USENIX Association

Proceedings of the
12th USENIX Security Symposium

Washington, D.C., USA
August 4-8, 2003

THE ADVANCED COMI

PUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A New Two-Server Approach for Authentication with Short Secrets

John Brainard, Ari Juels, Burt Kaliski, and Michael Szydlo
RSA Laboratories
Bedford, MA 01730, USA

E-mail: {jbrainard,ajuels,bkaliski,mszydlo}@rsasecurity.com

Abstract

Passwords and PINs continue to remain the
most widespread forms of user authentication, de-
spite growing awareness of their security limitations.
This is because short secrets are convenient, par-
ticularly for an increasingly mobile user population.
Many users are interested in employing a variety of
computing devices with different forms of connectiv-
ity and different software platforms. Such users often
find it convenient to authenticate by means of pass-
words and short secrets, to recover lost passwords by
answering personal or “life” questions, and to make
similar use of relatively weak secrets.

In typical authentication methods based on
short secrets, the secrets (or related values) are
stored in a central database. Often overlooked is
the vulnerability of the secrets to theft en bloc in
the event of server compromise. With this in mind,
Ford and Kaliski and others have proposed vari-
ous password “hardening” schemes involving multi-
ple servers, with password privacy assured provided
that some servers remain uncompromised.

In this paper, we describe a new, two-server se-
cure roaming system that benefits from an especially
lightweight new set of protocols. In contrast to previ-
ous ideas, ours can be implemented so as to require
essentially no intensive cryptographic computation
by clients. This and other design features render the
system, in our view, the most practical proposal to
date in this area. We describe in this paper the pro-
tocol and implementation challenges and the design
choices underlying the system.

1 Introduction

In this paper, we consider a basic, pandemic
security problem: How is it possible to provide se-
cure services to users who can authenticate using
only short secrets or weak passwords?

This problem is of growing importance as
Internet-enabled computing devices become ever

more prevalent and versatile. These devices now
include among their ranks an abundant variety of
mobile phones, personal digital assistants (PDAs),
and game consoles, as well as laptop and desktop
PCs. The availability of networks of computers to
highly mobile user populations, as in corporate en-
vironments, means that a single user may regularly
employ many different points of remote access. The
roaming user may additionally employ any of a num-
ber of different devices, not all of which necessarily
possess the same software or configuration.

While smartcards and similar key-storage de-
vices offer a secured, harmonized approach to au-
thentication for the roaming user, they lack an ade-
quately developed supporting infrastructure in many
computing environments. At present, for example,
very few computing devices contain smartcard read-
ers — particularly in the United States. Furthermore,
many users find physical authentication tokens in-
convenient. Another point militating against a criti-
cal reliance on hardware tokens is the common need
to authenticate roaming users who have lost or for-
gotten their tokens, or whose tokens have malfunc-
tioned. Today, this is usually achieved by asking
users to provide answers to a set of “life” questions,
i.e., questions regarding personal and private infor-
mation. These observations stress that roaming users
must be able to employ passwords or other short
pieces of memorable information as a form of authen-
tication. Indeed, short secrets like passwords and an-
swers to life questions are the predominant form of
authentication for most users today. They are the
focus of our work here.

To ensure usability by a large user population,
it is important that passwords be memorable. As a
result, those used in practice are often highly vul-
nerable to brute-force guessing attacks [21]. Good
credential-server designs must therefore permit se-
cure authentication assuming a weak key (password)
on the part of the user.

USENIX Association

12th USENIX Security Symposium

201

1.1 SPAKA protocols

A basic tool for mutual authentication via
passwords, and one well developed in the litera-
ture, is secure password-authenticated key agreement
(SPAKA). Most SPAKA protocols are descendants
of Bellovin and Merrit’s EKE protocol [3, 4], and are
predicated on either Diffie-Hellman key agreement
or key agreement using RSA. The client and server
share a password, which is used to achieve mutual as-
surance that a cryptographically strong session key
is established privately by the two parties. To ad-
dress the problem of weak passwords, SPAKA pro-
tocols are constructed so as to leak no password in-
formation, even in the presence of an active attacker.
When used as a means of authentication to obtain
credentials from a trusted server, a SPAKA protocol
is typically supplemented with a throttling or lock-
out mechanism to prevent on-line guessing attacks.
Many roaming-credentials proposals involve use of
a SPAKA protocol as a leverage point for obtain-
ing credentials, or as a freestanding authentication
protocol. A comprehensive, current bibliography of
research papers on the topic of SPAKA protocols
(of which there are dozens) is maintained by David
Jablon, and may be found at [17].

The design of most SPAKA protocols overlooks
a fundamental problem: The server itself represents
a serious vulnerability. As SPAKA protocols require
the verifying server to have cleartext access to user
passwords (or to derivative material), compromise of
the server leads potentially to exposure of the full
database of passwords. While many SPAKA proto-
cols store passwords in combination with salt or in
some exponentiated form, an attacker who compro-
mises the server still has the possibility of mounting
off-line dictionary attacks. Additionally, these sys-
tems offer no resistance to server corruption. An at-
tacker that gains control of the authenticating server
can spoof successful login attempts.

To address this problem, Ford and Kaliski [13]
introduced a system in which passwords are effec-
tively protected through distribution of trust across
multiple servers. Mackenzie, Shrimpton, and Jakob-
sson [24] extended this system, leading to more com-
plex protocols, but with rigorous security reductions
in a broadly inclusive attack model. Our work in this
paper may be regarded as a complement, rather than
a successor to the work of these authors. We pro-
pose a rather different technical approach, and also
achieve some special benefits in our constructions,
such as a substantially reduced computational load
on the client. At the same time, we consider a differ-

ent, and in our view more pragmatic security model
than that of other distributed SPAKA protocols.

