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Abstract
Obtaining user opinion (using votes) is essential to rank-
ing user-generated online content. However, any content
voting system is susceptible to the Sybil attack where ad-
versaries can out-vote real users by creating many Sybil
identities. In this paper, we present SumUp, a Sybil-
resilient vote aggregation system that leverages the trust
network among users to defend against Sybil attacks.
SumUp uses the technique of adaptive vote flow aggre-
gation to limit the number of bogus votes cast by adver-
saries to no more than the number of attack edges in the
trust network (with high probability). Using user feed-
back on votes, SumUp further restricts the voting power
of adversaries who continuously misbehave to below the
number of their attack edges. Using detailed evaluation
of several existing social networks (YouTube, Flickr), we
show SumUp’s ability to handle Sybil attacks. By apply-
ing SumUp on the voting trace of Digg, a popular news
voting site, we have found strong evidence of attack on
many articles marked “popular” by Digg.

1 Introduction
The Web 2.0 revolution has fueled a massive prolifera-
tion of user-generated content. While allowing users to
publish information has led to democratization of Web
content and promoted diversity, it has also made the Web
increasingly vulnerable to content pollution from spam-
mers, advertisers and adversarial users misusing the sys-
tem. Therefore, the ability to rank content accurately is
key to the survival and the popularity of many user-
content hosting sites. Similarly, content rating is also in-
dispensable in peer-to-peer file sharing systems to help
users avoid mislabeled or low quality content [7, 16, 25].

People have long realized the importance of incorpo-
rating user opinion in rating online content. Traditional
ranking algorithms such as PageRank [2] and HITS [12]
rely on implicit user opinions reflected in the link struc-
tures of hypertext documents. For arbitrary content types,
user opinion can be obtained in the form of explicit
votes. Many popular websites today rely on user votes to
rank news (Digg, Reddit), videos (YouTube), documents
(Scribd) and consumer reviews (Yelp, Amazon).

Content rating based on users’ votes is prone to vote
manipulation by malicious users. Defending against vote
manipulation is difficult due to the Sybil attack where
the attacker can out-vote real users by creating many

Sybil identities. The popularity of content-hosting sites
has made such attacks very profitable as malicious enti-
ties can promote low-quality content to a wide audience.
Successful Sybil attacks have been observed in the wild.
For example, online polling on the best computer science
school motivated students to deploy automatic scripts to
vote for their schools repeatedly [9]. There are even com-
mercial services that help paying clients promote their
content to the top spot on popular sites such as YouTube
by voting from a large number of Sybil accounts [22].

In this paper, we present SumUp, a Sybil-resilient on-
line content voting system that prevents adversaries from
arbitrarily distorting voting results. SumUp leverages the
trust relationships that already exist among users (e.g. in
the form of social relationships). Since it takes human ef-
forts to establish a trust link, the attacker is unlikely to
possess many attack edges (links from honest users to an
adversarial identity). Nevertheless, he may create many
links among Sybil identities themselves.

SumUp addresses the vote aggregation problem which
can be stated as follows: Given m votes on a given object,
of which an arbitrary fraction may be from Sybil iden-
tities created by an attacker, how do we collect votes in
a Sybil resilient manner? A Sybil-resilient vote aggrega-
tion solution should satisfy three properties. First, the so-
lution should collect a significant fraction of votes from
honest users. Second, if the attacker has eA attack edges,
the maximum number of bogus votes should be bounded
by eA, independent of the attacker’s ability to create many
Sybil identities behind him. Third, if the attacker repeat-
edly casts bogus votes, his ability to vote in the future
should be diminished. SumUp achieves all three proper-
ties with high probability in the face of Sybil attacks. The
key idea in SumUp is the adaptive vote flow technique
that appropriately assigns and adjusts link capacities in
the trust graph to collect the net vote for an object.

Previous works have also exploited the use of trust net-
works to limit Sybil attacks [3,15,18,26,27,30], but none
directly addresses the vote aggregation problem. Sybil-
Limit [26] performs admission control so that at most
O(log n) Sybil identities are accepted per attack edge
amongn honest identities. As SybilLimit results in 10∼30
bogus votes per attack edge in a million-user system [26],
SumUp provides notable improvement by limiting bogus
votes to one per attack edge. Additionally, SumUp lever-
ages user feedback to further diminish the voting power
of adversaries that repeatedly vote maliciously.
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In SumUp, each vote collector assigns capacities to
links in the trust graph and computes a set of approx-
imate max-flow paths from itself to all voters. Because
only votes on paths with non-zero flows are counted, the
number of bogus votes collected is limited by the total ca-
pacity of attack edges instead of links among Sybil iden-
tities. Typically, the number of voters on a given object
is much smaller than the total user population (n). Based
on this insight, SumUp assigns Cmax units of capacity in
total, thereby limiting the number of votes that can be col-
lected to be Cmax. SumUp adjusts Cmax automatically
according to the number of honest voters for each object
so that it can aggregate a large fraction of votes from hon-
est users. As Cmax is far less than n, the number of bo-
gus votes collected on a single object (i.e. the attack ca-
pacity) is no more than the number of attack edges (eA).
SumUp’s security guarantee on bogus votes is probabilis-
tic. If a vote collector happens to be close to an attack
edge (a low probability event), the attack capacity could
be much higher than eA. By re-assigning link capacities
using feedback, SumUp can restrict the attack capacity to
be below eA even if the vote collector happens to be close
to some attack edges.

Using a detailed evaluation of several existing social
networks (YouTube, Flickr), we show that SumUp suc-
cessfully limits the number of bogus votes to the num-
ber of attack edges and is also able to collect > 90% of
votes from honest voters. By applying SumUp to the vot-
ing trace and social network of Digg (an online news vot-
ing site), we have found hundreds of suspicious articles
that have been marked “popular” by Digg. Based on man-
ual sampling, we believe that at least 50% of suspicious
articles exhibit strong evidence of Sybil attacks.

This paper is organized as follows. In Section 2, we dis-
cuss related work and in Section 3 we define the system
model and the vote aggregation problem. Section 4 out-
lines the overall approach of SumUp and Sections 5 and
6 present the detailed design. In Section 7, we describe our
evaluation results. Finally in Section 8, we discuss how to
extend SumUp to decentralize setup and we conclude in
Section 9.

2 Related Work
Ranking content is arguably one of the Web’s most im-
portant problems. As users are the ultimate consumers of
content, incorporating their opinions in the form of either
explicit or implicit votes becomes an essential ingredient
in many ranking systems. This section summarizes related
work in vote-based ranking systems. Specifically, we ex-
amine how existing systems cope with Sybil attacks [6]
and compare their approaches to SumUp.

2.1 Hyperlink-based ranking
PageRank [2] and HITS [12] are two popular ranking al-
gorithms that exploit the implicit human judgment embed-

ded in the hyperlink structure of web pages. A hyperlink
from page A to page B can be viewed as an implicit en-
dorsement (or vote) of page B by the creator of page A. In
both algorithms, a page has a higher ranking if it is linked
to by more pages with high rankings. Both PageRank and
HITS are vulnerable to Sybil attacks. The attacker can
significantly amplify the ranking of a page A by creating
many web pages that link to each other and also to A. To
mitigate this attack, the ranking system must probabilisti-
cally reset its PageRank computation from a small set of
trusted web pages with probability ǫ [20]. Despite proba-
bilistic resets, Sybil attacks can still amplify the PageRank
of an attacker’s page by a factor of 1/ǫ [29], resulting in a
big win for the attacker because ǫ is small.

