
CoDNS: Improving DNS Performance and
Reliability via Cooperative Lookups

KyoungSoo Park, Vivek S. Pai, Larry Peterson and Zhe Wang
Department of Computer Science

Princeton University

Abstract
The Domain Name System (DNS) is a ubiquitous part
of everyday computing, translating human-friendly ma-
chine names to numeric IP addresses. Most DNS re-
search has focused on server-side infrastructure, with the
assumption that the aggressive caching and redundancy
on the client side are sufficient. However, through sys-
tematic monitoring, we find that client-side DNS fail-
ures are widespread and frequent, degrading DNS per-
formance and reliability.

We introduce CoDNS, a lightweight, cooperative DNS
lookup service that can be independently and incremen-
tally deployed to augment existing nameservers. It uses
a locality and proximity-aware design to distribute DNS
requests, and achieves low-latency, low-overhead name
resolution, even in the presence of local DNS nameserver
delay/failure. Using live traffic, we show that CoDNS
reduces average lookup latency by 27-82%, greatly re-
duces slow lookups, and improves DNS availability by
an additional ’9’. We also show that a widely-deployed
service using CoDNS gains increased capacity, higher re-
liability, and faster start times.

1 Introduction
The Domain Name System (DNS) [15] has become a
ubiquitous part of everyday computing due to its effec-
tiveness, human-friendliness, and scalability. It provides
a distributed lookup service primarily used to convert
from human-readable machine names to Internet Proto-
col (IP) addresses. Its existence has permeated much of
computing via the World Wide Web’s near-complete de-
pendence on it. Thanks in part to its redundant design,
aggressive caching, and flexibility, it has become a ubiq-
uitous part of everyday computing that most people take
for granted, including researchers.

Most DNS research focuses on “server-side” prob-
lems, which arise on the systems that translate names
belonging to the group that runs them. Such prob-
lems include understanding name hierarchy misconfig-
uration [5, 9] and devising more scalable distribution
infrastructure [4, 10, 18]. However, due to increasing
memory sizes and DNS’s high cachability, “client-side”
DNS hit rates are approaching 90% [9, 24], so fewer re-
quests are dependent on server-side performance. The

client-side components are responsible for contacting the
appropriate servers, if necessary, to resolve any name
presented by the user. This infrastructure, which has re-
ceived less attention, is our focus – understanding client-
side behavior in order to improve overall DNS perfor-
mance and reliability.

Using PlanetLab [16], a wide-area distributed testbed,
we locally monitor the client-side DNS infrastructure of
150 sites around the world, generating a large-scale ex-
amination of client-side DNS performance. We find that
client-side failures are widespread and frequent, and that
their effects degrade DNS performance and reliability.
The most common problems we observe are intermit-
tent failures to receive any response from the local name-
servers, but these are generally hidden by the internal re-
dundancy in DNS deployments. However, the cost of
such redundancy is additional delay, and we find that the
delays induced through such failures often dominate the
time spent waiting on DNS lookups.

To address these client-side problems, we have devel-
oped CoDNS, a lightweight, cooperative DNS lookup
service that can be independently and incrementally de-
ployed to augment existing nameservers. CoDNS uses an
insurance-like model of operation – groups of mutually
trusting nodes agree to resolve each other’s queries when
their local infrastructure is failing. We find that the group
size does not need to be large to provide substantial bene-
fits – groups of size 2 provide roughly half the maximum
possible benefit, and groups of size 10 achieve almost all
of the possible benefit. Using locality-enhancement tech-
niques and proximity optimizations, CoDNS achieves
low-latency, low-overhead name resolution, even in the
presence of local DNS delays/failures.

CoDNS has been serving live traffic on PlanetLab
since October 2003, providing many benefits over stan-
dard DNS. CoDNS reduces average lookup latency by
27-82%, greatly reduces slow lookups, and improves
DNS availability by an extra ’9’, from 99% to over
99.9%. Its service is more reliable and consistent than
any individual node’s. Additionally, CoDNS has sal-
vaged “unusable” nodes, which had such poor local DNS
infrastructure that they were unfit for normal use. Appli-
cations using CoDNS often have faster and more pre-
dictable start times, improving availability.

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 199

 10

 100

 1000

 10000

00 06 12 18 00 06 12 18 00

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time

(a) planetlab1.cs.cornell.edu

 10

 100

 1000

00 06 12 18 00 06 12 18 00

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time

(b) lefthand.eecs.harvard.edu

 10

 100

 1000

 10000

00 06 12 18 00 06 12 18 00

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time

(c) planetlab-1.cmcl.cs.cmu.edu

 10

 100

 1000

 10000

 100000

00 06 12 18 00 06 12 18 00

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time

(d) kupl1.ittc.ku.edu

 10

 100

 1000

 10000

00 06 12 18 00 06 12 18 00

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time

(e) planetlab-1.stanford.edu

 10

 100

 1000

 10000

 100000

00 06 12 18 00 06 12 18 00

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time

(f) planetlab1.cs.ubc.ca

 10

 100

 1000

 10000

00 06 12 18 00 06 12 18 00
A

v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time

(g) planetlab1.eecs.umich.edu

 10

 100

 1000

 10000

00 06 12 18 00 06 12 18 00

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time

(h) planetlab2.cs.northwestern.edu

Figure 1: Average cached DNS lookup response times on various PlanetLab nodes over two days. Note that while most Y axes
span 10-1000 milliseconds, some are as large as 100,000 milliseconds.

2 Background & Analysis

While the Domain Name System (DNS) was intended to
be a scalable, distributed means of performing name-to-
IP mappings, its flexible design has allowed it to grow far
beyond its original goals. While most people would be
familiar with it for Web browsing, many systems depend
on fast and consistent DNS performance. Mail servers,
Web proxy servers, and content distribution networks
(CDNs) must all resolve hundreds or even thousands of
DNS names in short periods of time, and a failure in DNS
may cause a service failure, rather just delays.

The server-side infrastructure of DNS consists of
hierarchically-organized name servers, with central au-
thorities providing “root” servers and others delegated
organizations handling “top-level” servers, such as
“.com” and “.edu”. Domain name owners are respon-
sible for providing servers that handle queries for their
names. While DNS users can manually query each level
of the hierarchy in turn until the complete name has been
resolved, most systems delegate this task to local name-
server machines. This approach has performance ad-
vantages (e.g., caching replies, consolidating requests)
as well as management benefits (e.g., fewer machines to
update with new software or root server lists).

With local nameserver cache hit rates approaching
90% [9, 24], their performance impact can eclipse that

of the server-side DNS infrastructure. However, local
nameserver performance and reliability has not been well
studied, and since it handles all DNS lookups for clients,
its failure can disable other systems. Our experiences
with building the CoDeeN content distribution network,
running on over 100 PlanetLab nodes [23], motivated us
to investigate this issue, since all CoDeeN nodes use the
local nameservers at their hosting sites.

2.1 Frequency of Name Lookup Failures
To determine the failure properties of local DNS infras-
tructure, we systematically measure DNS lookup times
on many PlanetLab nodes. In particular, across 40 North
American sites, we perform a query once per second.
We ask these nodes to resolve each other’s names, all of
which are cacheable, with long time-to-live (TTL) values
of no less than 6 hours. Lookup times for these requests
should be minimal, on the order of a few milliseconds,
since they can be served from the local nameserver’s
cache. This diagnostic workload is chosen precisely be-
cause it is trivially cacheable, making local infrastruc-
ture failures more visible and quantifiable. Evaluation
of DNS performance on live traffic, with and without
CoDNS, is covered in Section 5.

Our measurements show that local DNS lookup times
are generally good, but often degrade dramatically, and
that this instability is widespread and frequent. To illus-

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association200

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000

C
D

F

Response Time (ms)

northwestern
u-mich

stanford
ku

havard
cmu

cornell
ubc

(a) Fraction of Lookups Taking < X ms

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000

W
e

ig
h

te
d

 C
D

F

Response Time (ms)

ubc
cmu

u-mich
stanford

ku
harvard

northwestern
cornell

(b) Fraction of the Sum of Lookups Taking < X ms

Figure 2: Cumulative Distribution of Cached DNS Lookups

trate the widespread nature of the problem and its mag-
nitude, Figure 1 shows the lookup behavior over a two-
day period across a number of PlanetLab nodes. Each
point shows the per-minute average response time of
name lookups. All the nodes in the graph show some
sort of problems in DNS lookups during the period, with
lookups often taking thousands of milliseconds.

