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Abstract
We present PRACTI, a new approach for large-scale
replication. PRACTI systems can replicate or cache any
subset of data on any node (Partial Replication), provide
a broad range of consistency guarantees (Arbitrary Con-
sistency), and permit any node to send information to
any other node (Topology Independence). A PRACTI
architecture yields two significant advantages. First, by
providing all three PRACTI properties, it enables better
trade-offs than existing mechanisms that support at most
two of the three desirable properties. The PRACTI ap-
proach thus exposes new points in the design space for
replication systems. Second, the flexibility of PRACTI
protocols simplifies the design of replication systems by
allowing a single architecture to subsume a broad range
of existing systems and to reduce development costs for
new ones. To illustrate both advantages, we use our
PRACTI prototype to emulate existing server replica-
tion, client-server, and object replication systems and to
implement novel policies that improve performance for
mobile users, web edge servers, and grid computing by
as much as an order of magnitude.

1 Introduction
This paper describes PRACTI, a new data replication ap-
proach and architecture that can reduce replication costs
by an order of magnitude for a range of large-scale sys-
tems and also simplify the design, development, and de-
ployment of new systems.

Data replication is a building block for many large-
scale distributed systems such as mobile file systems,
web service replication systems, enterprise file sys-
tems, and grid replication systems. Because there is
a fundamental trade-off between performance and con-
sistency [22] as well as between availability and con-
sistency [9, 31], systems make different compromises
among these factors by implementing different place-
ment policies, consistency policies, and topology poli-
cies for different environments. Informally, place-
ment policies such as demand-caching, prefetching, or
replicate-all define which nodes store local copies of
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which data, consistency policies such as sequential [21]
or causal [16] define which reads must see which writes,
and topology policies such as client-server, hierarchy, or
ad-hoc define the paths along which updates flow.

This paper argues that an ideal replication framework
should provide all three PRACTI properties:
• Partial Replication (PR) means that a system can place

any subset of data and metadata on any node. In con-
trast, some systems require a node to maintain copies
of all objects in all volumes they export [26, 37, 39].

• Arbitrary Consistency (AC) means that a system can
provide both strong and weak consistency guarantees
and that only applications that require strong guaran-
tees pay for them. In contrast, some systems can only
enforce relatively weak coherence guarantees and can
make no guarantees about stronger consistency prop-
erties [11, 29].

• Topology Independence (TI) means that any node
can exchange updates with any other node. In con-
trast, many systems restrict communication to client-
server [15, 18, 25] or hierarchical [4] patterns.

Although many existing systems can each provide two
of these properties, we are aware of no system that pro-
vides all three. As a result, systems give up the ability to
exploit locality, support a broad range of applications, or
dynamically adapt to network topology.

This paper presents the first replication architecture to
provide all three PRACTI properties. The protocol draws
on key ideas of existing protocols but recasts them to re-
move the deeply-embedded assumptions that prevent one
or more of the properties. In particular, our design begins
with log exchange mechanisms that support a range of
consistency guarantees and topology independence but
that fundamentally assume full replication [26, 37, 39].
To support partial replication, we extend the mechanisms
in two simple but fundamental ways.

1. In order to allow partial replication of data, our design
separates the control path from the data path by sep-
arating invalidation messages that identify what has
changed from body messages that encode the changes
to the contents of files. Distinct invalidation mes-
sages are widely used in hierarchical caching systems,
but we demonstrate how to use them in topology-
independent systems: we develop explicit synchro-
nization rules to enforce consistency despite multi-
ple streams of information, and we introduce general
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mechanisms for handling demand read misses.

2. In order to allow partial replication of update meta-
data, we introduce imprecise invalidations, which al-
low a single invalidation to summarize a set of inval-
idations. Imprecise invalidations provide cross-object
consistency in a scalable manner: each node incurs
storage and bandwidth costs proportional to the size
of the data sets in which it is interested. For example,
a node that is interested in one set of objects A but
not another set B, can receive precise invalidations for
objects in A along with an imprecise invalidation that
summarizes omitted invalidations to objects in B. The
imprecise invalidation then serves as a placeholder for
the omitted updates both in the node’s local storage
and in the logs of updates the node propagates to other
nodes.
We construct and evaluate a prototype using a range

of policies and workloads. Our primary conclusion is
that by simultaneously supporting the three PRACTI
properties, PRACTI replication enables better trade-offs
for system designers than possible with existing mech-
anisms. For example, for some workloads in our mo-
bile storage and grid computing case studies, our sys-
tem dominates existing approaches by providing more
than an order of magnitude better bandwidth and storage
efficiency than full replication AC-TI replicated server
systems, by providing more than an order of magnitude
better synchronization delay compared to topology con-
strained PR-AC hierarchical systems, and by providing
consistency guarantees not achievable by limited consis-
tency PR-TI object replication systems.

