
Supporting Demanding Wireless Applications with Frequency-agile Radios

Lei Yang, Wei Hou†, Lili Cao, Ben Y. Zhao, Haitao Zheng
Department of Computer Science, University of California,Santa Barbara

†Department of Electronic Engineering, Tsinghua University
{leiyang, lilicao, ravenben, htzheng}@cs.ucsb.edu, hou-w05@mails.tsinghua.edu.cn

Abstract – With the advent of new FCC policies on
spectrum allocation for next generation wireless devices,
we have a rare opportunity to redesign spectrum access
protocols to support demanding, latency-sensitive appli-
cations such as high-def media streaming in home net-
works. Given their low tolerance for traffic delays and
disruptions, these applications are ill-suited for tradi-
tional, contention-based CSMA protocols.

In this paper, we explore an alternative approach to
spectrum access that relies on frequency-agile radios to
perform interference-free transmission across orthogonal
frequencies. We describeJello, a MAC overlay where
devices sense and occupy unused spectrum without cen-
tral coordination or dedicated radio for control. We
show that over time,spectrum fragmentationcan signif-
icantly reduce usable spectrum in the system. Jello ad-
dresses this using two complementary techniques:online
spectrum defragmentation, where active devices period-
ically migrate spectrum usage, andnon-contiguous ac-
cess, which allows a single flow to utilize multiple spec-
trum fragments. Our prototype on an 8-node GNU radio
testbed shows that Jello significantly reduces spectrum
fragmentation and provides high utilization while adapt-
ing to client flows’ changing traffic demands.

1 Introduction

The future is bright for next-generation wireless devices.
While current technologies are limited to operating in
fixed ranges of increasingly congested spectrum, reforms
in spectrum management policy promise to free up spec-
trum in the near future. The Federal Communications
Commission (FCC) has auctioned recently vacated wire-
less spectrum to service providers [9]. To further de-
mocratize the use of this spectrum, online spectrum trad-
ing services such as SpecEX (www.spectrumbridge.com)
now allow small service providers to purchase/rent spec-
trum directly from regional owners.

Unlike unlicensed bands used by current wireless de-
vices, these new spectrum ranges are large and uncon-

gested. We can take advantage of the opportunity to re-
design access mechanisms to support a broader range of
wireless applications. For example, current wireless ac-
cess mechanisms are designed for best effort traffic, and
generally rely on spectrum contention as used in CSMA
protocols and their variants. The network partitions spec-
trum into fixed channels, lets each transmission choose a
channel and contend in time with its peers. While this
approach works quite well for file transfers and interac-
tive applications, past work shows that supporting appli-
cations with real-time requirements requires additional
modifications that incur significant overheads [25,27].

In this paper, we reconsider the design of spectrum ac-
cess mechanisms in dynamic spectrum networks to sup-
port applications within more restrictive traffic classes.
Specifically, we consider supporting applications with
strong quality of service requirements such as high-
definition multimedia flows in media rich environments
like the home. Traffic demands for these flows can vary
significantly over time, but can generally be predicted
ahead of time. Unlike best-effort traffic applications,
these multimedia flows require dedicated spectrum ac-
cess to minimize disruptions to their transmissions and
to maintain the expected quality of user experience.

We make two observations that make existing
contention-based systems unsuitable for these applica-
tions. First,per-packet contentionproduces frequent and
unpredictable transmission disruptions, which would in-
terfere with our desired traffic delivery constraints. In
contrast, if multiple transmissions were allocated iso-
lated frequencies, each flow would obtain necessary ded-
icated spectrum, while avoiding costly interference that
traditionally leads to contention and communication de-
lays [18]. Second, splitting spectrum intofixed channel
partitions is also unattractive for applications with time-
varying bandwidth demands. Fixed partitions prevent
flows from using or releasing available spectrum as nec-
essary, and would lead to inefficient spectrum usage [8].
In this respect, new hardware in the form offrequency-
agile radioscan be extremely useful. With these radios, a

1

Flow 2

Flow 3

Flow 1

Time

F
re

q
u
en

cy

Figure 1: Per-session FDMA: Simultaneous media sessions
work in parallel on isolated frequencies, avoiding costly wire-
less interference while adapting frequency usage to varying
traffic demands.

device examines locally available spectrum before each
network connection, and directs its radio to operate on
a frequency range that not only matches its traffic de-
mands, but also lies orthogonal to existing transmissions.
In addition, devices can grab and release spectrum as
necessary without being confined by fixed partitions.

Motivated by these observations, we propose a new
distributed access technique that lets flows access spec-
trum in the frequency domain and adapt their spectrum
usage based on traffic demands (shown in Figure 1).
We refer to this new access technique as “per-session
FDMA,” where each session refers to a single contin-
uous flow, and build a basic framework where traffic
flows can independently select and adapt their frequency
usage. First, by detecting “edges” on observed power
spectrum maps, each device can accurately and quickly
identify free spectrum in its local area. Second, each de-
vice can select an available spectrum range based on its
present traffic demands, using classical algorithms such
asbest fit, worst fit, andfirst fit [19]. Finally, we pro-
pose a distributed coordination procedure to synchronize
sender and receiver pairs in their spectrum usage.

Several recent proposals describe systems that adapt
spectrum usage based on bandwidth demands [15, 20,
32]. In this context, our work builds an efficient frame-
work that determines how device pairs sense and coordi-
nate their access in open spectrum ranges. Our system is
MAC-agnostic: once devices obtain spectrum using our
primitives, they can use any MAC.

Spectrum Fragmentation. Efforts to evaluate our ba-
sic design reveal another fundamental challenge. Over
time, as individual transmissions enter and exit the net-
work or adjust their spectrum usage, available spectrum
becomes increasingly divided into a collection of discrete
fragments. This “spectrum fragmentation” means that a
significant portion of spectrum, while free, is effectively
unusable because its fragments do not provide the mini-
mum contiguous spectrum range required by new flows.
Our experiments show that this artifact does exist in prac-

tice, and leads to significant performance degradation
even for networks with very few parallel transmissions.

We propose two distinct, but complementary mech-
anisms to address this fundamental problem:online
spectrum defragmentationat the spectrum access layer,
and noncontiguous frequency accessat the physical
layer. With online spectrum defragmentation, each pair
of communicating devices voluntarily defragment spec-
trum by moving to alternative frequencies, thereby opti-
mizing spectrum availability for other sessions. These
frequency moves occur periodically in a session or
as flows adapt to changing spectrum demands. They
are nearly instantaneous and transparent to neighbor-
ing flows. Given our emphasis on minimizing disrup-
tions, however, this technique cannot completely re-
move spectrum fragmentation. As a complementary
mechanism, we offer non-contiguous frequency access,
where a radio can utilize multiple spectrum ranges in
a single transmission. This provides support for high-
bandwidth transmissions even in the presence of moder-
ate levels of spectrum fragmentation. Our approach im-
plements non-contiguous frequency access using a “dis-
tributed OFDMA” mechanism, which differs from prior
approaches like SWIFT [24] that rely on CSMA to share
spectrum among frequency-agile radios.

These two techniques work best in unison. Non-
contiguous frequency access requires “frequency guard
bands” between allocated frequency boundaries to elimi-
nate cross frequency interference, similar to guard bands
between WiFi channels. Since they are not usable for
communication, guard bands represent spectrum over-
head that increases as flows make use of more frag-
mented spectrum ranges. Online spectrum fragmenta-
tion, on the other hand, effectively suppresses the level
of fragmentation.

The Jello Overlay. Based on these two comple-
mentary techniques, we design and implement Jello, a
MAC overlay to support high-bandwidth real-time ap-
plications. Jello does not require centralized spectrum
controllers or dedicated radios for control traffic, making
it a low-cost and easily deployed solution. Jello radios
sense, identify and occupy usable frequencies based on
traffic demands while minimizing spectrum fragmenta-
tion. Where low levels of fragmentation remain, devices
accommodate high-bandwidth transmissions using non-
contiguous frequency access. We deploy a prototype of
Jello on a 8-node USRP GNU radio testbed, and evalu-
ate the benefits of online spectrum defragmentation and
non-contiguous frequency access, both individually and
together. Measurements show that Jello reduces disrup-
tions to applications by as much as a factor of 8.

