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ABSTRACT

Multiprocessor application performance can be limited
by the operating system when the application uses the
operating system frequently and the operating system
services use data structures shared and modified by mul-
tiple processing cores. If the application does not need
the sharing, then the operating system will become an
unnecessary bottleneck to the application’s performance.

This paper argues that applications should control
sharing: the kernel should arrange each data structure
so that only a single processor need update it, unless
directed otherwise by the application. Guided by this
design principle, this paper proposes three operating
system abstractions (address ranges, kernel cores, and
shares) that allow applications to control inter-core shar-
ing and to take advantage of the likely abundance of
cores by dedicating cores to specific operating system
functions.

Measurements of microbenchmarks on the Corey pro-
totype operating system, which embodies the new ab-
stractions, show how control over sharing can improve
performance. Application benchmarks, using MapRe-
duce and a Web server, show that the improvements can
be significant for overall performance: MapReduce on
Corey performs 25% faster than on Linux when using
16 cores. Hardware event counters confirm that these
improvements are due to avoiding operations that are ex-
pensive on multicore machines.

1 INTRODUCTION

Cache-coherent shared-memory multiprocessor hard-
ware has become the default in modern PCs as chip man-
ufacturers have adopted multicore architectures. Chips
with four cores are common, and trends suggest that
chips with tens to hundreds of cores will appear within
five years [2]. This paper explores new operating system
abstractions that allow applications to avoid bottlenecks
in the operating system as the number of cores increases.

Operating system services whose performance scales
poorly with the number of cores can dominate applica-
tion performance. Gough et al. show that contention for
Linux’s scheduling queues can contribute significantly to

total application run time on two cores [12]. Veal and
Foong show that as a Linux Web server uses more cores
directory lookups spend increasing amounts of time con-
tending for spin locks [29]. Section 8.5.1 shows that
contention for Linux address space data structures causes
the percentage of total time spent in the reduce phase of
a MapReduce application to increase from 5% at seven
cores to almost 30% at 16 cores.

One source of poorly scaling operating system ser-
vices is use of data structures modified by multiple cores.
Figure 1 illustrates such a scalability problem with a sim-
ple microbenchmark. The benchmark creates a number
of threads within a process, each thread creates a file de-
scriptor, and then each thread repeatedly duplicates (with
dup) its file descriptor and closes the result. The graph
shows results on a machine with four quad-core AMD
Opteron chips running Linux 2.6.25. Figure 1 shows
that, as the number of cores increases, the total number of
dup and close operations per unit time decreases. The
cause is contention over shared data: the table describ-
ing the process’s open files. With one core there are no
cache misses, and the benchmark is fast; with two cores,
the cache coherence protocol forces a few cache misses
per iteration to exchange the lock and table data. More
generally, only one thread at a time can update the shared
file descriptor table (which prevents any increase in per-
formance), and the increasing number of threads spin-
ning for the lock gradually increases locking costs. This
problem is not specific to Linux, but is due to POSIX se-
mantics, which require that a new file descriptor be vis-
ible to all of a process’s threads even if only one thread
uses it.

Common approaches to increasing scalability include
avoiding shared data structures altogether, or designing
them to allow concurrent access via fine-grained locking
or wait-free primitives. For example, the Linux com-
munity has made tremendous progress with these ap-
proaches [18].

A different approach exploits the fact that some in-
stances of a given resource type need to be shared, while
others do not. If the operating system were aware of an
application’s sharing requirements, it could choose re-
source implementations suited to those requirements. A
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Figure 1: Throughput of the file descriptor dup and close mi-
crobenchmark on Linux.

limiting factor in this approach is that the operating sys-
tem interface often does not convey the needed informa-
tion about sharing requirements. In the file descriptor
example above, it would be helpful if the thread could
indicate whether the new descriptor is private or usable
by other threads. In the former case it could be created
in a per-thread table without contention.

This paper is guided by a principle that generalizes
the above observation: applications should control shar-
ing of operating system data structures. “Application”
is meant in a broad sense: the entity that has enough
information to make the sharing decision, whether that
be an operating system service, an application-level li-
brary, or a traditional user-level application. This prin-
ciple has two implications. First, the operating system
should arrange each of its data structures so that by de-
fault only one core needs to use it, to avoid forcing
unwanted sharing. Second, the operating system inter-
faces should let callers control how the operating system
shares data structures between cores. The intended re-
sult is that the operating system incurs sharing costs (e.g.,
cache misses due to memory coherence) only when the
application designer has decided that is the best plan.

This paper introduces three new abstractions for ap-
plications to control sharing within the operating system.
Address ranges allow applications to control which parts
of the address space are private per core and which are
shared; manipulating private regions involves no con-
tention or inter-core TLB invalidations, while explicit in-
dication of shared regions allows sharing of hardware
page tables and consequent minimization of soft page
faults (page faults that occur when a core references
pages with no mappings in the hardware page table but
which are present in physical memory). Kernel cores al-
low applications to dedicate cores to run specific kernel
functions, avoiding contention over the data those func-
tions use. Shares are lookup tables for kernel objects
that allow applications to control which object identifiers
are visible to other cores. These abstractions are imple-

mentable without inter-core sharing by default, but allow
sharing among cores as directed by applications.

We have implemented these abstractions in a proto-
type operating system called Corey. Corey is organized
like an exokernel [9] to ease user-space prototyping of
experimental mechanisms. The Corey kernel provides
the above three abstractions. Most higher-level services
are implemented as library operating systems that use the
abstractions to control sharing. Corey runs on machines
with AMD Opteron and Intel Xeon processors.

Several benchmarks demonstrate the benefits of the
new abstractions. For example, a MapReduce applica-
tion scales better with address ranges on Corey than on
Linux. A benchmark that creates and closes many short
TCP connections shows that Corey can saturate the net-
work device with five cores by dedicating a kernel core
to manipulating the device driver state, while 11 cores
are required when not using a dedicated kernel core. A
synthetic Web benchmark shows that Web applications
can also benefit from dedicating cores to data.