These problems are not consistent with simple config-
uration problems, but appear to be usage-induced or trig-
gered by activity on the nameserver nodes. For example,
the Cornell node consistently shows DNS problems, with
more than 20% of lookups showing high lookup times of
over five seconds, the default timeout in the client’s re-
solver library. These failed lookups are eventually re-
tried at the campus’s second nameserver, masking the
first nameserver’s failures. Since the first nameserver re-
sponds to 80% of queries in a timely manner, it is not
completely misconfigured. Very often throughout the
day, it simply stops responding, driving the per-minute
average lookup times close to five seconds. The Harvard
node also displays generally bad behavior. While most
lookups are fine, a few failed requests every minute sub-
stantially increase the per-minute average. The Stanford
node’s graph shows periodic spikes roughly every three
hours. This phenomenon is long-term, and we suspect
the nameserver is being affected by heavy cron jobs. The
Michigan node shows a 90 minute DNS problem, driving
its generally low lookup times to above one second.

Although the average lookup times appear quite high
at times, the individual lookups are mostly fast, with a
few very slow lookups dominating the averages. Fig-
ure 2(a) displays the cumulative distribution function
(CDF) of name lookup times over the same two days.
With the exception of the Cornell node, 90% of all re-
quests take less than 100ms on all nodes, indicating that
caching is effective and that avaerage-case latencies are
quite low. Even the Cornell node works well most of the
time, with over 80% of lookups are resolved within 6ms.

Node Avg Low High T-Low T-High
cornell 531.7ms 82.4% 12.9% 0.5% 99.2%

harvard 99.4ms 92.3% 3.3% 0.7% 97.9%
cmu 24.0ms 81.9% 3.2% 8.3% 71.0%

ku 53.1ms 94.6% 1.8% 2.9% 95.0%
stanford 21.5ms 95.7% 1.3% 5.3% 89.5%

ubc 88.8ms 76.0% 7.6% 2.4% 91.2%
umich 43.6ms 96.7% 1.3% 2.4% 96.1%

northwestern 43.1ms 98.5% 0.5% 4.5% 94.8%

Table 1: Statistics over two days, Avg = Average, Low = Per-
centage of lookups < 10 ms, High = Percentage of lookups >
100 ms, T-Low = Percentage of total low time, T-High = Per-
centage of total high time

However, slow lookups dominate the total time spent
waiting on DNS, and are large enough to be noticeable
by end users. In Figure 2(b), we see the lookups shown
by their contribution to the total lookup time, which in-
dicates that a small percentage of failure cases domi-
nates the total time. This weighted CDF shows, for ex-
ample, that none of the nodes crosses the 0.5 value before
1000ms, indicating that more than 50% of the lookup
time is spent on lookups taking more than 1000ms. If
we assume that a well-behaving local nameserver can
serve cached responses in 100ms, then the figures are
even more dramatic. This data, shown in Table 1, shows
that slow lookups comprise most of the lookup time.

These measurements show that client-side DNS in-
frastructure problems are significant and need to be
addressed. If we can reduce the amount of time spent on
these longer cases, particularly in the failures that require
the local resolver to retry the request, we can dramati-
cally reduce the total lookup times. Furthermore, given
the sharp difference between “good” and “bad” lookups,
we may also be able to ensure a more predictable (and
hence less annoying) user experience. Finally, it is worth
noting that these problems are not an artifact of Planet-
Lab – in all cases, we use the site’s local nameservers,
on which hundreds or thousands of other non-PlanetLab

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 201

 0

 5

 10

 15

 20

 25

00 03 06 09 12 15 18 21 00

D
N

S
 F

a
il
u
re

 R
a
te

 (
%

)

Time

(a) lefthand.eecs.harvard.edu

 0

 5

 10

 15

 20

 25

00 03 06 09 12 15 18 21 00

D
N

S
 F

a
il
u
re

 R
a
te

 (
%

)

Time

(b) righthand.eecs.harvard.edu

 0
 100
 200
 300
 400
 500
 600
 700
 800

00 03 06 09 12 15 18 21 00A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time

(c) planetlab1.cs.purdue.edu

 0
 100
 200
 300
 400
 500
 600
 700
 800

00 03 06 09 12 15 18 21 00A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time

(d) planetlab2.cs.purdue.edu

Figure 3: All nodes at a site see similar local DNS behavior, despite different workloads at the nodes. Shown above are one day’s
failure rates at Harvard, and one day’s response times at Purdue.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

00 06 12 18 00 06 12 18 00

Fa
ilu

re
 R

at
e

(%
)

Time (planetlab1.cs.northwestern.edu)

(a) northwestern-1

 0

 5

 10

 15

 20

 25

00 06 12 18 00 06 12 18 00

Fa
ilu

re
 R

at
e

(%
)

Time (miranda.tkn.tu-berlin.de)

(b) tu-berlin

Figure 4: Failures seemingly caused by nameserver overload – in both cases, the failure rate is always less than 100%, indicating
that the server is operational, but performing poorly.

machines depend. The PlanetLab nodes at a site see sim-
ilar lookup times and failure rates, despite the fact that
their other workloads may be very different. Examples
from two sites are shown in Figure 3, and we can see that
the nodes at a site see similar DNS performance. This
observation further enhances our claim that the problems
are site-wide, and not PlanetLab-specific.

2.2 Origins of the Client-Side Failures
While we do not have full access to all of the client-
side infrastructure, we can try to infer the reasons for
the kinds of failures we are seeing and understand their
impact on lookup behavior. Absolute confirmation of the
failure origins would require direct access to the name-
servers, routers, and switches at the sites, which we do
not have. Using various techniques, we can trace some
problems to packet loss, nameserver overloading, re-
source competition and maintenance issues. We discuss
these below.

Packet Loss – The simplest cause we can guess is the
packet loss in the LAN environment. Most nameservers
communicate using UDP, so even a single packet loss ei-
ther as a request or as a response would eventually trigger

a query retransmission from the resolver. The resolver’s
default timeout for retransmission is five seconds, which
matches some of the spikes in Figure 1.

Packet loss rates in LAN environments are generally
assumed to be minimal, and our measurements of Prince-
ton’s LAN support this assumption. We saw no packet
loss at two hops, 0.02% loss at three hops, and 0.09% at
four hops. Though we did see bursty behavior in the loss
rate, where the loss rates would stay high for a minute
at a time, we do not see enough losses to account for
the DNS failures. Our measurements show that 90% of
PlanetLab nodes have a nameserver within 4 hops, and
70% are within 2 hops. However, other contexts, such as
cable modems or dial-up services, have more hops [20],
and may have higher loss rates.

Nameserver overloading – Since most request packets
are likely to reach the nameserver, our next possible cul-
prit is the nameserver itself. To understand their behav-
ior, we asked all nameservers on PlanetLab to resolve a
local name once every two seconds and we measured the
results. For example, on planetlab-1.cs.princeton.edu,
we asked for planetlab-2.cs.princeton.edu’s IP address.

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association202

Figure 5: Daily Request Rate for Princeton.EDU

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r

o
f

R
e

sp
o

n
se

s
(x

x
K

 =
 r

e
ce

iv
e

 b
u

ff
e

r
si

ze
)

Requests/sec

BIND, 64K
BIND,128K
BIND,256K
BIND,512K
PING, 64K

Figure 6: BIND 9.2.3 vs. PING with bursty traffic

In addition to the possibility of caching, the local name-
server is mostly likely the authoritative nameserver for
the queried name, or at least the authoritative server can
be found on the same local network.

In Figure 4, we see some evidence that nameservers
can be temporarily overloaded. These graphs cover two
days of traffic, and show the 5-minute average failure
rate, where a failure is either a response taking more than
five seconds, or no response at all. In Figure 4(a), the
node experiences no failures most of time but a 30% to
80% failure rate for about five hours. Figure 4(b) reveals
a site where failures start during the start of the workday,
gradually increase, and drop starting in the evening. It
is reasonable to assume that human activity increases in
these hours, and affects the failure rate.