Our work makes three key contributions. First, we
explore spectrum access techniques for real-time wire-
less applications with low tolerance for traffic disrup-

2

tions, and propose mechanisms for frequency-agile ra-
dios to sense, occupy, and synchronize spectrum usage.
Second, we identify the spectrum fragmentation chal-
lenge, and propose two complementary solutions to max-
imize spectrum utilization. Finally, we implement and
deploy a prototype of Jello, a complete MAC overlay en-
compassing our techniques. We evaluate the effective-
ness of Jello mechanisms using both detailed measure-
ments of an 8-node GNU-radio testbed and simulated
experiments. Jello provides interference-free access to
demanding applications while maximizing utilization of
available radio spectrum, and can be deployed on hard-
ware available today.

2 A Case for Per-session FDMA

The expected arrival of new wireless spectrum is an op-
portunity to redesign spectrum access protocols to sup-
port a richer set of network applications. In particu-
lar, available spectrum can be used to support “soft real-
time” applications,i.e. applications such as multimedia
streaming that have very low tolerance for data loss, de-
lays and jitter.

Given their strong demands on the underlying wire-
less network, these applications do not perform well on
CSMA protocols that require parallel flows to perform
per-packet contention. Recent experimental results show
that such contention leads to unpredictable network de-
lays and disruptions [25, 27], ultimately resulting in vis-
ible disruptions to the application-level user experience.
Quality of Service extensions such as IEEE 802.11e can
prioritize traffic, but does not prevent contention be-
tween multiple flows in the same traffic class,e.g.video
streams in neighboring houses. An alternative for pre-
dictable traffic delivery is to employ Time Division Mul-
tiplexing (TDM) to obtain a collision-free transmission
schedule. However, this requires fine-grain network-
wide time synchronization and scheduling, which are
difficult to implement in practice.

Assumptions. Our focus is on supporting demand-
ing wireless media applications. We assume that these
applications operate in a dedicated spectrum band, gen-
erate continuous traffic with time-varying load, and have
strong quality of service requirements. In environments
where they must co-exist with legacy systems using best-
effort traffic, we envision that local wireless spectrum
can be partitioned into two ranges for isolation. One
range is dedicated to legacy applications using 802.11
CSMA, and the other is dedicated for media-streaming
applications running our proposed protocols.

Frequency-agile Radios. Recent hardware advances
have produced “frequency-agile radios,” wireless radios
capable of operating across a wide range of frequencies
and jumping between them in milliseconds. Currently

available hardware includes the WARP [30], USRP [21],
AirBlue [16] and SORA [28], with more expected in the
next few years. With these radios, we can now consider
per-session FDMA, or Frequency Division Multiplex-
ing Access. In this approach, parallel sessions occupy
orthogonal spectrum ranges, thus completely avoiding
cross-flow interference. When a media session starts, the
two end-devices involved choose a free frequency block
to set up packet transmissions. As shown in Figure 1,
flows can adapt their frequency usage over time as their
bandwidth demands vary, thus using time multiplexing to
make the best use of radio spectrum. Recent work [15]
shows that adapting spectrum on demand leads to 75%
improvement over 802.11b.

Our approach differs from the concept of adapting fre-
quency bandwidth on conventional 802.11 devices [8],
where 802.11 channels can change their width to 40,
20, 10 or 5MHz by adjusting clock cycles. Our experi-
ments show that scaling up traffic to fixed channel widths
can reduce utilization up to 30% in our application
scenarios. In comparison, per-session FDMA operates
across wider spectrum ranges at fine granularities to en-
sure high utilization, completely eliminates CSMA traf-
fic contention. Furthermore, each link now can flexibly
combine multiple spectrum ranges to form high band-
width transmission. The proposed per-session FDMA
can work on any of the current frequency-agile radio de-
signs [2, 16, 21, 24, 28, 30]. Since our approach operates
directly on frequency bands, and uses frequency selec-
tion to avoid access conflicts, we also differ from prior
work [15] that uses pseudo-random spreading codes to
implement random spectrum access.

Challenges. A practical per-session FDMA system
for wide-spread deployment needs to support soft real-
time applications without relying on centralized spec-
trum controllers or costly dedicated radios for control
traffic. Such a system must address several key chal-
lenges. First, to avoid disrupting ongoing transmissions,
devices must be able to accurately and quickly iden-
tify free frequencies. Second, each transmission pair
needs to select a free spectrum block based on their traf-
fic demand while minimizing spectrum fragmentation.
They also must do so without disrupting other ongoing
transmissions, and without the help of any control ra-
dio. Similarly when a transmission pair needs to change
frequency usage to accommodate variations in traffic de-
mand (those cannot be handled by MAC rate adaptation),
they also need to make the process transparent to others.

3 Jello Framework

To address these challenges, we propose Jello, a light-
weight MAC overlay system that realizes distributed per-

3

session FDMA. Jello radios sense, identify and occupy
usable frequencies to support time-varying traffic de-
mands and to avoid interfering with each other. Each
Jello device has a single half-duplex frequency-agile ra-
dio for wireless communication, and does not require any
central control or dedicated control radio.

3.1 Identifying Usable Spectrum

When accessing spectrum, Jello devices must avoid con-
flicting with other ongoing sessions. Jello achieves this
by performing spectrum sensing to quickly and accu-
rately identify usable spectrum ranges. Unlike the time-
domain sensing approach [4], Jello uses a frequency-
domain mechanism, benefiting from its radio hardware’s
frequency-agility. Unlike WiFi devices that sequentially
scan channels, a frequency-agile radio can listen to the
entire spectrum span, as demonstrated by several avail-
able radio platforms [24, 30]. Using the frequency-
domain signal, each radio constructs a power spectral
density (PSD) map [13] that measures the energy level
on each small frequency range.

To identify usable frequency blocks, conventional ap-
proaches perform energy detection on the PSD map [10].
For a given thresholdΓenergy , each radio treats fre-
quency ranges with energy higher thanΓenergy as busy
and the rest as unoccupied. The detection accuracy, how-
ever, is shown to be highly sensitive to the choice of
Γenergy and finding a uniformly optimalΓenergy is un-
realistic [24]. Recent work proposes to cross-validate the
detection result by “poking” transmissions on “busy” fre-
quency ranges and observing their reactions [24]. Each
poking event disrupts existing transmissions, forcing
them to move to other frequencies or change their trans-
mission parameters. Thus while this solution works for
transmissions that are highly resilient to frequent disrup-
tions, it would cause serious performance issues for the
media sessions our system targets.

Sensing via Edge Detection. We exploit a unique
property of radio transmissions in the frequency domain
for accurate detection. To avoid interference to other
transmissions, OFDM based transmitters use filters to
limit the radio energy within certain frequency bands. As
a result, the PSD profile of each transmission has clear
edges on the frequency band boundaries, regardless of
energy levels (shown in Figure 2). We can reliably iden-
tify usable frequency blocks by identifying these edges.

Our edge detection mechanism works as follows.
First, as a pre-processing step, we smooth the PSD map
by averaging it over multiple consecutive observations
and applying two coarse power thresholds to filter out
obvious frequency ranges. Frequency ranges with very
high power are treated as busy and very low power ones
as occupied. This pre-processing aims to filter out most

-60

-50

-40

-30

-20

-10

P
ow

er
 S

pe
ct

ru
m

 D

en
si

ty
 (

dB
)

a rising edge

a falling edge

-20

-10

 0

 10

 20

 0 50 100 150 2001s
t O

rd
er

 D
er

iv
at

iv
e

 o
f P

S
D

 (
dB

)

Spectrum Section Index

Figure 2: A sample PSD map and its first-order derivative.
Jello identifies occupied frequency blocks using edge detection.
While the absolute signal strength varies significantly across
the frequency, the rising/falling edges are easier to detect.

noises in the PSD map before trying to locate edges. This
technique has been sufficient in our experiments without
using sophisticated smoothing algorithms like [5].

Second, we apply search-based edge detection [14]
and measure the edge strength by the first-order deriva-
tive of the PSD map. LetP (k) represent the energy value
of a spectrum section with indexk, and letP ′(k) repre-
sent its first-order derivative. To decide whether edges
are present, we choose a detection thresholdΓedge. If
P ′(k) > Γedge thenk has a rising edge and ifP ′(k) <

−Γedge then k has a falling edge. A frequency block
with a rising edge to its left and a falling edge to its right
is declared as busy and the rest as free.