This paper should be viewed as making a case for con-
trolling sharing rather than demonstrating any absolute
conclusions. Corey is an incomplete prototype, and thus
it may not be fair to compare it to full-featured operating
systems. In addition, changes in the architecture of fu-
ture multicore processors may change the attractiveness
of the ideas presented here.

The rest of the paper is organized as follows. Using
architecture-level microbenchmarks, Section 2 measures
the cost of sharing on multicore processors. Section 3
describes the three proposed abstractions to control shar-
ing. Section 4 presents the Corey kernel and Section 5
its operating system services. Section 6 summarizes the
extensions to the default system services that implement
MapReduce and Web server applications efficiently. Sec-
tion 7 summarizes the implementation of Corey. Sec-
tion 8 presents performance results. Section 9 reflects on
our results so far and outlines directions for future work.
Section 10 relates Corey to previous work. Section 11
summarizes our conclusions.

2 MULTICORE CHALLENGES

The main goal of Corey is to allow applications to scale
well with the number of cores. This section details some
hardware obstacles to achieving that goal.

Future multicore chips are likely to have large total
amounts of on-chip cache, but split up among the many
cores. Performance may be greatly affected by how well
software exploits the caches and the interconnect be-
tween cores. For example, using data in a different core’s
cache is likely to be faster than fetching data from mem-
ory, and using data from a nearby core’s cache may be
faster than using data from a core that is far away on the
interconnect.
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Figure 2: The AMD 16-core system topology. Memory access latency
is in cycles and listed before the backslash. Memory bandwidth is in
bytes per cycle and listed after the backslash. The measurements reflect
the latency and bandwidth achieved by a core issuing load instructions.
The measurements for accessing the L1 or L2 caches of a different core
on the same chip are the same. The measurements for accessing any
cache on a different chip are the same. Each cache line is 64 bytes, L1
caches are 64 Kbytes 8-way set associative, L2 caches are 512 Kbytes
16-way set associative, and L3 caches are 2 Mbytes 32-way set asso-
ciative.

These properties can already be observed in current
multicore machines. Figure 2 summarizes the memory
system of a 16-core machine from AMD. The machine
has four quad-core Opteron processors connected by a
square interconnect. The interconnect carries data be-
tween cores and memory, as well as cache coherence
broadcasts to locate and invalidate cache lines, and point-
to-point cache coherence transfers of individual cache
lines. Each core has a private L1 and L2 cache. Four
cores on the same chip share an L3 cache. Cores on one
chip are connected by an internal crossbar switch and can
access each others’ L1 and L2 caches efficiently. Mem-
ory is partitioned in four banks, each connected to one
of the four chips. Each core has a clock frequency of
2.0 GHz.

Figure 2 also shows the cost of loading a cache line
from a local core, a nearby core, and a distant core. We
measured these numbers using many of the techniques
documented by Yotov et al. [31]. The techniques avoid
interference from the operating system and hardware fea-
tures such as cache line prefetching.

Reading from the local L3 cache on an AMD chip is
faster than reading from the cache of a different core on
the same chip. Inter-chip reads are slower, particularly
when they go through two interconnect hops.

Figure 3 shows the performance scalability of locking,
an important primitive often dominated by cache miss
costs. The graph compares Linux’s kernel spin locks and
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Figure 3: Time required to acquire and release a lock on a 16-core
AMD machine when varying number of cores contend for the lock.
The two lines show Linux kernel spin locks and MCS locks (on Corey).
A spin lock with one core takes about 11 nanoseconds; an MCS lock
about 26 nanoseconds.

scalable MCS locks [21] (on Corey) on the AMD ma-
chine, varying the number of cores contending for the
lock. For both the kernel spin lock and the MCS lock
we measured the time required to acquire and release a
single lock. When only one core uses a lock, both types
of lock are fast because the lock is always in the core’s
cache; spin locks are faster than MCS locks because the
former requires three instructions to acquire and release
when not contended, while the latter requires 15. The
time for each successful acquire increases for the spin
lock with additional cores because each new core adds a
few more cache coherence broadcasts per acquire, in or-
der for the new core to observe the effects of other cores’
acquires and releases. MCS locks avoid this cost by hav-
ing each core spin on a separate location.

We measured the average times required by Linux
2.6.25 to flush the TLBs of all cores after a change to a
shared page table. These “TLB shootdowns” are consid-
erably slower on 16 cores than on 2 (18742 cycles versus
5092 cycles). TLB shootdown typically dominates the
cost of removing a mapping from an address space that
is shared among multiple cores.

On AMD 16-core systems, the speed difference be-
tween a fast memory access and a slow memory access
is a factor of 100, and that factor is likely to grow with the
number of cores. Our measurements for the Intel Xeon
show a similar speed difference. For performance, ker-
nels must mainly access data in the local core’s cache.
A contended or falsely shared cache line decreases per-
formance because many accesses are to remote caches.
Widely-shared and contended locks also decrease perfor-
mance, even if the critical sections they protect are only a
few instructions. These performance effects will be more
damaging as the number of cores increases, since the cost
of accessing far-away caches increases with the number
of cores.
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Figure 4: Example address space configurations for MapReduce exe-
cuting on two cores. Lines represent mappings. In this example a stack
is one page and results are three pages.

3 DESIGN

Existing operating system abstractions are often difficult
to implement without sharing kernel data among cores,
regardless of whether the application needs the shared se-
mantics. The resulting unnecessary sharing and resulting
contention can limit application scalability. This section
gives three examples of unnecessary sharing and for each
example introduces a new abstraction that allows the ap-
plication to decide if and how to share. The intent is that
these abstractions will help applications to scale to large
numbers of cores.

3.1 Address ranges
Parallel applications typically use memory in a mixture
of two sharing patterns: memory that is used on just
one core (private), and memory that multiple cores use
(shared). Most operating systems give the application
a choice between two overall memory configurations: a
single address space shared by all cores or a separate
address space per core. The term address space here
refers to the description of how virtual addresses map
to memory, typically defined by kernel data structures
and instantiated lazily (in response to soft page faults) in
hardware-defined page tables or TLBs. If an application

chooses to harness concurrency using threads, the result
is typically a single address space shared by all threads.
If an application obtains concurrency by forking multiple
processes, the result is typically a private address space
per process; the processes can then map shared segments
into all address spaces. The problem is that each of these
two configurations works well for only one of the sharing
patterns, placing applications with a mixture of patterns
in a bind.