2.2 User Reputation Systems
A user reputation system computes a reputation value for
each identity in order to distinguish well-behaved identi-
ties from misbehaving ones. It is possible to use a user
reputation system for vote aggregation: the voting system
can either count votes only from users whose reputations
are above a threshold or weigh each vote using the voter’s
reputation. Like SumUp, existing reputation systems miti-
gate attacks by exploiting two resources: the trust network
among users and explicit user feedback on others’ behav-
iors. We discuss the strengths and limitations of existing
reputation systems in the context of vote aggregation and
how SumUp builds upon ideas from prior work.

Feedback based reputations In EigenTrust [11] and
Credence [25], each user independently computes person-
alized reputation values for all users based on past trans-
actions or voting histories. In EigenTrust, a user increases
(or decreases) another user’s rating upon a good (or bad)
transaction. In Credence [25], a user gives a high (or low)
rating to another user if their voting records on the same
set of file objects are similar (or dissimilar). Because not
all pairs of users are known to each other based on direct
interaction or votes on overlapping sets of objects, both
Credence and EigenTrust use a PageRank-style algorithm
to propagate the reputations of known users in order to
calculate the reputations of unknown users. As such, both
systems suffer from the same vulnerability as PageRank
where an attacker can amplify the reputation of a Sybil
identity by a factor of 1/ǫ.

Neither EigenTrust nor Credence provide provable
guarantees on the damage of Sybil attacks under arbitrary
attack strategies. In contrast, SumUp bounds the voting
power of an attacker on a single object to be no more than
the number of attack edges he possesses irrespective of the
attack strategies in use. SumUp uses only negative feed-
back as opposed to EigenTrust and Credence that use both
positive and negative feedback. Using only negative feed-
back has the advantage that an attacker cannot boost his
attack capacity easily by casting correct votes on objects
that he does not care about.
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DSybil [28] is a feedback-based recommendation sys-
tem that provides provable guarantees on the damages of
arbitrary attack strategies. DSybil differs from SumUp in
its goals. SumUp is a vote aggregation system which al-
lows for arbitrary ranking algorithms to incorporate col-
lected votes to rank objects. For example, the ranking al-
gorithm can rank objects by the number of votes collected.
In contrast, DSybil’s recommendation algorithm is fixed:
it recommends a random object among all objects whose
sum of the weighted vote count exceeds a certain thresh-
old.

Trust network-based reputations A number of pro-
posals from the semantic web and peer-to-peer literature
rely on the trust network between users to compute repu-
tations [3, 8, 15, 21, 30]. Like SumUp, these proposals ex-
ploit the fact that it is difficult for an attacker to obtain
many trust edges from honest users because trust links
reflect offline social relationships. Of the existing work,
Advogato [15], Appleseed [30] and Sybilproof [3] are re-
silient to Sybil attacks in the sense that an attacker cannot
boost his reputation by creating a large number of Sybil
identities “behind” him. Unfortunately, a Sybil-resilient
user reputation scheme does not directly translate into a
Sybil-resilient voting system: Advogato only computes a
non-zero reputation for a small set of identities, disallow-
ing a majority of users from being able to vote. Although
an attacker cannot improve his reputation with Sybil iden-
tities in Appleseed and Sybilproof, the reputation of Sybil
identities is almost as good as that of the attacker’s non-
Sybil accounts. Together, these reputable Sybil identities
can cast many bogus votes.

2.3 Sybil Defense using trust networks
Many proposals use trust networks to defend against Sybil
attacks in the context of different applications: Sybil-
Guard [27] and SybilLimit [26] help a node admit an-
other node in a decentralized system such that the ad-
mitted node is likely to be an honest node instead of a
Sybil identity. Ostra [18] limits the rate of unwanted com-
munication that adversaries can inflict on honest nodes.
Sybil-resilient DHTs [5, 14] ensure that DHT routing is
correct in the face of Sybil attacks. Kaleidoscope [23]
distributes proxy identities to honest clients while mini-
mizing the chances of exposing them to the censor with
many Sybil identities. SumUp builds on their insights and
addresses a different problem, namely, aggregating votes
for online content rating. Like SybilLimit, SumUp bounds
the power of attackers according to the number of attack
edges. In SybilLimit, each attack edge results in O(log n)
Sybil identities accepted by honest nodes. In SumUp, each
attack edge leads to at most one vote with high probability.
Additionally, SumUp uses user feedback on bogus votes
to further reduce the attack capacity to below the number
of attack edges. The feedback mechanism of SumUp is
inspired by Ostra [18].

3 The Vote Aggregation Problem
In this section, we outline the system model and formalize
the vote aggregation problem that SumUp addresses.

System model: We describe SumUp in a centralized
setup where a trusted central authority maintains all the
information in the system and performs vote aggregation
using SumUp in order to rate content. This centralized
mode of operation is suitable for web sites such as Digg,
YouTube and Facebook, where all users’ votes and their
trust relationships are collected and maintained by a sin-
gle trusted entity. We describe how SumUp can be applied
in a distributed setting in Section 8.

SumUp leverages the trust network among users to de-
fend against Sybil attacks [3,15,26,27,30]. Each trust link
is directional. However, the creation of each link requires
the consent of both users. Typically, user i creates a trust
link to j if i has an offline social relationship to j. Sim-
ilar to previous work [18, 26], SumUp requires that links
are difficult to establish. As a result, an attacker only pos-
sesses a small number of attack edges (eA) from honest
users to colluding adversarial identities. Even though eA

is small, the attacker can create many Sybil identities and
link them to adversarial entities. We refer to votes from
colluding adversaries and their Sybil identities as bogus
votes.

SumUp aggregates votes from one or more trusted vote
collectors. A trusted collector is required in order to break
the symmetry between honest nodes and Sybil nodes [3].
SumUp can operate in two modes depending on the choice
of trusted vote collectors. In personalized vote aggrega-
tion, SumUp uses each user as his own vote collector to
collect the votes of others. As each user collects a differ-
ent number of votes on the same object, she also has a
different (personalized) ranking of content. In global vote
aggregation, SumUp uses one or more pre-selected vote
collectors to collect votes on behalf of all users. Global
vote aggregation has the advantage of allowing for a sin-
gle global ranking of all objects; however, its performance
relies on the proper selection of trusted collectors.