Compared to the energy detector, the edge-detection
based sensing is less dependent on the choice of detec-
tion threshold. As shown in Figure 2, while the absolute
signal strength varies significantly over the frequency,
the rising/falling edges are easy to detect. This design
works well in OFDM-based systems where the PSD map
can capture frequency usage accurately and on-demand.
While other forms of interference such as wireless mi-
crophones might not display the similar edges in the
PSD map, we can incorporate other mechanisms such
as feature detection based sensing for improved accu-
racy [4,11]. In our target scenario, we focus on a homo-
geneous setting with radios all using OFDMA and within
a short distance, thus our proposed sensing mechanism
works well.

Calibrating Sender/Receiver Sensing Results. Each
sender/receiver pair must synchronize their sensing re-
sults to identify mutually available frequency ranges.
While the sender must pause its transmission to sense
spectrum, the receiver senses while receiving at no extra

4

cost. Therefore, the receiver constantly monitors spec-
trum usage and locates occupied frequency ranges based
on its maximum tolerable noise and interference level.
When new spectrum blocks become available, it piggy-
backs the information via data or control packets to sig-
nal the sender to sense.

3.2 Choosing Frequency Blocks

After identifying mutually available frequency ranges, a
sender/receiver pair needs to choose a frequency block
to occupy. Such decisions usually occur when sessions
start. It can also happen during a session when traffic
changes cannot be handled by MAC rate adaptation. The
device pair determines the amount of frequency needed
based on estimated traffic demands and estimated MAC
transmission rates on available frequency ranges. They
can expand/shrink the current frequency usage, or move
to a different frequency block. The ultimate goal is to
obtain desired spectrum while maximizing system-wide
usage efficiency.

The frequency selection problem is analogous to the
online task scheduling problem [19]. Due to the unpre-
dictable dynamics of spectrum demands, optimal solu-
tions are hard to find. Similar problems have also been
studied extensively in the context of CPU, memory and
storage allocations. The most efficient known solutions
apply heuristics-based algorithms [19], which have been
shown to perform very well in most cases. In particular,
we consider the well-knownbest fitstrategy that selects
the smallest available frequency block that can accept
the current spectrum request, theworst fit strategy that
uses the largest available block, and thefirst fit strategy
that uses the first large enough block. When no block
is large enough to satisfy a session’s demand, we choose
the largest block to accept the session partially. We found
in our experiments thatbest fitoutperforms others.

Propagation-aware frequency selection. In some
cases, radio propagation conditions differ significantly
across frequency ranges,i.e. due to channel fading. In-
formation on received signal and interference strength, if
available, can be integrated into Jello’s frequency selec-
tion algorithm to select high-quality blocks that provide
better reliability and higher bandwidth [4,23]. In the cur-
rent Jello prototype, the propagation quality is flat across
the frequency span considered, thus the receivers use the
measured interference strength in their selection process.

4 Suppressing Spectrum Fragmentation

Efforts to evaluate our basic Jello design reveal another
fundamental challenge. Over time, as individual trans-
missions enter and exit the network or adjust their spec-
trum usage, available spectrum becomes increasingly di-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0.5 0.6 0.7 0.8 0.9 1

D
is

ru
pt

io
n

R
at

e

Normalized Average Traffic Load

With Fragmentation
Without Fragmentation

Figure 4: The impact of spectrum fragmentation with 4
streaming media sessions, using VBR video traces from the
ASU trace database [3]. We compare the basic Jello system
(with fragmentation) to an oracle system that eliminates all
fragments.

vided into a collection of fragments (Figure 3(a)). This
is because each radio must access spectrum contiguously,
i.e. using a single frequency block. In this case, although
a significant portion of spectrum remains unoccupied, it
is effectively unusable because no individual fragment is
large enough for a new request. A similar fragmentation
problem appears in disk and memory allocation [19]. In
this section, we examine the severity and impact of spec-
trum fragmentation, and propose two distinct but com-
plementary techniques to minimize it. We provide high-
level descriptions of our proposed techniques and delay
the detailed implementation issues to Section 5.

4.1 Impact of Spectrum Fragmentation

To understand the severity and impact of spectrum frag-
mentation, we perform a detailed simulation using video
traces from an online database [3]. Using a number of
frame traces of H.263 video sessions, we simulate a sce-
nario of multiple media sessions within close proximity.
We measure the impact of spectrum fragmentation by
application disruption rate, defined as the percentage of
time a session cannot obtain enough spectrum to support
X% of its present traffic demand.

We compare two possible frequency access systems:
(1) an oracle system that rearranges sessions’ frequency
usage to defragment the spectrum completely; and (2) a
basic Jello system where sessions “claim” their needed
spectrum when they start, and do not change frequencies
unless their spectrum demands change.

Figure 4 plots the application disruption rate for 4 vari-
able bit rate (VBR) video sessions forX = 90%. On the
x-axis, we show the ratio of the total average traffic load
of all 4 videos to the spectrum capacity. Clearly, the ora-
cle system that fully defragments the spectrum performs
significantly better when the 4 videos present a signifi-
cant portion of all available spectrum. To guarantee that
the disruption rate never rises above 3%, the basic sys-
tem can only support traffic equal to 67% of the total

5

(a) Spectrum Fragmentation (b) Online Defragmentation (c) Non-contiguous Frequency Access

Figure 3: Spectrum fragmentation and ways to mitigate its impact. (a)When sessions share spectrum by accessing contiguous
frequency, they can create spectrum fragments. (b) AfterS3’s self defragmentation, the same spectrum can now support more
spectrum requests. (c) Session S4 uses two spectrum fragments for a single transmission.

spectrum capacity, while the oracle system can support
traffic up to 83% of the spectrum capacity∗. This is a sig-
nificant boost in allowed traffic volume, and underlines
the significant impact that fragmentation has on system
performance.

4.2 Online Spectrum Defragmentation

The above results motivate us to improve Jello’s basic
design to suppress spectrum fragmentation. The first and
most direct solution is to perform online defragmenta-
tion. A naive strawman version is to periodically per-
form global defragmentation where all sessions pause
their transmissions, rearrange their frequency usage so
that unoccupied frequency blocks are merged into a large
contiguous range. This, however, is infeasible in our
problem context because we must minimize disruptions
to ongoing traffic flows. There is also no central con-
troller to perform global defragmentation.

Instead, we propose an online, distributed approach
to defragmentation: ongoing transmissions periodically
consider moving to an alternative spectrum block using
thebest-fit algorithmto optimize overall spectrum avail-
ability. Each sender/receiver pair periodically senses lo-
cal spectrum usage, and if possible, coordinates to switch
to a frequency block that better optimizes the overall
spectrum availability. For example, Figure 3(b) follows
our earlier scenario where a sessionS2 terminates and
leaves a spectrum fragment. IfS3 voluntarily moves
to spectrum block 2–3, the new requestS4 can be ful-
filled and the overall spectrum utilization increases. Fi-
nally, using spectrum sensing to identify unoccupied fre-
quency ranges, each device pair independently defrag-
ments spectrum without coordinating with other pairs.

Cost. The cost of our online defragmentation includes
(1) the sensing and coordination overhead spent by de-
vice pairs to identify unoccupied spectrum and rearrange
their frequency usage, and (2) possible conflicts when

∗The oracle cannot support 100% traffic load because the flows are
VBR and the peak load occasionally exceeds the spectrum capacity.

two sessions simultaneously defragment and make con-
flicting frequency adjustments.

Focusing on minimizing disruptions to ongoing ses-
sions, Jello uses the following mechanisms to minimize
defragmentation cost:

• Minimizing Sensing/Coordination Overhead: To
minimize sensing overhead, Jello receivers constantly
monitor spectrum to identify possibly opportunities for
defragmentation. They signal their senders to per-
form sensing only after identifying possible opportuni-
ties themselves. To minimize coordination delay, each
sender/receiver pair uses their present frequency block
to exchange handshakes and schedule frequency adjust-
ments. At initialization or during a unlikely event of
lost synchronization or link failure, Jello devices enter
a SYNC state to recover and resume communications.

• Avoiding Defragmentation Conflicts: Multiple de-
vices can simultaneously detect a defragmentation op-
portunity and make conflicting frequency adjustments.
Jello minimizes such conflicts by randomizing defrag-
mentation efforts to avoid simultaneous adjustments.

4.3 Non-contiguous Frequency Access

Our second solution is to enable radios to combine
multiple spectrum pieces to form a single transmission.
Shown in Figure 3(c),S4 now combines frequency block
2 and 4 together in a single transmission as if it uses a
single frequency block.