We suspect that a possible factor in this overloading
is the UDP receive buffer on the nameserver. These
buffers are typically sized in the range of 32-64KB, and
incoming packets are silently dropped when this buffer
is full. If the same buffer is also used to receive the
responses from other nameservers, as the BIND name-
server does, this problem gets worse. Assuming a 64KB
receive buffer, a 64 byte query, and a 300 byte response,
more than 250 simultaneous queries can cause packet
dropping. In Figure 5, we see the request rate (aver-
aged over 5 minutes) for the authoritative nameserver for
princeton.edu. Even with smoothing, the request rates
are in the range of 250-400 reqs/sec, and we can expect
that instantaneous rates are even higher. So, any activity
that causes a 1-2 second delay of the server can cause
requests to be dropped.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

00 06 12 18 00 06 12 18 00

Fa
ilu

re
 R

ate
 (%

)

Time (pl1.unm.edu)

Figure 7: This site shows failures induced by periodic activity.
In addition to the hourly failure spike, a larger failure spike is
seen once per day.

To test this theory of nameserver overload, we sub-
jected BIND, the most popular nameserver, to bursty
traffic. On an otherwise unloaded box (Compaq au600,
Linux 2.4.9, 1 GB memory), we ran BIND 9.2.3 and an
application-level UDP ping that simulates BIND. Each
request contains the same name query for a local domain
name with a different query ID. Our UDP ping responds
to it by sending a fixed response with the same size as
BIND’s. We send a burst ofN requests from a client ma-
chine and wait 10 seconds to gather responses. Figure 6
shows the difference in responses between BIND 9.2.3
and our UDP ping. With the default receive buffer size
of 64KB, BIND starts dropping requests at bursts of 200
reqs/sec, and the capacity linearly grows with the size of
the receive buffer. Our UDP ping using the default buffer
loses some requests due to temporary overflow, but the
graph does not flatten because responses consume min-
imal CPU cycles. These experiments confirm that high-
rate bursty traffic can cause server overload, aggravating
the buffer overflow problem.

Resource competition – Some sites show periodic fail-
ures, similar to what is seen in Figure 7. These tend to
have spikes every hour or every few hours, and suggests
some heavy process is being launched from cron. BIND
is particularly susceptible to memory pressure, since its
memory cache is only periodically flushed. Any jobs that
use large amounts of memory can evict BIND’s pages,
causing BIND to page fault when accessing the data. The
faults can delay the server, causing the UDP buffer to fill.

In talking with system administrators, we find that
even sites with good DNS service often run multiple ser-
vices (some cron-initiated) on the same machine. Since
DNS is regarded as a low-CPU service, other services are
run on the same hardware to avoid underutilization. It
seems quite common that when these other services have
bursty resource behavior, the nameserver is affected.

Maintenance problems – Another common source of
failure is maintenance problems which lead to service in-
terruption, as shown in Figure 8. Here, the DNS lookup
shows a 100% failure rate for 13 hours. Both name-

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 203

 0

 20

 40

 60

 80

 100

00 06 12 18 00 06 12 18 00

Fa
ilu

re
 R

ate
 (%

)

Time (planetlab2.millennium.berkeley.edu)

Figure 8: This site’s nameservers were shut down before the
nodes had been updated with the new nameserver information.
The result was a 13-hour complete failure of all name lookups,
until the information was manually updated.

servers for this site stopped working causing DNS to be
completely unavailable, instead of just slow. DNS ser-
vice was restored only after manual intervention. An-
other common case, complete failure of the primary
nameserver, generates a similar pattern, with all re-
sponses being retried after five seconds and sent to the
secondary nameserver.

3 Design

In this section, we discuss the design of CoDNS, a name
lookup system that provides faster and more reliable
DNS service while minimizing extra overhead. We also
discuss the observations that shape this approach. Using
trace-driven workloads, we calculate the overheads and
benefits of various design choices in the system.

One important goal shapes our design: our system
should be incrementally deployable, not only by DNS
administrators, but also by individual users. The main
reason for this decision is that it bypasses the bureau-
cratic processes involved with replacing existing DNS in-
frastructure. Given the difficulty we have in even getting
information about local DNS nameservers, the chances
of convincing system administrators to send their live
traffic to an experimental name lookup service seems
low. Providing a migration path that coexists with exist-
ing infrastructure allows people the opportunity to grow
comfortable with the service over time.

Another implication of this strategy is that we should
aim for minimal resource commitments. In particular,
we should leverage the existing infrastructure devoted to
making DNS performance generally quite good. Client-
side nameservers achieve high cache hit rates by devot-
ing memory to name caching, and if we can take ad-
vantage of the existing infrastructure, it lessens the cost
of deployment. While current client-side infrastructure,
including nameservers, is not perfect, it provides good
performance most of the time, and it can provide a use-
ful starting point. Low resource usage also reduces the
chances for failure due to resource contention.

75 %

80 %

85 %

90 %

95 %

100 %

03/25 04/01 04/08 04/15

P
e
rc

e
n
ta

g
e
 o

f
H

e
a
lth

y
N

o
d
e
s

Hourly statistics, 2004

max
avg
min

Figure 9: Hourly % of nodes with working nameservers

Our usage model is cooperative, operating similarly
to insurance – nodes join a pool that shares resources in
times of need. If a node’s local lookup performance is
acceptable, it proceeds as usual, but may have to provide
service to nodes that are having problems. When its lo-
cal performance degrades, it can ask other nodes to help
it. The benefit of joining is the ability to get help when
needed, even if there is some overhead at other times.

3.1 Cross-site Correlation of DNS Failures
The “insurance” model depends on failure being rela-
tively uncorrelated – the system must always have a suf-
ficient pool of working participants to help those having
trouble. If failure across sites is correlated, this assump-
tion is violated, and a cooperative lookup scheme is less
feasible. To test our assumption, we study the correla-
tion of DNS lookup failures across PlanetLab. At every
minute, we record how many nodes have “healthy” DNS
performance. We define healthy as showing no failures
for one minute for the local domain name lookup test.
Using the per-minute data for March 2004, we show the
minimum, average and maximum number of nodes avail-
able per hour. The percentage of healthy nodes (as a frac-
tion of live nodes) is shown in Figure 9.

From this graph, we can see some minor correlation
in failures, shown as downward spikes in the percentage
of available nodes, but most of the variation in availabil-
ity seems largely uncorrelated. An investigation into the
spikes reveals that many nodes on PlanetLab are config-
ured to use the same set of nameservers, especially those
colocated at Internet2 backbone facilities (not to be con-
fused with Internet2-connected university sites). When
these nameservers experience problems, the correlation
appears large due to the number of nodes affected.

More important, however, is the observation that the
fraction of healthy nameservers is always high, generally
above 90%. This observation provides the key insight
for CoDNS – with enough healthy nameservers, we can
mask locally-observed delays via cooperation.

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association204

Software PlanetLab Packetfactory TLD
BIND-4.9.3+/8 31.1% 36.4% 55.9%

BIND 9 48.9% 25.1% 34.0%
Other 20.0% 38.5% 10.1%

Table 2: Comparison of nameserver software used by Planet-
Lab, packetfactory survey and the TLD survey

To ensure that these failures are not tied to any specific
nameserver software, we survey the software running on
the local nameservers used by the PlanetLab nodes (135
unique nameservers) with “chaos” class queries [14]. We
find that they are mostly running a variety of BIND ver-
sions. We observe 11 different BIND 9 version strings,
13 different BIND 8 version strings and a number of hu-
morous strings (included in “other”) apparently set by the
nameserver administrators. These measurements, shown
in Table 2, are in line with two recent nameserver sur-
veys conducted by Brad Knowles in 2002 [11] and by
packetfactory in 2003 [19]. From this, we conclude that
the failures are not likely to be specific to PlanetLab’s
choices of nameserver software.