1.2 Previous work

The scheme of Ford and Kaliski reduces server
vulnerability to password leakage by means of a
mechanism called password hardening. In their sys-
tem, a client parlays a weak password into a strong
one through interaction with one or multiple hard-
ening servers, each one of which blindly transforms
the password using a server secret. Ford and Kaliski
describe several ways of doing this. Roughly speak-
ing, the client in their protocol obtains what may be
regarded as a blind function evaluation o; of its pass-
word P from each hardening server S;. (The function
in question is based on a secret unique to each server
and user account.) The client combines the set of
shares {o;} into a single secret o, a strong key that
the user may then use to decrypt credentials, authen-
ticate herself, etc. Given an appropriate choice of
blind function evaluation scheme, servers in this pro-
tocol may learn no information, in an information-
theoretic sense, about the password P. An additional
element of the protocol involves the user authenti-
cating by means of ¢ (or a key derived from it) to
each of the servers, thereby proving successful hard-
ening. The harderened password ¢ is then employed
to decrypt downloaded credentials or authenticate to
other servers. We note that the Ford-Kaliski system
is designed for credential download, and not pass-
word recovery; our system is specially designed to
support both. Another important distinction is that
in the Ford-Kaliski system, the client interacts with
both servers directly. As we describe, an important
feature of our proposed system is the configuration of
one server in the back-end, yielding stronger privacy
protection for users.

Mackenzie et al. extend the system of Ford and
Kaliski to a threshold setting. In particular, they
demonstrate a protocol such that a client commu-
nicating with any k out of n servers can establish
session keys with each by means of password-based
authentication; even if k& 1 servers conspire, the
password of the client remains private. Their system
can be straightforwardly leveraged to achieve secure
downloadable credentials. The Mackenzie et al. sys-
tem, however, imposes considerable overhead of sev-
eral types. First, servers must possess a shared global
key and local keys as well (for a total of 4n+ 1 public
keys). The client, additionally, must store n+ 1 (cer-
tified) public keys. The client must perform several
modular exponentiations per server for each session,
while the computational load on the servers is high

202

12th USENIX Security Symposium

USENIX Association

as well. Finally, the Mackenzie et al. protocol is
somewhat complex, both conceptually and in terms
of implementation. On the other hand, the protocol
is the first such provided with a rigorous proof of se-
curity under the Decision Diffie-Hellman assumption
[7] in the random oracle model [2].

Frykholm and Juels [15] adopt a rather differ-
ent approach, in which encrypted user credentials
are stored on a single server. In this system, no
trust in the server is required to assure user pri-
vacy under appropriate cryptographic assumptions.
Roughly stated, user credentials are encrypted un-
der a collection of short passwords or keys. Typi-
cally, these are answers to life questions. While the
Frykholm-Juels system provides error tolerance, al-
lowing the user to answer some questions incorrectly,
it is somewhat impractical for a general population
of users, as it requires use of a large number of ques-
tions. Indeed, the authors recommend a suite of as
many as fifteen such questions to achieve strong secu-
rity. The work of Frykholm and Juels is an improve-
ment on that of Ellison et al. [11], which was found
to have a serious security vulnerability [5]. This ap-
proach may be thought of as an extension to that of
protecting credentials with password-based encryp-
tion. The most common basis for this in practice is
the PKCS #5 standard [1].

1.3 Our work: a new, lightweight system

It is our view that most SPAKA protocols are
over-engineered for real-world security environments.
In particular, we take the position that that mutual
authentication is often not a requirement for roam-
ing security protocols per se. Internet security is
already heavily dependent upon a trust model in-
volving existing forms of server-side authentication,
particularly the well studied Secure Sockets Layer
protocol (SSL) [14]. SSL is present in nearly all ex-
isting Web browsers. Provided that a browser ver-
ifies correct binding between URLs and server-side
certificates, as most browsers do, the user achieves a
high degree of assurance of the identity of the server
with which she has initiated a given session. In other
words, server authentication is certainly important,
but need not be provided by the same secret as user
authentication. Thus many SPAKA protocols may
be viewed as replicating functionality already pro-
vided in an adequately strong form by SSL, rather
than building on such functionality.

Moreover, it may be argued that SPAKA pro-
tocols carry a hidden assumption of trust in SSL or
similar mechanisms to begin with. SPAKA proto-

cols require the availability of special-purpose soft-
ware on the client side. Given that a mobile user
cannot be certain of the (correct) installation of such
software on her device, and that out-of-band distri-
bution of special-purpose software is rare, it is likely
that a user will need to download the SPAKA soft-
ware itself from a trusted source. This argues an a
priori requirement for user trust in the identity of
a security server via SSL or a related mechanism.
In this paper, we assume that the client has a pre-
existing mechanism for establishing private channels
with server-side authentication, such as SSL.

Our system represents an alternative to
SPAKAs in addressing “hardening” problem; it is
a two-server solution that is especially simple and
practical. The idea is roughly as follows. The client
splits a user’s password (or other short key) P into
shares for the two servers. On presenting a pass-
word P’ for authentication, the client provides the
two servers with a new, random sharing of P’. The
servers then compare the two sharings of P and P’
in such a way that they learn whether P = P’, but
no additional information. The client machine of the
user need have no involvement in this comparison
process.

As we explain, it is beneficial to configure our
system such that users interact with only one server
on the front-end, and pass messages to a second,
back-end server via a protected tunnel. This per-
mits the second server to reference accounts by way
of pseudonyms, and thereby furnishes users with an
extra level of privacy. Such privacy is particularly
valuable in the case where the back-end server is ex-
ternally administered, as by a security-services or-
ganization. Much of our protocol design centers on
the management of pseudonyms and on protection
against the attacks that naive use of pseudonyms
might give rise to.

1.4 Organization

In section 2, we describe the core cryptographic
protocol our system for two-server comparison of
secret-shared values. We provide an overview of our
architecture in section 3, discussing the security mo-
tivations behind our choices. In section 4, we de-
scribe two specialized protocols in our system; these
are aimed at preventing false-identifier and replay at-
tacks. We provide some implementation details for
our system in section 5. We conclude in section 6
with a brief discussion of some future directions.