Non-contiguous frequency access is now widely
used in centralized wireless networks such as WiMAX
and cellular LTE systems. It is implemented in the
form of Orthogonal Frequency-Division Multiple Ac-
cess (OFDMA). Existing designs, however, require
global synchronization, and fail when applied to dis-
tributed networks without global synchronization. A key
contribution of Jello is to identify and address the chal-
lenges of implementingdistributed OFDMAand to pro-
totype our design on USRP GNU radios.

Cost. To minimize interference, frequency guard bands

6

must be placed at link boundaries [17]. Guard bands are
not usable for transmissions, and are essentially spec-
trum overhead. Frequency guard bands are not an ar-
tifact of non-contiguous frequency access: they are re-
quired for contiguous access including 802.11 channels
(which use 16% of frequency bandwidth as guard bands).
On the other hand, the amount of guard bands increases
when links start to use non-contiguous frequency blocks.

4.4 The Case for a Unified Approach

With the above two solutions, we ask the question: “Is
one solution sufficient enough to address spectrum frag-
mentation?”

First, consider a scenario where only online spectrum
defragmentation is available. While this technique im-
proves spectrum utilization overall, each sender-receiver
pair is acting independently, and cannot disturb other on-
going transmissions. Therefore, only a limited level of
spectrum defragmentation is possible, and this technique
cannot achieve the same effectiveness as a global, syn-
chronized defragmentation approach. Thus a low level
of fragmentation might remain.

Next consider a network using noncontiguous fre-
quency access, but no online defragmentation. While this
technique allows devices to utilize spectrum fragments
as if they were a single contiguous fragment, it comes
at the cost of multiple guard bands between link bound-
aries. Without online defragmentation, spectrum frag-
mentation will continue to degrade over time. Spectrum
lost to guard bands will continue to increase, lowering
overall spectrum utilization.

Clearly, neither technique by itself can fully address
the challenge of spectrum fragmentation. Together they
form a more complete solution. Online defragmentation
limits spectrum fragmentation to a low level, and non-
contiguous access makes all of the spectrum available
without incurring significant overhead to guard bands.

5 Implementing Jello

We have implemented Jello on USRP GNU Radios.
Despite having limited frequency bandwidth and large
processing delays [12], USRP radios are widely avail-
able and fully reconfigurable across various protocol lay-
ers. We use the USRP implementation as a “proof-
of-concept” evaluation of Jello. We modified GNU ra-
dio software to implement spectrum sensing, distributed
contiguous and noncontiguous frequency access, online
defragmentation, and sender/receiver coordination.

Figure 5 presents a high-level structure of Jello. At
the physical layer, each Jello device operates on non-
contiguous frequency ranges using distributed OFDMA.

�eed to defragment

or change freq usage

PHY MAC

Frequency SelectionSpectrum Sensing

Adaptive

Multiband

Filter

Antenna Link Sync

NC OFDM

TX/RX Control Packets

Initialization

or link failure

Link Coordination

Figure 5:Jello system architecture.

At the MAC layer, Jello devices sense spectrum to iden-
tify usable frequency, and adapt their frequency usage
when the application demand changes or when an op-
portunity to defragment appears. We now describe our
implementation in detail.

5.1 Physical Layer

At the physical layer, Jello’s key contribution is to imple-
ment spectrum sensing and distributed frequency access,
both contiguous and non-contiguous, on today’s com-
mon off-the-shelf hardware. Jello implements frequency
access using OFDMA, which partitions the spectrum
span into many small subcarriers. OFDMA has been
widely used in centralized systems such as WiMAX,
which divides a 20MHz frequency range into 2048 sub-
carriers of 10KHz each. Each sender can transmit on
any subset of the subcarriers, either contiguously or non-
contiguously aligned in frequency. Each receiver can lis-
ten to theentireset of subcarriers at once. Simultaneous
transmissions can occur at different subcarriers without
interfering with each other.

Implementing OFDMA on distributed networks, how-
ever, is hard. Existing designs in centralized networks
rely on global synchronization to maintain subcarrier
orthogonality, so that transmissions on isolated subcar-
riers do not interfere with each other. In distributed
networks, where global synchronization is infeasible,
OFDMA transmissions fail. To understand the causes,
we perform an experiment by configuring 4 links on dif-
ferent frequency subcarriers. Our results show that sig-
nificant link failures occur. The failures are not caused
by the inherent propagation impairments, but by the fol-
lowing two reasons:

(1) Unable to detect packet preamble: In many cases,
the receivers cannot detect any preamble that marks the
beginning of a packet. This is because OFDMA de-
tects preambles using a time-domain “delayed correla-
tion” property from a signal placed at the head of each
packet [29]. Because preambles from multiple transmis-
sions are no longer synchronized, the delayed correlation
property no longer holds in time-domain signals, pre-
venting any successful preamble detection.

7

Link 1 Link 2

Link 3

Figure 6: An example of Jello’s flexible distributed spectrum access, implemented on USRP GNU radios. Three
transmissions access and share radio spectrum in the frequency domain. Among them, link 3 operates on two non-
contiguous spectrum blocks to form a single transmission.

(2)Unable to decode data packet: Even after fixing the
preamble detection, significant losses still occur during
packet decoding. This is because while multiple trans-
missions operate on different subcarriers, they leak en-
ergy to adjacent subcarriers, creating inter-carrier inter-
ference and destroying the subcarrier orthogonality at re-
ceivers. Compared to the preamble, packet data is much
more vulnerable to interference because it is sent fewer
error protections.

This motivates us to design receivers that “filter” out or
minimize unwanted signals to restore the desired trans-
mission properties. With this concept in mind, we pro-
pose two new mechanisms on top of the conventional
OFDMA design to restore successful transmissions in
distributed networks.

Restoring Preamble Detection. To restore the de-
lay correlation property required for preamble detection,
we apply an adaptive filter at receivers to remove signals
from unwanted subcarriers. To support non-contiguous
frequency access, we use a multi-band filter bank. Given
the knowledge of the subcarriers used by its transmitter,
the receiver first applies a low-pass filter to eliminate sig-
nals outside of its lowest and highest indexed subcarriers,
and then uses multiple band-stop filters to remove signals
from other unwanted subcarriers within the range. This
design allows receivers to adapt filter ranges on-the-fly.

Without global synchronization, devices also experi-
ence frequency offset [13], defined as the frequency skew
between devices’ central carrier frequency. The pres-
ence of frequency offset could lead to errors in signal
filtering. To suppress its impact between sender/receiver
pairs, Jello receivers dynamically adjust their carrier fre-
quency and filter width based on the result of preamble
detection. At initialization it starts from a loose filter and
gradually shrinks the filter to suppress interference. If
the filter becomes too tight and fails to detect any pream-
ble in a period, the receiver expands the filter to capture
more subcarriers. After each successful preamble decod-

ing, it estimates the frequency offset from its sender and
refines the filter parameters.

Restoring Reliable Packet Receptions. While the
use of receiver filters significantly improves preamble
detection, packet losses can still occur due to out-of-
band emissions among transmissions [17]. This work
also shows that placing frequency guard bands between
transmission boundaries is the most effective solution.
To minimize these overheads, Jello devices directly mea-
sure interference power levels from the PSD map, and
avoid using severely affected frequencies. This tech-
nique, combined with the adaptive filtering, allows Jello
devices to correctly determine and minimize the usage of
guard bands.

GNU Radio Implementation. We implement Jello’s
distributed OFDMA at 2.38GHz on a spectrum band of
500kHz. We use 256 subcarriers (or frequency sections),
each of size 1.953kHz. To carry adequate signals for
reliable preamble detection, each transmission must use
at least 28 subcarriers, which can be non-contiguously
aligned. We implement the receiver filter using theham-
ming windowapproach [22]. To compensate the fre-
quency offset between sender and receiver, we initially
extend the filter by 5 subcarriers and then adjust its cen-
tral frequency and width on-the-fly. We found in our ex-
periments that adding the receiver filter helps to reduce
the amount of guard bands. Overall, placing 2 subcarri-
ers at each link boundary is sufficient to protect all the
links in our experiments.

Figure 6 illustrates an example PSD map of a system
with three links. In this example, both link 1 and 2 oc-
cupy a contiguous block while link 3 utilizes two blocks
simultaneously to build a high bandwidth transmission.
Small guard bands were placed at link frequency bound-
aries to minimize cross-link interference.