3.2 CoDNS
The main idea behind CoDNS is to forward name lookup
queries to peer nodes when the local name service is ex-
periencing a problem. Essentially, this strategy applies a
CDN approach to DNS – spreading the load among peers
improves the size and performance of the “global cache”.
Many of the considerations in CDN systems apply in this
environment. We need to consider the proximity and
availability of a node as well as the locality of the queries.
A different consideration is that we need to decide when
it is desirable to send remote queries. Given the fact that
most name lookups are fast in the local nameserver, sim-
ply spreading the requests to peers might generate unnec-
essary traffic with no gain in latency. Worse, the extra
load may cause marginal DNS nameservers to become
overloaded. We investigate considerations for deciding
when to send remote queries, how many peers to involve,
and what sorts of gains to expect.

To precisely determine the effects of locality, load,
and proximity is difficult, since we have no control over
the nameservers and have little information about their
workloads, configurations, etc. The proximity of a peer
server is important in that DNS response time can be af-
fected by its peer to peer latency. Since the DNS requests
and responses are not large, we are more interested in
picking nearby peers with low round-trip latency instead
of nodes with particularly high bandwidth. We have ob-
served coast-to-coast round-trip ping times of 80ms in
CoDeeN, with regional times in the 20ms range. Both of
these ranges are much lower than the DNS timeout value
of five seconds, so, in theory, any node would be an ac-
ceptable peer. In practice, choosing closer peers will re-
duce the difference between cache hit times and remote

peer times, making CoDNS failure masking more trans-
parent. For request locality, we would like to increase the
chances of remote queries being cache hits in the remote
nameservers. Using any scheme that consistently parti-
tions this workload will help reduce cache pollution, and
increase the likelihood of cache hits.

To understand the relationship between CoDNS re-
sponse times, the number of peers involved, and the poli-
cies for determining when requests should be sent re-
motely, we collected 44,486 unique hostnames from one
day’s HTTP traffic on CoDeeN and simulated various
policies and their effects. We replayed DNS lookups
of those names at 77 PlanetLab nodes with different
nameservers, starting requests at the same time of day
in the original logs. The replay happened one month af-
ter the data collections to avoid local nameserver caches
which could skew the data. During this time, we also
use application-level heartbeat measurements between
all pairs of nodes to determine their round-trip latencies.
Since all of the nodes are doing DNS lookups at about
the same time, by adding the response time at peerY to
the time spent for the heartbeat from peerX to peerY, we
will get the response time peerX can get if it asks peerY
for a remote DNS lookup for the same hostname.

An interesting question is how many simultaneous
lookups are needed to achieve a given average response
time and to reduce the total time spent on slow lookups
(defined as taking more than 1 second). As shown in
the previous section, it is desirable to reduce the number
of slow responses to reduce the total lookup time. Fig-
ures 10 and 11 show two graphs answering this ques-
tion. The lookup scheme here is to contact the local
nameserver first for a name lookup, wait for a timeout
and issue x-1 simultaneous lookups using x-1 randomly-
selected peer nodes. Figures 10 shows that even if we
use only one extra lookup, we can reduce the average re-
sponse time by more than half. Also, beyond about five
peers, adding more simultaneous lookups produces di-
minishing returns. Different initial timeout values do not
produce much difference in response times, because the
benefit largely stems from reducing the number of slow
lookups. The slow response portion graph proves this
phenomenon, showing similar reduction in the slow re-
sponse percentage at any initial timeout less than 700ms.

We must also consider the extra overhead of the si-
multaneous lookups, since shorter initial timeouts and
more simultaneous lookups causes more DNS traffic at
all peers. Figure 12 shows the overhead in terms of ex-
tra lookups needed for various scenarios. Most curves
start to flatten at a 500ms initial timeout, providing only
diminishing returns for larger timeouts. Worth noting is
that even with one peer and a 200ms initial timeout, we
can still cut the average response time by more than half,
with only 38% extra DNS lookups.

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 205

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 4 8 16 32 64

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

of Simultaneous Lookups

Timeout 900ms
Timeout 800ms
Timeout 600ms
Timeout 400ms
Timeout 200ms

Timeout 0ms

Figure 10: Average Response Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 4 8 16 32 64%
 o

f T
ot

al
 T

im
e

in
 R

es
po

ns
es

 >
 1

se
c

of Simultaneous Lookups

Timeout 900ms
Timeout 800ms
Timeout 600ms
Timeout 400ms
Timeout 200ms

Timeout 0ms

Figure 11: Slow Response Time Portion

 1

 2

 4

 8

 16

 0 200 400 600 800 1000

Av
er

ag
e

N
um

be
r o

f L
oo

ku
ps

Initial Delay for Remote Query (ms)

8 extra peers
4 extra peers
2 extra peers
1 extra peer

Figure 12: Extra DNS Lookups

These results are very encouraging, demonstrating that
CoDNS can be effective even at very small scale – even
a single extra site provides significant benefits, and it
achieves most of its benefits with less than 10 sites. The
reasons for this scale being important is twofold: only
small commitments are required to try a CoDNS deploy-
ment, and DNS’s limitations with respect to trust and ver-
ification (discussed in the next section) are unlikely to be
an issue at these scales.

3.3 Trust, Verification, and Implications
Some aspects of DNS and its design invariably impact
our approach, and the most important is trust and veri-
fication. The central issue is whether it is possible for a
requestor to determine that its peer has correctly resolved
the request, and that the result provided is actually a valid
IP address for the given name. This issue arises if peers
can be compromised or are otherwise failing.

Unfortunately, we believe that a general solution to
this problem is not possible with the current DNS, though
certain fault models are more amenable to checking than
others. For example, if the security model assumes that
at most one peer can be compromised, it may be possi-
ble to always send remote requests to at least three peers.
When these nodes respond, if two results agree, then the
answer must be correct. However, DNS does not man-

date that any of these results have to agree, making the
general case of verification impossible.

Many server-side DNS deployments use techniques to
improve performance, reliability, or balance load and lo-
cality. For example, round-robin DNS can return re-
sults from a list of IP addresses in order to distribute
load across a set of servers. Geography-based redirection
can be used to reduce round-trip times between clients
and servers by having DNS lookups resolve to closer
servers. Finally, DNS-based content distribution net-
works will often incorporate load balancing and local-
ity considerations when resolving their DNS names. In
these cases, multiple lookups may produce different re-
sults, and lookups from different locations may receive
results from different pools of IP addresses.

While it would be possible to imagine extending DNS
such that each name is associated with a public key,
and each IP address result is signed with this key, such
a change would be significant. DNSSEC [6] attempts
smaller-scale change, mainly to prevent DNS spoofing,
but has been in some form of development for nearly a
decade, and still has not seen wide-scale adoption.

Given the current impossibility of verifying all
lookups, we rely on trusting peers in order to sidestep
the problems mentioned. This approach is already used
in various schemes. Name owners often use each other as
their secondary servers, sometimes at large scale. For ex-
ample, princeton.edu’s DNS servers act as the secondary
servers for 60 non-Princeton domains. BIND supports
zone transfers, where all DNS information can be down-
loaded from another node, specifically for this kind of
scenario. Similarly, large-scale distributed systems run-
ning at hosting centers already have a trust relationship
in place with their hosting facility.

4 Implementation

We have built a prototype of CoDNS and have been
running it on all nodes on PlanetLab for roughly eight
months. During that time, we have been directing the
CoDeeN CDN [23] to use CoDNS for the name lookup.

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association206

CoDNS consists of a stand-alone daemon running on
each node, accessible via UDP for remote queries, and
via loopback TCP for locally-originated name lookups.
The daemon is event-driven, and is implemented as a
non-blocking master process and many (blocking) slave
processes. The master process receives name lookup re-
quests from local clients and remote peers, and passes
them to one of its idle slaves. A slave process resolves
those names by calling gethostbyname() and sends
the result back to the master. Then, the master returns
the final result to either a local client or a remote peer
depending on where it originated. Queries resolving
the same hostname are coalesced into one query and
answered together when resolved. Preference for idle
slaves is given to locally-originated requests over remote
queries to ensure good performance for local users.