Vote Aggregation Problem: Any identity in the trust
network including Sybils can cast a vote on any object to
express his opinion on that object. In the simplest case,
each vote is either positive or negative (+1 or -1). Alterna-
tively, to make a vote more expressive, its value can vary
within a range with higher values indicating more favor-
able opinions. A vote aggregation system collects votes
on a given object. Based on collected votes and various
other features, a separate ranking system determines the
final ranking of an object. The design of the final rank-
ing system is outside the scope of this paper. However, we
note that many ranking algorithms utilize both the number
of votes and the average value of votes to determine an
object’s rank [2, 12]. Therefore, to enable arbitrary rank-
ing algorithms, a vote aggregation system should collect



18 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association




























Figure 1: SumUp computes a set of approximate max-flow
paths from the vote collector s to all voters (A,B,C,D). Straight
lines denote trust links and curly dotted lines represent the vote
flow paths along multiple links. Vote flow paths to honest vot-
ers are “congested” at links close to the collector while paths to
Sybil voters are also congested at far-away attack edges.

a significant fraction of votes from honest voters.
A voting system can also let the vote collector pro-

vide negative feedback on malicious votes. In personal-
ized vote aggregation, each collector gives feedback ac-
cording to his personal taste. In global vote aggregation,
the vote collector(s) should only provide objective feed-
back, e.g. negative feedback for positive votes on cor-
rupted files. Such feedback is available for a very small
subset of objects.

We describe the desired properties of a vote aggregation
system. Let G = (V,E) be a trust network with vote col-
lector s ∈ V . V is comprised of an unknown set of honest
users Vh ⊂ V (including s) and the attacker controls all
vertices in V \ Vh, many of which represent Sybil iden-
tities. Let eA represent the number of attack edges from
honest users in Vh to V \ Vh. Given that nodes in G cast
votes on a specific object, a vote aggregation mechanism
should achieve three properties:

1. Collect a large fraction of votes from honest users.
2. Limit the number of bogus votes from the attacker

by eA independent of the number of Sybil identities
in V \ Vh.

3. Eventually ignore votes from nodes that repeatedly
cast bogus votes using feedback.

4 Basic Approach
This section describes the intuition behind adaptive vote
flow that SumUp uses to address the vote aggregation
problem. The key idea of this approach is to appropriately
assign link capacities to bound the attack capacity.

In order to limit the number of votes that Sybil identi-
ties can propagate for an object, SumUp computes a set of
max-flow paths in the trust graph from the vote collector
to all voters on a given object. Each vote flow consumes
one unit of capacity along each link traversed. Figure 1
gives an example of the resulting flows from the collec-
tor s to voters A,B,C,D. When all links are assigned unit

capacity, the attack capacity using the max-flow based ap-
proach is bounded by eA.

The concept of max-flow has been applied in several
reputation systems based on trust networks [3, 15]. When
applied in the context of vote aggregation, the challenge is
that links close to the vote collector tend to become “con-
gested” (as shown in Figure 1), thereby limiting the total
number of votes collected to be no more than the collec-
tor’s node degree. Since practical trust networks are sparse
with small median node degrees, only a few honest votes
can be collected. We cannot simply enhance the capac-
ity of each link to increase the number of votes collected
since doing so also increases the attack capacity. Hence, a
flow-based vote aggregation system faces the tradeoff be-
tween the maximum number of honest votes it can collect
and the number of potentially bogus votes collected.

The adaptive vote flow technique addresses this trade-
off by exploiting two basic observations. First, the number
of honest users voting for an object, even a popular one,
is significantly smaller than the total number of users. For
example, 99% of popular articles on Digg have fewer than
4000 votes which represents 1% of active users. Second,
vote flow paths to honest voters tend to be only “con-
gested” at links close to the vote collector while paths
to Sybil voters are also congested at a few attack edges.
When eA is small, attack edges tend to be far away from
the vote collector. As shown in Figure 1, vote flow paths
to honest voters A and B are congested at the link l1 while
paths to Sybil identities C and D are congested at both l2
and attack edge l3.

The adaptive vote flow computation uses three key
ideas. First, the algorithm restricts the maximum num-
ber of votes collected on an object to a value Cmax. As
Cmax is used to assign the overall capacity in the trust
graph, a small Cmax results in less capacity for the at-
tacker. SumUp can adaptively adjust Cmax to collect a
large fraction of honest votes on any given object. When
the number of honest voters is O(nα) where α < 1, the
expected number of bogus votes is limited to 1 + o(1) per
attack edge (Section 5.4).

The second important aspect of SumUp relates to ca-
pacity assignment, i.e. how to assign capacities to each
trust link in order to collect a large fraction of honest votes
and only a few bogus ones? In SumUp, the vote collec-
tor distributes Cmax tickets downstream in a breadth-first
search manner within the trust network. The capacity as-
signed to a link is the number of tickets distributed along
the link plus one. As Figure 2 illustrates, the ticket distri-
bution process introduces a vote envelope around the vote
collector s; beyond the envelope all links have capacity
1. The vote envelope contains Cmax nodes that can be
viewed as entry points. There is enough capacity within
the envelope to collect Cmax votes from entry points. On
the other hand, an attack edge beyond the envelope can
propagate at most 1 vote regardless of the number of Sybil
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Figure 2: Through ticket distribution, SumUp creates a vote en-
velope around the collector. The capacities of links beyond the
envelope are assigned to be one, limiting the attack capacity to
be at most one per attack edge for adversaries outside this en-
velope. There is enough capacity within the envelope, such that
nodes inside act like entry points for outside voters.

identities behind that edge. SumUp re-distributes tickets
based on feedback to deal with attack edges within the
envelope.

The final key idea in SumUp is to leverage user feed-
back to penalize attack edges that continuously propa-
gate bogus votes. One cannot penalize individual identi-
ties since the attacker may always propagate bogus votes
using new Sybil identities. Since an attack edge is always
present in the path from the vote collector to a malicious
voter [18], SumUp re-adjusts capacity assignment across
links to reduce the capacity of penalized attack edges.

5 SumUp Design
In this section, we present the basic capacity assignment
algorithm that achieves two of the three desired properties
discussed in Section 3: (a) Collect a large fraction of votes
from honest users; (b) Restrict the number of bogus votes
to one per attack edge with high probability. Later in Sec-
tion 6, we show how to adjust capacity based on feedback
to deal with repeatedly misbehaved adversarial nodes.

We describe how link capacities are assigned given a
particular Cmax in Section 5.1 and present a fast algo-
rithm to calculate approximate max-flow paths in Sec-
tion 5.2. In Section 5.3, we introduce an additional op-
timization strategy that prunes links in the trust network
so as to reduce the number of attack edges. We formally
analyze the security properties of SumUp in Section 5.4
and show how to adaptively set Cmax in Section 5.5.

5.1 Capacity assignment
The goal of capacity assignment is twofold. On the one
hand, the assignment should allow the vote collector to
gather a large fraction of honest votes. On the other hand,
the assignment should minimize the attack capacity such
that CA ≈ eA.

As Figure 2 illustrates, the basic idea of capacity as-
signment is to construct a vote envelope around the vote































 












Figure 3: Each link shows the number of tickets distributed to
that link from s (Cmax=6). A node consumes one ticket and
distributes the remaining evenly via its outgoing links to the next
level. Tickets are not distributed to links pointing to the same
level (B→A), or to a lower level (E→B). The capacity of each
link is equal to one plus the number of tickets.

collector with at least Cmax entry points. The goal is
to minimize the chances of including an attack edge in
the envelope and to ensure that there is enough capacity
within the envelope so that all vote flows from Cmax en-
try points can reach the collector.

