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Abstract
Workload generators may be classified as based on a
closed system model, where new job arrivals are only
triggered by job completions (followed by think time),
or an open system model, where new jobs arrive inde-
pendently of job completions. In general, system design-
ers pay little attention to whether a workload generator is
closed or open.

Using a combination of implementation and simula-
tion experiments, we illustrate that there is a vast differ-
ence in behavior between open and closed models in real-
world settings. We synthesize these differences into eight
simple guiding principles, which serve three purposes.
First, the principles specify how scheduling policies are
impacted by closed and open models, and explain the dif-
ferences in user level performance. Second, the prin-
ciples motivate the use of partly open system models,
whose behavior we show to lie between that of closed
and open models. Finally, the principles provide guide-
lines to system designers for determining which system
model is most appropriate for a given workload.

1 Introduction
Every systems researcher is well aware of the impor-
tance of setting up one’s experiment so that the system
being modeled is “accurately represented.” Represent-
ing a system accurately involves many things, includ-
ing accurately representing the bottleneck resource be-
havior, the scheduling of requests at that bottleneck, and
workload parameters such as the distribution of service
request demands, popularity distributions, locality dis-
tributions, and correlations between requests. However,
one factor that researchers typically pay little attention to
is whether the job arrivals obey a closed or an open sys-
tem model. In a closed system model, new job arrivals
are only triggered by job completions (followed by think
time), as in Figure 1(a). By contrast in an open system
model, new jobs arrive independently of job completions,
as in Figure 1(b).

Table 1 surveys the system models in a variety of
web related workload generators used by systems re-
searchers today. The table is by no means complete;
however it illustrates the wide range of workload gen-
erators and benchmarks available. Most of these gen-
erators/benchmarks assume a closed system model, al-
though a reasonable fraction assume an open one. For
many of these workload generators, it was quite difficult
to figure out which system model was being assumed –
the builders often do not seem to view this as an impor-
tant factor worth mentioning in the documentation. Thus
the “choice” of a system model (closed versus open) is
often not really a researcher’s choice, but rather is dic-
tated by the availability of the workload generator. Even
when a user makes a conscious choice to use a closed
model, it is not always clear how to parameterize the
closed system (e.g. how to set the think time and the
multiprogramming level – MPL) and what effect these
parameters will have.

In this paper, we show that closed and open system
models yield significantly different results, even when
both models are run with the same load and service de-
mands. Not only is the measured response time differ-
ent under the two system models, but the two systems
respond fundamentally differently to varying parameters
and to resource allocation (scheduling) policies.

We obtain our results primarily via real-world imple-
mentations. Although the very simplest models of open
and closed systems can be compared analytically, analy-
sis alone is insufficient to capture the effect of many of
the complexities of modern computer systems, especially
size based scheduling and realistic job size distributions.
Real-world implementations are also needed to capture
the magnitude of the differences between closed and
open systems in practice. The case studies we consider
are described in Section 4. These include web servers re-
ceiving static HTTP requests in both a LAN and a WAN
setting; the back-end database in e-commerce applica-
tions; and an auctioning web site. In performing these
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Figure 1: Illustrations of the closed, open, and partly-open system models.

case studies, we needed to develop a flexible suite of
workload generators, simulators, and trace analysis tools
that can be used under closed, open, and other system
models. The details of this suite are also provided in Sec-
tion 4.

Our simulation and implementation experiments lead
us to identify eight principles, summarizing the observed
differences between open and closed system models,
many of which are not obvious. These principles may
be categorized by their area of impact.

The first set of principles (see Section 5.1) describe
the difference in mean response time under open and
closed system models and how various parameters af-
fect these differences. We find, for example, that for a
fixed load, the mean response time for an open system
model can exceed that for a closed system model by an
order of magnitude or more. Even under a high MPL,
the closed system model still behaves “closed” with re-
spect to mean response time, and there is still a signif-
icant difference between mean response times in closed
and open systems even for an MPL of 1000. With respect
to service demands (job sizes), while their variability has
a huge impact on response times in open systems, it has
much less of an effect in closed models. The impact of
these principles is that a system designer needs to beware
of taking results that were discovered under one system
model (e.g. closed model) and applying them to a second
system model (e.g. open model).

The second set of principles (see Section 5.2) deal with
the impact of scheduling on improving system perfor-
mance. Scheduling is a common mechanism for improv-
ing mean response time without purchasing additional
resources. While Processor-Sharing scheduling (PS) and
First-Come-First-Served (FCFS) are most commonly
used in computer systems, many system designs give
preference to short jobs (requests with small service de-
mands), applying policies like Non-Preemptive-Shortest-
Job-First (SJF) or Preemptive-Shortest-Job-First (PSJF)
to disk scheduling [51] and web server scheduling [19,
33, 15]. When system designers seek to evaluate a new
scheduling policy, they often try it out using a workload
generator and simulation test-bed. Our work will show

that, again, one must be very careful that one is correctly
modeling the application as closed or open, since the im-
pact of scheduling turns out to be very different under
open and closed models. For example, our principles
show that favoring short jobs is highly effective in im-
proving mean response time in open systems, while this
is far less true under a closed system model. We find
that closed system models only benefit from scheduling
under a narrow range of parameters, when load is mod-
erate and the MPL is very high. The message for system
designers is that understanding whether the workload is
better modeled with an open or closed system is essential
in determining the effectiveness of scheduling.

The third set of principles (see Section 6) deal with
partly-open systems. We observe that while workload
generators and benchmarks typically assume either an
open system model or a closed system model, neither
of these is entirely realistic. Many applications are best
represented using an “in-between” system model, which
we call the partly-open model. Our principles spec-
ify those parameter settings for which the partly-open
model behaves more like a closed model or more like
an open model with respect to response time. We also
find that, counter to intuition, parameters like think time
have almost no impact on the performance of a partly-
open model. The principles describing the behavior of
the partly-open system model are important because real-
world applications often fit best into partly-open models,
and the performance of these models is not well under-
stood. In particular, the effect of system parameters and
scheduling on performance in the partly open system –
points which our principles address – are not known.
Our results motivate the importance of designing versa-
tile workload generators that are able to support open,
closed, and partly open system models. We create such
versatile workload generators for several common sys-
tems, including web servers and database systems, and
use these throughout our studies.