USENIX Association

12th USENIX Security Symposium

203

2 An Equality-Testing Protocol

Let us first reiterate and expand on the intu-
ition behind the core cryptographic algorithm in our
system, which we refer to as equality testing. The
basic idea is for the user to register her password
P by providing random shares to the two servers.
On presenting her password during login, she splits
her password into shares in a different, random way.
The two servers compare the two sharings using a
protocol that determines whether the new sharing
specifies the same password as the original sharing,
without leaking any additional information (even if
one server tries to cheat). For convenience, we label
the two servers “Blue” and “Red”. Where appropri-
ate in subscripts, we use the lower-case labels “blue”
and “red”.

Registration: Let H be a large group (of, say, 160-
bit order), and 4+ be the group operator. Let f be
a collision-free hash function f : {0,1}* — H. To
share her password at registration, the user selects a
random group element R €y H. She computes the
share Py for Blue as Pyye = f(P) + R, while the
share P,.q of Red is simply R. Observe that the share
of either server individually provides no information
about P.

Authentication: When the user furnishes password

P’ to authenticate herself, she computes a sharing

based on a new random group element R’ €y H.

In this sharing, the values P}, = f(P’') + R’ and
4 = R’ are sent to Blue and Red respectively.

The servers combine the shares provided during
registration with those for authentication very sim-
ply as follows. Blue computes Qpiue = Poive Plpye =

(f(P) f(P))+ (R R’), while Red similarly com-
putes Qred = Pred P;ed =R R’. Observe

that if P = P’ ie., if the user has provided the
correct password, then f(P) and f(P’) cancel, so
that Qpue = Qreq- Otherwise, if the user provides
P # P’| the result is that Qpue # Qreda (barring
a collision in f). Thus, to test the user password
submitted for authentication, the two servers need
merely test whether Qprue = @red, preferably with-
out revealing any additional information.

For this task of equality testing, we require a
second, large group G of order ¢, for which we let mul-
tiplication denote the group operation. The group G
should be one over which the discrete logarithm prob-
lem is hard. We assume that the two servers have
agreed upon this group in advance, and also have
agreed upon (and verified) a generator g for G. We

also require a collision-free mapping w : H — §G. For
equality testing of the values Qg and Qpjyc, the idea
is for the two servers to perform a variant of Diffie-
Hellman key exchange. In this variant, however, the
values Qreq and Qpue are “masked” by the Diffie-
Hellman keys. The resulting protocol is inspired by
and may be thought of as a technical simplification of
the PET protocol in [18]. Our protocol uses only one
component of an El Gamal ciphertext [16], instead
of the usual pair of components as in PET. Our pro-
tocol also shares similarities with SPAKA protocols
such as EKE. Indeed, one may think of the equal-
ity Qreda = Qbiue as resulting in a shared secret key,
and inequality as yielding different keys for the two
servers.

There are two basic differences, however, be-
tween the goal of a SPAKA protocol and the equality-
testing protocol in our system. A SPAKA protocol,
as already noted, is designed for security over a po-
tentially unauthenticated channel. In contrast, our
intention is to operate over a private, mutually au-
thenticated channel between the two servers. More-
over, we do not seek to derive a shared key from
the protocol execution, but merely to test equality
of two secret values with a minimum of information
leakage. Our desired task of equality testing in our
system is known to cryptographers as the socialist
millionaires’ problem. (The name derives from the
idea that two millionaires wish to know whether they
enjoy equal financial standing, but do not wish to re-
veal additional information to one another.) Several
approaches to the socialist millionaires’ problem are
described in the literature, e.g., [8, 12, 19]. In most
of this work, researchers are concerned in address-
ing the problem to ensure the property of fairness,
namely that both parties should learn the answer or
neither. We do not consider this issue here, as it does
not have a major impact on the overall system design.
(A protocol unfairly terminated by one server in our
system is no worse than a password guess initiated by
an adversary, and may be immediately detected by
the other server.) By designing a version of the so-
cialist millionaires’ protocol without fairness, more-
over, we are able to achieve much better efficiency
than these previous solutions, which at best require
a number of exponentiations linear in the bit-length
of the compared values. Our protocol effectively in-
volves only constant overhead. It is more efficient
than the protocol in [18], the only other solution to
the socialist millionaires’ problem that we know of in
the literature with constant overhead.

Note that in this protocol, the client need per-
form no cryptographic computation, but just a sin-

204

12th USENIX Security Symposium

USENIX Association

gle (addition) operation in H. (The client performs
some cryptographic computation to establish secure
connections with Blue and Red in our system, but
this may occur via low-exponent RSA encryption —
as in SSL — and thus involves just a small number of
modular multiplications.) Moreover, once the client
has submitted a sharing, it need have no further in-
volvement in the authentication process. Red and
Blue together decide on the correctness of the pass-
word submitted for authentication. Given a success-
ful authentication, they can then perform any of a
range of functions providing privileges for the user:
Each server can send a share of a key for decrypting
the user’s downloadable credentials, or two servers
can jointly issue a signed assertion that the user has
authenticated, etc.

2.1 Protocol details

As we have already described the simple shar-
ing protocols employed by the client in our system
for registration and authentication, we present in de-
tail only the protocol used by the servers to test the
equality Qreq = Qpiue. We assume a private, mutu-
ally authenticated channel between the two servers.
Should the initiating server (Blue) try to establish
multiple, concurrent authentication sessions for a
given user account, the other server (Red) will refuse.
(In particular, in Figure 1, Red will reject the initi-
ation of a session in which the first flow specifies the
same user account as for a previously established, ac-
tive authentication session.) Alternative approaches
permitting concurrent login requests for a single ac-
count are possible, but more complicated. If Blue
initiates an authentication request with Red for a
user U for which Red has received no correspond-
ing authentication request from the user, then Red,
after some appropriate delay, will reject the authen-
tication.