As an example, consider a MapReduce application [8].
During the map phase, each core reads part of the appli-
cation’s input and produces intermediate results; map on
each core writes its intermediate results to a different area
of memory. Each map instance adds pages to its address
space as it generates intermediate results. During the re-
duce phase each core reads intermediate results produced
by multiple map instances to produce the output.

For MapReduce, a single address-space (see Fig-
ure 4(a)) and separate per-core address-spaces (see Fig-
ure 4(b)) incur different costs. With a single address
space, the map phase causes contention as all cores add
mappings to the kernel’s address space data structures.
On the other hand, a single address space is efficient
for reduce because once any core inserts a mapping into
the underlying hardware page table, all cores can use the
mapping without soft page faults. With separate address
spaces, the map phase sees no contention while adding
mappings to the per-core address spaces. However, the
reduce phase will incur a soft page fault per core per page
of accessed intermediate results. Neither memory con-
figuration works well for the entire application.

We propose address ranges to give applications high
performance for both private and shared memory (see
Figure 4(c)). An address range is a kernel-provided
abstraction that corresponds to a range of virtual-to-
physical mappings. An application can allocate address
ranges, insert mappings into them, and place an address
range at a desired spot in the address space. If multi-
ple cores’ address spaces incorporate the same address
range, then they will share the corresponding pieces of
hardware page tables, and see mappings inserted by each
others’ soft page faults. A core can update the mappings
in a non-shared address range without contention. Even
when shared, the address range is the unit of locking; if
only one core manipulates the mappings in a shared ad-
dress range, there will be no contention. Finally, deletion
of mappings from a non-shared address range does not
require TLB shootdowns.

Address ranges allow applications to selectively share
parts of address spaces, instead of being forced to make
an all-or-nothing decision. For example, the MapReduce
runtime can set up address spaces as shown in 4(c). Each
core has a private root address range that maps all private
memory segments used for stacks and temporary objects
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and several shared address ranges mapped by all other
cores. A core can manipulate mappings in its private ad-
dress ranges without contention or TLB shootdowns. If
each core uses a different shared address range to store
the intermediate output of its map phase (as shown Fig-
ure 4(c)), the map phases do not contend when adding
mappings. During the reduce phase there are no soft page
faults when accessing shared segments, since all cores
share the corresponding parts of the hardware page ta-
bles.

3.2 Kernel cores
In most operating systems, when application code on a
core invokes a system call, the same core executes the
kernel code for the call. If the system call uses shared
kernel data structures, it acquires locks and fetches rel-
evant cache lines from the last core to use the data.
The cache line fetches and lock acquisitions are costly
if many cores use the same shared kernel data. If the
shared data is large, it may end up replicated in many
caches, potentially reducing total effective cache space
and increasing DRAM references.

We propose a kernel core abstraction that allows ap-
plications to dedicate cores to kernel functions and data.
A kernel core can manage hardware devices and exe-
cute system calls sent from other cores. For example,
a Web service application may dedicate a core to inter-
acting with the network device instead of having all cores
manipulate and contend for driver and device data struc-
tures (e.g., transmit and receive DMA descriptors). Mul-
tiple application cores then communicate with the kernel
core via shared-memory IPC; the application cores ex-
change packet buffers with the kernel core, and the ker-
nel core manipulates the network hardware to transmit
and receive the packets.

This plan reduces the number of cores available to the
Web application, but it may improve overall performance
by reducing contention for driver data structures and as-
sociated locks. Whether a net performance improvement
would result is something that the operating system can-
not easily predict. Corey provides the kernel core ab-
straction so that applications can make the decision.

3.3 Shares
Many kernel operations involve looking up identifiers in
tables to yield a pointer to the relevant kernel data struc-
ture; file descriptors and process IDs are examples of
such identifiers. Use of these tables can be costly when
multiple cores contend for locks on the tables and on the
table entries themselves.

For each kind of lookup, the operating system inter-
face designer or implementer typically decides the scope
of sharing of the corresponding identifiers and tables.
For example, Unix file descriptors are shared among the
threads of a process. Process identifiers, on the other

hand, typically have global significance. Common im-
plementations use per-process and global lookup tables,
respectively. If a particular identifier used by an applica-
tion needs only limited scope, but the operating system
implementation uses a more global lookup scheme, the
result may be needless contention over the lookup data
structures.

We propose a share abstraction that allows applica-
tions to dynamically create lookup tables and determine
how these tables are shared. Each of an application’s
cores starts with one share (its root share), which is pri-
vate to that core. If two cores want to share a share, they
create a share and add the share’s ID to their private root
share (or to a share reachable from their root share). A
root share doesn’t use a lock because it is private, but a
shared share does. An application can decide for each
new kernel object (including a new share) which share
will hold the identifier.

Inside the kernel, a share maps application-visible
identifiers to kernel data pointers. The shares reachable
from a core’s root share define which identifiers the core
can use. Contention may arise when two cores manipu-
late the same share, but applications can avoid such con-
tention by placing identifiers with limited sharing scope
in shares that are only reachable on a subset of the cores.

For example, shares could be used to implement file-
descriptor-like references to kernel objects. If only one
thread uses a descriptor, it can place the descriptor in its
core’s private root share. If the descriptor is shared be-
tween two threads, these two threads can create a share
that holds the descriptor. If the descriptor is shared
among all threads of a process, the file descriptor can
be put in a per-process share. The advantage of shares
is that the application can limit sharing of lookup tables
and avoid unnecessary contention if a kernel object is not
shared. The downside is that an application must often
keep track of the share in which it has placed each iden-
tifier.