More broadly, we argue that PRACTI protocols can
simplify the design of replication systems. At present,
because mechanisms and policies are entangled, when
a replication system is built for a new environment, it
must often be built from scratch or must modify existing
mechanisms to accommodate new policy trade-offs. In
contrast, our system can be viewed as a replication mi-
crokernel that defines a common substrate of core mech-
anisms over which a broad range of systems can be con-
structed by selecting appropriate policies. For example,
in this study we use our prototype both to emulate exist-
ing server replication, client-server, and object replica-
tion systems and to implement novel policies to support
mobile users, web edge servers, and grid computing.

In summary, this paper makes four contributions.
First, it defines the PRACTI paradigm and provides a tax-
onomy for replication systems that explains why existing
replication architectures fall short of ideal. Second, it
describes the first replication protocol to simultaneously
provide all three PRACTI properties. Third, it provides
a prototype PRACTI replication toolkit that cleanly sep-
arates mechanism from policy and thereby allows nearly
arbitrary replication, consistency, and topology policies.

Fourth, it demonstrates that PRACTI replication offers
decisive practical advantages compared to existing ap-
proaches.

Section 2 revisits the design of existing systems in
light of the PRACTI taxonomy. Section 3 describes
our protocol for providing PRACTI replication, and Sec-
tion 4 experimentally evaluates the prototype. Finally,
Section 5 surveys related work, and Section 6 highlights
our conclusions.

2 Taxonomy and challenges
In order to put the PRACTI approach in perspective, this
section examines existing replication architectures and
considers why years of research exploring many differ-
ent replication protocols have failed to realize the goal of
PRACTI replication.

Note that the requirements for supporting flexible
consistency guarantees are subtle, and Section 3.3 dis-
cusses the full range of flexibility our protocol pro-
vides. PRACTI replication should support both the weak
coherence-only guarantees acceptable to some applica-
tions and the stronger consistency guarantees required by
others. Note that consistency semantics constrain the or-
der that updates across multiple objects become observ-
able to nodes in the system while coherence semantics
are less restrictive in that they only constrain the order
that updates to a single object become observable but do
not additionally constrain the ordering of updates across
multiple locations. (Hennessy and Patterson discusses
the distinction between consistency and coherence in
more detail [12].) For example, if a node n1 updates
object A and then object B and another node n2 reads
the new version of B, most consistency semantics would
ensure that any subsequent reads by n2 see the new ver-
sion of A, while most coherence semantics would permit
a read of A to return either the new or old version.

PRACTI Taxonomy. The PRACTI paradigm defines a
taxonomy for understanding the design space for replica-
tion systems as illustrated in Figure 1. As the figure in-
dicates, many existing replication systems can be viewed
as belonging to one of four protocol families, each of
which provides at most two of the PRACTI properties.

Server replication systems like Replicated Dictio-
nary [37] and Bayou [26] provide log-based peer-to-peer
update exchange that allows any node to send updates to
any other node (TI) and that consistently orders writes
across all objects. Lazy Replication [19] and TACT [39]
use this approach to provide a wide range of tunable con-
sistency guarantees (AC). Unfortunately, these protocols
fundamentally assume full replication: all nodes store
all data from any volume they export and all nodes re-
ceive all updates. As a result, these systems are unable
to exploit workload locality to efficiently use networks
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Fig. 1: The PRACTI taxonomy defines a design space for clas-
sifying families of replication systems.

and storage, and they may be unsuitable for devices with
limited resources.

Client-server systems like Sprite [25] and Coda [18]
and hierarchical caching systems like hierarchical
AFS [24] permit nodes to cache arbitrary subsets of data
(PR). Although specific systems generally enforce a set
consistency policy, a broad range of consistency guaran-
tees are provided by variations of the basic architecture
(AC). However, these protocols fundamentally require
communication to flow between a child and its parent.
Even when systems permit limited client-client commu-
nication for cooperative caching, they must still serialize
control messages at a central server for consistency [5].
These restricted communication patterns (1) hurt perfor-
mance when network topologies do not match the fixed
communication topology or when network costs change
over time (e.g., in environments with mobile nodes), (2)
hurt availability when a network path or node failure dis-
rupts a fixed communication topology, and (3) limit shar-
ing during disconnected operation when a set of nodes
can communicate with one another but not with the rest
of the system.