Let Qpiue, v denote the current share combina-
tion that Blue wishes to test for user U, and Qred,v
the analogous Red-server share combination for user
U. In this and any subsequently described protocols
in this paper, if a server fails to validate any mathe-

?
matical relation denoted by ;, #, ;, or é, it deter-
mines that a protocol failure has taken place; in this
case, the authentication session is terminated and the
corresponding authentication request rejected.

We let €r denote uniform random selection
from a set. We indicate by square brackets those
computations that Red may perform prior to pro-
tocol initiation by Blue, if desired. Our password-
equality testing protocol is depicted in Figure 1. We

use subscripts red or 1 to denote values computed
or received by Red and blue or 0 for those of Blue.
We alternate between these forms of notation for vi-
sual clarity. We let h denote a one-way hash function
(modeled in our security analysis by a random ora-
cle). In the case where a system may include multiple
Blue and/or Red servers, the hash input should in-
clude the server identities as well. We let || denote
string concatenation.

For the sake of simplicity, we fix a particular
group G for our protocol description here. In partic-
ular, we consider G to be the prime subgroup of order
q in Z,, for prime p = 2q 4+ 1. Use of this particular
group is reflected in our protocol by: (1) Use of even
exponents ep and e; to ensure group membership in
manipulation of transmitted values, and (2) Mem-
bership checks over {2,...,p 2}. For other choices
of group, group membership of manipulated values
may be ensured by other means. All arithmetic here
is performed mod p.

Implementation choices: A typical choice for p, and
that adopted in our system, is a 1024-bit prime. Re-
call that we select G to be a subgroup of prime or-
der ¢ for p = 2¢ + 1. For H, we simply select the
group consisting of, e.g., 160-bit strings, with XOR
as the group operator. We note that a wide vari-
ety of other choices is possible. For example, one
may achieve greater efficiency by selecting shorter
exponents eg and ey, e.g., 160 bits. This yields a
system that we hypothesize may be proven secure in
the generic model for G, but whose security has not
been analyzed in the literature. One might also use
smaller subgroups, in which case group-membership
testing involves fair computational expense. Alter-
natively, other choices of group G may yield higher
efficiency. One possibility, for example, is selection
of G as an appropriate group over an elliptic curve.
This yields much better efficiency for the exponen-
tiation operations, and also has an efficient test of
group membership.

Security: In brief, security in our model states that
an adversary with active control of one of the two
servers and an arbitrary set of users can do essen-
tially no better in attacking the accounts of honest
users than random, on-line guessing. Attacks in-
volving such guessing may be contained by means of
standard throttling mechanisms, e.g., shutting down
a given account after three incorrect guesses. Of
course, our scheme does not offer any robustness
against simple server failures. This may be achieved
straightforwardly through duplication of the Red and

USENIX Association

12th USENIX Security Symposium

205

BLUE server RED server
eo €r {2,4,...,q¢ 1} le1 €r {2,4,...,q 1}]
A = w(Qbue,v) Y] = g%]
Yo = Ageo
Yo,U
AR
B = w(Qred,v)
Vi = BY/
Zred = (}/()/B)el
?
ZredE{Q,...,p 2}
Hred == h(Zred || }/() H Yl || U)
Y1,Hreq
Py
Zblue = (YI/A)SO
?
Zblue S {277p 2}
Hblue = h(Zblue H Hred)
Hblue
—
? ?
Hred = h(Zblue || Yb H Yl || U) Hblue = h(Zred H H’r‘ed)

Figure 1: Password-equality testing protocol

Blue servers. We also assume fully private server-
authenticated channels between the client and the
two servers. In this model, and with the random-
oracle assumption [2] on the hash function, we claim
that the security of our core cryptographic algorithm
for equality testing may be reduced to the computa-
tional Diffie-Hellman assumption on the group G.

3 Architectural Motivation and Overview

The security of our equality-testing protocol in
our system depends upon the inability of an attacker
to compromise both Red and Blue. Heterogeneity in
server configurations is thus an important practical
security consideration here. At the simplest level,
the Red and Blue servers may run different operat-
ing systems, thereby broadening the range of tech-
nical obstacles confronting the would-be attacker. A
further possible step in this direction would be to
situate Red and Blue within different organizations,
with the hope of minimizing the risk of insider or
social-engineering attacks.

The distribution of security across organiza-
tions also provides an appealing model of risk man-
agement in which legal and financial responsibil-
ity for compromise can be flexibly allocated. We
can view this as a form of privacy outsourcing, in
which one server (say, Blue) is operated by a service

provider and the other (say, Red) is operated by what
we may refer to as a privacy provider. The privacy
provider might be an organization with specialized
expertise that is willing to assume the primary bur-
den of security maintenance and likewise to assume
a large portion of the legal and financial liability as-
sociated with privacy breaches.

For a service provider to adopt this approach
in a way appealing to a large and potentially mobile
user population, there are two salient requirements:

e Universality: There should be no need for clients
to install special-purpose software. In particu-
lar; clients should be able to interface with the
system by way of standard browser components
such as Java and HTML.

Pseudonymity: Red, i.e., the privacy provider,
should be unable to gain explicit access to the
user names associated with accounts. At a min-
imum, clients should be able to interact with
this server pseudonymously, i.e., by way of iden-
tifiers unlinkable with true account names or IP
addresses. This provides a technical obstacle
to abuse of account information on the part of
the operator of Red. It is also useful to employ
pseudonyms in this way so as to limit exposure
of account identifiers in case of compromise of

206

12th USENIX Security Symposium

USENIX Association

Red.

The requirement of universality in the service-
provider model argues that the software in our sys-
tem, while perhaps installed on some clients as a
browser plug-in or standalone executable, should also
be available in the form of a Java applet. This ap-
plet is dispensed by Blue in our system (although it
could be dispensed elsewhere). The applet contains
the software to execute our basic two-server proto-
col, and also contains a public key for Red. This
public key serves to establish a private channel from
the client to Red via Blue.