The third set of principles also provides system de-
signers with guidelines for how to choose a system model
when they are forced to pick a workload generator that
is either purely closed or purely open, as are almost all
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Type of benchmark Name System model

Model-based web workload generator Surge [10], WaspClient [31], Geist [22], WebStone [47], Closed
WebBench [49], MS Web Capacity Analysis Tool [27]
SPECWeb96 [43], WAGON [23] Open

Playback mechanisms for HTTP request MS Web Application Stress Tool [28], Webjamma [2],
streams Hammerhead [39], Deluge [38], Siege [17] Closed

httperf [30], Sclient [9] Open
Proxy server benchmarks Wisconsin Proxy Benchmark [5], Web Polygraph [35], Ink-

tomi Climate Lab [18]
Closed

Database benchmark for e-commerce
workloads

TPC-W [46] Closed

Auction web site benchmark RUBiS[7] Closed
Online bulletin board benchmark RUBBoS[7] Closed
Database benchmark for online transac-
tion processing (OLTP)

TPC-C [45] Closed

Model-based packet level web traffic IPB (Internet Protocol Benchmark) [24], GenSyn [20] Closed
generators WebTraf [16], trafgen [14]

NS traffic generator [52] Open
Mail server benchmark SPECmail2001 [42] Open
Java Client/Server benchmark SPECJ2EE [41] Open
Web authentication and authorization AuthMark [29] Closed
Network file servers NetBench [48] Closed

SFS97 R1 (3.0) [40] Open
Streaming media service MediSyn [44] Open

Table 1: A summary table of the system models underlying standard web related workload generators.

workload generators (see Section 7). We consider ten
different workloads and use our principles to determine
for each workload which system model is most appropri-
ate for that workload: closed, open, or partly-open. To
the best of our knowledge, no such guide exists for sys-
tems researchers.

2 Closed, open, and partly-open systems
In this section, we define how requests are generated un-
der closed, open, and partly-open system models.

Figure 1(a) depicts a closed system configuration. In
a closed system model, it is assumed that there is some
fixed number of users, who use the system forever. This
number of users is typically called the multiprogramming
level (MPL) and denoted by N . Each of these N users
repeats these 2 steps, indefinitely: (a) submit a job, (b)
receive the response and then “think” for some amount
of time. In a closed system, a new request is only trig-
gered by the completion of a previous request. At all
times there are some number of users, Nthink, who are
thinking, and some number of users Nsystem, who are
either running or queued to run in the system, where
Nthink + Nsystem = N . The response time, T , in a
closed system is defined to be the time from when a re-
quest is submitted until it is received. In the case where
the system is a single server (e.g. a web server), the
server load, denoted by ρ, is defined as the fraction of

time that the server is busy, and is the product of the mean
throughput X and the mean service demand (processing
requirement) E[S].

Figure 1(b) depicts an open system configuration. In
an open system model there is a stream of arriving users
with average arrival rate λ. Each user is assumed to sub-
mit one job to the system, wait to receive the response,
and then leave. The number of users queued or running
at the system at any time may range from zero to infinity.
The differentiating feature of an open system is that a re-
quest completion does not trigger a new request: a new
request is only triggered by a new user arrival. As be-
fore, response time, T , is defined as the time from when
a request is submitted until it is completed. The server
load is defined as the fraction of time that the server is
busy. Here load, ρ, is the product of the mean arrival rate
of requests, λ, and the mean service demand E[S].

Neither the open system model nor the closed system
model is entirely realistic. Consider for example a web
site. On the one hand, a user is apt to make more than
one request to a web site, and the user will typically wait
for the output of the first request before making the next.
In these ways a closed system model makes sense. On
the other hand, the number of users at the site varies over
time; there is no sense of a fixed number of users N . The
point is that users visit to the web site, behave as if they
are in a closed system for a short while, and then leave
the system.
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Motivated by the example of a web site, we study a
more realistic alternative to the open and closed system
configurations: the partly-open system shown in Fig-
ure 1(c). Under the partly-open model, users arrive ac-
cording to some outside arrival process as in an open sys-
tem. However, every time a user completes a request at
the system, with probability p the user stays and makes
a followup request (possibly after some think time), and
with probability 1− p the user simply leaves the system.
Thus the expected number of requests that a user makes
to the system in a visit is Geometrically distributed with
mean 1/(1 − p). We refer to the collection of requests
a user makes during a visit to the system as a session
and we define the length of a session to be the number of
requests in the session/visit. The server load is the frac-
tion of time that the server is busy equaling the product
of the average outside arrival rate λ, the mean number
of requests per visit E[R], and the mean service demand
E[S]. For a given load, when p is small, the partly-open
model is more similar to an open model. For large p, the
partly-open model resembles a closed model.

3 Comparison methodology
In this section we discuss the relevant parameters and
metrics for both the open and the closed system models
and discuss how we set parameters in order to compare
open and closed system models.

Throughout the paper we choose the service demand
distribution to be the same for the open and the closed
system. In the case studies the service demand distri-
bution is either taken from a trace or determined by the
benchmark used in the experiments. In the model-based
simulation experiments later in the paper, we use hy-
perexponential service demands, in order to capture the
highly variable service distributions in web applications.
Throughout, we measure the variability in the service de-
mand distribution using the square coefficient of varia-
tion, C2. The think time in the closed system, Z , follows
an exponential distribution, and the arrival process in the
open system is either a Poisson arrival process with av-
erage rate λ, or is provided by traces.1 The results for
all simulations and experiments are presented in terms of
mean response times and the system load ρ. While we do
not explicitly report numbers for another important met-
ric, mean throughput, the interested reader can directly
infer those numbers by interpreting load as a simple scal-
ing of throughput. In an open system, the mean through-
put is simply equal to λ = ρ/E[S], which is the same as
throughput in a closed system.