DHT-based storage systems such as BH [35],
PAST [28], and CFS [6] implement a specific—if
sophisticated—topology and replication policy: they can
be viewed as generalizations of client-server systems
where the server is split across a large number of nodes
on a per-object or per-block basis for scalability and
replicated to multiple nodes for availability and relia-
bility. This division and replication, however, introduce
new challenges for providing consistency. For example,
the Pond OceanStore prototype assigns each object to a
set of primary replicas that receive all updates for the
object, uses an agreement protocol to coordinate these
servers for per-object coherence, and does not attempt to
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Fig. 2: Naive addition of PR to an AC-TI log exchange protocol
fails to provide consistency.

provide cross-object consistency guarantees [27].
Object replication systems such as Ficus [11], Pan-

gaea [29], and WinFS [23] allow nodes to choose arbi-
trary subsets of data to store (PR) and arbitrary peers
with whom to communicate (TI). But, these protocols
enforce no ordering constraints on updates across multi-
ple objects, so they can provide coherence but not con-
sistency guarantees. Unfortunately, reasoning about the
corner cases of consistency protocols is complex, so sys-
tems that provide only weak consistency or coherence
guarantees can complicate constructing, debugging, and
using the applications built over them. Furthermore, sup-
port for only weak consistency may prevent deployment
of applications with more stringent requirements.

Why is PRACTI hard? It is surprising that despite the
disadvantages of omitting any of the PRACTI properties,
no system provides all three. Our analysis suggests that
these limitations are fundamental to these existing proto-
col families: the assumption of full replication is deeply
embedded in the core of server replication protocols; the
assumption of hierarchical communication is fundamen-
tal to client-server consistency protocols; careful assign-
ment of key ranges to nodes is central to the properties of
DHTs; and the lack of consistency is a key factor in the
flexibility of object replication systems.

To understand why it is difficult for existing architec-
tures to provide all three PRACTI properties, consider
Figure 2’s illustration of a naive attempt to add PR to a
AC-TI server replication protocol like Bayou. Suppose a
user’s desktop node stores all of the user’s files, including
files A and B, but the user’s palmtop only stores a small
subset that includes B but not A. Then, the desktop is-
sues a series of writes, including a write to file A (making
it A′) followed by a write to file B (making it B′). When
the desktop and palmtop synchronize, for PR, the desk-
top sends the write of B but not the write of A. At this
point, everything is OK: the palmtop and desktop have
exactly the data they want, and reads of local data pro-
vide a consistent view of the order that writes occurred.
But for TI, we not only have to worry about local reads
but also propagation of data to other nodes. For instance,
suppose that the user’s laptop, which also stores all of the
user’s files including both A and B, synchronizes with
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Fig. 3: High level PRACTI architecture.

the palmtop: the palmtop can send the write of B but not
the write of A. Unfortunately, the laptop now can present
an inconsistent view of data to a user or application. In
particular, a sequence of reads at the laptop can return
the new version of B and then return the old version of
A, which is inconsistent with the writes that occurred at
the desktop under causal [16] or even the weaker FIFO
consistency [22].

This example illustrates the broader, fundamental
challenge: supporting flexible consistency (AC) requires
careful ordering of how updates propagate through the
system, but consistent ordering becomes more difficult
if nodes communicate in ad-hoc patterns (TI) or if some
nodes know about updates to some objects but not other
objects (PR).

Existing systems resolve this dilemma in one of three
ways. The full replication of AC-TI replicated server
systems ensures that all nodes have enough information
to order all updates. Restricted communication in PR-
AC client-server and hierarchical systems ensures that
the root server of a subtree can track what information
is cached by descendents; the server can then deter-
mine which invalidations it needs to propagate down and
which it can safely omit. Finally, PR-TI object replica-
tion systems simply give up ability to consistently order
writes to different objects and instead allow inconsisten-
cies such as the one just illustrated.