We implement the spectrum sensing directly over
OFDMA. Each device performs the Fast Fourier Trans-
form (FFT) on collected frequency signals, and averages

8

the results over50 OFDM symbols† to produce a PSD
map. It computes the first-order derivative and uses a
threshold ofΓedge =5dB to locate edges. We chose these
parameters because they work well in our experiments.

5.2 Access Layer

At the access layer, each Jello device will select fre-
quency blocks to set up its communication session. Dur-
ing the session, it adapts its frequency usage when its
traffic demand changes or when an opportunity for de-
fragmentation appears. Without any dedicated radio for
control, Jello addresses the following challenges: (1)
each sender/receiver pair needs to synchronize on their
frequency usage to ensure reliable transmissions; (2)
to avoid hidden terminal problem, each sender/receiver
pair needs to coordinate and choose proper frequency
block(s) that are available to both of them; (3) simul-
taneous transmissions need to avoid using overlapping
frequency blocks; and finally (4) devices must be able to
quickly recover from failures caused by channel impair-
ments and external interference.

Synchronizing Sender/Receiver. Each Jello sender
and receiver pair performs handshaking to synchronize
the frequency blocks they use for data transmission.
This coordination has low overhead and does not involve
any contention among sessions. Because GNU radios
have large processing delays [12], our current Jello im-
plementation does not include per-packet acknowledge-
ments. The handshaking process is always initiated by
the sender.

To change a session’s spectrum usage, the sender per-
forms spectrum sensing to see if there is any opportunity
for change. If so, it sends a request (REQ) to its receiver
indicating its spectrum sensing results. After receiving
a REQ, the receiver selects a proper set of blocks and
replies with an acknowledgement (ACK) indicating the
selection. It also starts to decode signals from the new
blocks. Upon receiving an ACK, the sender configures
its transmissions on the new blocks. ACK failures could
lead to discrepancy between sender and receiver’s fre-
quency usage. Thus, after failing to decode packets for
a period ofTBOFF , the receiver “switches” back to de-
coding on the original blocks.

Choosing Frequency Blocks. Each Jello pair first tries
to find a contiguous frequency block using thebest-fital-
gorithm. If no such block is available, the pair selects
multiple frequency blocks following the “noncontiguous
best-fit” strategy: select the largest available blocks un-
til the remaining demand is less than the largest remain-

†The typical OFDM symbol duration for 802.11 a/g radios is 4µs,
so the sensing time is 0.2ms. In GNU radios, the symbol duration is
2ms and the sensing time is 100ms.

ing available blocks; then usebest-fitto choose the final
block. This approach minimizes the number of blocks
required for the session.

Avoiding Conflicts. When an opportunity to defrag-
ment spectrum appears, multiple device pairs could react
simultaneously, thus leading to frequency adjustments
that conflict. To minimize these conflicts, we incorporate
a random delay to both the sender’s sensing function and
receiver’s defragmentation triggering. First, upon detect-
ing a defragmentation opportunity, the receiver waits for
a random intervalT R

sense, and notifies the sender only
if the opportunity still exists. Second, a sender always
repeats its spectrum measurement after a random delay
of T S

sense. A frequency block is considered free only if
it is found to be free during both measurements. Ran-
dom backoffs reduce the probability of simultaneous de-
fragmentation attempts, similar to the CSMA backoffs in
802.11. Finally, devices can configure their backoff win-
dows based on the projected effectiveness of their fre-
quency shifts, giving priority to those that can provide
the maximum benefit to the system. For simplicity, Jello
uses a uniform random backoff window.

Recovering from Failures. Despite minimizing link
failures through careful coordination of spectrum sensing
and selection, link failures are sometimes unavoidable.
They can occur from external interference or an unlikely
conflict scenario where two links simultaneously move to
the same frequency block. Redundancy techniques such
as error correction codes [24] can improve the robustness
of coordination packets, but are ineffective under com-
plete link failures. If a link fails due to interference or
conflict, its sender-receiver coordination messages will
also fail to reach their destinations.

To address this, Jello introduces a SYNC state that de-
vices enter at initialization or when they detect a coor-
dination failure. A sender enters the SYNC state after
failing to receive any ACK after retransmitting a REQ
NS times, and a receiver enters the SYNC state after
not receiving any packets for a time periodTSY NC . In
the SYNC state, devices communicate on the “SYNC
Frequency Set” (SCS), a set of frequency blocks dedi-
cated for performing resynchronization. The sender and
receiver perform normal handshakes to reestablish syn-
chronization and move to selected frequency block(s).
There are several ways to define SCS, in our current im-
plementation we configure it as a preassigned frequency
block known to all devices. Devices try to avoid using
the SCS for data transmissions except as a last resort,
maximizing the probability that the SCS is idle.

GNU Radio Implementation. We implement Jello’s
access layer as a user-level program. Because USRP
radios have a large random processing delay up to
20ms [12, 21], we use relatively large timing parame-

9

ters in our experiments:T S
sense andT R

sense are uniformly
distributed in [0.1s, 1s], TBOFF = 1s, NS = 5, and
TSY NC = 3s. Each Jello device tries to defragment
the spectrum once every10s. We choose the 28 low-
est indexed subcarriers (out of 256) as the SCS. Based on
our experience with the experimental platform, we found
these to be reasonable parameter values.

5.3 Unexpected Hardware Artifacts

We also observe two unexpected hardware artifacts that
may affect Jello’s testbed performance.

Amplified Impact of Frequency Offsets. The band-
width limitation of USRP radios magnifies the impact
of frequency offsets, because they are now larger than
the subcarrier width. Our 20-day measurements show
that the frequency offsets can reach 10KHz (≈5 subcar-
riers) but have relatively smaller variances (<2 subcarri-
ers). To suppress its impact, we manually correct each
USRP’s central frequency by its measured average, re-
ducing its frequency offset to< 2 subcarriers.

Artificial Signals. Due to imperfect RF shielding, a
USRP radio may leak energy to its receiving path, cre-
ating a energy peak of random strength near the central
frequency (shown in Figure 6 as a spike near 2.38GHz).
As a result, a radio could mistake some free subcarri-
ers as being occupied. In our experiments this artifact
leads to a small amount (<2%) of spectrum sensing er-
rors. The impact is minor because Jello uses temporal
averaged signals in its sensing, reducing the peak’s edge
strength to that below the detection threshold.

6 Evaluation

We evaluate Jello using both network simulations and
GNU radio experiments. We use simulations to evaluate
Jello with various design choices and network configura-
tions. We also run experiments on an indoor network of
8 GNU radios in a 12m×7m room (Figure 7), running 4
simultaneous media sessions. We configure each radio’s
transmit power so that each link maintains 5% or less
packet loss when there is no interference present, and all
links interfere with each other. Each GNU radio experi-
ment lasts 10 minutes and is repeated 5 times.

1 2 3

4

5 6

7

8

Figure 7:Our Jello testbed: 8 USRP GNU radios are placed
in a 12m× 7m room with various walls and furniture.

We use both VBR video traces and synthetic On/Off
traffic to generate sessions. We scale the traffic flow as
necessary to create a desired load normalized by the fre-
quency bandwidth. Sessions carrying video traffic have
similar average loads, and sessions carrying On/Off traf-
fic have different traffic volumes. For video traces, we
assume a 10s application buffer so that each session’s
demand changes every 10s. For synthetic traffic, the On
and Off periods are randomly generated from a uniform
distribution. Each session determines the amount of fre-
quency required based on its traffic demand and the av-
erage data rate achievable on each frequency subcarrier.
If the current available frequency cannot fulfill the entire
demand, the session will take what is available.

We evaluate Jello by comparing four systems:

• Static: partitioning spectrum equally by the number of
sessions; each session has a dedicated frequency block.

• Jello-C: Jello with contiguous frequency access.

• Jello-NC: Jello with non-contiguous access enabled.

• Optimal : an “oracle” solution with perfectly accurate
sensing that removes fragmentation by assigning spec-
trum using knowledge of all future requests.

We collect two performance metrics that measure ap-
plication performance and spectrum usage efficiency:

Application disruption rate : the proportion of time
that a session experiences packet losses higher than a
maximum thresholdX , and thus cannot sustain satis-
factory media quality. For example, prior work shows
that streaming video sessions can only tolerate up to
10% packet loss [26]. We examined Jello usingX =
5, 10, 20%, and arrived at similar conclusions. Due to
space limitations, we only show results usingX = 10%.