4 COREY KERNEL

Corey provides a kernel interface organized around five
types of low-level objects: shares, segments, address
ranges, pcores, and devices. Library operating sys-
tems provide higher-level system services that are imple-
mented on top of these five types. Applications imple-
ment domain specific optimizations using the low-level
interface; for example, using pcores and devices they can
implement kernel cores. Figure 5 provides an overview
of the Corey low-level interface. The following sections
describe the design of the five types of Corey kernel ob-
jects and how they allow applications to control sharing.
Section 5 describes Corey’s higher-level system services.
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System call Description
name obj get name(obj) return the name of an object
shareid share alloc(shareid, name, memid) allocate a share object
void share addobj(shareid, obj) add a reference to a shared object to the specified share
void share delobj(obj) remove an object from a share, decrementing its reference count
void self drop(shareid) drop current core’s reference to a share
segid segment alloc(shareid, name, memid) allocate physical memory and return a segment object for it
segid segment copy(shareid, seg, name, mode) copy a segment, optionally with copy-on-write or -read
nbytes segment get nbytes(seg) get the size of a segment
void segment set nbytes(seg, nbytes) set the size of a segment
arid ar alloc(shareid, name, memid) allocate an address range object
void ar set seg(ar, voff, segid, soff, len) map addresses at voff in ar to a segment’s physical pages
void ar set ar(ar, voff, ar1, aoff, len) map addresses at voff in ar to address range ar1
ar mappings ar get(ar) return the address mappings for a given address range
pcoreid pcore alloc(shareid, name, memid) allocate a physical core object
pcore pcore current(void) return a reference to the object for current pcore
void pcore run(pcore, context) run the specified user context
void pcore add device(pcore, dev) specify device list to a kernel core
void pcore set interval(pcore, hz) set the time slice period
void pcore halt(pcore) halt the pcore
devid device alloc(shareid, hwid, memid) allocate the specified device and return a device object
dev list device list(void) return the list of devices
dev stat device stat(dev) return information about the device
void device conf(dev, dev conf) configure a device
void device buf(dev, seg, offset, buf type) feed a segment to the device object
locality matrix locality get(void) get hardware locality information

Figure 5: Corey system calls. shareid, segid, arid, pcoreid, and devid represent 64-bit object IDs. share, seg, ar, pcore, obj, and dev represent
share ID, object ID pairs. hwid represents a unique ID for hardware devices and memid represents a unique ID for per-core free page lists.

4.1 Object metadata
The kernel maintains metadata describing each object.
To reduce the cost of allocating memory for object meta-
data, each core keeps a local free page list. If the archi-
tecture is NUMA, a core’s free page list holds pages from
its local memory node. The system call interface allows
the caller to indicate which core’s free list a new object’s
memory should be taken from. Kernels on all cores can
address all object metadata since each kernel maps all of
physical memory into its address space.

The Corey kernel generally locks an object’s metadata
before each use. If the application has arranged things so
that the object is only used on one core, the lock and use
of the metadata will be fast (see Figure 3), assuming they
have not been evicted from the core’s cache. Corey uses
spin lock and read-write lock implementations borrowed
from Linux, its own MCS lock implementation, and a
scalable read-write lock implementation inspired by the
MCS lock to synchronize access to object metadata.

4.2 Object naming
An application allocates a Corey object by calling the
corresponding alloc system call, which returns a
unique 64-bit object ID. In order for a kernel to use an
object, it must know the object ID (usually from a sys-
tem call argument), and it must map the ID to the address
of the object’s metadata. Corey uses shares for this pur-

pose. Applications specify which shares are available on
which cores by passing a core’s share set to pcore run
(see below).

When allocating an object, an application selects
a share to hold the object ID. The application uses
share ID, object ID pairs to specify objects to system
calls. Applications can add a reference to an object in a
share with share addobj and remove an object from
a share with share delobj. The kernel counts refer-
ences to each object, freeing the object’s memory when
the count is zero. By convention, applications maintain a
per-core private share and one or more shared shares.

4.3 Memory management
The kernel represents physical memory using the seg-
ment abstraction. Applications use segment alloc to
allocate segments and segment copy to copy a seg-
ment or mark the segment as copy-on-reference or copy-
on-write. By default, only the core that allocated the seg-
ment can reference it; an application can arrange to share
a segment between cores by adding it to a share, as de-
scribed above.

An application uses address ranges to define its ad-
dress space. Each running core has an associated root
address range object containing a table of address map-
pings. By convention, most applications allocate a root
address range for each core to hold core private map-
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pings, such as thread stacks, and use one or more address
ranges that are shared by all cores to hold shared segment
mappings, such as dynamically allocated buffers. An ap-
plication uses ar set seg to cause an address range to
map addresses to the physical memory in a segment, and
ar set ar to set up a tree of address range mappings.

4.4 Execution
Corey represents physical cores with pcore objects. Once
allocated, an application can start execution on a physi-
cal core by invoking pcore run and specifying a pcore
object, instruction and stack pointer, a set of shares, and
an address range. A pcore executes until pcore halt
is called. This interface allows Corey to space-multiplex
applications over cores, dedicating a set of cores to a
given application for a long period of time, and letting
each application manage its own cores.

An application configures a kernel core by allocat-
ing a pcore object, specifying a list of devices with
pcore add device, and invoking pcore run with
the kernel core option set in the context argument. A
kernel core continuously polls the specified devices by
invoking a device specific function. A kernel core polls
both real devices and special “syscall” pseudo-devices.

A syscall device allows an application to invoke sys-
tem calls on a kernel core. The application communi-
cates with the syscall device via a ring buffer in a shared
memory segment.

5 SYSTEM SERVICES

This section describes three system services exported by
Corey: execution forking, network access, and a buffer
cache. These services together with a C standard library
that includes support for file descriptors, dynamic mem-
ory allocation, threading, and other common Unix-like
features create a scalable and convenient application en-
vironment that is used by the applications discussed in
Section 6.