1Note that we choose a Poisson arrival process (i.e. exponential
inter-arrival times) and exponential think times in order to allow the
open and closed systems to be as parallel as possible. This setting un-
derestimates the differences between the systems when more bursty
arrival processes are used.

In order to fairly compare the open and closed sys-
tems, we will hold the system load ρ for the two systems
equal, and study the effect of open versus closed system
models on mean response time. The load in the open sys-
tem is specified by λ, since ρ = λE[S]. Fixing the load
of a closed system is more complex, since the load is af-
fected by many parameters including the MPL, the think
time, the service demand variability, and the scheduling
policy. The fact that system load is influenced by many
more system parameters in a closed system than in an
open system is a surprising difference between the two
systems. Throughout, we will achieve a desired system
load by adjusting the think time of the closed system (see
Figure 7(a)), while holding all other parameters fixed.

The scheduling policies we study in this work span the
range of behaviors of policies that are used in computer
systems today.
FCFS (First-Come-First-Served) Jobs are processed in

the same order as they arrive.
PS (Processor-Sharing) The server is shared evenly

among all jobs in the system.
PESJF (Preemptive-Expected-Shortest-Job-First) The

job with the smallest expected duration (size) is
given preemptive priority.

SRPT (Shortest-Remaining-Processing-Time-First): At
every moment the request with the smallest remain-
ing processing requirement is given priority.

PELJF (Preemptive-Expected-Longest-Job-First) The
job with the longest expected size is given preemp-
tive priority. PELJF is an example of a policy that
performs badly and is included to understand the
full range of possible response times.

4 Real-world case studies
In this section, we compare the behavior of four differ-
ent applications under closed, open, and partly open sys-
tem models. The applications include (a) a web server
delivering static content in a LAN environment, (b) the
database back-end at an e-commerce web site, (c) the
application server at an auctioning web site, and (d) a
web server delivering static content in a WAN environ-
ment. These applications vary in many respects, includ-
ing the bottleneck resource, the workload properties (e.g.
job size variability), network effects, and the types of
scheduling policies considered. We study applications
(a), (b), and (d) through full implementation in a real test-
bed, while our study of application (c) relies on trace-
based simulation.

As part of the case studies, we develop a set of work-
load generators, simulators, and trace analysis tools that
facilitate experimentation with all three system mod-
els: open, closed, and partly-open. For implementation-
based case studies we extend the existing workload gen-
erator (which is based on only one system model) to
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enable all three system models. For the case studies
based on trace-driven simulation, we implement a versa-
tile simulator that models open, closed, and partly-open
systems and takes traces as input. We also develop tools
for analyzing web traces (in Common Logfile Format or
Squid log format) to extract the data needed to parame-
terize workload generators and simulators.

Sections 4.1 – 4.4 provide the details of the case stud-
ies. The main results are shown in Figures 2 and 4. For
each case study we first explain the tools developed for
experimenting in open, closed, and partly-open models.
We then then describe the relevant scheduling policies
and their implementation, and finally discuss the results.
The discussions at the end of the case studies are meant
only to highlight the key points; we will discuss the dif-
ferences between open, closed, and partly-open systems
and the impact of these differences in much more detail
in Sections 5 and 6.

4.1 Static web content
Our first case study is an Apache web server running on
Linux and serving static content, i.e. requests of the form
“Get me a file,” in a LAN environment. Our experimen-
tal setup involves six machines connected by a 10/100
Ethernet switch. Each machine has an Intel Pentium III
700 MHz processor and 256 MB RAM, and runs Linux.
One of the machines is designated as the server and runs
Apache. The others generate web requests based on a
web trace.

Workload generation: In this case study we generate
static web workloads based on a trace. Below we first
describe our workload generator which generates web re-
quests following an open, closed, or partly-open model.
We then describe the tool for analyzing web traces that
produces input files needed by the workload generator.
Finally we briefly describe the actual trace that we are
using in our work.

Our workload generator is built on top of the Sclient[9]
workload generator. The Sclient workload generator uses
a simple open system model, whereby a new request for
file y is made exactly every x msec. Sclient is designed
as a single process that manages all connections using
the select system call. After each call to select,
Sclient checks whether the current x msec interval has
passed and if so initiates a new request. We generalize
Sclient in several ways.

For the open system, we change Sclient to make re-
quests based on arrival times and filenames specified in
an input file. The entries in the input file are of the form
< ti, fi >, where ti is a time and fi is a file name.

For the closed system, the input file only specifies the
names of the files to be requested. To implement closed
system arrivals in Sclient, we have Sclient maintain a list
with the times when the next requests are to be made.

Entries to the list are generated during runtime as fol-
lows: Whenever a request completes, an exponentially
distributed think time Z is added to the current time tcurr

and the result Z + tcurr is inserted into the list of arrival
times.

In the case of the partly-open system, each entry in
the input file now defines a session, rather than an indi-
vidual request. An entry in the input file takes the form
< ti, fi1 , . . . , fin

> where ti specifies the arrival time of
the session and < fi1 , . . . , fin

> is the list of files to be
requested during the session. As before, a list with ar-
rival times is maintained according to which requests are
made. The list is initialized with the session arrival times
ti from the input file. To generate the arrivals within a
session, we use the same method as described for the
closed system above: after request fij−1

completes we
arrange the arrival of request fij

by adding an entry con-
taining the arrival time Z + tcurr to the list, where tcurr

is the current time and Z is an exponentially distributed
think time.

All the input files for the workload generator are cre-
ated based on a web trace. We modify the Webalizer tool
[12] to parse a web trace and then extract the information
needed to create the input files for the open, closed, and
partly-open system experiments. In the case of the open
system, we simply output the arrival times together with
the names of the requested files. In the case of the closed
system, we only extract the sequence of file names. Cre-
ating the input file for the partly-open system is slightly
more involved since it requires identifying the sessions
in a trace. A common approach for identifying sessions
(and the one taken by Webalizer) is to group all succes-
sive requests by the same client (i.e. same IP address)
into one session, unless the time between two requests
exceeds some timeout threshold in which case a new ses-
sion is started. In our experiments, we use the timeout
parameter to specify the desired average session length.