Residual usable spectrum: given a traffic load, the
amount of spectrum left for a new media session, aver-
aged over time and normalized by the spectrum capacity.

6.1 Simulation Results
We first simulate Jello under general network configura-
tions. We use these experiments to examine and verify
Jello’s design concept without any sensing/transmission
error or coordination overhead. Figure 8 shows that
Jello-NC, by enabling dynamic non-contiguous fre-
quency access, significantly outperforms Jello-C and
Static. There is a small distance between Jello-NC and
Optimal because Jello-NC uses periodic defragmentation
so that a low-level of fragmentation still remains, leading
to some loss in spectrum from frequency guard bands.

We also make several key observations:

Impact of k (the maximum # of frequency blocks each
radio can use). Since hardware complexity scales with
k, it is interesting to understand its impact. In Figure 8

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5 0.6 0.7 0.8 0.9 1

D
is

ru
pt

io
n

R
at

e

Normalized Average Traffic Load (VBR Traffic)

Static
Jello-C

Jello-NC k = 2
Jello-NC k = 3
Jello-NC k = 4

Optimal

(a) Impact of max. frequency blocks allowed

 0

 0.1

 0.2

 0.3

 0.4

 0.5 0.6 0.7 0.8 0.9 1

D
is

ru
pt

io
n

R
at

e

Normalized Average Traffic Load (VBR Traffic)

Jello-C:WorstFit
Jello-C:FirstFit
Jello-C:BestFit

Jello-NC:BestFit

(b) Impact of frequency selection algorithms

Figure 8:Simulated Jello performance using video traces: (a)
when allowing each radio to accessk = 1..4 frequency blocks;
(b) when using different frequency selection algorithms.

Normalized average traffic load
0.6 0.7 0.8 0.9 1

P(1 block) 98.9% 87.7% 70.3% 58.2% 52.1%
P(2 blocks) 1.1% 11.8% 25.1% 31.1% 33%
P(3 blocks) 0 0.4% 4.2% 9.1% 12.2%
P(4 blocks) 0 0.1% 0.4% 1.5% 2.4%

Table 1: Probability distribution of the number of frequency
blocks each session uses, using Jello-NC withk = ∞.

we examine the application disruption rate of Jello-NC
by varyingk between 1 and 4. We see that raisingk

from 1 to 2 leads to a significant performance leap, but
after that the benefit of raisingk becomes marginal. To
further examine this, we list in Table 1 the probability
distribution of the number of frequency blocks each ses-
sion uses whenk is unlimited. We see that the need for
non-contiguous access does increase with the traffic load,
but each session uses no more than 3 blocks with a 97+%
probability. We repeated our experiments using different
traffic models and network sizes, and arrived at a simi-
lar observation. Although inconclusive, this shows that
adding 1 or 2 bands to a radio’s frequency access capabil-
ity will significantly boost the overall performance. We
also prove this trend analytically in a separate study [6].

Impact of the frequency selection algorithm. Fig-
ure 8(b) plots the application disruption rate of Jello-C
with Worst Fit, First Fit, Best Fit, and Jello-NC withBest
Fit. We see that Jello-C withBest Fitoutperforms Jello-

C with the rest but only slightly. In our testbed experi-
ments, we useBest Fitfor Jello.

Impact of network topology. We examine this im-
pact using a network of 50 sessions. By varying the
transmit power we create networks of different conflict
conditions, represented by the average conflict degree
D. Higher D means each session conflicts with more
peers. Table 2 lists the application disruption rate for
Jello-C, Jello-NC and Optimal. The same conclusion ap-
plies. One interesting observation is that Jello-NC leads
to more gains as the conflict level decreases. This is be-
cause non-contiguous access provides more opportunity
for spatial reuse where non-conflicting sessions can reuse
the same frequency blocks.

Average conflict degreeD
3.9 5.1 6.3 7.5 8.5

Jello-C 0.025 0.057 0.107 0.155 0.207
Jello-NC 0.005 0.019 0.054 0.095 0.147
Optimal 0.001 0.005 0.018 0.037 0.065

Table 2:Application disruption rate with different conflict de-
grees using a large network of 50 sessions.

6.2 Testbed Results
We now evaluate Jello using the GNU radio testbed. All
the results now include the impact of channel impair-
ments, but those of Jello-C and Jello-NC also include the
impact of coordination protocol overhead and spectrum
sensing errors. For Jello-NC, we usek = 3 in our hard-
ware implementation.

6.2.1 Jello’s Overall Performance

Media Quality Measurements. Figure 9 summarizes
the application disruption rates using both video and syn-
thetic traffic. Due to channel impairments, all disruption
rates are slightly higher than those of simulations. We
see that Jello-NC can effectively utilize a large portion of
the spectrum (up to 75%) while keeping disruption rates
below 5%. It outperforms Static and Jello-C significantly
and is within a reasonable distance from Optimal.

Jello-C also outperforms Static, except in the VBR
case when the traffic load is lower than 68%. This
unexpected degradation comes from Jello’s coordina-
tion overhead, hardware artifacts (discussed in Sec-
tion 5.3) and sensing errors (recall that Static has no
such overhead). As the traffic load grows, the gain of
dynamic spectrum multiplexing overcomes the system
overhead. For On/Off traffic, Jello-C consistently outper-
forms Static. This is because traffic burstiness is higher
than that of the VBR traffic, thus dynamic spectrum ac-
cess leads to significant gains.

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5 0.6 0.7 0.8

D
is

ru
pt

io
n

R
at

e

Normalized Average Traffic Load (VBR Traffic)

Static
Jello-C

Jello-NC
Optimal

 0

 0.1

 0.2

 0.3

 0.4

 0.5 0.6 0.7 0.8

D
is

ru
pt

io
n

R
at

e

Normalized Average Traffic Load (On/Off Traffic)

Static
Jello-C

Jello-NC
Optimal

Figure 9:Testbed results: application disruption rate vs. aver-
age traffic load. Jello-NC consistently outperforms Jello-C and
Static, and is within a small gap from Optimal.

Spectrum Usage Efficiency. As another measure of
Jello’s spectrum usage efficiency, we measure theresid-
ual usable spectrumas a function of the normalized aver-
age traffic load. Figure 10 shows the results for Jello-C,
Jello-NC and Optimal. The result of Statis is not shown
because the entire spectrum is used by existing sessions.

Compared to Optimal which completely removes all
fragments, Jello-NC only sacrifices 10-15% of the to-
tal spectrum bandwidth. Among those, 3% comes from
the extra guard bands associated with the non-contiguous
frequency access (due to infrequent defragmentation),
and the rest is from sensing errors and the fact that each
new flow can only at most 3 frequency blocks.

For Jello-C, however, the overhead increases to 20-
30% of the total spectrum bandwidth. In this case, the
impact of residual fragmentations is amplified by the
limitation that each new flow can only use 1 frequency
block. For the same reason, its residual spectrum is in-
sensitive to variations in traffic loads. An alternative way
to interpret the results is that, compared to Jello-C, Jello-
NC offers up to 45% more free spectrum to new sessions.

6.2.2 Where Does The Gain Come From?

The improvement of Jello comes from both non-
contiguous spectrum access and online defragmentation.
In the following, we evaluate their gains separately by
comparing the performance of Jello with contiguous and
non-contiguous frequency access, and by enabling and
disabling online fragmentation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.5 0.6 0.7 0.8R
es

id
ua

l U
sa

bl
e

S
pe

ct
ru

m

Normalized Average Traffic Load (VBR Traffic)

Optimal
Jello-NC

Jello-C

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.5 0.6 0.7 0.8R
es

id
ua

l U
sa

bl
e

S
pe

ct
ru

m

Normalized Average Traffic Load (On/Off Traffic)

Optimal
Jello-NC

Jello-C

Figure 10:Testbed results: comparing Jello-C, Jello-NC and
Optimal in terms of the residual usable spectrum.

Benefits from Non-contiguous Frequency Access.
For a fair comparison, we assume both access mech-
anisms use online defragmentation. Figure 9 already
shows that allowing non-contiguous access keeps the dis-
ruption rate below 10%, while contiguous access may
suffer more than 25% disruptions. Another way to in-
terpret the result is that, to keep a 10% or less disruption,
non-contiguous access achieves 22–32% improvement in
spectrum utilization over contiguous access.