We achieve this goal using a ticket distribution mecha-
nism which results in decreasing capacities for links with
increasing distance from the vote collector. The distri-
bution mechanism is best described using a propagation
model where the vote collector is to spread Cmax tickets
across all links in the trust graph. Each ticket corresponds
to a capacity value of 1. We associate each node with a
level according to its shortest path distance from the vote
collector, s. Node s is at level 0. Tickets are distributed to
nodes one level at a time. If a node at level l has received
tin tickets from nodes at level l − 1, the node consumes
one ticket and re-distributes the remaining tickets evenly
across all its outgoing links to nodes at level l + 1, i.e.
tout = tin − 1. The capacity value of each link is set to
be one plus the number of tickets distributed on that link.
Tickets are not distributed to links connecting nodes at
the same level or from a higher to lower level. The set of
nodes with positive incoming tickets fall within the vote
envelope and thus represent the entry points.

Ticket distribution ensures that all Cmax entry points
have positive vote flows to the vote collector. Therefore,
if there exists an edge-independent path connecting one of
the entry points to an outside voter, the corresponding vote
can be collected. We show in Section 5.4 that such a path
exists with good probability. When Cmax is much smaller
than the number of honest nodes (n), the vote envelope is
very small. Therefore, all attack edges reside outside the
envelope, resulting in CA ≈ eA with high probability.

Figure 3 illustrates an example of the ticket distribution
process. The vote collector (s) is to distribute Cmax=6
tickets among all links. Each node collects tickets from
its lower level neighbors, keeps one to itself and re-
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distributes the rest evenly across all outgoing links to the
next level. In Figure 3, s sends 3 tickets down each of its
outgoing links. Since A has more outgoing links (3) than
its remaining tickets (2), link A→D receives no tickets.
Tickets are not distributed to links between nodes at the
same level (B→A) or to links from a higher to lower level
(E→B). The final number of tickets distributed on each
link is shown in Figure 3. Except for immediate outgoing
edges from the vote collector, the capacity value of each
link is equal to the amount of tickets it receives plus one.

5.2 Approximate Max-flow calculation
Once capacity assignment is done, the task remains to cal-
culate the set of max-flow paths from the vote collector to
all voters on a given object. It is possible to use existing
max-flow algorithms such as Ford-Fulkerson and Preflow
push [4] to compute vote flows. Unfortunately, these ex-
isting algorithms require O(E) running time to find each
vote flow, where E is the number of edges in the graph.
Since vote aggregation only aims to collect a large fraction
of honest votes, it is not necessary to compute exact max-
flow paths. In particular, we can exploit the structure of
capacity assignment to compute a set of approximate vote
flows in O(∆) time, where ∆ is the diameter of the graph.
For expander-like networks, ∆ = O(log n). For practical
social networks with a few million users, ∆ ≈ 20.

Our approximation algorithm works incrementally by
finding one vote flow for a voter at a time. Unlike the
classic Ford-Fulkerson algorithm, our approximation per-
forms a greedy search from the voter to the collector in
O(∆) time instead of a breadth-first-search from the col-
lector which takes O(E) running time. Starting at a voter,
the greedy search strategy attempts to explore a node at
a lower level if there exists an incoming link with posi-
tive capacity. Since it is not always possible to find such
a candidate for exploration, the approximation algorithm
allows a threshold (t) of non-greedy steps which explores
nodes at the same or a higher level. Therefore, the num-
ber of nodes visited by the greedy search is bounded by
(∆ + 2t). Greedy search works well in practice. For links
within the vote envelope, there is more capacity for lower-
level links and hence greedy search is more likely to find
a non-zero capacity path by exploring lower-level nodes.
For links outside the vote envelope, greedy search results
in short paths to one of the vote entry points.

5.3 Optimization via link pruning
We introduce an optimization strategy that performs link
pruning to reduce the number of attack edges, thereby re-
ducing the attack capacity. Pruning is performed prior to
link capacity assignment and its goal is to bound the in-
degree of each node to a small value, din thres. As a re-
sult, the number of attack edges is reduced if some ad-
versarial nodes have more than din thres incoming edges
from honest nodes. We speculate that the more honest

neighbors an adversarial node has, the easier for it to trick
an honest node into trusting it. Therefore, the number of
attack edges in the pruned network is likely to be smaller
than those in the original network. On the other hand,
pruning is unlikely to affect honest users since each honest
node only attempts to cast one vote via one of its incoming
links.

Since it is not possible to accurately discern honest
identities from Sybil identities, we give all identities the
chance to have their votes collected. In other words, prun-
ing should never disconnect a node. The minimally con-
nected network that satisfies this requirement is a tree
rooted at the vote collector. A tree topology minimizes
attack edges but is also overly restrictive for honest nodes
because each node has exactly one path from the collec-
tor: if that path is saturated, a vote cannot be collected.
A better tradeoff is to allow each node to have at most
din thres > 1 incoming links in the pruned network
so that honest nodes have a large set of diverse paths
while limiting each adversarial node to only din thres at-
tack edges. We examine the specific parameter choice of
din thres in Section 7.

Pruning each node to have at most din thres incoming
links is done in several steps. First, we remove all links ex-
cept those connecting nodes at a lower level (l) to neigh-
bors at the next level (l+ 1). Next, we remove a subset of
incoming links at each node so that the remaining links do
not exceed din thres. In the third step, we add back links
removed in step one for nodes with fewer than din thres

incoming links. Finally, we add one outgoing link back
to nodes that have no outgoing links after step three, with
priority given to links going to the next level. By preferen-
tially preserving links from lower to higher levels, pruning
does not interfere with SumUp’s capacity assignment and
flow computation.

5.4 Security Properties
This section provides a formal analysis of the security
properties of SumUp assuming an expander graph. Vari-
ous measurement studies have shown that social networks
are indeed expander-like [13]. The link pruning optimiza-
tion does not destroy a graph’s expander property because
it preserves the level of each node in the original graph.

Our analysis provides bounds on the expected attack
capacity, CA, and the expected fraction of votes collected
if Cmax honest users vote. The average-case analysis
assumes that each attack edge is a random link in the
graph. For personalized vote aggregation, the expectation
is taken over all vote collectors which include all honest
nodes. In the unfortunate but rare scenario where an ad-
versarial node is close to the vote collector, we can use
feedback to re-adjust link capacities (Section 6).

Theorem 5.1 Given that the trust network G on n nodes
is a bounded degree expander graph, the expected capac-
ity per attack edge is E(CA)

eA
= 1 + O(Cmax

n
logCmax)
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which is 1 + o(1) if Cmax = O(nα) for α < 1. If
eA · Cmax ≪ n, the capacity per attack edge is bounded
by 1 with high probability.

Proof Sketch Let Li represent the number of nodes at
level i with L0 = 1. Let Ei be the number of edges point-
ing from level i − 1 to level i. Notice that Ei ≥ Li. Let
Ti be the number of tickets propagated from level i − 1
to i with T0 = Cmax. The number of tickets at each level
is reduced by the number of nodes at the previous level
(i.e. Ti = Ti−1 − Li−1). Therefore, the number of lev-
els with non-zero tickets is at most O(log(Cmax)) as Li

grows exponentially in an expander graph. For a randomly
placed attack edge, the probability of its being at level i is
at most Li/n. Therefore, the expected capacity of a ran-
dom attack edge can be calculated as 1 +

�
i(

Li

n
· Ti

Ei
) <

1+
�

i(
Li

n
· Cmax

Li
) = 1+O(Cmax

n
logCmax). Therefore,

if Cmax = O(nα) for α < 1, the expected attack capacity
per attack edge is 1 + o(1).