5.1 cfork

cfork is similar to Unix fork and is the main ab-
straction used by applications to extend execution to a
new core. cfork takes a physical core ID, allocates
a new pcore object and runs it. By default, cfork
shares little state between the parent and child pcore. The
caller marks most segments from its root address range as
copy-on-write and maps them into the root address range
of the new pcore. Callers can instruct cfork to share
specified segments and address ranges with the new pro-
cessor. Applications implement fine-grained sharing us-
ing shared segment mappings and more coarse-grained
sharing using shared address range mappings. cfork
callers can share kernel objects with the new pcore by
passing a set of shares for the new pcore.

5.2 Network
Applications can choose to run several network stacks
(possibly one for each core) or a single shared network
stack. Corey uses the lwIP [19] networking library. Ap-
plications specify a network device for each lwIP stack.
If multiple network stacks share a single physical device,
Corey virtualizes the network card. Network stacks on
different cores that share a physical network device also
share the device driver data, such as the transmit descrip-
tor table and receive descriptor table.

All configurations we have experimented with run a
separate network stack for each core that requires net-
work access. This design provides good scalability but
requires multiple IP addresses per server and must bal-
ance requests using an external mechanism. A potential
solution is to extend the Corey virtual network driver to
use ARP negotiation to balance traffic between virtual
network devices and network stacks (similar to the Linux
Ethernet bonding driver).

5.3 Buffer cache
An inter-core shared buffer cache is important to system
performance and often necessary for correctness when
multiple cores access shared files. Since cores share the
buffer cache they might contend on the data structures
used to organize cached disk blocks. Furthermore, un-
der write-heavy workloads it is possible that cores will
contend for the cached disk blocks.

The Corey buffer cache resembles a traditional Unix
buffer cache; however, we found three techniques that
substantially improve multicore performance. The first
is a lock-free tree that allows multiple cores to locate
cached blocks without contention. The second is a write
scheme that tries to minimize contention on shared data
using per-core block allocators and by copying applica-
tion data into blocks likely to be held in local hardware
caches. The third uses a scalable read-write lock to en-
sure blocks are not freed or reused during reads.

6 APPLICATIONS

It is unclear how big multicore systems will be used, but
parallel computation and network servers are likely ap-
plication areas. To evaluate Corey in these areas, we im-
plemented a MapReduce system and a Web server with
synthetic dynamic content. Both applications are data-
parallel but have sharing requirements and thus are not
trivially parallelized. This section describes how the two
applications use the Corey interface to achieve high per-
formance.

6.1 MapReduce applications
MapReduce is a framework for data-parallel execution
of simple programmer-supplied functions. The program-
mer need not be an expert in parallel programming to
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Figure 6: A Corey Web server configuration with two kernel cores,
two webd cores and three application cores. Rectangles represent seg-
ments, rounded rectangles represents pcores, and circles represent de-
vices.

achieve good parallel performance. Data-parallel appli-
cations fit well with the architecture of multicore ma-
chines, because each core has its own private cache and
can efficiently process data in that cache. If the runtime
does a good job of putting data in caches close to the
cores that manipulate that data, performance should in-
crease with the number of cores. The difficult part is
the global communication between the map and reduce
phases.

We started with the Phoenix MapReduce implemen-
tation [22], which is optimized for shared-memory mul-
tiprocessors. We reimplemented Phoenix to simplify its
implementation, to use better algorithms for manipulat-
ing the intermediate data, and to optimize its perfor-
mance. We call this reimplementation Metis.

Metis on Corey exploits address ranges as described in
Section 3. Metis uses a separate address space on each
core, with private mappings for most data (e.g. local vari-
ables and the input to map), so that each core can up-
date its own page tables without contention. Metis uses
address ranges to share the output of the map on each
core with the reduce phase on other cores. This arrange-
ment avoids contention as each map instance adds pages
to hold its intermediate output, and ensures that the re-
duce phase incurs no soft page faults while processing
intermediate data from the map phase.

6.2 Web server applications
The main processing in a Web server includes low-level
network device handling, TCP processing, HTTP proto-
col parsing and formatting, application processing (for
dynamically generated content), and access to applica-
tion data. Much of this processing involves operating
system services. Different parts of the processing require
different parallelization strategies. For example, HTTP
parsing is easy to parallelize by connection, while appli-

cation processing is often best parallelized by partition-
ing application data across cores to avoid multiple cores
contending for the same data. Even for read-only ap-
plication data, such partitioning may help maximize the
amount of distinct data cached by avoiding duplicating
the same data in many cores’ local caches.

The Corey Web server is built from three compo-
nents: Web daemons (webd), kernel cores, and applica-
tions (see Figure 6). The components communicate via
shared-memory IPC. Webd is responsible for process-
ing HTTP requests. Every core running a webd front-
end uses a private TCP/IP stack. Webd can manipu-
late the network device directly or use a kernel core to
do so. If using a kernel core, the TCP/IP stack of each
core passes packets to transmit and buffers to receive in-
coming packets to the kernel core using a syscall device.
Webd parses HTTP requests and hands them off to a
core running application code. The application core per-
forms the required computation and returns the results to
webd. Webd packages the results in an HTTP response
and transmits it, possibly using a kernel core. Applica-
tions may run on dedicated cores (as shown in Figure 6)
or run on the same core as a webd front-end.

All kernel objects necessary for a webd core to com-
plete a request, such as packet buffer segments, network
devices, and shared segments used for IPC are referenced
by a private per-webd core share. Furthermore, most
kernel objects, with the exception of the IPC segments,
are used by only one core. With this design, once IPC
segments have been mapped into the webd and applica-
tion address ranges, cores process requests without con-
tending over any global kernel data or locks, except as
needed by the application.

The application running with webd can run in two
modes: random mode and locality mode. In random
mode, webd forwards each request to a randomly cho-
sen application core. In locality mode, webd forwards
each request to a core chosen from a hash of the name
of the data that will be needed in the request. Locality
mode increases the probability that the application core
will have the needed data in its cache, and decreases re-
dundant caching of the same data.