Distribution of such applets by Blue raises an
immediate concern: Blue might serve bad applets. In
particular, an attacker that has compromised Blue in
an active fashion can cause that server to distribute
applets that contain a false public key for Red — or
indeed that do not even run the intended protocol.
As we have already explained, the problem of trusted
software is present even for SPAKA protocols, given
the need of roaming clients to install such software on
the fly. Applets or other software may be digitally
signed, but most users are unlikely to understand
how to employ browser-provided verification tools to
check the correctness of the associated code-signing
certificate. Rather, we make two observations on
this score. First, active compromise of core compo-
nents of Blue is likely to be much harder than passive
compromise. Some hope may be placed in so-called
“tripwire” tools that are designed specifically to de-
tect hostile code modification. Additionally, the task
of an attacker in compromising Blue in this way is
harder than active compromise in traditional crypto-
graphic settings, in the following sense: Any observer
can in principle detect the compromise by inspecting
applets. Thus, the privacy provider might period-
ically initiate authentication requests with Blue to
monitor its integrity. Another complementary ap-
proach is for Red to distribute to interested clients a
piece of software that verifies the hash of code served
by Blue.

The pseudonymity requirement, particularly
the notion that Red should not learn the IP addresses
of clients, suggests that the privacy provider should
operate Red as a back-end server, i.e., a server that
only interacts with other servers, not clients. This is
the server-configuration that we adopt in our system.
In particular, the client in our system communicates
with the Red server via an encrypted tunnel estab-
lished using the public key for Red. There are in fact
several other compelling reasons to operate Red as a
back-end server:

e Engineering simplicity: Deployment of Red as a
back-end server permits the client to establish a
direct connection with only a single server, the
normal mode of use for most services on the In-
ternet. A service provider may maintain a single
front-end server and treat Red as an external,
supporting Web service.

e System isolation: In the outsourcing model, the
major burden of liability and security is on Red,
and the privacy provider is the primary source
of security expertise. Hence it is desirable to
isolate Red from open communication on the In-
ternet, restricting its interaction instead to one
or more Blue servers exclusively via the proto-
cols in our system, effectively creating a kind of
strong, application-layer firewall. This imparts
to the system as a whole a higher level of secu-
rity than if both servers were directly exposed.

e Mitigation of denial-of-service attacks: Isolation
of Red as a back-end server is also helpful in min-
imizing the exposure of Red to denial-of-service
attacks, which the operator of Blue, having bet-
ter familiarity with its own user base, is better
equipped to handle.

A serious concern does arise in conjunction with
the pseudonymity requirement. Blue must identify
a given user name U to Red according to a fixed
pseudonym V. One possible attack, then, is for Red
to pose as a client authenticating under identifier U,
and then see which associated pseudonym V Blue
asserts. Red thereby learns the linkage between U
and V. There is effectively no good (and practical)
way to defend against this type of attack. Instead, we
rely on social factors to forestall this such behavior on
the part of Red, namely: (1) As the service provider,
it is Blue that will hold the list of account names, so
that these may be difficult for Red to accumulate en
bloc; and (2) Given the risk of damaged reputation,
Red should be averse to mounting an attack against
pseudonyms. Of course, use of pseudonyms is still
beneficial in that passive compromise of Red will not
reveal true account identifiers.

4 False Pseudonym and Replay Attacks

Our equality-testing protocol is designed to
provide security against corruption of one of the two
servers in a single session. Other security problems
arise, however, as a result of the use of pseudonyms
in our system and also from the need for multiple in-
vocations of the equality-testing protocol. In partic-
ular, additional protocols are needed in our system to

USENIX Association

12th USENIX Security Symposium

207

defend against what we refer to as false-pseudonym
and replay attacks.

4.1 The false-pseudonym problem

The possibility of a massive on-line false-
pseudonym attack by a corrupted Blue server rep-
resents a serious potential vulnerability. In partic-
ular, Blue might create an arbitrarily large set of
fictitious accounts on Red under false pseudonyms
Vi, Va,..., with a dictionary of passwords of its
choice. It can then replay genuine authentica-
tion requests for a given user’s account against the
pseudonyms Vi, Vs, By repeating replays until it
achieves a match, Blue thereby learns the secret in-
formation for account U. This attack is particularly
serious in that it might proceed indefinitely without
detection. Behavior of this kind would not be pub-
licly detectable, in contrast for instance to the attack
involving distribution of bad applets.

To address this problem, we require that Blue
use a secret, static, one-way function f to map
user identifiers to pseudonyms. Blue (in conjunc-
tion with the client) then proves to Red for every
authentication request that it is asserting the cor-
rect pseudonym. One challenge in designing a pro-
tocol employing this proof strategy is that the client
cannot be permitted to learn the pseudonym for any
account until after it has authenticated. Otherwise,
Red can learn pseudonyms by posing as a client. A
second challenge — as in all of our protocols — is to
design a proof protocol that it lightweight for Red,
Blue, and especially for the client. We demonstrate
a protocol here that requires no intensive crypto-
graphic computation by the client — just a modular
inversion and a handful of symmetric-key computa-
tions. (With a small modification, the modular inver-
sion can be replaced with a modular multiplication,
leading to even lower computational requirements.)

The basis of our protocol is a one-way function
of the form f, : m — m® in a group G’ of order ¢’ over
which the Decision Diffie-Hellman problem is hard.
This choice of one-way function has two especially
desirable features for our protocol construction: (1)
It is possible to prove statements about the appli-
cation of f by employing standard non-interactive
zero-knowledge proofs on discrete logarithms; and
(2) The function f, has a multiplicative homomor-
phism, namely f,(a)fz(b) = fz(ab). Naturally, so
as to keep f, secret, the value x is an integer held
privately by Blue. We let g denote a generator and
y = g” denote a corresponding public key distributed
to Red.