3 PRACTI replication
Figure 3 shows the high-level architecture of our imple-
mentation of a PRACTI protocol.

Node 1 in the figure illustrates the main local data
structures of each node. A node’s Core embodies the pro-
tocol’s mechanisms by maintaining a node’s local state.
Applications access data stored in the local core via the
per-node Local API for creating, reading, writing, and

deleting objects. These functions operate the local node’s
Log and Checkpoint: modifications are appended to the
log and then update the checkpoint, and reads access the
random-access checkpoint. To support partial replication
policies, the mechanisms allow each node to select an ar-
bitrary subset of the system’s objects to store locally, and
nodes are free to change this subset at any time (e.g., to
implement caching, prefetching, hoarding, or replicate-
all). This local state allows a node to satisfy requests to
read valid locally-stored objects without needing to com-
municate with other nodes.

To handle read misses and to push updates between
nodes, cores use two types of communication as illus-
trated in the figure—causally ordered Streams of In-
validations and unordered Body messages. The pro-
tocol for sending streams of invalidations is similar to
Bayou’s [26] log exchange protocol, and it ensures that
each node’s log and checkpoint always reflect a causally
consistent view of the system’s data. But it differs from
existing log exchange protocols in two key ways:

1. Separation of invalidations and bodies. Invalidation
streams notify a receiver that writes have occurred,
but separate body messages contain the contents of the
writes. A core coordinates these separate sources of
information to maintain local consistency invariants.
This separation supports partial replication of data—a
node only needs to receive and store bodies of objects
that interest it.

2. Imprecise invalidations. Although the invalidation
streams each logically contain a causally consistent
record of all writes known to the sender but not the re-
ceiver, nodes can omit sending groups of invalidations
by instead sending imprecise invalidations. Whereas
traditional precise invalidations describe the target and
logical time of a single write, an imprecise invalida-
tion can concisely summarize a set of writes over an
interval of time across a set of target objects. Thus, a
single imprecise invalidation can replace a large num-
ber of precise invalidations and thereby support partial
replication of metadata—a node only needs to receive
traditional precise invalidations and store per-object
metadata for objects that interest it.

Imprecise invalidations allow nodes to maintain con-
sistency invariants despite partial replication of meta-
data and despite topology independence. In particular,
they serve as placeholders in a receiver’s log to en-
sure that there are no causal gaps in the log a node
stores and transmits to other nodes. Similarly, just as
a node tracks which objects are INVALID so it can
block a read to an object that has been invalidated
but for which the corresponding body message has not
been received, a node tracks which sets of objects are
IMPRECISE so it can block a read to an object that
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has been targeted by an imprecise invalidation and for
which the node therefore may not know about the most
recent write.
The mechanisms just outlined, embodied in a node’s

Core, allow a node to store data for any subsets of ob-
jects, to store per-object metadata for any subset of ob-
jects, to receive precise invalidations for any subset of
objects from any node, and to receive body messages
for any subset of objects from any node. Given these
mechanisms, a node’s Controller embodies a system’s
replication and topology policies by directing commu-
nication among nodes. A node’s controller (1) selects
which nodes should send it invalidations and, for each
invalidation stream subscription, specifies subsets of ob-
jects for which invalidations should be precise, (2) se-
lects which nodes to prefetch bodies from and which
bodies to prefetch, and (3) selects which node should ser-
vice each demand read miss.

These mechanisms also support flexible consistency
via a variation of the TACT [39] interface, which al-
lows individual read and write requests to specify the
semantics they require. By using this interface, appli-
cations that require weak guarantees can minimize per-
formance [22] and availability [9] overheads while ap-
plications that require strong guarantees can get them.

The rest of this section describes the design in more
detail. It first explains how our system’s log exchange
protocol separates invalidation and body messages. It
then describes how imprecise invalidations allow the
log exchange protocol to partially replicate invalidations.
Next, it discusses the crosscutting issue of how to pro-
vide flexible consistency. After that, it describes several
novel features of our prototype that enable it to support
the broadest range of policies.

3.1 Separation of invalidations and bodies
As just described, nodes maintain their local state by ex-
changing two types of updates: ordered streams of in-
validations and unordered body messages. Invalidations
are metadata that describe writes; each contains an object
ID1 and logical time of a write. A write’s logical time is
assigned at the local interface that first receives the write,
and it contains the current value of the node’s Lamport
clock [20] and the node’s ID. Like invalidations, body
messages contain the write’s object ID and logical time,
but they also contain the actual contents of the write.

The protocol for exchanging updates is simple.
• As illustrated for node 1 in Figure 3, each node main-

tains a log of the invalidations it has received sorted
by logical time. And, for random access, each node
stores bodies in a checkpoint indexed by object ID.