7 IMPLEMENTATION

Corey runs on AMD Opteron and the Intel Xeon proces-
sors. Our implementation is simplified by using a 64-bit
virtual address space, but nothing in the Corey design re-
lies on a large virtual address space. The implementation
of address ranges is geared towards architectures with
hardware page tables. Address ranges could be ported to
TLB-only architectures, such as MIPS, but would pro-
vide less performance benefit, because every core must
fill its own TLB.
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The Corey implementation is divided into two parts:
the low-level code that implements Corey objects (de-
scribed in Section 4) and the high-level Unix-like envi-
ronment (described in Section 5). The low-level code
(the kernel) executes in the supervisor protection do-
main. The high-level Unix-like services are a library that
applications link with and execute in application protec-
tion domains.

The low-level kernel implementation, which includes
architecture specific functions and device drivers, is
11,000 lines of C and 150 lines of assembly. The Unix-
like environment, 11,000 lines of C/C++, provides the
buffer cache, cfork, and TCP/IP stack interface as well
as the Corey-specific glue for the uClibc [28] C standard
library, lwIP, and the Streamflow [24] dynamic memory
allocator. We fixed several bugs in Streamflow and added
support for x86-64 processors.

8 EVALUATION

This section demonstrates the performance improve-
ments that can be obtained by allowing applications to
control sharing. We make these points using several mi-
crobenchmarks evaluating address ranges, kernel cores,
and shares independently, as well as with the two appli-
cations described in Section 6.

8.1 Experimental setup
We ran all experiments on an AMD 16-core system (see
Figure 2 in Section 2) with 64 Gbytes of memory. We
counted the number of cache misses and computed the
average latency of cache misses using the AMD hard-
ware event counters. All Linux experiments use Debian
Linux with kernel version 2.6.25 and pin one thread to
each core. The kernel is patched with perfctr 2.6.35 to
allow application access to hardware event counters. For
Linux MapReduce experiments we used our version of
Streamflow because it provided better performance than
other allocators we tried, such as TCMalloc [11] and
glibc 2.7 malloc. All network experiments were per-
formed on a gigabit switched network, using the server’s
Intel Pro/1000 Ethernet device.

We also have run many of the experiments with Corey
and Linux on a 16-core Intel machine and with Windows
on 16-core AMD and Intel machines, and we draw con-
clusions similar to the ones reported in this section.

8.2 Address ranges
To evaluate the benefits of address ranges in Corey, we
need to investigate two costs in multicore applications
where some memory is private and some is shared. First,
the contention costs of manipulating mappings for pri-
vate memory. Second, the soft page-fault costs for mem-
ory that is used on multiple cores. We expect Corey to
have low costs for both situations. We expect other sys-
tems (represented by Linux in these experiments) to have
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Figure 7: Address ranges microbenchmark results.

low cost for only one type of sharing, but not both, de-
pending on whether the application uses a single address
space shared by all cores or a separate address space per
core.

The memclone [3] benchmark explores the costs of
private memory. Memclone has each core allocate a
100 Mbyte array and modify each page of its array. The
memory is demand-zero-fill: the kernel initially allo-
cates no memory, and allocates pages only in response
to page faults. The kernel allocates the memory from
the DRAM system connected to the core’s chip. The
benchmark measures the average time to modify each
page. Memclone allocates cores from chips in a round-
robin fashion. For example, when using five cores,
memclone allocates two cores from one chip and one
core from each of the other three chips.

Figure 7(a) presents the results for three situations:
Linux with a single address space shared by per-core
threads, Linux with a separate address space (process)
per core but with the 100 Mbyte arrays mmaped into each
process, and Corey with separate address spaces but with
the arrays mapped via shared address ranges.
Memclone scales well on Corey and on Linux with

separate address spaces, but poorly on Linux with a sin-
gle address space. On a page fault both Corey and Linux
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verify that the faulting address is valid, allocate and clear
a 4 Kbyte physical page, and insert the physical page into
the hardware page table. Clearing a 4 Kbyte page incurs
64 L3 cache misses and copies 4 Kbytes from DRAM to
the local L1 cache and writes 4 Kbytes from the L3 back
to DRAM; however, the AMD cache line prefetcher al-
lows a core to clear a page in 3350 cycles (or at a rate of
1.2 bytes per cycle).

Corey and Linux with separate address spaces each in-
cur only 64 cache misses per page fault, regardless of the
number of cores. However, the cycles per page grad-
ually increases because the per-chip memory controller
can only clear 1.7 bytes per cycle and is saturated when
memclone uses more than two cores on a chip.

For Linux with a single address space cores contend
over shared address space data structures. With six cores
the cache-coherency messages generated from locking
and manipulating the shared address space begin to con-
gest the interconnect, which increases the cycles required
for processing a page fault. Processing a page fault takes
14 times longer with 16 cores than with one.

We use a benchmark called mempass to evaluate
the costs of memory that is used on multiple cores.
Mempass allocates a single 100 Mbyte shared buffer on
one of the cores, touches each page of the buffer, and
then passes it to another core, which repeats the process
until every core touches every page. Mempassmeasures
the total time for every core to touch every page.

Figure 7(b) presents the results for the same configu-
rations used in memclone. This time Linux with a sin-
gle address space performs well, while Linux with sep-
arate address spaces performs poorly. Corey performs
well here too. Separate address spaces are costly with
this workload because each core separately takes a soft
page fault for the shared page.

To summarize, a Corey application can use address
ranges to get good performance for both shared and pri-
vate memory. In contrast, a Linux application can get
good performance for only one of these types of mem-
ory.

8.3 Kernel cores
This section explores an example in which use of the
Corey kernel core abstraction improves scalability. The
benchmark application is a simple TCP service, which
accepts incoming connections, writing 128 bytes to each
connection before closing it. Up to 15 separate client ma-
chines (as many as there are active server cores) generate
the connection requests.