The master process records each request’s arrival time
from local clients and sends a UDP name lookup query
to a peer node when the response from the slave has not
returned within a certain period. This delay is used as a
boundary for deciding if the local nameserver is slow. In
the event that neither the local nameserver nor the remote
node has responded, CoDNS doubles the delay value be-
fore sending the next remote query to another peer. In
the process, whichever result that comes first will be de-
livered as the response for the name lookup to the client.
Peers may silently drop remote queries if they are over-
loaded, and remote queries that fail to resolve are also
discarded. Slaves may add delay if they receive a locally-
generated request that fails to resolve, with the hope that
remote nodes may be able to resolve such names.

4.1 Remote Query Initiation & Retries
The initial delay before sending the first remote query is
dynamically adjusted based on the recent performance of
local nameservers and peer responses. In general, when
the local nameserver performs well, we increase the de-
lay so that fewer remote queries are sent. When most
remote answers beat the local ones, we reduce the delay
preferring the remote source. Specifically, if the past 32
name lookups are all resolved locally without using any
remote queries, then the initial delay is set to 200ms by
default. We choose 200ms because the median response
time on a well-functioning node is less than 100ms [9],
so 200ms delay should respond fast during instability,
while wasting minimal amount of extra remote queries.

However, to respond quickly to local nameserver fail-
ure, if the remote query wins more than 50% of the last
16 requests, then the delay is set to 0 ms. That is, the
remote query is sent immediately as the request arrives.
Our test results show it is rare not to have failure when
more than 8 out of 16 requests take more than 300ms to
resolve, so we think it is reasonable to believe the local
nameserver is having a problem in that case. Once the
immediate query is sent, the delay is set to the average

response time of remote query responses plus one stan-
dard deviation, to avoid swamping fast remote servers.

4.2 Proximity, Locality and Availability
Each CoDNS node gathers and manages a set of neigh-
bor nodes within a reasonable latency boundary. When a
CoDNS instance starts, it sends a heartbeat to each node
in the preconfigured CoDNS node list every second. The
response contains the round trip time (RTT) and the av-
erage response time of the local nameserver at the peer
node, reflecting the proximity and the availability of the
peer node’s nameserver. The top 10 nodes with different
nameservers are picked as neighbors by comparing the
sum with all nodes. Liveness of the chosen neighbors
is periodically checked to see if the service is still avail-
able. One heartbeat is sent each second, so we guarantee
the availability in 10 second granularity. Dead nodes are
replaced with the next best node in the list.

Among these neighbor nodes, one peer is chosen for
each remote name lookup using the Highest Random
Weight (HRW) hashing scheme [22]. HRW consists of
hashing the node name with the lookup name, and then
choosing the node name with the smallest resulting hash
value. Because HRW consistently picks the same node
for the same domain name, this process enhances request
locality for remote queries. Another desirable property
of this approach is that some request locality is preserved
as long as neighbor sets have some overlap. Full overlap
is not required.

The number of neighbors is configurable according to
the distribution of nodes. In the future, we will make
CoDNS dynamically find the peer nodes not depending
on the preconfigured set of nodes. One possible solution
is to make each CoDNS node advertise its neighbor set
and have a few well known nodes. Then, a new CoDNS
node with no information about available CoDNS peer
nodes can ask the well known nodes for their peer nodes
and recursively gather the nodes by asking each neighbor
until it finds a reasonable pool of CoDNS nodes.

Note that our neighbor discovery mechanisms are es-
sentially advisory in nature – once the node has enough
peers, it only needs to poll other nodes in order to have
a reasonable set of candidates in case one of its existing
peers becomes unavailable. In the event that some sites
have enough peers to make this polling a scalability is-
sue, each node can choose to poll a nearby subset of all
possible peers to reduce the background traffic.

4.3 Policy & Tunability
In the future, we expect CoDNS node policy will become
an interesting research area, given the tradeoffs between
overhead and latency. We have made choices for initial
delay and retry behavior for our environment, and we be-
lieve that these choices are generally reasonable. How-
ever, some systems may choose to tune CoDNS to have

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 207

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

00 03 06 09 12 15 18 21 00

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

Time

(a) Local DNS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

00 03 06 09 12 15 18 21 00

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

Time

(b) CoDNS

Figure 13: Minute-level Average Response Time for One Day
on planetlab1.cs.cornell.edu

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 10 100 1000 10000 100000

C
D

F

Response Time (ms)

LDNS
CoDNS

(a) Response Time CDF

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 10 100 1000 10000 100000

W
e

ig
h

te
d

 C
D

F

Response Time (ms)

LDNS
CoDNS

(b) Total Time CDF

Figure 14: CDF and Weighted CDF for One Week on planet-
lab1.cs.cornell.edu, LDNS = local DNS

much lower overhead, at the cost of some latency bene-
fit. In particular, systems that want to use it only to avoid
situations where all local nameservers have failed could
use an initial delay threshold of several seconds. In this
case, if the local nameserver repeatedly fails to resolve
requests in multiple seconds, the initial delay will drop
to zero and all lookups will be handled remotely for the
duration of the outage.

Sites may also choose to limit CoDNS overhead to a
specific level, which would turn parameter choices into
an optimization problem. For example, it may be rea-
sonable to ask questions of the form “what is the best
latency achievable with a maximum remote lookup rate
of 10%?” Our trace-driven simulations give some insight
into how to make these choices, but it may be desirable
to have an online system automatically adjust parameter
values continuously in order to meet these constraints.
We are investigating policies for such scenarios.

4.4 Bootstrapping
CoDNS has a bootstrapping problem, since it must re-
solve peer names in order to operate. In particular, when
the local DNS service is slow, resolving all peer names
before starting will increase CoDNS’s start time. So,
CoDNS begins operation immediately, and starts resolv-
ing peer names in the background, which greatly reduces
its start time. The background resolver uses CoDNS it-
self, so as soon as a single working peer’s name is re-
solved, it can then quickly help resolve all other peer
names. With this bootstrapping approach, CoDNS starts
virtually instantaneously, and can resolve all 350 peer
names in less than 10 seconds, even for slow local DNS.
A special case of this problem is starting when local DNS
is completely unavailable. In this case, CoDNS would
be unable to resolve even any peer names, and could
not send remote queries. CoDNS periodically stores all
peer information on disk, and uses that information at
startup. This file is shipped with CoDNS, allowing oper-
ation even on nodes that have no DNS support at all.

5 Evaluation / Live Traffic

To gauge the effectiveness of CoDNS, we compare its
behavior with local DNS on CoDeeN’s live traffic us-
ing a variety of metrics. CoDeeN receives 5-7 million
requests daily from a world-wide client population of 7-
12K users. These users have explicitly specified CoDeeN
proxies in their browser, so all of their Web traffic is di-
rected through CoDeeN. The CoDeeN proxies maintain
their own DNS caches, so only uncached DNS names
cause lookups. To eliminate the possible caching ef-
fect on a nameserver from other users sharing the same
server, we measure both times only in CoDNS, using the
slaves to indicate local DNS performance.

CoDNS effectively removes the spikes in the response
time, and provides more reliable and predictable ser-
vice for name lookups. Figure 13 compares per-minute
average response times of local DNS and CoDNS for
CoDeeN’s live traffic for one day on one PlanetLab node.
While local DNS shows response time spikes of 7 sec-
onds, CoDNS never exceeds 0.6 seconds. The benefit
stems from redirecting slow lookups to working peers.

The greater benefit of CoDNS lies in reducing the fre-
quency of slow responses. Figure 14 shows a CDF and
a weighted CDF for name lookup response distribution
for the same node for one week. The CDF graph shows
that the response distribution in both schemes is almost
similar until the 90th percentile, but CoDNS reduces the
lookups taking more than 1000ms from 5.5% to 0.6%.
This reduction gives much benefit in total lookup time
in the weighted CDF. It shows CoDNS now spends 18%
of total time in lookups taking more than 1000ms, while
local DNS still spends 75% of the total time on them.