The trace we use consists of one day from the 1998
World Soccer Cup, obtained from the Internet Traffic
Archive [21]. Virtually all requests in this trace are static.

Number Mean Variability Min Max
of Req. size (C2) size size
4.5 · 106 5KB 96 41 bytes 2MB

Scheduling: Standard scheduling of static requests in a
web server is best modeled by processor sharing (PS).
However, recent research suggests favoring requests for
small files can improve mean response times at web
servers [19]. In this section we therefore consider both
PS and SRPT policies.

We have modified the Linux kernel and the Apache
Web server to implement SRPT scheduling at the server.
For static HTTP requests, the network (access link out of
the server) is typically the bottleneck resource. Thus, our
solution schedules the bandwidth on this access link by
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Figure 2: Results for real-world case studies. Each row shows the results for a real-world workload and each column shows the
results for one of the system models. In all experiments with the closed system model the MPL is 50. The partly-open system is run
at fixed load 0.9.

controlling the order in which the server’s socket buffers
are drained. Traditionally, the socket buffers are drained
in Round-Robin fashion (similar to PS); we instead give
priority to sockets corresponding to connections where
the remaining data to be transferred is small. Figure 3
shows the flow of data in Linux after our modifications.
There are multiple priority queues and queue i may only

Socket 1

Socket 2

Socket 3

TCP
proc.

IP
proc.

TCP
proc.

IP
proc.

TCP
proc.

IP
proc.

1st Priority Queue

2nd Priority Queue

Ethernet Card

Network
Wire

first!

second.

feed

feed

Figure 3: Flow of data in Linux with SRPT-like scheduling
(only 2 priority levels shown).

drain if queues 0 to i − 1 are empty. The implementa-
tion is enabled by building the Linux kernel with sup-
port for the user/kernel Netlink Socket, QOS and Fair
Queuing, and the Prio Pseudoscheduler and by using the
tc[6] user space tool. We also modify Apache to use
setsockopt calls to update the priority of the socket
as the remaining size of the transfer decreases. For de-
tails on our implementation see [19].

Synopsis of results: Figure 2(a) shows results from the

the static web implementation under closed, open, and
partly open workloads in a LAN environment. Upon first
glance, it is immediately clear that the closed system re-
sponse times are vastly different from the open response
times. In fact, the response times in the two systems are
orders of magnitude different under PS given a common
system load. Furthermore, SRPT provides little improve-
ment in the closed system, while providing dramatic im-
provement in the open system.

The third column of Figure 2(a) shows the results for
the partly-open system. Notice that when the mean num-
ber of requests is small, the partly-open system behaves
very much like the open system. However, as the mean
number of requests grows, the partly-open system be-
haves more like a closed system. Thus, the impact of
scheduling (e.g. SRPT over PS) is highly dependent on
the number of requests in the partly-open system.

4.2 E-commerce site
Our second case study considers the database back-end
server of an e-commerce site, e.g. an online bookstore.
We use a PostgreSQL[32] database server running on a
2.4-GHz Pentium 4 with 3GB RAM, running Linux 2.4,
with a buffer pool of 2GB. The machine is equipped with
two 120GB IDE drives, one used for the database log
and the other for the data. The workload is generated by
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four client machines having similar specifications to the
database server connected via a network switch.

Workload generation: The workload for the e-
commerce case study is based on the TPC-W [46] bench-
mark, which aims to model an online bookstore such as
Amazon.com. We build on the TPC-W kit provided by
the Pharm project [13]. The kit models a closed system
(in accordance with TPC-W guidelines) by creating one
process for each client in the closed system.

We extend the kit to also support an open system with
Poisson arrivals, and a partly-open system. We do so by
creating a master process that signals a client whenever
it is time to make a new request in the open system or to
start a new session in the partly-open system. The mas-
ter process repeats the following steps in a loop: it sleeps
for an exponential interarrival time, signals a client, and
draws the next inter-arrival time. The clients block wait-
ing for a signal from the master process. In the case of the
open system, after receiving the signal, the clients make
one request before they go back to blocking for the next
signal. In the case of the partly-open system, after receiv-
ing a signal, the clients generate a session by executing
the following steps in a loop: (1) make one request; (2)
flip a coin to decide whether to begin blocking for a sig-
nal from the master process or to generate an exponential
think time and sleep for that time.

TPC-W consists of 16 different transaction types in-
cluding the “ShoppingCart” transaction, the “Payment”
transaction, and others. Statistics of our configuration
are as shown:

Database Mean Variability Min Max
size size (C2) size size
3GB 101 ms 4 2 ms 5s

Scheduling: The bottleneck resource in our setup is the
CPU, as observed in [25]. The default scheduling pol-
icy is therefore best described as PS, in accordance with
Linux CPU scheduling. Note that in this application,
exact service demands are not known, so SRPT cannot
be implemented. Thus, we experiment with PESJF and
PELJF policies where the expected service demand of a
transaction is based on its type. The “Bestseller” transac-
tion, which makes up 10% of all requests, has on average
the largest service demand. Thus, we study 2-priority
PESJF and PELJF policies where the “Bestseller” trans-
actions are “expected to be long” and all other transac-
tions are “expected to be short.”

To implement the priorities needed for achieving
PESJF and PELJF, we modify our PostgreSQL server
as follows. We use the sched setscheduler()
system call to set the scheduling class of a Post-
greSQL process working on a high priority transaction
to “SCHED RR,” which marks a process as a Linux real-
time process. We leave the scheduling class of a low pri-

ority process at the standard “SCHED OTHER.” Real-
time processing in Linux always has absolute, preemp-
tive priority over standard processes.

Synopsis of results: Figure 2(b) shows results from the
e-commerce implementation described above. Again,
the difference in response times between the open and
closed systems is immediately apparent – the response
times of the two systems differ by orders of magnitude.
Interestingly, because the variability of the service de-
mands is much smaller in this workload than in the static
web workload, the impact of scheduling in the open sys-
tem is much smaller. This also can be observed in the
plot for the partly open system: even when the number
of requests is small, there is little difference between the
response times of the different scheduling policies.