Since the number of nodes within the vote envelope is
at most Cmax, the probability of a random attack edge
being located outside the envelope is 1− Cmax

n
. Therefore,

the probability that any of the eA attack edges lies within
the vote envelope is 1−(1− Cmax

n
)eA < eA·Cmax

n
. Hence,

if eA · Cmax = nα where α < 1, the attack capacity is
bounded by 1 with high probability.

Theorem 5.1 is for expected capacity per attack edge.
In the worse case when the vote collector is adjacent to
some adversarial nodes, the attack capacity can be a sig-
nificant fraction of Cmax. Such rare worst case scenarios
are addressed in Section 6.

Theorem 5.2 Given that the trust network G on n nodes
is a d-regular expander graph, the expected fraction of
votes that can be collected out of Cmax honest voters is
d−λ2

d
(1−Cmax

n
) where λ2 is the second largest eigenvalue

of the adjacency matrix of G.

Proof Sketch SumUp creates a vote envelop consisting
of Cmax entry points via which votes are collected. To
prove that there exists a large fraction of vote flows, we
argue that the minimum cut of the graph between the set
of Cmax entry points and an arbitrary set of Cmax honest
voters is large.

Expanders are well-connected graphs. In particular, the
Expander mixing lemma [19] states that for any set S and
T in a d-regular expander graph, the expected number of
edges between S and T is (d − λ2)|S| · |T |/n, where
λ2 is the second largest eigenvalue of the adjacency ma-
trix of G. Let S be a set of nodes containing Cmax en-
try points and T be a set of nodes containing Cmax hon-
est voters, thus |S| + |T | = n and |S| ≥ Cmax, |T | ≥
Cmax. Therefore, the min-cut value between S and T is
= (d− λ2)|S| · |T |/n ≥ (d− λ2) ·Cmax(n−Cmax)/n.
The number of vote flows between S and T is at least 1/d

of the min-cut value because each vote flow only uses one
of an honest voter’s d incoming links. Therefore, the frac-
tion of votes that can be collected is at least (d − λ2) ·
Cmax(n − Cmax)/(n · d · Cmax) = d−λ2

d
(1 − Cmax

n
).

For well-connected graphs like expanders, λ2 is well sep-
arated from d, so that a significant fraction of votes can be
collected.

5.5 Setting C
max

adaptively
When nv honest users vote on an object, SumUp should
ideally set Cmax to be nv in order to collect a large frac-
tion of honest votes on that object. In practice, nv/n is
very small for any object, even a very popular one. Hence,
Cmax = nv ≪ n and the expected capacity per attack
edge is 1. We note that even if nv ≈ n, the attack capacity
is still bounded by O(log n) per attack edge.

It is impossible to precisely calculate the number of
honest votes (nv). However, we can use the actual num-
ber of votes collected by SumUp as a lower bound esti-
mate for nv. Based on this intuition, SumUp adaptively
sets Cmax according to the number of votes collected for
each object. The adaptation works as follows: For a given
object, SumUp starts with a small initial value for Cmax,
e.g. Cmax = 100. Subsequently, if the number of actual
votes collected exceeds ρCmax where ρ is a constant less
than 1, SumUp doubles the Cmax in use and re-runs the
capacity assignment and vote collection procedures. The
doubling of Cmax continues until the number of collected
votes becomes less than ρCmax.

We show that this adaptive strategy is robust, i.e. the
maximum value of the resulting Cmax will not dramati-
cally exceed nv regardless of the number of bogus votes
cast by adversarial nodes. Since adversarial nodes at-
tempt to cast enough bogus votes to saturate attack ca-
pacity, the number of votes collected is at most nv + CA

where CA = eA(1 + Cmax

n
logCmax). The doubling of

Cmax stops when the number of collected votes is less
than ρCmax. Therefore, the maximum value of Cmax that
stops the adaptation is one that satisfies the following in-
equality:

nv + eA(1 +
Cmax

n
logCmax) < ρCmax

Since logCmax ≤ logn, the adaptation terminates with
C′

max = (nv + eA)/(ρ− log n
n

). As ρ≫ log n
n

, we derive
C′

max = 1
ρ
(nv+eA). The adaptive strategy doublesCmax

every iteration, hence it overshoots by at most a factor
of two. Therefore, the resulting Cmax found is Cmax =
2
ρ
(nv + eA). As we can see, the attacker can only affect

the Cmax found by an additive factor of eA. Since eA is
small, the attacker has negligible influence on the Cmax

found.
The previous analysis is done for the expected case with

random attack edges. Even in a worst case scenario where
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some attack edges are very close to the vote collector, the
adaptive strategy is still resilient against manipulation. In
the worst case scenario, the attack capacity is proportional
to Cmax, i.e. CA = xCmax. Since no vote aggregation
scheme can defend against an attacker who controls a ma-
jority of immediate links from the vote collector, we are
only interested in the case where x < 0.5. The adap-
tive strategy stops increasing Cmax when nv + xCmax <
ρCmax, thus resulting in Cmax ≤ 2nv

ρ−x
. As we can see, ρ

must be greater than x to prevent the attacker from caus-
ing SumUp to increaseCmax to infinity. Therefore, we set
ρ = 0.5 by default.

6 Leveraging user feedback
The basic design presented in Section 5 does not address
the worst case scenario where CA could be much higher
than eA. Furthermore, the basic design only bounds the
number of bogus votes collected on a single object. As
a result, adversaries can still cast up to eA bogus votes
on every object in the system. In this section, we utilize
feedback to address both problems.

SumUp maintains a penalty value for each link and uses
the penalty in two ways. First, we adjust each link’s ca-
pacity assignment so that links with higher penalties have
lower capacities. This helps reduce CA when some attack
edges happen to be close to the vote collector. Second, we
eliminate links whose penalties have exceeded a certain
threshold. Therefore, if adversaries continuously misbe-
have, the attack capacity will drop below eA over time.
We describe how SumUp calculates and uses penalty in
the rest of the section.

6.1 Incorporating negative feedback
The vote collector can choose to associate negative feed-
back with voters if he believes their votes are malicious.
Feedback may be performed for a very small set of
objects-for example, when the collector finds out that an
object is a bogus file or a virus.

SumUp keeps track of a penalty value, pi, for each link
i in the trust network. For each voter receiving negative
feedback, SumUp increments the penalty values for all
links along the path to that voter. Specifically, if the link
being penalized has capacity ci, SumUp increments the
link’s penalty by 1/ci. Scaling the increment by ci is intu-
itive; links with high capacities are close to the vote col-
lector and hence are more likely to propagate some bogus
votes even if they are honest links. Therefore, SumUp im-
poses a lesser penalty on high capacity links.