This improvement is widespread – Figure 15(a) shows
the statistics of 95 CoDeeN nodes for the same period.
The average number of total lookups per node is 22,208,
ranging from 12,119 to 131,466 per node. The average
response time in CoDNS is 60-221ms, while that of local
DNS is 113-935ms. In all cases, CoDNS’s response is

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association208

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

Nodes Sorted by LDNS Response Time

LDNS
CoDNS

(a) Average Response Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90Pe
rc

en
ta

ge
 o

f R
es

po
ns

e
Ti

m
e

>
1

se
c

Nodes Sorted by LDNS Value

LDNS
CoDNS

(b) Slow Response Time portion

Figure 15: Live Traffic for One Week on the CoDeeN Nodes, LDNS = local DNS

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

Non-Internet2 Nodes Sorted by LDNS Response Time

LDNS
CoDNS

(a) Average Response Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40Pe
rc

en
ta

ge
 o

f R
es

po
ns

e
Ti

m
e

>
1

se
c

Non-Internet2 Nodes Sorted by LDNS Value

LDNS
CoDNS

(b) Slow Response Time Portion

Figure 16: Non-Internet-2 Nodes, LDNS = local DNS

faster, ranging from a factor of 1.37 to 5.42. Figure 15(b)
shows the percentage of slow responses in the total re-
sponse time. CoDNS again reduces the slow response’s
portion dramatically to less than 20% of the total lookup
time in most cases, delivering more predictable response
time. In contrast, local DNS spends 37% to 85% of the
total time in the slow queries.

5.1 Non-Internet2 Benefits
Since most CoDeeN sites are hosted at North Ameri-
can universities with Internet2 (I2) connectivity, one may
suspect that low-congestion I2 peer links are responsi-
ble for our benefits. To address this issue, we pick non-
I2 PlanetLab nodes and replay 10,792 unique lookups
of hostnames from one day’s live traffic on a CoDeeN
proxy. Figure 16(a) shows that CoDNS provides similar
benefit on 38 non-I2 nodes as well. The average response
time in CoDNS ranges from 63ms to 350ms, while local
DNS is 113ms to 1884ms, an improvement of factor of
1.64 to 9.52. Figure 16(b) shows that CoDNS greatly
reduces the slow response portion as well – CoDNS gen-
erally spends less than 10% of the total time in this range,
while local DNS still spends 32% to 90%.

5.2 CDN Effect
CoDNS replaces slow local responses with fast remote
responses, which may impact DNS-based CDNs [1] that
resolve names based on which DNS nameserver sends
the query. CoDNS may return the address of a far replica
when it uses a peer’s nameserver result. We investigate
this issue by testing 14 popular CDN users including Ap-
ple, CNN, and the New York Times. We measure the
DNS and download time of URLs for the logo image file
on those web sites, and compare local DNS and CoDNS
when their responses differ.

Since CoDNS is used only when the local DNS is slow
or failing, it should come as no surprise that the total time
for CDN content is still faster on CoDNS when they dif-
fer in returned IP address. The DNS time gain and the
downloading time penalty presented in the difference be-
tween local and remote response time is shown in Fig-
ure 17(a). When local DNS is slow, CoDNS combined
with a possibly sub-optimal CDN node is a much better
choice, with the gain from faster name lookups dwarfing
the small difference in download times when any differ-
ence exists. If we isolate the downloading time differ-
ence between the DNS-provided CDN node versus the

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 209

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140

La
te

nc
y

D
iff

er
en

ce
 (

m
s)

Nodes Sorted by DNS Time Difference

DNS Gain (L-R)
Download Penalty(R-L)

(a) DNS Lookup Time Gain vs. Downloading Time Penalty

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-400 -200 0 200 400 600 800

C
D

F

Download Time Penalty (R-L, ms)

(b) Cumulative Distribution of Downloading Time Difference

Figure 17: CDN Effect for www.apple.com, L = Local Response Time, R = Remote Response Time, DNS gain = Local DNS time
- CoDNS time, Download penalty = download time of CoDNS-provided IP - download time of DNS-provided IP, shown in log
scale. Negative penalties indicate CoDNS-provided IP is faster, and are not shown in the left graph.

CoDNS-provided CDN node, we get Figure 17(b). Sur-
prisingly, almost a third of the CoDNS-provided nodes
are closer than their DNS counterparts, and 83% of them
show less than a 100ms difference. This matches the
CDN’s strategy to avoid notably bad servers instead of
choosing the optimal server [8]. Results for other CDN
vendors are similar.

5.3 Reliability and Availability
CoDNS dramatically improves DNS reliability, mea-
sured by the local nameserver availability. To quantify
this effect, we measured the availability of name lookups
for one month across all CoDeeN nodes, with and with-
out CoDNS. We assume that a nameserver is available
unless it fails to answer requests. If it fails, we consider
the periods of time when no requests were answered as
its unavailability. Each period is capped at a maximum
of five seconds, and the total unavailability is measured
as the sum of the unavailable periods. This data, shown
in Figure 18, is presented using the reliability metric of
“9’s” of availability. Regular DNS achieves 99% avail-
ability on about 60% of the nodes, which means roughly
14 minutes per day of no service. In contrast, CoDNS is
able to achieve over 99.9% availability on over 70% of
nodes, reducing downtimes to less than 90 seconds per
day. On some nodes, the availability approaches 99.99%,
or roughly 9 seconds of unavailability per day. CoDNS
provides roughly an additional ’9’ of availability, without
any modifications to the local DNS infrastructure.

5.4 Overhead Analysis
To analyze CoDNS’s overhead, we examine the remote
query traffic generated by the CoDeeN live activity. For
this workload, CoDNS issued 11% to 85% of the to-
tal lookups as remote queries, as shown in Figure 19.
The variation reflects the health of the local nameserver,
and less stable nameservers require more remote queries
from CoDNS. Of the six nodes that had more than 50%

9

90

99

99.9

99.99

 0 10 20 30 40 50 60 70 80 90 100

A
v
a
il
a
b
il
it
y
 (

%
)

Nodes Sorted by Availability

CoDNS
LDNS

Figure 18: Availability of CoDNS and local DNS (LDNS)

remote queries, all experienced complete nameserver
failure at some point, during which remote queries in-
creased to over 100% of the local requests. These periods
skew the average overhead.

We believe that the additional burden on nodes with
working DNS is tolerable, due to the combination of
our locality-conscious redirection and already high lo-
cal nameserver hit rates. Using our observed median
overhead of 25% and a local hit rate of 80% - 87% [9],
the local DNS will incur only 3.25 - 5.00% extra out-
bound queries. Since remote queries are redirected only
to lightly loaded nodes, we believe the extra lookups will
be tolerable on the peer node’s local nameserver.

We also note that many remote queries are not an-
swered, with Figure 19 showing this number varies from
6% to 31%. These can be due to WAN packet losses,
unresolvable names, and remote node rate-limiting.
CoDNS nodes drop remote requests if too many are
queued, which prevents a possible denial of service at-
tack. CoDNS peers never reply if the request is unre-
solvable, since their own local DNS may be failing, and
some other peer may be able to resolve the name.

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association210

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

Pe
rc

en
ta

ge

Nodes Sorted by Number of Remote Queries

Sent
Answered

Win

Figure 19: Analysis for Remote Lookups

 75

 80

 85

 90

 95

 100

 105

 0 10 20 30 40 50 60 70 80 90

Pe
rc

en
ta

ge

Nodes Sorted by Win-by-1

Win-by-3
Win-by-2
Win-by-1

Figure 20: Win-by-N for Remote Lookups

The queries in which CoDNS “wins”, by beating the
local DNS, constitute 2% to 57% of the total requests.
On average, 9% of the original queries were answered
by the remote responses, removing 47% of the slow re-
sponse portion in the total lookup time shown in the Fig-
ure 15(b). Of the winning remote responses, more than
80% were answered by contacting the first peer, specified
as “win-by-1” in Figure 20. Of all winning responses,
95% are resolved by the first or second peer, and only
a small number require contacting three or more peers.
This information can be used to further reduce CoDNS’s
overhead by reducing the number of peers contacted – if
it has not been resolved within the first three peers, then
further attempts are unlikely to resolve it, and no more
peers should be contacted. We may explore this opti-
mization in the future, but our current overheads are low
enough that we have no pressing need to reduce them.