1For simplicity, we describe the protocol in terms of full-object
writes. For efficiency, our implementation actually tracks checkpoint
state, invalidations, and bodies on arbitrary byte ranges.

• Invalidations from a log are sent via a causally-ordered
stream that logically contains all invalidations known
to the sender but not to the receiver. As in Bayou,
nodes use version vectors to summarize the contents of
their logs in order to efficiently identify which updates
in a sender’s log are needed by a receiver [26].

• A receiver of an invalidation inserts the invalidation
into its sorted log and updates its checkpoint. Check-
point update of the entry for object ID entails marking
the entry INVALID and recording the logical time of
the invalidation. Note that checkpoint update for an
incoming invalidation is skipped if the checkpoint en-
try already stores a logical time that is at least as high
as the logical time of the incoming invalidation.

• A node can send any body from its checkpoint to any
other node at any time. When a node receives a body,
it updates its checkpoint entry by first checking to see
if the entry’s logical time matches the body’s logical
time and, if so, storing the body in the entry and mark-
ing the entry VALID.

Rationale. Separating invalidations from bodies pro-
vides topology-independent protocol that supports both
arbitrary consistency and partial replication.

Supporting arbitrary consistency requires a node to be
able to consistently order all writes. Log-based invalida-
tion exchange meets this need by ensuring three crucial
properties [26]. First the prefix property ensures that a
node’s state always reflects a prefix of the sequence of
invalidations by each node in the system, i.e., if a node’s
state reflects the ith invalidation by some node n in the
system, then the node’s state reflects all earlier invalida-
tions by n. Second, each node’s local state always re-
flects a causally consistent [16] view of all invalidations
that have occurred. This property follows from the prefix
property and from the use of Lamport clocks to ensure
that once a node has observed the invalidation for write
w, all of its subsequent local writes’ logical timestamps
will exceed w’s. Third, the system ensures eventual con-
sistency: all connected nodes eventually agree on the
same total order of all invalidations. This combination of
properties provides the basis for a broad range of tunable
consistency semantics using standard techniques [39].

At the same time, this design supports partial replica-
tion by allowing bodies to be sent to or stored on any
node at any time. It supports arbitrary body replica-
tion policies including demand caching, push-caching,
prefetching, hoarding, pre-positioning bodies according
to a global placement policy, or push-all.

Design issues. The basic protocol adapts well-
understood log exchange mechanisms [26, 37]. But, the
separation of invalidations and bodies raises two new is-
sues: (1) coordinating disjoint streams of invalidations
and bodies and (2) handling reads of invalid data.
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The first issue is how to coordinate the separate body
messages and invalidation streams to ensure that the ar-
rival of out-of-order bodies does not break the consis-
tency invariants established by the carefully ordered in-
validation log exchange protocol. The solution is simple:
when a node receives a body message, it does not apply
that message to its checkpoint until the corresponding in-
validation has been applied. A node therefore buffers
body messages that arrive “early.” As a result, the check-
point is always consistent with the log, and the flexible
consistency properties of the log [39] extend naturally to
the checkpoint despite its partial replication.

The second issue is how to handle demand reads at
nodes that replicate only a subset of the system’s data.
The core mechanism supports a wide range of policies:
by default, the system blocks a local read request until
the requested object’s status is VALID. Of course, to en-
sure liveness, when an INVALID object is read, an imple-
mentation should arrange for someone to send the body.
Therefore, when a local read blocks, the core notifies the
controller. The controller can then implement any policy
for locating and retrieving the missing data such as send-
ing the request up a static hierarchy (i.e., ask your parent
or a central server), querying a separate centralized [8]
or DHT-based [35] directory, using a hint-based search
strategy, or relying on a push-all strategy [26, 37] (i.e.,
just wait and the data will come.)

3.2 Partial replication of invalidations
Although separation of invalidations from bodies sup-
ports partial replication of bodies, for true partial repli-
cation the system must not require all nodes to see all
invalidations or to store metadata for each object. Ex-
ploiting locality is fundamental to replication in large-
scale systems, and requiring full replication of metadata
would prevent deployment of a replication system for a
wide range of environments, workloads, and devices. For
example, consider palmtops caching data from an enter-
prise file system with 10,000 users and 10,000 files per
user: if each palmtop were required to store 100 bytes of
per-object metadata, then 10GB of storage would be con-
sumed on each device. Similarly, if the palmtops were re-
quired to receive every invalidation during log exchange
and if an average user issued just 100 updates per day,
then invalidations would consume 100MB/day of band-
width to each device.