It is necessary to penalize all links along the path in-
stead of just the immediate link to the voter because that
voter might be a Sybil identity created by some other at-
tacker along the path. Punishing a link to a Sybil identity
is useless as adversaries can easily create more such links.
This way of incorporating negative feedback is inspired
by Ostra [18]. Unlike Ostra, SumUp uses a customized

flow network per vote collector and only allows the col-
lector to incorporate feedback for its associated network
in order to ensure that feedback is always trustworthy.

6.2 Capacity adjustment
The capacity assignment in Section 5.1 lets each node dis-
tribute incoming tickets evenly across all outgoing links.
In the absence of feedback, it is reasonable to assume that
all outgoing links are equally trustworthy and hence to
assign them the same number of tickets. When negative
feedback is available, a node should distribute fewer tick-
ets to outgoing links with higher penalty values. Such ad-
justment is particularly useful in circumstances where ad-
versaries are close to the vote collector and hence might
receive a large number of tickets.

The goal of capacity adjustment is to compute a weight,
w(pi), as a function of the link’s penalty. The num-
ber of tickets a node distributes to its outgoing link i
is proportional to the link’s weight, i.e. ti = tout ∗
w(pi)/

�
∀i∈nbrsw(pi). The question then becomes how

to computew(pi). Clearly, a link with a high penalty value
should have a smaller weight, i.e. w(pi)<w(pj) if pi>pi.
Another desirable property is that if the penalties on two
links increase by the same amount, the ratio of their
weights remains unchanged. In other words, the weight
function should satisfy: ∀p′, pi, pj ,

w(pi)
w(pj)

= w(pi+p′)
w(pj+p′) .

This requirement matches our intuition that if two links
have accumulated the same amount of additional penal-
ties over a period of time, the relative capacities between
them should remain the same. Since the exponential func-
tion satisfies both requirements, we use w(pi) = 0.2pi by
default.

6.3 Eliminating links using feedback
Capacity adjustment cannot reduce the attack capacity to
below eA since each link is assigned a minimum capacity
value of one. To further reduce eA, we eliminate those
links that received high amounts of negative feedback.

We use a heuristic for link elimination: we remove a
link if its penalty exceeds a threshold value. We use a de-
fault threshold of five. Since we already prune the trust
network (Section 5.3) before performing capacity assign-
ment, we add back a previously pruned link if one exists
after eliminating an incoming link. The reason why link
elimination is useful can be explained intuitively: if adver-
saries continuously cast bogus votes on different objects
over time, all attack edges will be eliminated eventually.
On the other hand, although an honest user might have
one of its incoming links eliminated because of a down-
stream attacker casting bad votes, he is unlikely to expe-
rience another elimination due to the same attacker since
the attack edge connecting him to that attacker has also
been eliminated. Despite this intuitive argument, there al-
ways exist pathological scenarios where link elimination
affects some honest users, leaving them with no voting
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Network Nodes Edges Degree Directed?
×1000 ×1000 50%(90%)

YouTube [18] 446 3,458 2 (12) No
Flickr [17] 1,530 21,399 1 (15) Yes
Synthetic [24] 3000 24,248 6 (15) No

Table 1: Statistics of the social network traces or synthetic
model used for evaluating SumUp. All statistics are for the
strongly connected component (SCC).

power. To address such potential drawbacks, we re-enact
eliminated links at a slow rate over time. We evaluate the
effect of link elimination in Section 7.

7 Evaluation
In this section, we demonstrate SumUp’s security prop-
erty using real-world social networks and voting traces.
Our key results are:

1. For all networks under evaluation, SumUp bounds
the average number of bogus votes collected to be no
more than eA while being able to collect >90% of
honest votes when less than 1% of honest users vote.

2. By incorporating feedback from the vote collector,
SumUp dramatically cuts down the attack capacity
for adversaries that continuously cast bogus votes.

3. We apply SumUp to the voting trace and social net-
work of Digg [1], a news aggregation site that uses
votes to rank user-submitted news articles. SumUp
has detected hundreds of suspicious articles that have
been marked as “popular” by Digg. Based on man-
ual sampling, we believe at least 50% of suspicious
articles found by SumUp exhibit strong evidence of
Sybil attacks.

7.1 Experimental Setup
For the evaluation, we use a number of network datasets
from different online social networking sites [17] as well
as a synthetic social network [24] as the underlying trust
network. SumUp works for different types of trust net-
works as long as an attacker cannot obtain many attack
edges easily in those networks. Table 1 gives the statis-
tics of various datasets. For undirected networks, we treat
each link as a pair of directed links. Unless explicitly men-
tioned, we use the YouTube network by default.

To evaluate the Sybil-resilience of SumUp, we inject
eA = 100 attack edges by adding 10 adversarial nodes
each with links from 10 random honest nodes in the net-
work. The attacker always casts the maximum bogus votes
to saturate his capacity. Each experimental run involves
a randomly chosen vote collector and a subset of nodes
which serve as honest voters. SumUp adaptively adjusts
Cmax using an initial value of 100 and ρ = 0.5. By de-
fault, the threshold of allowed non-greedy steps is 20. We
plot the average statistic across five experimental runs in
all graphs. In Section 7.6, we apply SumUp on the real
world voting trace of Digg to examine how SumUp can
be used to resist Sybil attacks in the wild.
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Figure 4: The average capacity per attack edge as a function
of the fraction of honest nodes that vote. The average capacity
per attack edge remains close to 1, even if 1/10 of honest nodes
vote.

7.2 Sybil-resilience of the basic design

The main goal of SumUp is to limit attack capacity while
allowing honest users to vote. Figure 4 shows that the
average attack capacity per attack edge remains close to
1 even when the number of honest voters approaches
10%. Furthermore, as shown in Figure 5, SumUp man-
ages to collect more than 90% of all honest votes in all
networks. Link pruning is disabled in these experiments.
The three networks under evaluation have very different
sizes and degree distributions (see Table 1). The fact that
all three networks exhibit similar performance suggests
that SumUp is robust against the topological details. Since
SumUp adaptively setsCmax in these experiments, the re-
sults also confirm that adaptation works well in finding a
Cmax that can collect most of the honest votes without
significantly increasing attack capacity. We point out that
the results in Figure 4 correspond to a random vote collec-
tor. For an unlucky vote collector close to an attack edge,
he may experience a much larger than average attack ca-
pacity. In personalized vote collection, there are few un-
lucky collectors. These unlucky vote collectors need to
use their own feedback on bogus votes to reduce attack
capacity.

Benefits of pruning: The link pruning optimization, in-
troduced in Section 5.3, further reduces the attack capac-
ity by capping the number of attack edges an adversarial
node can have. As Figure 6 shows, pruning does not af-
fect the fraction of honest votes collected if the threshold
din thres is greater than 3. Figure 6 represents data from
the YouTube network and the results for other networks
are similar. SumUp uses the default threshold (din thres)
of 3. Figure 7 shows that the average attack capacity is
greatly reduced when adversarial nodes have more than 3
attack edges. Since pruning attempts to restrict each node
to at most 3 incoming links, additional attack edges are
excluded from vote flow computation.