To render the proof protocol lightweight for
the client, we adopt a cut-and-choose proof strat-
egy. The idea is that a client identifier U is repre-
sented as a group element in G’. The client com-
putes a random, multiplicative splitting of U over
G’ into shares Uy and Uy; thus U = UgU;. The
client also computes commitments to Uy and Uy, and
transmits these to Red. Blue computes V' by appli-
cation of f, to each of the shares Uy and U;. In
particular, Blue sends to Red the values Vy = f,(Up)
and Vi = f,(U1). Observe that by the multiplica-
tive homomorphism on f,, Red can then compute
the pseudonym V = f,(U) = fo(Uo) fo(U1) = VoVi.
To prove that this pseudonym V is the right one,
Red sends a random challenge bit b to Blue. Blue
then reveals U, and proves that V, = f.(Up), ie.,
that the discrete logarithms log,(y) and logy, (V)
are equal. The probability that a cheating Blue is
detected in this protocol is 1/2. (More precisely,
it is extremely close to 1/2 under the right cryp-
tographic assumptions.) Thus, if Blue attempts to
mount a pseudonym attack, say, 80 times, this will
be detected by Red with overwhelming probability.
Our use of this cut-and-choose protocol, therefore,
renders the threat of such an attack by Blue much
smaller than the threat of a rogue client that sub-
mits password guesses. Meanwhile, Red learns only
random, independent shares of U, not U itself. We
defer further details of the pseudonym protocol and
its integration with the other protocols in our system
to the full paper.

4.2 The replay-attack problem

In the case where the client communicates di-
rectly with Red and Blue via private channels, an
adversary in control of either server does not have
the capability of mounting a replay attack, as it has
access to only the messages sent by the client to one
of the servers. In our implementation here, however,
where the client communicates with Red via Blue,
this is no longer the case. Indeed, without some
additional mechanism to ensure the freshness of the
share sent by the client to Red, an adversary in con-
trol of Blue can mount a replay attack simply by
repeating all communications from the client. While
the adversary would not learn the password P this
way, she could falsely persuade Red that a successful
authentication has just occurred; this would enable
the adversary to initiate some joint operation on the
user’s behalf without the user’s presence.

A simple countermeasure is to employ times-
tamps. In particular, Blue may transmit the current
time to the client. Along with its other information,

208

12th USENIX Security Symposium

USENIX Association

the client then transmits a MAC of this timestamp
under R’, the share provided to Red. Provided that
Red stores for each user account the latest times-
tamp accompanying a successful authentication, Red
can verify the freshness of a share it receives by ver-
ifying that the associated timestamp postdates the
latest one stored for the account. A drawback of this
approach, however, is the engineering complexity in-
troduced by time-synchronization requirements.

An alternative, therefore, is to employ coun-
ters. Blue and Red can maintain for each account a
counter logging the number of successful authentica-
tion attempts. Blue, then, provides the most recent
counter value to the client at the time of authenti-
cation, and the client transmits a MAC under R’ of
this counter as an integrity-protected verifier to be
forwarded to Red. Using this verifier, Red can con-
firm the freshness of the associated authentication
request.

The drawback to this type of use of counters is
its leakage of account information. An attacker pos-
ing as a given user can learn the counter value for the
user’s account from Blue, and thus gather informa-
tion about her login patterns. An adversary control-
ling Red can moreover harvest such counter values
without initiating authentication attempts and thus
without the risk of alerting Blue to potentially sus-
picious behavior. By matching these counter values
against those stored by Red, such an adversary can
correlate pseudonyms with user identities.

It is important, therefore, not to transmit plain-
text counter values to clients. Instead, Blue can
transmit to an authenticating client a commitment
¢ of the counter value v for the claimed user iden-
tity [6, 25]. The client then furnishes to Red (via
Blue) a MAC under R’ of {. On initiating an authen-
tication request, Blue provides to Red the counter
value v and a witness p associated with (; together,
these two pieces of data decommit the associated
counter value. In this way, the client does not learn ~,
but the integrity of the binding between the counter
value 7 and a given authentication request is pre-
served. A hash function represents an efficient way
to realize the commitment scheme, and is computa-
tionally binding and hiding under the random oracle
assumption. In particular, Blue may commit v as
¢ =h(y || p), where the witness p is a random bit-
string of length [, for an appropriate security param-
eter | (e.g., | > 160). To decommit, Blue provides
~v and p, enabling Red to verify the correctness of
¢. This protocol is depicted in Figure 2. The flows
of this protocol are overlaid on those of the full au-

thentication protocol in the our system. Let Ypiye,vr
denote the counter value stored for the account of
the user U attempting to authenticate and v,e¢q,v be
the corresponding counter value as stored by Red.
At the conclusion of this protocol, on successful au-
thentication by the user, Red sets Vreq, v = Voiue,U
and Blue increments e, by one.

5 Implementation

In this section we describe the details of our
implementation. In particular we describe how the
protocols outlined in this paper are integrated, how
the servers are configured, and what the components
are of the software programs running on each server.

The goal of the prototype we describe here, fol-
lowing the configuration described in section 3, is to
improve the security of a standard Web page login
procedure. This prototype augments a Web appli-
cation on a Blue server with the addition of a spe-
cial authentication library. While a typical Web site
would store or look up a password in its database,
the enhanced server makes a function call to this li-
brary via an API. In order to fulfill these requests,
the library makes requests to the Red server, which
acts as a privacy provider.

The first component of the prototype is a small
Web site on a Blue server with a user registration and
login procedure. The second component is a function
library which implements all protocol steps to be ex-
ecuted on Blue. The Web application accesses these
functions according to our API. The third compo-
nent is a Red server, which processes and responds
to the requests coming from the Blue server, initiated
by our library.

In general terms, the message flow may be un-
derstood in terms of the client machine making re-
quests to the Web application on Blue. The Web ap-
plication makes requests to our library on the same
server, which in turn makes requests to the Red
server. The client never needs to communicate di-
rectly with the the Red server. All messages, includ-
ing encrypted messages destined for the Red server,
are sent via Web requests to the Blue server. This
encapsulation makes the user experience transparent;
the user is not directly aware of the Red server.