In terms of extra network traffic generated for remote
queries, each query contains about 300 bytes of a request
and a response. On average, each CoDNS on a CoDeeN
node handles 414 to 10,287 requests per day during the
week period, amounting to 243KB to 6027KB. CoDNS
also consumes heartbeat messages to monitor the peers
each second, which contains 32 bytes of data. In sum,
each CoDNS on a CoDeeN node consumes on average
7.5 MB of extra network traffic per day, consuming only
0.2% of total CoDeeN traffic in relative terms.

5.5 Application Benefits
By using CoDNS, CoDeeN obtains other benefits in ca-
pacity and availability, and these may apply to other ap-
plications as well. The capacity improvements come
from CoDeeN being able to use nodes that are virtu-
ally unusable due to local DNS problems. At any given
time, roughly 10 of the 100 PlanetLab nodes that run
CoDeeN are experiencing significant DNS problems,
ranging from high failure rates to complete failure of
the primary (and even secondary) nameservers. CoDeeN
nodes normally report their local status to each other,
and before CoDNS, these nodes would tell other nodes
to avoid them due to the DNS problems. With CoDNS,

these nodes can still be used, providing an additional
10% extra capacity.

The availability improvements come from reducing
startup time, which can be dramatic on some nodes.
CoDeeN software upgrades are not announced down-
times, because on nodes with working local DNS,
CoDeeN normally starts in 10-15 seconds. This startup
process is fast enough that few people notice a service
disruption. Part of this time is spent in resolving the
names of all CoDeeN peers, and when the primary DNS
server is failing, each lookup normally requires over five
seconds. For 120 peers, this raises the startup time to
over 10 minutes, which is a noticeable service outage.
If CoDNS is already running on the node, startup times
are virtually unaffected by local failure, since CoDNS is
already sending all queries to remote servers in this en-
vironment. If CoDNS starts concurrently with CoDeeN,
the startup time for CoDeeN is roughly 20 seconds.

6 Other Approaches

6.1 Private Nameservers

Since local nameservers exhibit overload, one may be
tempted to run a private nameserver on each machine,
and have it contact the global DNS hierarchy directly.
This approach is more feasible as a backup mechanism
than as a primary nameserver for several reasons. Using
shared nameservers reduces maintenance issues, and the
shared cache can be larger than individual caches. Not
only does cache effectiveness increase due to capacity,
but the compulsory misses will also be reduced from the
sharing. With increased cache misses, the global DNS
failure rate becomes more of an issue, so using private
nameservers may reduce performance and reliability.

As a backup mechanism, this approach is possible, but
has the drawbacks common to any infrequently-used sys-
tem. If it is not being exercised regularly, failure is less
likely to be noticed, and the system may be unavailable
when it is needed most. It also consumes resources when
not in use, so other tasks on the same machine will be
impacted, if only slightly.

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 211

6.2 Secondary Nameservers
Since most sites have two or more local nameservers,
another approach would be to modify the resolver li-
braries to be more aggressive about using multiple name-
servers. Possible options include sending requests to
all nameservers simultaneously, being more aggressive
about timeouts and using the secondary nameserver, or
choosing whichever one has better response times.

While we believe that some of these approaches have
some merit, we also note that they cannot address all of
the failure modes that CoDNS can handle. In particular,
we have often seen all nameservers at a site fail, in which
case CoDNS is still able to answer queries via the remote
nameservers. Correlated failure of local nameservers
renders these approaches useless, while correlated fail-
ure among groups of remote servers is less likely.

Overly aggressive strategies are likely to backfire in
the case of local nameservers, since we have seen that
overload causes local nameserver failure. Increasing the
request rate to a failing server is not likely to improve
performance. Load balancing among local nameservers
is more plausible, but still requires modifications to all
clients and programs. Given the cost of changing infras-
tructure, it is perhaps appealing to adopt a technique like
CoDNS that covers a broader range of failures.

Finally, upgrade cost and effort are real issues we have
heard from many system administrators – secondary
nameservers tend to be machines that are a generation
behind the primary nameservers, based on the expecta-
tion of lower load. Increasing the request rate to the sec-
ondary nameserver will require upgrading that machine,
whereas CoDNS works with existing infrastructure.

6.3 TCP Queries
Another possible solution is to use TCP instead of UDP
as a way of communicating with local nameservers. If
the failure is caused by packet losses in the LAN or silent
packet drops caused by UDP buffer overflow, TCP can
improve the situation by reliable data delivery. In addi-
tion, the flow control mechanism inherent in TCP can ask
the name lookup clients to slow down when the name-
server is overloaded.

Although the DNS RFC [14] allows the use of TCP
in addition to UDP, in practice, TCP is used only when
handling AXFR queries for the zone transfer or when the
requested record set is bigger than 512 bytes. The reason
why TCP is not favored in name lookups is mainly be-
cause of the additional overhead. If a TCP connection
is needed for every query, it would end up handling nine
packets instead of two : three to establish the connection,
two for the request/response, and four to tear down the
connection. A persistent TCP connection might remove
the per-query connection overhead, but it also needs to
consume one or two extra network packets for ACKs.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 16 32 64 128 256 512 1024

F
ra

ct
io

n
 o

f
N

o
d

e
s

(C
D

F
)

Average Response Time (ms)

CoDNS
Persistent TCP

UDP
Simple TCP

Figure 21: Comparison of UDP, TCP, and CoDNS latencies

Also, there is another issue of reclaiming the idle con-
nections, since they consume system resources and can
degrade performance. The DNS RFC [14] specifies two
minutes as a cutoff but in practice most servers discon-
nect the idle connection within 30 seconds.

To compare the performance between UDP and TCP,
we replay 10,792 unique hostnames obtained from one
day’s live traffic of a CoDeeN proxy at 107 PlanetLab
nodes. Carrying out a completely fair comparison is dif-
ficult, since we cannot issue the same query for all of
them at the same time. Instead, to give a relatively fair
comparison, we run the test for CoDNS first, and subse-
quently run other parts, making all but CoDNS get the
benefit of cached responses from the local nameserver
after having been fetched by CoDNS. Figure 21 shows
the CDF of the average response time for all approaches.
Persistent TCP and UDP have comparable performance,
while simple TCP is noticeably worse. The CoDNS la-
tencies, included for reference, are better than all three.

The replay scenario described above should be favor-
able to TCP, but even in this conservative configuration,
CoDNS still wins. Figure 22(a) shows that all nodes re-
port that CoDNS is 10% to 500% faster than TCP, con-
firming CoDNS is a more attractive option than TCP. The
large difference is in the slow-response portion, where
CoDNS wins the most and where TCP-based lookups
cannot help. Figure 22(b) shows that a considerable
amount of time is still spent on the long delayed queries
in TCP-based lookups. CoDNS reduces this time by 16%
to 92% when compared to the TCP-based measurement.
Though TCP ensures that the client’s request reaches the
nameserver, if the nameserver is overloaded, it may have
trouble contacting the DNS hierarchy for cache misses.

7 Related Work

Traditional DNS-related research has focused on the
problems in the server-side DNS infrastructure. As
a seminal study in DNS measurement, Danzig et al.
found that a large number of network packets were being
wasted due to DNS traffic, blaming nameserver software
bugs and misconfigurations as major culprits [5].

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association212

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Nodes Sorted by Persistent TCP’s Response Time

Persistent TCP
CoDNS

(a) Average Response Time

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100P
er

ce
nt

ag
e

of
 R

es
po

ns
e

Ti
m

e
>

1
se

c

Nodes Sorted by Persistent TCP’s Value

Persistent TCP
CoDNS

(b) Slow Response Time Portion

Figure 22: CoDNS vs. TCP

Since then, bugs in the resolvers and nameservers have
been reduced [12], but recent measurements show that
there is still much room for improvement. In 2000, Wills
et al. [24] and Huitema et al. [7] reported 29% of DNS
lookups take over 2 seconds, and Cohen et al. [3] re-
ported 10% of lookups exceed more than 3 seconds. Jung
et al. also present data indicating 23% of all server-side
lookups receive no results, indicating the problems of
improper configurations and incorrect nameservers still
persist [9]. They measure the client-side performance
in terms of response time and caching hit ratio as well.
However, that work does not trace the origins of name
lookup delays from the client-side, concentrating only
on the wide-area DNS traffic. Given the fact that local
nameserver cache hit ratios are 80% - 87% [9, 24], even
a small problem in the local nameserver and its environ-
ment can skew the latency of a large number of lookups.
Our study addresses this problem. Liston et al. indirectly
provide some evidence of local nameserver problems by
attributing the major sources of response time delay to
end nameservers rather than the root/gTLD servers [13].