24 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1

fr
ac

 o
f 

ho
ne

st
 v

ot
es

 c
ol

le
ct

ed

Number of honest voters / total nodes

YouTube
Flickr

Synthetic

Figure 5: The fraction of votes collected as a function of frac-
tion of honest nodes that vote. SumUp collects more than 80%

votes, even 1/10 honest nodes vote.
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Figure 7: Average attack capacity per attack edge decreases as
the number of attack edges per adversary increases.
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Figure 9: The running time of one vote collector gathering up
to 1000 votes. The Ford-Fulkerson max-flow algorithm takes 50

seconds to collect 1000 votes for the YouTube graph.

7.3 Effectiveness of greedy search

SumUp uses a fast greedy algorithm to calculate approx-
imate max vote flows to voters. Greedy search enables
SumUp to collect a majority of votes while using a small
threshold (t) of non-greedy steps. Figure 8 shows the frac-
tion of honest votes collected for the pruned YouTube
graph. As we can see, with a small threshold of 20, the
fraction of votes collected is more than 80%. Even when
disallowing non-greedy steps completely, SumUp man-
ages to collect > 40% of votes.

Figure 9 shows the running time of greedy-search for
different networks. The experiments are performed on
a single machine with an AMD Opteron 2.5GHz CPU
and 8GB memory. SumUp takes around 5ms to collect
1000 votes from a single vote collector on YouTube and
Flickr. The synthetic network incurs more running time as
its links are more congested than those in YouTube and
Flickr. The average non-greedy steps taken in the syn-
thetic network is 6.5 as opposed to 0.8 for the YouTube
graph. Greedy-search dramatically reduces the flow com-
putation time. As a comparison, the Ford-Fulkerson max-
flow algorithm requires 50 seconds to collect 1000 votes
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Figure 10: Average attack capacity per attack edge as a function
of voters. SumUp is better than SybilLimit in the average case.

for the YouTube graph.

7.4 Comparison with SybilLimit

SybilLimit is a node admission protocol that leverages the
trust network to allow an honest node to accept other hon-
est nodes with high probability. It bounds the number of
Sybil nodes accepted to beO(log n). We can apply Sybil-
Limit for vote aggregation by letting each vote collector
compute a fixed set of accepted users based on the trust
network. Subsequently, a vote is collected if and only if it
comes from one of the accepted users. In contrast, SumUp
does not calculate a fixed set of allowed users; rather, it
dynamically determines the set of voters that count toward
each object. Such dynamic calculation allows SumUp to
settle on a small Cmax while still collecting most of the
honest votes. A small Cmax allows SumUp to bound at-
tack capacity by eA.

Figure 10 compares the average attack capacity in
SumUp to that of SybilLimit for the un-pruned YouTube
network. The attack capacity in SybilLimit refers to the
number of Sybil nodes that are accepted by the vote col-
lector. Since SybilLimit aims to accept nodes instead of
votes, its attack capacity remains O(log n) regardless of
the number of actual honest voters. Our implementation
of SybilLimit uses the optimal set of parameters (w = 15,
r = 3000) we determined manually. As Figure 10 shows,
while SybilLimit allows 30 bogus votes per attack edge,
SumUp results in approximately 1 vote per attack edge
when the fraction of honest voters is less than 10%. When
all nodes vote, SumUp leads to much lower attack ca-
pacity than SybilLimit even though both have the same
O(log n) asymptotic bound per attack edge. This is due
to two reasons. First, SumUp’s bound of 1 + logn in
Theorem 5.1 is a loose upper bound of the actual aver-
age capacity. Second, since links pointing to lower-level
nodes are not eligible for ticket distribution, many incom-
ing links of an adversarial nodes have zero tickets and thus
are assigned capacity of one.
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Figure 11: The change in attack capacity as adversaries contin-
uously cast bogus votes (YouTube graph). Capacity adjustment
and link elimination dramatically reduce CA while still allowing
SumUp to collect more than 80% of the honest votes.

7.5 Benefits of incorporating feedback
We evaluate the benefits of capacity adjustment and link
elimination when the vote collector provides feedback
on the bogus votes collected. Figure 11 corresponds to
the worst case scenario where one of the vote collec-
tor’s four outgoing links is an attack edge. At every time
step, there are 400 random honest users voting on an ob-
ject and the attacker also votes with its maximum capac-
ity. When collecting votes on the first object at time step
1, adaption results in Cmax = 2nv

ρ−x
= 3200 because

nv = 400, ρ = 0.5, x = 1/4. Therefore, the attacker man-
ages to cast 1

4Cmax = 800 votes and outvote honest users.
After incorporating the vote collector’s feedback after the
first time step, the adjacent attack edge incurs a penalty
of 1 which results in drastically reduced CA (97). If the
vote collector continues to provide feedback on malicious
votes, 90% of attack edges are eliminated after only 12
time steps. After another 10 time steps, all attack edges
are eliminated, reducingCA to zero. However, because of
our decision to slowly add back eliminated links, the at-
tack capacity doesn’t remains at zero forever. Figure 11
also shows that link elimination has little effects on hon-
est nodes as the fraction of honest votes collected always
remains above 80%.

7.6 Defending Digg against Sybil attacks
In this section, we ask the following questions: Is there
evidence of Sybil attacks in real world content voting sys-
tems? Can SumUp successfully limit bogus votes from
Sybil identities? We apply SumUp to the voting trace and
social network crawled from Digg to show the real world
benefits of SumUp.

Digg [1] is a popular news aggregation site where any
registered user can submit an article for others to vote on.
A positive vote on an article is called a digg. A negative
vote is called a bury. Digg marks a subset of submitted ar-
ticles as “popular” articles and displays them on its front
page. In subsequent discussions, we use the terms pop-
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Number of Nodes 3,002,907
Number of Edges 5,063,244
Number of Nodes in SCC 466,326
Number of Edges in SCC 4,908,958
Out degree avg(50%, 90%) 10(1, 9)
In degree avg(50%, 90%) 10(2, 11)
Number of submitted (popular) articles 6,494,987
2004/12/01-2008/09/21 (137,480)
Diggs on all articles
avg(50%, 90%) 24(2, 15)
Diggs on popular articles
avg(50%, 90%) 862(650, 1810)
Hours since submission before a popular
article is marked as popular.
avg (50,%,90%) 16(13, 23)
Number of submitted (popular) articles 38,033
with bury data available (5,794)
2008/08/13-2008/09/15

Table 2: Basic statistics of the crawled Digg dataset. The
strongly connected component (SCC) of Digg consists of
466,326 nodes.
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Figure 12: Distribution of diggs for all popular articles before
being marked as popular and for all articles within 24 hours after
submission.

ular or popularity only to refer to the popularity status
of an article as marked by Digg. A Digg user can cre-
ate a “follow” link to another user if he wants to browse
all articles submitted by that user. We have crawled Digg
to obtain the voting trace on all submitted articles since
Digg’s launch (2004/12/01-2008/09/21) as well as the
complete “follow” network between users. Unfortunately,
unlike diggs, bury data is only available as a live stream.
Furthermore, Digg does not reveal the user identity that
cast a bury, preventing us from evaluating SumUp’s feed-
back mechanism. We have been streaming bury data since
2008/08/13. Table 2 shows the basic statistics of the Digg
“follow” network and the two voting traces, one with bury
data and one without. Although the strongly connected
component (SCC) consists of only 15% of total nodes,
88% of votes come from nodes in the SCC.