Given that the desired client interface is a
standard Web browser, we chose to use HTTP for
all message communication. We set up the two
servers with the Linux operating system (8.0), in-
cluding the Apache Web server, configured to sup-
port CGI (Common Gateway Interface), and SSL.

USENIX Association

12th USENIX Security Symposium

209

Client BLUE server RED server
P ER {0’ l}l
C = h(’Yblue,U || p)
Y
D = MACg/(]
D D,¢,p,Vblue, U
— —
D < MACk(]
?
¢ = h(Viue,u || P)
?
Yolue,U > Vred,U

Figure 2: Replay countermeasure protocol

Using HTTPS automatically provides secure chan-
nels between Red and Blue, and between Blue and
the client. We note that a different transport mecha-
nism between Red and Blue could have been chosen.
However, by formatting Blue’s requests to Red as
well formatted text messages over HT'TP, Red effec-
tively acts as a private “Web service”, thereby in-
creasing interoperability and design flexibility.

To serve the Web content and perform au-
thentication protocol, two programs, compiled from
C/C++ source code, were installed in the proper
Web-server directories. To store permanent and
transient user data each of the servers uses an SQL
database. Standard libraries are used to interact
with the database, to format messages, and to pro-
duce HTML.

These building blocks provide the secure on-
line message communication, the data storage, and
the basic cryptography needed for a variety of proto-
cols. We now come to the most interesting part, the
logic particular to our system. Upon receipt of any
message, the main processing function in either Red
or Blue checks first that it is a well formed message
corresponding to a specific step of our protocol. If
so, it executes the protocol step, the components of
which are described in this paper.

To complete the description of the prototype
we just need to describe how the equality checking
protocol, and replay countermeasure protocols are
integrated, and how the client makes well formed re-
quests to the Web application on Blue without any
addition of software to the Web browser.

This is accomplished as follows. A user wishing

to authenticate first obtains from the Blue server an
HTML form and a signed Java applet. The form
has an input field for the user name and password
and hidden fields containing a random salt value and
Red’s public key. On the client machine, the user
enters her user name and password into the input
field in the HTML form. When the user clicks the
“submit” button, the applet hashes the salt with the
password, splits the result into shares, and encrypts
one share under Red’s public key. The encrypted
share, the other share, and a replay-prevention value
are formatted into a composite message to be sent
to Blue as an HTTP request. Of course, the user
does not see this processing, nor the other message
components prepared by the applet. The user is just
served a confirmation or rejection Web page which
indicates whether or not the authentication attempt
has succeeded.

We now explain further how the two client re-
quests trigger the remaining protocol steps described
in this paper. We first remark that our actual imple-
mentation also accommodates authentication via life
questions, the approach briefly mentioned in the in-
troduction as an alternate authentication mechanism
for users with forgotten passwords or unavailable
hardware authentication tokens. This extra func-
tionality entails a few technical details. For one, the
Java Applet contains the text of personal questions
posed to the user and also contains code to split the
multiple answers in parallel. Since the questions may
vary by user, the user name may be requested first
in a separate form. The system permits decisions
regarding the success of authentication via life ques-
tions to occur on a threshold basis. For example, an

210

12th USENIX Security Symposium

USENIX Association

administrator may configure the system to authenti-
cate users successfully if they answer any three out of
five life questions correctly. The system need not re-
veal to the user which answers are incorrect if the au-
thentication as a whole is unsuccessful. (The servers
individually, however, will learn the number which
questions were answered correctly.) Another feature
worth remarking on is that Red does not learn or
store the questions posed to individual users.

In Figure 3, we show how the protocol compo-
nents for equality testing and replay-prevention are
overlaid to form a the composite authentication pro-
tocol. For simplicity of presentation, we focus here
on the basic case of authentication via a single pass-
word, not use of life questions. All messages in this
figure use notation consistent with that in Figures 1
and 2. Additionally, we denote message components
for the Java applet and final response to the client
with Applet and {PASS/FAIL} and encryption un-
der the Red server’s public key by Fg.q. Since we do
not include details of our pseudonym-related proto-
cols in this paper, we omit that part of our protocol
from our description here. For brevity, we omit the
description of certain secondary details such as data
representation, and choice of cryptographic primi-
tives here, but we do note that care must be taken
to correctly handle session timeouts and the locking
out of a user after too many failed login attempts.

Our prototype implements the client as a
moderate-sized Java applet, running to about 2000
source lines. The applet can process a password in
about 80 milliseconds on a 700MHz Pentium running
Windows XP. Note that this does not include the
time required to download and initialize the applet.

The prototype Blue server consists of a set of
CGI programs written in C+4 and C. The proto-
type code for the Blue server consists of about 10,000
lines of source, not including the communications
and database libraries. The prototype Red server
is a Linux application built from about 5,000 lines of
C and C++ source code. The Blue and Red servers
used in the prototype (two 500 MHz Pentium IIT sys-
tems running SUSE Linux) can verify about 10 pass-
words per second. The prototype was not optimized
for efficiency; we expect that significantly better per-
formance should be possible.

We also remark that a version of the proto-
col also runs under the Windows operating systems,
and that our API is now being implemented as a set
of Java classes that may be embedded in Servlets
or Enterprise Java Beans. The encapsulation of this
functionality within a APIis particularly useful, hav-

ing made its realization language independent, and
convenient to integrate with a variety of Web appli-
cations.

6 Conclusion

As the protocol designs and prototyping expe-
rience presented in this paper demonstrate, our sys-
tem is a highly practical approach to the problem of
secure authentication via weak secrets. By employ-
ing two servers, the system is able to offer consider-
ably more protection of sensitive user data than any
single-server approach could permit. At the same
time, the system architecture avoids many of the con-
ceptual and design complexities of multi-server cryp-
tographic protocols — SPAKA schemes and others —
described in the literature.