We compare two server configurations. One of them
(called “Dedicated”) uses a kernel core to handle all net-
work device processing: placing packet buffer pointers
in device DMA descriptors, polling for received pack-
ets and transmit completions, triggering device transmis-
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Figure 8: TCP microbenchmark results.

sions, and manipulating corresponding driver data struc-
tures. The second configuration, called “Polling”, uses a
kernel core only to poll for received packet notifications
and transmit completions. In both cases, each other core
runs a private TCP/IP stack and an instance of the TCP
service. For Dedicated, each service core uses shared-
memory IPC to send and receive packet buffers with the
kernel core. For Polling, each service core transmits
packets and registers receive packet buffers by directly
manipulating the device DMA descriptors (with lock-
ing), and is notified of received packets via IPC from the
Polling kernel core. The purpose of the comparison is to
show the effect on performance of moving all device pro-
cessing to the Dedicated kernel core, thereby eliminating
contention over device driver data structures. Both con-
figurations poll for received packets, since otherwise in-
terrupt costs would dominate performance.

Figure 8(a) presents the results of the TCP benchmark.
The network device appears to be capable of handling
only about 900,000 packets per second in total, which
limits the throughput to about 110,000 connections per
second in all configurations (each connection involves 4
input and 4 output packets). The dedicated configuration
reaches 110,000 with only five cores, while Polling re-
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quires 11 cores. That is, each core is able to handle more
connections per second in the Dedicated configuration
than in Polling.

Most of this difference in performance is due to the
Dedicated configuration incurring fewer L3 misses. Fig-
ure 8(b) shows the number of L3 misses per connec-
tion. Dedicated incurs about 50 L3 misses per connec-
tion, or slightly more than six per packet. These include
misses to manipulate the IPC data structures (shared with
the core that sent or received the packet) and the de-
vice DMA descriptors (shared with the device) and the
misses for a core to read a received packet. Polling in-
curs about 25 L3 misses per packet; the difference is
due to misses on driver data structures (such as indexes
into the DMA descriptor rings) and the locks that protect
them. To process a packet the device driver must acquire
and release an MCS lock twice: once to place the packet
on DMA ring buffer and once to remove it. Since each
L3 miss takes about 100 nanoseconds to service, misses
account for slightly less than half the total cost for the
Polling configuration to process a connection (with two
cores). This analysis is consistent with Dedicated pro-
cessing about twice as many connections with two cores,
since Dedicated has many fewer misses. This approxi-
mate relationship holds up to the 110,000 connection per
second limit.

The Linux results are presented for reference. In
Linux every core shares the same network stack and a
core polls the network device when the packet rate is
high. All cores place output packets on a software trans-
mit queue. Packets may be removed from the software
queue by any core, but usually the polling core trans-
fers the packets from the software queue to the hardware
transmit buffer on the network device. On packet recep-
tion, the polling core removes the packet from the ring
buffer and performs the processing necessary to place the
packet on the queue of a TCP socket where it can be read
by the application. With two cores, most cycles on both
cores are used by the kernel; however, as the number of
cores increases the polling core quickly becomes a bot-
tleneck and other cores have many idle cycles.

The TCP microbenchmark results demonstrate that a
Corey application can use kernel cores to improve scal-
ability by dedicating cores to handling kernel functions
and data.

8.4 Shares
We demonstrate the benefits of shares on Corey by com-
paring the results of two microbenchmarks. In the first
microbenchmark each core calls share addobj to add
a per-core segment to a global share and then removes
the segment from the share with share delobj. The
benchmark measures the throughput of add and remove
operations. As the number of cores increases, cores

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1
0

0
0

s 
o

f 
ad

d
 +

 d
el

 p
er

 s
ec

o
n

d

Cores

Global share
Per−core shares

(a) Throughput.

 0

 2

 4

 6

 8

 10

 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

L
3

 m
is

se
s 

p
er

 o
p

er
at

io
n

Cores

Global share
Per−core shares

(b) L3 cache misses.

Figure 9: Share microbenchmark results.

contend on the scalable read-write lock protecting the
hashtable used to implement the share. The second mi-
crobenchmark is similar to the first, except each core
adds a per-core segment to a local share so that the cores
do not contend.

Figure 9 presents the results. The global share scales
relatively well for the first three cores, but at four cores
performance begins to slowly decline. Cores contend on
the global share, which increases the amount of cache co-
herence traffic and makes manipulating the global share
more expensive. The local shares scale perfectly. At
16 cores adding to and removing from the global share
costs 10 L3 cache misses, while no L3 cache misses re-
sult from the pair of operations in a local share.

We measured the L3 misses for the Linux file descrip-
tor microbenchmark described in Section 1. On one core
a duplicate and close incurs no L3 cache misses; how-
ever, L3 misses increase with the number of cores and at
16 cores a dup and close costs 51 L3 cache misses.

A Corey application can use shares to avoid bottle-
necks that might be caused by contention on kernel data
structures when creating and manipulating kernel ob-
jects. A Linux application, on the other hand, must use
sharing policies specified by kernel implementers, which
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Figure 10: MapReduce wri results.

might force inter-core sharing and unnecessarily limit
scalability.

8.5 Applications
To demonstrate that address ranges, kernel cores, and
shares have an impact on application performance we
presents benchmark results from the Corey port of Metis
and from webd.

8.5.1 MapReduce

We compare Metis on Corey and on Linux, using the
wri MapReduce application to build a reverse index of
the words in a 1 Gbyte file. Metis allocates 2 Gbytes
to hold intermediate values and like memclone, Metis
allocates cores from chips in a round-robin fashion.

On Linux, cores share a single address space. On
Corey each core maps the memory segments holding in-
termediate results using per-core shared address ranges.
During the map phase each core writes word, index
key-value pairs to its per-core intermediate results mem-
ory. For pairs with the same word, the indices are
grouped as an array. More than 80% of the map phase
is spent in strcmp, leaving little scope for improve-
ment from address ranges. During the reduce phase each
core copies all the indices for each word it is responsible

buffer cache

filesum

webd

IPC IPC IPC

webd

filesum

NIC

IPC

Figure 11: A webd configuration with two front-end cores and two
filesum cores. Rectangles represent segments, rounded rectangles
represents pcores, and the circle represents a network device.

for from the intermediate result memories of all cores
to a freshly allocated buffer. The reduce phase spends
most of its time copying memory and handling soft page
faults. As the number of cores increases, Linux cores
contend while manipulating address space data while
Corey’s address ranges keep contention costs low.