4.3 Auctioning web site
Our third case study investigates an auctioning web site.
This case study uses simulation based on a trace from
one of the top-ten U.S. online auction sites.

Workload generation: For simulation-based case stud-
ies we implement a simulator that supports open, closed,
and partly-open arrival processes which are either cre-
ated based on a trace or are generated from probabil-
ity distributions. For a trace-based arrival process the
simulator expects the same input files as the workload
generator described in Section 4.1. If no trace for the
arrival process is available the simulator alternatively of-
fers (1) open system arrivals following a Poisson process;
(2) closed system arrivals with exponential think times;
(3) partly-open arrivals with session arrivals following a
Poisson process and think times within the sessions be-
ing exponentially distributed. The service demands can
either be specified through a trace or one of several prob-
ability distributions, including hyper-exponential distri-
butions and more general distributions.

For our case study involving an auctioning web site we
use the simulator and a trace containing the service de-
mands obtained from one of the top ten online auction-
ing sites in the US. No data on the request arrival process
is available. The characteristics of the service demands
recorded in the trace are summarized below:

Number Mean Variability Min Max
of jobs size (C2) size size
300000 0.09s 9.19 0.01s 50s

Scheduling: The policy used in a web site serving dy-
namic content, such as an auctioning web site, is best
modeled by PS. To study the effect of scheduling in this
environment we additionally simulate FCFS and PSJF.

Synopsis of results: Figure 2(c) shows results from the
auctioning trace-based case study described above. The
plots here illustrate the same properties that we observed
in the case of the static web implementation. In fact, the
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Figure 4: Effect of WAN conditions in the static web case
study. The top row shows results for good WAN conditions (av-
erage RTT=50ms, loss rate=1%) and the bottom row shows
results for poor WAN conditions (average RTT=100ms, loss
rate=4%). In both cases the closed system has an MPL of
200. Note that, due to network effects, the closed system can-
not achieve a load of 1, even when think time is zero. Under the
settings we consider here, the max achievable load is ≈ 0.98.

difference between the open and closed response times
is extreme, especially under FCFS. As a result, there
is more than a factor of ten improvement of PSJF over
FCFS (for ρ > 0.7), whereas there is little difference in
the closed system.

This effect can also be observed in the partly-open sys-
tem, where for a small number of requests per session
the response times are comparable to those in the open
system and for a large number of requests per session
the response times are comparable to those in the closed
system. The actual convergence rate depends on the vari-
ability of the service demands (C2). In particular, the e-
commerce case study (low C2) converges quickly, while
the static web and auctioning case studies (higher C2)
converge more slowly.

4.4 Study of WAN effects
To study the effect of network conditions, we return to
the case of static web requests (Section 4.1), but this time
we include the emulation of network losses and delays in
the experiments.
Workload generation: The setup and workload genera-
tion is identical to the case study of static web requests
(Section 4.1), except that we add functionality for emu-
lating WAN effects as follows. We implement a separate
module for the Linux kernel that can drop or delay in-
coming and outgoing TCP packets (similarly to Dum-
mynet [34] for FreeBSD). More precisely, we change
the ip rcv() and the ip output() functions in the
Linux TCP-IP stack to intercept in- and out-going pack-
ets to create losses and delays. In order to delay packets,

we use the add timer() facility to schedule the trans-
mission of delayed packets. We recompile the kernel
with HZ=1000 to get a finer-grained millisecond timer
resolution. In order to drop packets, we use an indepen-
dent, uniform random loss model which can be config-
ured to a specified probability, as in Dummynet.
Synopsis of results: Figure 4 compares the response
times of the closed and the open systems under (a) rel-
atively good WAN conditions (50ms RTT and 1% loss
rate) and under (b) poor WAN conditions (100ms RTT
and 4% loss rate). Note that results for the partly-open
system are not shown due to space constraints; however
the results parallel what is shown in the closed and open
systems.

We find that under WAN conditions the differences be-
tween the open and closed systems are smaller (propor-
tionally) than in a LAN (Figure 2 (a)), however, they are
still significant for high server loads (load > 0.8). The
reason that the differences are smaller in WAN condi-
tions is that response times include network overheads
(network delays and losses) in addition to delays at the
server. These overheads affect the response times in the
open and closed systems in the same way, causing the
proportional differences between open and closed sys-
tems to shrink. For similar reasons, scheduling has less
of an effect when WAN effects are strong, even in the
case of an open system. SRPT improves significantly
over PS only for high loads, and even then the improve-
ment is smaller than in a LAN.

5 Open versus closed systems
We have just seen the dramatic impact of the system
model in real-world case studies. We will now develop
principles that help explain both the differences between
the open and closed system and the impact of these dif-
ferences with respect to scheduling. In addition to the
case studies that we have already discussed, we will also
use model-based simulations in order to provide more
control over parameters, such as job size variability, that
are fixed in the case studies.

5.1 FCFS
Our study of the simple case of FCFS scheduling will il-
lustrate three principles that we will exploit when study-
ing more complex policies.

Principle (i): For a given load, mean response times are
significantly lower in closed systems than in open sys-
tems.

Principle (i) is maybe the most noticeable performance
issue differentiating open and closed systems in our case
studies (Figure 2). We bring further attention to this
principle in Figure 5 due to its importance for the vast
literature on capacity planning, which typically relies
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Figure 5: Open versus closed under FCFS. Model and trace-based simulation results showing mean response time as a function
of load and service demand variability under FCFS scheduling. (a) and (b) use model based simulation, while (c) uses trace-based
simulation. In all cases, the solid line represents an open system and the dashed lines represent closed systems with different
MPLs. The load is adjusted via the think time in the closed system, and via the arrival rate in the open system. In the model-based
simulations, E[S] = 10. In (a) we fix C2 = 8 and in (b) we fix ρ = 0.9.

on closed models, and hence may underestimate the re-
sources needed when an open model is more appropriate.