Benefits of Online Defragmentation. Using On/Off
traffic, we compare the performance of Jello with and
without online spectrum defragmentation. From Fig-
ure 11, we see that online defragmentation reduces spec-
trum disruptions for both contiguous and non-contiguous
Jello. For example, with 68% load, defragmentation
reduces disruptions from 18% to 15% for contiguous
and 5% to 3% for non-contiguous access. Compared to
enabling non-contiguous access, online defragmentation
has a smaller gain. This is because in our implemen-
tation, Jello devices defragment infrequently (at most
twice per On period) due to hardware limitations.

6.2.3 Jello’s Overhead

Having examined Jello’s application-level and spectrum
usage performance, we now look into the overhead that
separates Jello-NC from Optimal. We quantify the im-
pact of each element that contributes to Jello-NC’s appli-
cation disruption rate. These include: (1) the inherent
traffic dynamics where the total spectrum cannot sup-
port all the sessions (the same applies to Optimal); (2)
the frequency guard band overhead from non-contiguous

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.68 0.72 0.75 0.78 0.82

D
is

ru
pt

io
n

R
at

e

Normalized Average Traffic Load (On/Off Traffic)

Jello-C w/o defrag
Jello-C

Jello-NC w/o defrag
Jello-NC

Figure 11:Testbed results: benefits of Jello’s online defrag-
mentation using On/Off traffic.

 0

 0.05

 0.1

 0.15

 0.2

0.68 0.72 0.75 0.78 0.82

D
is

ru
pt

io
n

 R
at

e

Normalized Average Traffic Load (VBR Traffic)

Traffic Dynamics
Guard Bands

Sensing + Coordination Errors

Figure 12: Testbed results: breakdown of contributions in
Jello-NC’s disruptions, using video traces. The impact of traffic
dynamics is unavoidable and also applies to Optimal.

frequency access (for being unable to defragment spec-
trum completely); (3) the sensing error and coordination
overhead caused by channel impairments, and (4) con-
flicting defragmentation. Results in Figure 12 show that
the guard band overhead has a relatively small impact
compared to the other two, which confirms that Jello pro-
duces a very low-level of spectrum fragmentation. The
probability of defragmentation conflicts is 0.5% in our
experiments and its impact is absorbed in the coordina-
tion errors in Figure 12.

Frequency Guard Bands. In Figure 13(a), we com-
pare Jello-NC and Optimal in terms of their guard band
overhead. Without any fragment, Optimal uses a fixed
number of guard bands (6 subcarriers out of 240 usable
subcarriers), or a 2.5% of overhead. For Jello-NC, the
guard band overhead increases with the traffic load be-
cause each session uses more frequency blocks to fulfill
its demand. However, similar to the results in Table 1,
in our experiments more than 85% of time a session uses
only 1 or 2 frequency blocks. Thus the overall guard
band overhead is less than 5% even at 80% traffic load.

Spectrum Sensing Errors. Figure 12 shows that sens-
ing errors could be a major contributor to the disruptions.
In our current implementation, the average false positive
(treating available blocks as occupied) and false negative

(treating occupied blocks as available) rates are 5–10%.
Figure 13(b) shows the results of two sample topologies.
These errors are due to the time-varying channel im-
pairments and heterogeneous signal strengths commonly
found in indoor environments.

On the other hand, Jello’s edge-detection based sens-
ing is much more accurate than the energy-detector, and
is relatively insensitive to the choice of detection thresh-
old. To quantify this benefit, we plot in Figure 14 the
detection false positive and false negative rates from
energy-detection based sensing, using the same topolo-
gies in Figure 13(b). We see that energy-detection sens-
ing leads to much higher detection errors, and is highly
sensitive to the choice of its detection threshold (-32dB
for topology 1, -48dB for topology 2). In addition, it
suffers from high false positives (e.g. 40%) in order to
maintain a reasonable rate of false negatives (e.g. 10%).

Coordination Overhead. The majority of Jello’s co-
ordination overhead is due to links falling back to the
SYNC state to resynchronize. In our experiments, these
occur from external interference, or an unlikely conflict
in frequency adjustments. From Figure 13(c), we see that
the probability of entering SYNC is only 2-3%, and the
average recovery time is 4-5s. Both the SYNC probabil-
ity and the recovery time increase with the traffic load
because as more sessions start to adapt frequency for
additional spectrum, they create slightly more conflicts
and more traffic on the SCS. Now a session could wait
longer before starting resynchronization. However, be-
cause links leave the SCS immediately after locating free
spectrum, the SCS utilization stays low.

7 Discussion

We can extend Jello in the following directions.

Integrating with Other MAC Functions. Due to
USRP Radios’ large processing delay, current Jello im-
plementation does not include several MAC functions.
These include (1) rate adaptation (Jello uses BPSK); (2)
channel-aware frequency selection (in our experiments
the channel quality is flat across the frequency range due
to limited bandwidth); (3) power control (we use uniform
transmit power across all the subcarriers in use); and (4)
packet retransmission. Using powerful radio platforms,
Jello can add these functions. A key issue is to inves-
tigate the interaction between Jello’s frequency selection
and these functions and to jointly optimize them together.

Optimizing Frequency Selection. Jello’s frequency
selection algorithms focus on minimizing network-wide
spectrum fragmentation and conflicts. Additional infor-
mation about each spectrum section such as received sig-
nal strength can allow Jello to choose a good set fre-
quency blocks to achieve reliable transmissions match-

13

 0

 2

 4

 6

 8

 10

 0.5 0.6 0.7 0.8

G
ua

rd
 B

an
d

O
ve

rh
ea

d
(%

)

Normalized Average Traffic Load (VBR Traffic)

JELLO-NC
Optimal

(a) Overhead from Frequency Guard Bands

 0

 0.2

 0.4

 2 3 4 5 6 7 8

P
ro

ba
bi

lit
y

Edge Detector Threshold (dB)

Topo1: False Positive
Topo1: False Negative
Topo2: False Positive

Topo2: False Negative

(b) Sensing Errors

 0

 1

 2

 3

 4

 5

 0.5 0.55 0.6 0.65 0.7 0.75
 0

 2

 4

 6

 8

 10

S
Y

N
C

 P
ro

ba
bi

lit
y

(%
)

A
ve

ra
ge

 R
ec

ov
er

y
T

im
e

(s
)

Normalized Average Traffic Load (VBR Traffic)

SYNC Probability (%)
Average Recovery Time

(c) Coordination Overhead

Figure 13:Testbed results: Examining Jello-NC’s overhead in terms ofthe frequency guard band overhead, sensing errors, and
coordination delay.

 0

 0.2

 0.4

 0.6

 0.8

-50 -45 -40 -35 -30

P
ro

ba
bi

lit
y

Energy Detector Threshold (dB)

Topo1: False Positive
Topo1: False Negative
Topo2: False Positive

Topo2: False Negative

Figure 14: Testbed results: detection reliability of energy
detection-based sensing as a function of its detection thresh-
old. Compared to Jello’s edge-detector, it leads to much higher
detection errors, and is highly sensitive to the choice of its de-
tection threshold (-32dB for topology 1, -48dB for topology2).

ing its traffic demand and minimize frequency usage.
Jello can also use this information to configure a proper
amount of guard bands at link boundaries instead of us-
ing a uniform configuration. An interesting issue is how
to obtain such information reliably and efficiently.

Porting Jello to Other Radios. Jello can be ported
onto advanced hardware platforms [16, 21, 24, 28, 30],
to benefit from their increased frequency bandwidth and
processing speed. For best performance, Jello requires
radios that can support fine-grained frequency access,
and quickly scan spectrum to identify available ranges.

8 Related Work

We divide the related work into two categories: contigu-
ous and non-contiguous frequency access.

Contiguous Frequency Access. The majority work
on dynamic spectrum networks assumes contiguous fre-
quency access [1, 4, 8, 16, 20, 31, 32]. This access pat-
tern has the advantage of being readily implemented on
conventional 802.11 devices [8]. In this context, prior
works have developed centralized algorithms for load

balancing [20], distributed protocols for spectrum con-
tention [32] and for utilizing UHF whitespaces [4].

Jello differs from these works in three aspects. First,
Jello’s per-session FDMA design is more general in that
it operates across wider spectrum ranges at a fine gran-
ularity and completely eliminates CSMA traffic con-
tention. Second, unlike [32], which requires a sepa-
rate control radio to reserve spectrum, Jello devices self-
sense spectrum to avoid access conflicts, and defrag-
ment spectrum while staying transparent to others. As
a result, Jello provides dedicated frequency usage to de-
manding applications. Finally, Jello’s spectrum sensing
differs from SIFT [4] which detects any contiguous fre-
quency usage using time-domain signals. Instead, Jello
uses wide-band sensing in the frequency domain that can
quickly identify multiple active frequency blocks instead
of single blocks at a time.