The research community has recently renewed its fo-
cus on improving server-side infrastructure. Cox et
al. investigate the possibility of transforming DNS into
a peer-to-peer system [4] using a distributed hash ta-
ble [21]. The idea is to replace the hierarchical DNS
name resolving process with a flat peer-to-peer query
style, in pursuit of load balancing and robustness. With
this design, the misconfigurations from mistakes by ad-
ministrators can be eliminated and the traffic bottleneck
on the root servers are removed so that the load is dis-
tributed over the entities joining the system.

In CoDoNS, Ramasubramanian et al. improve the
poor latency performance of this approach by using
proactive replication of DNS records [18]. They exploit
the Zipf-like distribution of the domain names in web
browsing [2] to reduce the replicating overhead while

providing O(1) proximity [17]. Our approaches differ
in several important aspects – we attempt to reduce over-
lapping information in caches, in order to maximize the
overall aggregate cache size, while they use replication
to reduce latency. Our desire for a small process foot-
print stems from our observation that memory pressure is
one of the causes of current failures in client-side infras-
tructure. While their system appears not to be deployed
in production, they perform an evaluation using a DNS
trace with a Zipf factor above 0.9 [18]. In comparison,
our evaluation of CoDNS uses the live traffic generated
by CoDeeN after its proxies have used their local DNS
caches, so the request stream seen by CoDNS has a Zipf
factor of 0.50-0.55, which is a more difficult workload.
We intend to compare the live performance of CoDNS
versus CoDoNS when the latter system enters produc-
tion and is made available to the public. In any case,
since CoDNS does not depend on the specifics of the
name lookup system, we expect that it can interoperate
with CoDoNS if the latter provides better performance
than the existing nameservers at PlanetLab sites. One is-
sue that will have to be addressed by any proposed DNS
replacement system is the use of intelligent nameservers
that dynamically determine which IP address to return
for a given name. These nameservers are used in CDNs
and geographic load balancers, and can not be replaced
with purely static lookups, such as those performed in
CoDoNS. Since CoDNS does not replace existing DNS
infrastructure, we can interoperate with these intelligent
nameservers without any problem.

Kangasharju et al. pursue a similar approach to reduc-
ing the DNS lookup latency by more aggressively repli-
cating DNS information [10]. Inspired by the fact the
entire DNS record database fits into the size of a typi-
cal hard disk and with the recent emergence of terrestrial
multicast and satellite broadcast systems, this scheme re-
duces the need to query the distant nameservers by keep-

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 213

ing the DNS information up to date by efficient world-
wide replication.

The difference in our approach is to temporarily use
functioning nameservers of peer nodes, separate from the
issue of improving the DNS infrastructure itself. We ex-
pect that benefits in improving the infrastructure “from
above” will complement our “bottom up” approach. One
advantage of our system is that misconfigurations can be
masked without name server outage, allowing adminis-
trators more time to investigate the problem.

8 Conclusion

We have shown that client-side instability in DNS name
lookups is widespread and relatively common. The fail-
ure cases degrade average lookup time and increase the
“tail” of response times. We show that these failures ap-
pear to be caused by temporary nameserver overload, and
are largely uncorrelated across multiple sites. Through
analysis of live traffic, we show that a simple peering
system reduces response times and improves reliability.

Using these observations, we develop a lightweight
name lookup service, CoDNS, that uses peers at re-
mote sites to provide cooperative lookups during failures.
CoDNS operates in conjunction with local DNS name-
servers, allowing incrementally deployment without sig-
nificant resource consumption. We show that this system
generates low overhead, cuts average response time by
half or more, and increases DNS service availability.

Acknowledgments

This research was supported in part by NSF grant CNS-
0335214. We would like to thank Jeffrey Mogul and
Hewlett-Packard for donation of the Alpha workstation
used for testing. We thank our shepherd, Geoff Voelker,
for his guidance and helpful feedback, and we thank our
anonymous reviewers for their valuable comments on
improving this paper.

References

[1] Akamai. Content Delivery Network. http://www.akamai.com.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
Caching and Zipf-like Distributions: Evidence and Implications.
In Proceedings of IEEE INFOCOM, 1999.

[3] E. Cohen and H. Kaplan. Prefetching the Means for Document
Transfer: A New Approach for Reducing Web Latency. In Pro-
ceedings of IEEE INFOCOM, 2000.

[4] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS Using
Chord. In Proceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS), 2002.

[5] P. B. Danzig, K. Obraczka, and A. Kumar. An Analysis of Wide-
Area Name Server Traffic: A Study of Internet Domain Name
System. In Proceedings of ACM SIGCOMM, 1992.

[6] D. Eastlake. Domain Name System Security Extensions. RFC
2535, January 1999.

[7] C. Huitema and S. Weerahandi. Internet Measurements: the Ris-
ing Tide and the DNS Snag. In Proceedings of the 13th ITC Spe-
cialist Seminar on Internet Traffic Measuremnet and Modelling,
2000.

[8] K. Johnson, J. Carr, M. Day, and F. Kaashoek. The Measured
Performance of Content Distribution Networks. In Proceedings
of the 5th International Web Caching and Content Delivery Work-
shop (WCW), 2000.

[9] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS Performance
and the Effectiveness of Caching. In Proceedings of the ACM
SIGCOMM Internet Measurement Workshop, 2001.

[10] J. Kangasharju and K. W. Ross. A Replicated Architecture for
the Domain Name System. In Proceedings of IEEE INFOCOM,
2000.

[11] B. Knowles. Domain Name Server Comparison:
BIND 8 vs. BIND 9 vs. djbdns vs. ???, 2002.
http://www.usenix.org/events/lisa02/tech/presentations/knowles ppt/.

[12] A. Kumar, J. Postel, C. Neuman, P. Danzig, and S. Miller. Com-
mon DNS Implementation Errors and Suggested Fixes. RFC
1536, October 1993.

[13] R. Liston, S. Srinivasan, and E. Zegura. Diversity in DNS Perfor-
mance Measures. In Proceedings of the ACM SIGCOMM Internet
Measurement Workshop, 2002.

[14] P. Mockapetris. Domain Names - Implementation and Specifica-
tion. RFC 1035, November 1987.

[15] P. Mockapetris and K. Dunlap. Development of the Domain
Name System. In Proceedings of ACM SIGCOMM, 1988.

[16] PlanetLab. http://www.planet-lab.org.

[17] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) Lookup
Performance for Power-Law Query Distributions in Peer-to-Peer
Overlays. In 1st Symposium on Networked Systems Design and
Implementation (NSDI), 2004.

[18] V. Ramasubramanian and E. G. Sirer. The Design and Imple-
mentation of a Next Generation Name Service for the Internet. In
Proceedings of ACM SIGCOMM, 2004.

[19] M. Schiffman. A Samping of the Security Posture of the In-
ternet’s DNS Servers. http://www.packetfactory.net/papers/DNS-
posture/.

[20] A. Shaikh, R. Tewari, and M. Agrawal. On the Effectiveness
of DNS-based Server Selection. In Proceedings of IEEE INFO-
COM, 2001.

[21] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrish-
nan. Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. In Proceedings of ACM SIGCOMM, San Diego,
California, 2001.

[22] D. Thaler and C. Ravishankar. Using Name-based Mappings to
Increase Hit Rates. In IEEE/ACM Transactions on Networking,
volume 6, 1, 1998.

[23] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Reliability
and Security in the CoDeeN Content Distribution Network. In
USENIX Annual Technical Conference, 2004.

[24] C. E. Wills and H. Shang. The Contribution of DNS Lookup
Costs to Web Object Retrieval. Technical Report WPI-CS-TR-
00-12, Worcester Polytechnic Institute (WPI), 2000.

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association214