For fixed high loads, the response time under the
closed system is orders of magnitude lower than those for
the open system. While Schatte [36, 37] has proven that,
under FCFS, the open system will always serve as an up-
per bound for the response time of the closed system,
the magnitude of the difference in practical settings has
not previously been studied. Intuitively, this difference
in mean response time between open and closed systems
is a consequence of the fixed MPL, N , in closed systems,
which limits the queue length seen in closed systems to
N even under very high load. By contrast, no such limit
exists for an open system.

Principle (ii): As the MPL grows, closed systems become
open, but convergence is slow for practical purposes.

Principle (ii) is illustrated by Figure 5. We see that
as the MPL, N , increases from 10 to 100 to 1000, the
curves for the closed system approach the curves for the
open system. Schatte [36, 37] proves formally that as N
grows to infinity, a closed FCFS queue converges to an
open M/GI/1/FCFS queue. What is interesting however,
is how slowly this convergence takes place. When the
service demand has high variability (C2), a closed sys-
tem with an MPL of 1000 still has much lower response
times then the corresponding open system. Even when
the job service demands are lightly variable, an MPL
of 500 is required for the closed system to achieve re-
sponse times comparable to the corresponding open sys-
tem. Further, the differences are more dramatic in the
case-study results than in the model-based simulations.

This principle impacts the choice of whether an open
or closed system model is appropriate. One might think
that an open system is a reasonable approximation for
a closed system with a high MPL; however, though this
can be true in some cases, the closed and open system
models may still behave significantly differently if the
service demands are highly variable.

Principle (iii): While variability has a large effect in

open systems, the effect is much smaller in closed sys-
tems.

This principle is difficult to see in the case-study fig-
ures (Figure 2) since each trace has a fixed variability.
However, it can be observed by comparing the magni-
tude of disparity between the e-commerce site results
(low variability) and the others (high variability).

Using simulations, we can study this effect directly.
Figure 5(b) compares open and closed systems under a
fixed load ρ = 0.9, as a function of the service demand
variability C2. For an open system, we see that C2 di-
rectly affects mean response time. This is to be expected
since high C2, under FCFS service, results in short jobs
being stuck behind long jobs, increasing mean response
time. By contrast, for the closed system with MPL 10,
C2 has comparatively little effect on mean response time.
This is counterintuitive, but can be explained by observ-
ing that for lower MPL there are fewer short jobs stuck
behind long jobs in a closed system, since the number
of jobs in the system (Nsystem) is bounded. As MPL is
increased, C2 can have more of an effect, since Nsystem

can be higher.
It is important to point out that by holding the load

constant in Figure 5(b), we are actually performing a
conservative comparison of open and closed systems. If
we didn’t hold the load fixed as we changed C2, increas-
ing C2 would result in a slight drop in the load of the
closed system as shown in Figure 7(b). This slight drop
in load, would cause a drop in response times for closed
systems, whereas there is no such effect in open systems.

5.2 The impact of scheduling
The value of scheduling in open systems is understood
and cannot be overstated. In open systems, there are or-
der of magnitude differences between the performance
of scheduling policies because scheduling can prevent
small jobs from queueing behind large jobs. In contrast,
scheduling in closed systems is not well understood.

Principle (iv): While open systems benefit significantly
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Figure 6: Model-based simulation results illustrating the different effects of scheduling in closed and open systems. In the closed
system the MPL is 100, and in both systems the service demand distribution has mean 10. For the two figures in (a) C2 was fixed
at 8 and in the two figures in (b) the load was fixed at 0.9.
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Figure 7: Model-based simulation results illustrating how the
service demand variability, the MPL, and the think time can af-
fect the system load in a closed system. These plots use FCFS
scheduling, however results are parallel under other schedul-
ing policies.

from scheduling with respect to response time, closed
systems improve much less.

Principle (v): Scheduling only significantly improves re-
sponse time in closed systems under very specific param-
eter settings: moderate load (think times) and high MPL.

Figure 2 illustrates the fundamentally different behav-
ior of mean response time in the open and closed systems
in realistic settings. In Figure 6, we further study this dif-
ference as a function of (a) load and (b) variability using
simulations. Under the open system, as load increases,
the disparity between the response times of the schedul-
ing policies grows, eventually differing by orders of mag-
nitude. In contrast, at both high and low loads in the
closed system, the scheduling policies all perform simi-
larly; only at moderate loads is there a significant differ-
ence between the policies – and even here the differences
are only a factor of 2.5. Another interesting point is that,
whereas for FCFS the mean response time of an open
system bounded that in the corresponding closed system
from above, this does not hold for other policies such
as PESJF, where the open system can result in lower re-
sponse times than the closed system.

We can build intuition for the limited effects of
scheduling in closed systems by first considering a closed
feedback loop with no think time. In such a system, sur-
prisingly, the scheduling done at the queue is inconse-
quential – all work conserving scheduling policies per-

form equivalently. To see why, note that in a closed sys-
tem Little’s Law states that N = XE[T ], where N is
the constant MPL across policies. We will now explain
why X is constant across all work conserving scheduling
policies (when think time is 0), and hence it will follow
that E[T ] is also constant across scheduling policies. X
is the long-run average rate of completions. Since a new
job is only created when a job completes, over a long
period of time, all work conserving scheduling policies
will complete the same set of jobs plus or minus the ini-
tial set N . As time goes to infinity, the initial set N be-
comes unimportant; hence X is constant. This argument
does not hold for open systems because for open systems
Little’s Law states that E[N ] = λE[T ], and E[N ] is not
constant across scheduling policies.

Under closed systems with think time, we now allow
a varying number of jobs in the queue, and thus there is
some difference between scheduling policies. However,
as think time grows, load becomes small and so schedul-
ing has less effect.

A very subtle effect, not yet mentioned, is that in
a closed system the scheduling policy actually affects
the throughput, and hence the load. “Good” policies,
like PESJF, increase throughput, and hence load, slightly
(less than 10%). Had we captured this effect (rather than
holding the load fixed), the scheduling policies in the
closed system would have appeared even closer, result-
ing in even starker differences between the closed and
open systems.

The impact of Principles (iv) and (v) is clear. For
closed systems, scheduling provides small improvement
across all loads, but can only result in substantial im-
provement when load (think time) is moderate. In con-
trast, scheduling always provides substantial improve-
ments for open systems.