There is enormous incentive for an attacker to get a sub-
mitted article marked as popular, thus promoting it to the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

CD
F

diggs collected by SumUp / diggs before becoming popular

popular articles

Figure 13: The distribution of the fraction of diggs collected by
SumUp over all diggs before an article is marked as popular.

front page of Digg which has several million page views
per day. Our goal is to apply SumUp on the voting trace
to reduce the number of successful attacks on the popu-
larity marking mechanism of Digg. Unfortunately, unlike
experiments done in Section 7.2 and Section 7.5, there is
no ground truth about which Digg users are adversaries.
Instead, we have to use SumUp itself to find evidence of
attacks and rely on manual sampling and other types of
data to cross check the correctness of results.

Digg’s popularity ranking algorithm is intentionally not
revealed to the public in order to mitigate gaming of the
system. Nevertheless, we speculate that the number of
diggs is a top contributor to an article’s popularity status.
Figure 12 shows the distribution of the number of diggs
an article received before it was marked as popular. Since
more than 90% of popular articles are marked as such
within 24 hours after submission, we also plot the number
of diggs received within 24 hours of submission for all ar-
ticles. The large difference between the two distributions
indicates that the number of diggs plays an important role
in determining an article’s popularity status.

Instead of simply adding up the actual number of diggs,
what if Digg uses SumUp to collect all votes on an article?
We use the identity of Kevin Rose, the founder of Digg,
as the vote collector to aggregate all diggs on an article
before it is marked as popular. Figure 13 shows the distri-
bution of the fraction of votes collected by SumUp over
all diggs before an article is marked as popular. Our pre-
vious evaluation on various network topologies suggests
that SumUp should be able to collect at least 90% of all
votes. However, in Figure 13, there are a fair number of
popular articles with much fewer than the expected frac-
tion of diggs collected. For example, SumUp only man-
ages to collect less than 50% of votes for 0.5% of popu-
lar articles. We hypothesize that the reason for collecting
fewer than the expected votes is due to real world Sybil
attacks.

Since there is no ground truth data to verify whether
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Threshold of the 20% 30% 40% 50%

fraction of collected diggs
# of suspicious articles 41 131 300 800

Advertisement 5 4 2 1
Phishing 1 0 0 0

Obscure political articles 2 2 0 0
Many newly registered voters 11 7 8 10

Fewer than 50 total diggs 1 3 6 4
No obvious attack 10 14 14 15

Table 3: Manual classification of 30 randomly sampled suspi-
cious articles. We use different thresholds of the fraction of col-
lected diggs for marking suspicious articles. An article is labeled
as having many new voters if > 30% of its votes are from users
who registered on the same day as the article’s submission date.

few collected diggs are indeed the result of attacks, we
resort to manual inspection. We classify a popular article
as suspicious if its fraction of diggs collected is less than
a given threshold. Table 3 shows the result of manually
inspecting 30 random articles out of all suspicious arti-
cles. The random samples for different thresholds are cho-
sen independently. There are a number of obvious bogus
articles such as advertisements, phishing articles and ob-
scure political opinions. Of the remaining, we find many
of them have an unusually large fraction (>30%) of new
voters who registered on the same day as the article’s sub-
mission time. Some articles also have very few total diggs
since becoming popular, a rare event since an article typi-
cally receives hundreds of votes after being shown on the
front page of Digg. We find no obvious evidence of at-
tack for roughly half of the sampled articles. Interviews
with Digg attackers [10] reveal that, although there is a
fair amount of attack activities on Digg, attackers do not
usually promote obviously bogus material. This is likely
due to Digg being a highly monitored system with fewer
than a hundred articles becoming popular every day. In-
stead, attackers try to help paid customers promote nor-
mal or even good content or to boost their profiles within
the Digg community.

As further evidence that a lower than expected fraction
of collected diggs signals a possible attack, we examine
Digg’s bury data for articles submitted after 2008/08/13,
of which 5794 are marked as popular. Figure 14 plots the
correlation between the average number of bury votes on
an article after it became popular vs. the fraction of the
diggs SumUp collected before it was marked as popular.
As Figure 14 reveals, the higher the fraction of diggs col-
lected by SumUp, the fewer bury votes an article received
after being marked as popular. Assuming most bury votes
come from honest users that genuinely dislike the article,
a large number of bury votes is a good indicator that the
article is of dubious quality.

What are the voting patterns for suspicious articles?
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Figure 14: The average number of buries an article received
after it was marked as popular as a function of the fraction of
diggs collected by SumUp before it is marked as popular. The
Figure covers 5, 794 popular articles with bury data available.

Since 88% diggs come from nodes within the SCC, we
expect only 12% of diggs to originate from the rest of the
network, which mostly consists of nodes with no incom-
ing follow links. For most suspicious articles, the reason
that SumUp collecting fewer than expected diggs is due
to an unusually large fraction of votes coming from out-
side the SCC component. Since Digg’s popularity mark-
ing algorithm is not known, attackers might not bother to
connect their Sybil identities to the SCC or to each other.
Interestingly, we found 5 suspicious articles with sophis-
ticated voting patterns where one voter is linked to many
identities (∼ 30) that also vote on the same article. We be-
lieve the many identities behind that single voter are likely
Sybil identities because those identities were all created
on the same day as the article’s submission. Additionally,
those identities all have similar usernames.

8 SumUp in a Decentralized Setting
Even though SumUp is presented in a centralized setup
such as a content-hosting Web site, it can also be imple-
mented in a distributed fashion in order to rank objects
in peer-to-peer systems. We outline one such distributed
design for SumUp. In the peer-to-peer environment, each
node and its corresponding user is identified by a self-
generated public key. A pair of users create a trust link
relationship between them by signing the trust statement
with their private keys. Nodes gossip with each other or
perform a crawl of the network to obtain a complete trust
network between any pair of public keys. This is differ-
ent from Ostra [18] and SybilLimit [26] which address
the harder problem of decentralized routing where each
user only knows about a small neighborhood around him-
self in the trust graph. In the peer-to-peer setup, each user
naturally acts as his own vote collector to aggregate votes
and compute a personalized ranking of objects. To obtain
all votes on an object, a node can either perform flooding
(like in Credence [25]) or retrieve votes stored in a dis-
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tributed hash table. In the latter case, it is important that
the DHT itself be resilient against Sybil attacks. Recent
work on Sybil-resilient DHTs [5, 14] addresses this chal-
lenge.

9 Conclusion
This paper presented SumUp, a content voting system
that leverages the trust network among users to defend
against Sybil attacks. By using the technique of adaptive
vote flow aggregation, SumUp aggregates a collection of
votes with strong security guarantees: with high proba-
bility, the number of bogus votes collected is bounded
by the number of attack edges while the number of hon-
est votes collected is high. We demonstrate the real-world
benefits of SumUp by evaluating it on the voting trace of
Digg: SumUp detected many suspicious articles marked
as “popular” by Digg. We have found strong evidence of
Sybil attacks on many of these suspicious articles.
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