There are a wealth of other multi-server cryp-
tographic protocols that can doubtless be brought to
practical fruition in the two-server framework that
our system presents. Some examples include:

e credential download, where encrypted creden-
tials are stored on one server and the decryption
key is stored on the other;

e threshold digital signing (see, e.g., [22, 23] for
discussion of a special two-party protocol);

e joint authorization (and auditing) of self-service
user administration operations such as password
reset;

e privacy-preserving information delivery as in,
e.g., [9, 10, 20].

Our hope is that our system may serve as a useful
springboard for the practical realization of these and
related concepts from the security literature.

References

[1] PKCS (Public-Key Cryp-
tography Standard) #5 v2.0, 2002. Available
at www.rsasecurity.com /rsalabs/pkes.

[2] M. Bellare and P. Rogaway. Random oracles
are practical: A paradigm for designing efficient
protocols. In 1st ACM Conference on Com-
puter and Communications Security, pages 62—

73. ACM Press, 1993.

S. M. Bellovin and M. Merritt. Encrypted
key exchange: Password-based protocols secure
against dictionary attacks. In IEEE Computer
Society Symposium on Research in Security and
Privacy, pages 72-84. IEEE Press, 1992.

USENIX Association

12th USENIX Security Symposium

211

Mes # Client « (SSL) — BLUE

U
N

Applet,C
“—

U:f(Pl)+R/:Ered(R,)rD
—

Hppye
ey

N O Ot e W N

{PASS/FAIL}
—

BLUE « (SSL) — RED

ETed(R,)vYO7U1D1<1p77blue,U
e

Y1 7H'r'ed
—

Figure 3: Integrated message flow (without pseudonym protocol)

[4] S. M. Bellovin and M. Merritt. Augmented [13] W. Ford and B. S. Kaliski Jr. Server-assisted
encrypted key exchange. In 1st ACM Confer- generation of a strong secret from a password.
ence on Computer and Communications Secu- In Proceedings of the IEEE 9th International
rity, pages 244-250. ACM Press, 1993. Workshop on Enabling Technologies (WET-

[5] D. Bleichenbacher and P. Q. Nguyen. Noisy ICE). IEEE Press, 2000
polynomial interpolation and noisy Chinese re- [14] A.O. Freier, P. Karlton, and P.C. Kocher. The
maindering. In B. Preneel, editor, EURO- SSL protocol version 3.0, November 1996. URL:
CRYPT 2000, pages 53-69. Springer-Verlag, www.netscape.com/eng/ssl3/draft302.txt.
2000. LNCS no. 1807.

[15] N. Frykholm and A. Juels. Error-tolerant pass-

[6] M. Blum. Coin flipping by telephone. In Pro- word recovery. In P. Samarati, editor, 8th ACM
ceedings of 24th IEEE Compcon, pages 133137, Conference on Computer and Communications
1982. Security, pages 1-9. ACM Press, 2001.

[7] D. Boneh. Tl’le Decision Difﬁe—Ht.ellman prob- [16] T. El Gamal. A public key cryptosystem
lem. In ANTS "98, pages 48-63. Springer-Verlag, and a signature scheme based on discrete loga-
1998. LNCS no. 1423. rithms. IEEE Transactions on Information The-

[8] F. Boudot, B. Schoenmakers, and J. Traoré. A ory, 31:469-472, 1985.
fz.iir :atnd efficient sqlution to the. socialist millif)n— [17] D. P Jablon. Research pa-
aires’ problem. Discrete Applied Mathematics, ..
111(1-2):23-36, 2001. pers on str(?ng pz'isswc.)rd authentl(':atlon, 2002.

’ URL: www.integritysciences.com /links.html.

[9] D. Chaum. Untraceable electronic mail, return .
addresses, and digital pseudonyms. Communi- [18] M. JakObSSO_n and A. J.uels.- MTX and match:
cations of the ACM, 24(2):84-88, 1981. Secure function evaluation via ciphertexts. In

T. Okamoto, editor, ASTACRYPT 2000, pages
[10] Benny Chor, Oded Goldreich, Eyal Kushile- 162-177. Springer-Verlag, 2000. LNCS no. 1976.
vitz, and Madhu Sudan. Private information
retrieval. In IEEE Symposium on Foundations [19] M. Jakobsson and M. Yung. Proving without
of Computer Science, pages 41-50, 1995. knowing: On oblivious, agnostic, and blind-
folded provers. In CRYPTO 96, pages 186200,
[11] C. Ellison, C. Hall, R. Milbert, and B. Schneier. 1996. LNCS no. 1109.
Protecting secret keys with personal entropy.
Journal of Future Generation Computer Sys_ [20] A. Juels. Targeted advertising... and privacy
tems, 16(4):311-318, February 2000. too. In D. Naccache, editor, RSA-CT ’01, pages
408-424, 2001. LNCS no. 2020.
[12] R. Fagin, M. Naor, and P. Winkler. Com-
paring information without leaking it. CACM, [21] Daniel V. Klein. “Foiling the cracker” — A sur-
39(5):77-85, May 1996. vey of, and improvements to, password security.
212 12th USENIX Security Symposium USENIX Association

In Proceedings of the 2nd USENIX Workshop
on Security, pages 5—14, Summer 1990.

[22] P. Mackenzie and M. Reiter. Cryptographic
servers for capture-resilient devices. In S. Ja-
jodia, editor, 9th ACM Conference on Com-
puter and Communications Security, pages 10—
19. ACM Press, 2001.

[23] P. Mackenzie and M. Reiter. Two-party gen-
eration of DSA signatures. In J. Kilian, editor,
CRYPTO 2001, pages 137-154. Springer-Verlag,
2001. LNCS no. 2139.

[24] P. Mackenzie, T. Shrimpton, and M. Jakobs-
son. Threshold password-authenticated key ex-
change. In M. Yung, editor, CRYPTO 2002,
pages 385—400. Springer-Verlag, 2002. LNCS no.
2442.

[25] A.J. Menezes, P.C. van Oorschot, and S.A. Van-
stone. Handbook of Applied Cryptography.
CRC Press, 1996.

USENIX Association 12th USENIX Security Symposium 213