Principle (vi): Scheduling can limit the effect of variabil-
ity in both open and closed systems.

For both the open and closed systems, better schedul-
ing (PS and PESJF) helps combat the effect of increasing
variability, as seen in Figure 6. The improvement; how-
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Figure 8: Model and implementation-based results for the partly-open system. (a) and (b) are model-based simulations showing
mean response time as a function of the expected number of requests per session. (c) and (d) show the mean response time as a
function of the think time, for a fixed load. In (a)-(c), E[S] = 10 and C2 = 8. In (c) and (d), we fix ρ = 0.6 and p = 0.75, which
yields and average of 4 requests per session.

ever, is less dramatic for closed systems due to Principle
(iii) in Section 5.1, which tells us that variability has less
of an effect on closed systems in general.

6 Partly-open systems
In this section, we discuss a partly-open model that (a)
serves as a more realistic system model for many appli-
cations; and (b) helps illustrate when a “purely” open or
closed system is a good approximation of user behavior.
We focus on the effects of the mean number of requests
per session and the think time because the other parame-
ters, e.g. load and job size variability, have similar effects
to those observed in Sections 5.1 and 5.2. Throughout
the section, we fix the load of the partly-open system by
adjusting the arrival rate, λ. Note that, in contrast to the
closed model, adjusting the think time of the partly-open
model has no impact on the load.

Principle (vii): A partly-open system behaves similarly
to an open system when the expected number of requests
per session is small (≤ 5 as a rule-of-thumb) and sim-
ilarly to a closed system when the expected number of
requests per session is large (≥ 10 as a rule-of-thumb).

Principle (vii) is illustrated clearly in the case study
results shown in Figure 2 and in the simulation results
shown in Figure 8(a). When the mean number of re-
quests per session is 1 we have a significant separation
between the response time under the scheduling policies,
as in open systems. However, when the mean number of
requests per session is large, we have comparatively lit-
tle separation between the response times of the schedul-
ing policies; as in closed systems. Figures 2 and 8(a)
are just a few examples of the range of configurations
we studied, and across a wide range of parameters, the
point where the separation between the performance of
scheduling policies becomes small is, as a rule-of-thumb,
around 10 requests per session. Note however that this
point can range anywhere between 5 and 20 requests per
session as C2 ranges from 4 to 49 respectively. We will
demonstrate in Section 7 how to use this rule-of-thumb

as a guideline for determining whether a purely open
or purely closed workload generator is most suitable, or
whether a partly-open generator is necessary.

Principle (viii): In a partly-open system, think time has
little effect on mean response time.

Figure 8 illustrates Principle (viii). We find that the
think time in the partly-open system does not affect
the mean response time or load of the system under
any of these policies. This observation holds across all
partly-open systems we have investigated (regardless of
the number of requests per session), including the case-
studies described in Section 4.

Principle (viii) may seem surprising at first, but for
PS and FCFS scheduling it can be shown formally un-
der product-form workload assumptions. Intuitively, we
can observe that changing the think time in the partly-
open system has no effect on the load because the same
amount of work must be processed. To change the load,
we must adjust either the number of requests per session
or the arrival rate. The only effect of think time is to add
small correlations into the arrival stream.

7 Choosing a system model
The previous sections brought to light vast differences in
system performance depending on whether the workload
generator follows an open or closed system model. A
direct consequence is that the accuracy of performance
evaluation depends on accurately modeling the underly-
ing system as either open, closed, or partly-open.

A safe way out would be to choose a partly-open sys-
tem model, since it both matches the typical user behav-
ior in many applications and generalizes the open and
closed system models – depending on the parameters it
can behave more like an open or more like a closed sys-
tem. However, as Table 1 illustrates, available workload
generators often support only either closed or open sys-
tem models. This motivates a fundamental questions for
workload modeling: “Given a particular workload, is a
purely open or purely closed system model more accurate
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Type of site Date Total #Req.
1 Large corporate web site Feb’01 1609799
2 CMU web server [3] Nov’01 90570
3 Online department store June’00 891366
4 Science institute (USGS[1]) Nov’02 107078
5 Online gaming site [50] May’04 45778
6 Financial service provider Aug’00 275786
7 Supercomputing web site [4] May’04 82566
8 Kasparov-DeepBlue match May’97 580068
9 Site seeing “slashdot effect” Feb’99 194968

10 Soccer world cup [21] Jul’98 4606052

Table 2: A summary table of the studied web traces.

for the workload? When is a partly-open system model
necessary?”

In the remainder of this section we illustrate how our
eight principles might be used to answer this question for
various web workloads. Our basic method is as follows.
For a given system we follow these steps:

1. Collect traces from the system.

2. Construct a partly-open model for the system, since
the partly-open model is the most general and ac-
curate. In particular, obtain the relevant parameters
for the partly-open model.

3. For the partly-open model, decide whether an open
or a closed model is appropriate, or if the partly-
open model is necessary.

Table 2 summarizes the traces we collected as part of
Step 1. Our trace collection spans many different types
of sites, including busy commercial sites, sites of major
sporting events, sites of research institutes, and an online
gaming site.

We next model each site as a partly-open system. Ac-
cording to Principles (vii) and (viii) the most relevant pa-
rameter of a partly-open system model is the number of
requests issued in a user session. Other parameters such
as the think time between successive requests in a session
are of lesser importance. Determining the average num-
ber of requests per user session for a web site requires
identifying user sessions in the corresponding web trace.
While there is no 100% accurate way to do this, we em-
ploy some common estimation techniques [8, 26].

First, each source IP address in a trace is taken to rep-
resent a different user. Second, session boundaries are
determined by a period of inactivity by the user, i.e. a
period of time during which no requests from the cor-
responding IP address are received. Typically, this is
accomplished by ending a session whenever there is a
period of inactivity larger than timeout threshold τ . In
some cases, web sites themselves enforce such a thresh-
old; however, more typically τ must be estimated.

