Acknowledgements

The authors would like to thank the anonymous refer-
ees for their useful comments, and those people partici-
pating in the SELinux community, particularly Stephen
Smalley and Russell Coker.

References

[1] L. Badger, D. F. Sterne, D. L. Sherman, K. M.
Walker, and S. A. Haghighat. A Domain and Type
Enforcement UNIX Prototype. In Proceedings of

USENIX Association

12th USENIX Security Symposium

73

(5]

(6]

[7]

(8]

[12]

[13]

the 1995 USENIX Security Symposium, 1995. Also
available from TIS online archives.

D. Bell and L. La Padula. Secure Computer
Systems: Mathematical Foundations (Volume 1).
Technical Report ESD-TR-73-278, Mitre Corpora-
tion, 1973.

E. Bertino, B. Catania, E. Ferrari, and P. Perlasca.
A logical framework for reasoning about access
control models. ACM Transactions on Information
and System Security (TISSEC), 5(4), Nov 2002.

K. J. Biba. Integrity considerations for secure com-
puter systems. Technical Report MTR-3153, Mitre
Corporation, Mitre Corp, Bedford MA, June 1975.

W. E. Boebert and R. Y. Kain. A Practical Alterna-
tive to Hierarchical Integrity Policies. In Proceed-
ings of the 8" National Computer Security Con-
ference, Gaithersburg, Maryland, 1985.

D. D. Clark and D. R. Wilson. A comparison of
commercial and military computer security poli-
cies. Proceedings of the 1987 IEEE Symposium
on Security and Privacy, 1987.

A. Herzog. Personal communication.. November
2002.

E. Ferrari and B. Thuraisingham. Secure database
systems. In O. Diaz and M. Piattini, editors, Ad-
vanced Databases: Technology and Design, 2000.

T. Fraser. LOMAC: Low Water-Mark Integrity
Protection for COTS Environments. In Proceed-
ings of the 2000 IEEE Symposium on Security and
Privacy, May 2000.

M. A. Harrison, W. L. Ruzzo, and J. D. Ullman.
Protection in operating systems. Communications
of the ACM, 19(8), August 1976.

T. Jaeger and J. E. Tidswell. Practical safety in flex-
ible access control models. ACM Transactions on
Information and System Security (TISSEC), 4(2),
May 2001.

T. Jaeger, A. Edwards, and X. Zhang. Managing
access control policies using access control spaces.
In Proceedings of the 7" ACM Symposium on Ac-
cess Control Models and Technologies, June 2002.

T. Jaeger, A. Edwards, and X. Zhang. Policy man-
agement using access control spaces. ACM Trans-
actions on Information and System Security (TIS-
SEC), to appear.

[14]

[20]

[21]

[22]

S. Jajodia, P. Samarati and V. Subrahmanian. A
Logical Language for Expressing Authorizations.
Proceedings of the IEEE Symposium on Security
and Privacy, 1997.

P. Karger and R. Schell. Thirty years later: Lessons
from the Multics security evaluation. IBM Tech-
nical Report, RC 22534, Revision 2, September
2002.

P. Loscocco, S. Smalley, P. Muckelbauer, R. Tay-
lor, J. Turner, and J. Farrell. The inevitability of
failure: The flawed assumption of computer secu-
rity in modern computing environments. Proceed-
ings of the 21%% National Information Systems Se-
curity Conference, October 1998.

S. Minear. Providing policy control over objects
in a Mach-based system. Proceedings of the Fifth
USENIX Security Symposium, 1995.

National Security Agency. Security-Enhanced
Linux (SELinux). http://www.nsa.gov/selinux,

2001.

W. Salamon. Core policy, sec-
ond pass. SELinux mailing list
archives, http://www.nsa.gov/selinux/list-

archive/3941 html, 2003.

S. Smalley. Configuring the SELinux pol-
icy. NAI Labs Report #02-007, available at
www.nsa.gov/selinux, June 2002.

R. Spencer, S. Smalley, P. Loscocco, M. Hibler,
and J. Lapreau. The Flask security architecture:
System support for diverse policies. Proceedings
of the Eighth USENIX Security Symposium, August
1999.

C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux Security Modules: Gen-
eral security support for the Linux kernel. Proceed-
ings of the Eleventh USENIX Security Symposium,
August 2002.

Tresys Technology. Security-Enhanced Linux re-
search. www.tresys.com/selinux.html, 2001.

74

12th USENIX Security Symposium

USENIX Association