Non-contiguous Frequency Access. Most works in
this area assume either centralized control [23] or a ded-
icated radio for control. Others are limited to simula-
tions [7] without considering practical artifacts such as
sensing and guard bands. Jello, on the other hand, imple-
ments distributed non-contiguous frequency access and
deploys a USRP prototype.

SWIFT [24] is a distributed wideband spectrum access
system that can use a large frequency band even when
a narrowband signal is present. SWIFT nodes share
spectrum in the time domain using CSMA. Jello differs
from SWIFT by using per-session FDMA to avoid costly
packet contentions and by using an non-intrusive edge-
detection based mechanism to identify usable frequency.
ODS [15] implements on-demand spectrum access using
spread-spectrum codes, focusing on adapting spectrum
allocation to bursty traffic. It applies a random policy for
selecting codes and uses adaptive receiver feedback to
regulate code allocations. Jello differs from ODS by op-
erating in the frequency-domain, using spectrum sensing
to avoid access conflicts.

14

9 Conclusion
Jello provides a new distributed spectrum access tech-
nique for demanding wireless applications. High-quality
delay-sensitive media sessions can now access and share
wireless medium in the frequency domain and adapt their
spectrum usage to varying traffic demands. Jello uti-
lizes frequency-agile radios to sense, identify and occupy
unused spectrum, allowing multiple sessions to work in
parallel on isolated frequencies. To maximize spectrum
usage efficiency, Jello devices self-defragment spectrum
on-the-fly, and scavenge multiple frequency fragments
for use by single, high-speed transmissions. Jello is also
MAC-agnostic and does not require any dedicated radio
for control. Despite USRP radio’s limited bandwidth and
large processing delays, our measurements on an 8-node
testbed confirm that Jello can provide reliable spectrum
access for media applications and significantly improve
spectrum usage efficiency.

Acknowledgments
We thank Geoff Voelker, our shepherd Venkat Padman-
abhan, and the anonymous reviewers for their helpful
suggestions. We also thank Peter Steenkiste and Songwu
Lu for their comments on earlier versions of this work.
This work is supported in part by NSF Grants CNS-
0916307, IIS-0847925, CNS-0832090, CNS-0546216.
Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of the National
Science Foundation.

References

[1] A KYILDIZ , I. F., LEE, W. Y., VURAN, M., AND MOHANTY, S.
NeXt generation/dynamic spectrum access/cognitive radiowire-
less networks: A survey.Computer Networks Journal (Elsevier)
(2006).

[2] A MINI , P.,ET AL . Implementation of a cognitive radio modem.
In Proc. of SDR(2007).

[3] MPEG-4 and H.263 video traces for network performance evalu-
ation. http://trace.eas.asu.edu/TRACE/trace.html/.

[4] BAHL , P., CHANDRA , R., MOSCIBRODA, T., MURTY, R.,AND

WELSH, M. White space networking with Wi-Fi like connectiv-
ity. In Proc. of SIGCOMM(2009).

[5] CANNY, J. A computational approach to edge detection.IEEE
Trans. on Pattern Analysis and Machine Intelligence 8, 6 (1986),
679–698.

[6] CAO, L., YANG, L., AND ZHENG, H. The impact of frequency-
agility on dynamic spectrum sharing. InProc. of IEEE DySPAN
(2010).

[7] CAO, L., AND ZHENG, H. Spectrum allocation in ad hoc net-
works via local bargaining. InProc. of SECON(2005).

[8] CHANDRA , R., MAHAJAN , R., MOSCIBRODA, T.,
RAGHAVENDRA , R., AND BAHL , P. A case for adapting
channel width in wireless networks. InProc. of SIGCOMM
(2008).

[9] CRAMTON, P., SKRZYPACZ, A., AND WILSON, R. The 700
MHz spectrum auction: An opportunity to protect competition in
a consolidating industry.Report for Frontline Wireless(2007).

[10] DIGHAM , F. F., ALOUINI , M.-S., AND SIMON , M. K. On the
energy detection of unknown signals over fading channels.IEEE
Transactions on Communications(2007).

[11] FEHSKE, A., GAEDDERT, J., AND REED, J. A new approach
to signal classification using spectral correlation and neural net-
works. InProc. of IEEE DySPAN(2005).

[12] GE, F., YOUNG, A., BRISEBOIS, T., CHEN, Q.,AND BOSTIAN,
C. W. Software defined radio execution latency. InProc. of SDR
(2008).

[13] GOLDSMITH, A. Wireless Communications. Cambridge Univer-
sity Press, New York, NY, USA, 2005.

[14] GONZALEZ, R. C.,AND WOODS, R. E. Digital Image Process-
ing (3rd Edition). Prentice-Hall, 2006.

[15] GUMMADI , R., AND BALAKRISHNAN , H. Wireless networks
should spread spectrum based on demands. InHotNets(2008).

[16] GUMMADI , R., NG, M. C., FLEMING , K., AND BALAKRISH -
NAN , H. AirBlue: A system for cross-layer wireless protocol
development and experimentation. InMIT Report(2008).

[17] HOU, W., YANG, L., ZHANG, L., SHAN , X., AND ZHENG, H.
Understanding the impact of cross-band interference. InProc. of
ACM Coronet Workshop(2009).

[18] JARDOSH, A. P., RAMACHANDRAN , K. N., ALMEROTH,
K. C., AND BELDING-ROYER, E. M. Understanding conges-
tion in IEEE 802.11b wireless networks. InProc. of IMC(2005).

[19] KNUTH, D. E. The Art of Computer Programming, Vol. 1 (3rd
ed.): Fundamental Algorithms. Addison-Wesley, 1973.

[20] MOSCIBRODA, T., CHANDRA , R., WU, Y., SENGUPTA, S.,
BAHL , P., AND YUAN , Y. Load-aware spectrum distribution in
wireless LANs. InProc. of ICNP(2008).

[21] NYCHIS, G., SESHAN, S., STEENKISTE, P., HOTTELIER, T.,
AND YANG, Z. Enabling MAC protocol implementations on
software-defined radios. InProc. of NSDI(2009).

[22] OPPENHEIM, A. V., SCHAFER, R. W., AND BUCK, J. R.
Discrete-time signal processing (2nd ed.). Prentice-Hall, 1999.

[23] RAHUL , H., EDALAT , F., KATABI , D., AND SODINI , C.
Frequency-aware rate adaptation and MAC protocols. InProc.
of MobiCom(2009).

[24] RAHUL , H., KUSHMAN, N., KATABI , D., SODINI , C., AND

EDALAT , F. Learning to share: narrowband-friendly wideband
networks. InProc. of SIGCOMM(2008).

[25] SINGH, S., ACHARYA , P. A. K., MADHOW, U., AND

BELDING-ROYER, E. M. Sticky CSMA/CA: Implicit synchro-
nization and real-time QoS in mesh networks.Ad Hoc Network
5, 6 (2007), 744–768.

[26] STOCKHAMMER, T., HANNUKSELA , M. M., AND WIEGAND,
T. H.264/AVC in wireless environments.IEEE Trans. on Circuits
and Systems for Video Technology 13, 7 (2003), 657–673.

[27] SUN, Y., SHERIFF, I., BELDING-ROYER, E. M., AND

ALMEROTH, K. C. An experimental study of multimedia traf-
fic performance in mesh networks. InProc. of WiTMeMo(2005).

[28] TAN , K., ET AL . SORA: High performance software radio using
general purpose multi-core processors. InProc. of NSDI(2009).

[29] TIMOTHY M., S., AND DONALD C., C. Robust frequency and
timing synchronization for OFDM. InIEEE Transactions on
Communications(1997).

[30] Wireless open-access research platform. http://warp.rice.edu/.

[31] YUAN , Y., BAHL , P., CHANDRA , R., MOSCIBRODA, T.,
NARLANKA , S., AND WU, Y. Allocating dynamic time-
spectrum blocks in cognitive radio networks. InProc. of Mo-
biHoc (2007).

[32] YUAN , Y., ET AL . KNOWS: Kognitiv networking over white
spaces. InProc. of IEEE DySPAN(2007).

15