We consider two different ways of estimating τ . The
first one is to use a defacto standard value for τ , which
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Figure 9: Choosing a system model. Statistics for 3 represen-
tative web traces (sites 3, 6, and 10) illustrating (a) the number
of user sessions as a function of the timeout threshold and (b)
the expected number of requests per session as a function of the
timeout threshold. The vertical line on each plot corresponds
to a timeout of 1800s. From these plots we can conclude that
an open model is appropriate for site 6, a closed model is ap-
propriate for site 10, and neither an open or a closed is appro-
priate for site 3.

is 1800s (30 min) [26]. The second method is to esti-
mate τ from the traces themselves by studying the deriva-
tive of how τ affects the total number of sessions in the
trace. We illustrate this latter method for a few represen-
tative traces in Figure 9(a). Notice that as the thresh-
old increases from 1-100s the number of sessions de-
creases quickly; whereas from 1000s on, the decrease is
much smaller. Furthermore, Figure 9(b) shows that with
respect to the number of requests, stabilization is also
reached at τ > 1000s. Hence we adopt τ = 1800s in
what follows.

The mean number of requests per session when τ =
1800s is summarized below for all traces:

Site 1 2 3 4 5
Requests per session 2.4 1.8 5.4 3.6 12.9

Site 6 7 8 9 10
Requests per session 1.4 6.0 2.4 1.2 11.6

The table indicates that the average number of requests
for web sessions varies largely depending on the site,
ranging from less than 2 requests per session to almost
13. Interestingly, even for similar types of web sites the
number of requests can vary considerably. For exam-
ple sites 8 and 10 are both web sites of sporting events
(a chess tournament and a soccer tournament), but the
number of requests per session is quite low (2.4) in one
case, while quite high (11.6) in the other. Similarly, sites
2, 4, and 7 are all web sites of scientific institutes but the
number of requests per sessions varies from 1.8 to 6.

Using the rule of thumb in principle (vii), we can con-
clude that neither the open nor the closed system model
accurately represents all the sites. For sites 1, 2, 4, 6,
8, and 9 an open system model is accurate; whereas a
closed system model is accurate for the sites 5 and 10.
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Further, it is not clear whether an open or closed model
is appropriate for sites 3 and 7.

Observe that the web trace of site 10 is the same
dataset used to drive the static web case study in Figure 2.
In Figure 2, we observed a large difference between the
response times in an open and a closed system model.
In this section we found that site 10 resembles more a
closed system than an open system. Based on the results
in Figure 2, it is important that one doesn’t assume that
the results for the closed model apply to the open model.

8 Prior Work
Work explicitly comparing open and closed system mod-
els is primarily limited to FCFS queues. Bondi and Whitt
[11] study a general network of FCFS queues and con-
clude that the effect of service variability, though domi-
nant in open systems, is almost inconsequential in closed
systems (provided the MPL is not too large). We cor-
roborate this principle and illustrate the magnitude of its
impact in real-world systems. Schatte [36, 37] studies a
single FCFS queue in a closed loop with think time. In
this model, Schatte proves that, as the MPL grows to in-
finity, the closed system converges monotonically to an
open system. This result provides a fundamental under-
standing of the effect of the MPL parameter; however
the rate of this convergence, which is important when
choosing between open and closed system models, is not
understood. We evaluate the rate of convergence in real-
world systems.

Though these theoretical results provide useful intu-
ition about the differences between open and closed sys-
tems, theoretical results alone cannot evaluate the effects
of factors such as trace driven job service demand dis-
tributions, correlations, implementation overheads, and
size-based scheduling policies. Hence, simulation and
implementation-based studies such as the current paper
are needed.

9 Conclusion
This paper provides eight simple principles that function
to explain the differences in behavior of closed, open,
and partly-open systems and validates these principles
via trace-based simulation and real-world implementa-
tion. The more intuitive of these principles point out that
response times under closed systems are typically lower
than in the corresponding open system with equal load,
and that as MPL increases, closed systems approach
open ones. Less obviously, our principles point out that:
(a) the magnitude of the difference in response times be-
tween closed and open systems can be very large, even
under moderate load; (b) the convergence of closed to
open as MPL grows is slow, especially when service de-
mand variability (C2) is high; and (c) scheduling is far
more beneficial in open systems than in closed ones. We

also compare the partly-open model with the open and
closed models. We illustrate the strong effect of the num-
ber of requests per session and C2 on the behavior of the
partly-open model, and the surprisingly weak effect of
think time.

These principles underscore the importance of choos-
ing the appropriate system model. For example, in ca-
pacity planning for an open system, choosing a workload
generator based on a closed model can greatly underes-
timate response times and underestimate the benefits of
scheduling.

All of this is particularly relevant in the context of web
applications, where the arrival process at a web site is
best modeled by a partly-open system. Yet, most web
workload generators are either strictly open or strictly
closed. Our findings provide guidelines for choosing
whether an open or closed model is the better approx-
imation based on characteristics of the workload. A high
number of simultaneous users (more than 1000) suggests
an open model, but a high number of requests per session
(more than 10) suggests a closed model. Both these cut-
offs are affected by service demand variability: highly
variable demands requires larger cutoffs. Contrary to
popular belief, it turns out that think times are irrelevant
to the choice of an open or closed model since they only
affect the load. We also find that WAN conditions (losses
and delays) in Web settings lessen the difference between
closed and open models, although these differences are
still noticeable.

Once it has been determined whether a closed or open
model is a better approximation, that in turn provides
a guideline for the effectiveness of scheduling. Under-
standing the appropriate system model is essential to
understanding the impact of scheduling. Scheduling is
most effective in open systems, but can have moderate
impact in closed systems when both the load is moderate
(roughly 0.7-0.85) and C2 is high.

In conclusion, while much emphasis has been placed
in research on accurately representing workload param-
eters such as service demand distribution, think time, lo-
cality, etc, we have illustrated that similar attention needs
to be placed on accurately representing the system itself
as either closed, open, or partly-open. We have taken
a first step toward this end by providing guidelines for
choosing a system model and by creating tools and work-
load generators versatile enough to support all three sys-
tem models. We hope that this work will encourage oth-
ers to design workload generators that allow flexibility in
the underlying system model.
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