Figure 10(a) presents the absolute performance of wri
on Corey and Linux and Figure 10(b) shows Corey’s im-
provement relative to Linux. For less than eight cores
Linux is 1% faster than Corey because Linux’s soft page
fault handler is about 10% faster than Corey’s when there
is no contention. With eight cores on Linux, address
space contention costs during reduce cause execution
time for reduce to increase from 0.47 to 0.58 seconds,
while Corey’s reduce time decreases from 0.46 to 0.42
seconds. The time to complete the reduce phase contin-
ues to increase on Linux and decrease on Corey as more
cores are used. At 16 cores the reduce phase takes 1.9
seconds on Linux and only 0.35 seconds on Corey.

8.5.2 Webd

As described in Section 6.2, applications might be able
to increase performance by dedicating application data
to cores. We explore this possibility using a webd appli-
cation called filesum. Filesum expects a file name
as argument, and returns the sum of the bytes in that file.
Filesum can be configured in two modes. “Random”
mode sums the file on a random core and “Locality”
mode assigns each file to a particular core and sums a
requested file on its assigned core. Figure 11 presents a
four core configuration.

We measured the throughput of webd with filesum
in Random mode and in Locality mode. We configured
webd front-end servers on eight cores and filesum on
eight cores. This experiment did not use a kernel core
or device polling. A single core handles network inter-
rupts, and all cores running webd directly manipulate the
network device. Clients only request files from a set of
eight, so each filesum core is assigned one file, which
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it maps into memory. The HTTP front-end cores and
filesum cores exchange file requests and responses us-
ing a shared memory segment.

Figure 12 presents the results of Random mode and
Locality mode. For file sizes of 256 Kbytes and smaller
the performance of Locality and Random mode are both
limited by the performance of the webd front-ends’ net-
work stacks. In Locality mode, each filesum core
can store its assigned 512 Kbyte or 1024 Kbyte file
in chip caches. For 512 Kbyte files Locality mode
achieves 3.1 times greater throughput than Random and
for 1024 Kbyte files locality mode achieves 7.5 times
greater throughput. Larger files cannot be fit in chip
caches and the performance of both Locality mode and
Random mode is limited by DRAM performance.

9 DISCUSSION AND FUTURE WORK

The results above should be viewed as a case for the
principle that applications should control sharing rather
than a conclusive “proof”. Corey lacks many features
of commodity operating systems, such as Linux, which
influences experimental results both positively and nega-
tively.

Many of the ideas in Corey could be applied to existing
operating systems such as Linux. The Linux kernel could
use a variant of address ranges internally, and perhaps
allow application control via mmap flags. Applications
could use kernel-core-like mechanisms to reduce system
call invocation costs, to avoid concurrent access to kernel
data, or to manage an application’s sharing of its own
data using techniques like computation migration [6, 14].
Finally, it may be possible for Linux to provide share-
like control over the sharing of file descriptors, entries in
buffer and directory lookup caches, and network stacks.

10 RELATED WORK

Corey is influenced by Disco [5] (and its relatives [13,
30]), which runs as a virtual machine monitor on a

NUMA machine. Like Disco, Corey aims to avoid ker-
nel bottlenecks with a small kernel that minimizes shared
data. However, Corey has a kernel interface like an ex-
okernel [9] rather than a virtual machine monitor.

Corey’s focus on supporting library operating systems
resembles Disco’s SPLASHOS, a runtime tailored for
running the Splash benchmark [26]. Corey’s library op-
erating systems require more operating system features,
which has led to the Corey kernel providing a number of
novel ideas to allow libraries to control sharing (address
ranges, kernel cores, and shares).

K42 [3] and Tornado [10], like Corey, are designed
so that independent applications do not contend over re-
sources managed by the kernel. The K42 and Tornado
kernels provide clustered objects that allow different im-
plementations based on sharing patterns. The Corey ker-
nel takes a different approach; applications customize
sharing policies as needed instead of selecting from a set
of policies provided by kernel implementers. In addition,
Corey provides new abstractions not present in K42 and
Tornado.

Much work has been done on making widely-used op-
erating systems run well on multiprocessors [4]. The
Linux community has made many changes to improve
scalability (e.g., Read-Copy-Update (RCU) [20] locks,
local runqueues [1], libnuma [16], improved load-
balancing support [17]). These techniques are comple-
mentary to the new techniques that Corey introduces and
have been a source of inspiration. For example, Corey
uses tricks inspired by RCU to implement efficient func-
tions for retrieving and removing objects from a share.

As mentioned in the Introduction, Gough et al. [12]
and Veal and Foong [29] have identified Linux scaling
challenges in the kernel implementations of scheduling
and directory lookup, respectively.

Saha et al. have proposed the Multi-Core Run Time
(McRT) for desktop workloads [23] and have explored
dedicating some cores to McRT and the application and
others to the operating system. Corey also uses spa-
tial multiplexing, but provides a new kernel that runs on
all cores and that allows applications to dedicate kernel
functions to cores through kernel cores.

An Intel white paper reports use of spatial multiplex-
ing of packet processing in a network analyzer [15], with
performance considerations similar to webd running in
Locality or Random modes.

Effective use of multicore processors has many aspects
and potential solution approaches; Corey explores only a
few. For example, applications could be assisted in cop-
ing with heterogeneous hardware [25]; threads could be
automatically assigned to cores in a way that minimizes
cache misses [27]; or applications could schedule work
in order to minimize the number of times a given datum
needs to be loaded from DRAM [7].
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11 CONCLUSIONS

This paper argues that, in order for applications to scale
on multicore architectures, applications must control
sharing. Corey is a new kernel that follows this princi-
ple. Its address range, kernel core, and share abstractions
ensure that each kernel data structure is used by only one
core by default, while giving applications the ability to
specify when sharing of kernel data is necessary. Ex-
periments with a MapReduce application and a synthetic
Web application demonstrate that Corey’s design allows
these applications to avoid scalability bottlenecks in the
operating system and outperform Linux on 16-core ma-
chines. We hope that the Corey ideas will help appli-
cations to scale to the larger number of cores on future
processors. All Corey source code is publicly available.
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