To support true partial replication, invalidation
streams logically contain all invalidations as described
in Section 3.1, but in reality they omit some by replacing
them with imprecise invalidations.

As Figure 4 illustrates, an imprecise invalidation is a
conservative summary of several standard or precise in-
validations. Each imprecise invalidation has a targetSet
of objects, start logical time, and an end logical time, and

10@node1
15@node2

16@node1
17@node2

</foo/*,                            ,                      >

Imprecise Invalidation

<targetSet,      start,              end></foo/b,     11@node1>
</foo/a,     12@node1>
</foo/a,     15@node2>
</foo/a,     16@node1>
</foo/b,     16@node2>
</foo/c,     17@node2>

</foo/a,     10@node1> 

Precise Invalidations

<objId,     time> 

Fig. 4: Example imprecise invalidation.

it means “one or more objects in targetSet were updated
between start and end.” An imprecise invalidation must
be conservative: each precise invalidation that it replaces
must have its objId included in targetSet and must have
its logical time included between start and end, but for
efficient encoding targetSet may include additional ob-
jects. In our prototype, the targetSet is encoded as a list
of subdirectories and the start and end times are partial
version vectors with an entry for each node whose writes
are summarized by the imprecise invalidation.

A node reduces its bandwidth requirements by sub-
scribing to receive precise invalidations only for desired
subsets of data and receiving imprecise invalidations for
the rest. And a node saves storage by tracking per-object
state only for desired subsets of data and tracking coarse-
grained bookkeeping information for the rest.

Processing imprecise invalidations. When a node re-
ceives imprecise invalidation I, it inserts I into its log and
updates its checkpoint. For the log, imprecise invalida-
tions act as placeholders to ensure that the omitted pre-
cise invalidations do not introduce causal gaps in the log
that a node stores locally or in the streams of invalida-
tions that a node transmits to other nodes.

Tracking the effects of imprecise invalidations on a
node’s checkpoint must address four related problems:

1. For consistency, a node must logically mark all objects
targeted by a new imprecise invalidation as INVALID.
This action ensures that if a node tries to read data that
may have been updated by an omitted write, the node
can detect that information is missing and block the
read until the missing information has been received.

2. For liveness, a node must be able to unblock reads for
an object once the per-object state is brought up to date
(e.g., when a node receives the precise invalidations
that were summarized by an imprecise invalidation.)

3. For space efficiency, a node should not have to store
per-object state for all objects. As the example at the
start of this subsection illustrates, doing so would sig-
nificantly restrict the range of replication policies, de-
vices, and workloads that can be accommodated.

4. For processing efficiency, a node should not have to
iterate across all objects encompassed by targetSet to
apply an imprecise invalidation.
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To meet these requirements, rather than track the ef-
fects of imprecise invalidations on individual objects,
nodes keep bookkeeping information on groups of ob-
jects called Interest Sets. In particular, each node inde-
pendently partitions the object ID space into one or more
interest sets and decides whether to store per-object state
on a per-interest set basis. A node tracks whether each
interest set is PRECISE (per-object state reflects all inval-
idations) or IMPRECISE (per-object state is not stored or
may not reflect all precise invalidations) by maintaining
two pieces of state.
• Each node maintains a global variable currentVV,

which is a version vector encompassing the highest
timestamp of any invalidation (precise or imprecise)
applied to any interest set.

• Each node maintains for each interest set IS the vari-
able IS.lastPreciseVV, which is the latest version vec-
tor for which IS is known to be PRECISE.

If IS.lastPreciseVV = currentVV, then interest set IS has
not missed any invalidations and it is PRECISE.

In this arrangement, applying an imprecise invalida-
tion I to an interest set IS merely involves updating two
variables—the global currentVV and the interest set’s IS.-
lastPreciseVV. In particular, a node that receives impre-
cise invalidation I always advances currentVV to include
I’s end logical time because after applying I, the sys-
tem’s state may reflect events up to I.end. Conversely, the
node only advances IS.lastPreciseVV to the latest time
for which IS has missed no invalidations.

This per-interest set state meets the four requirements
listed above.

1. By default, a read request blocks until the interest set
in which the object lies is PRECISE and the object is
VALID. This blocking ensures that reads only observe
the checkpoint state they would have observed if all in-
validations were precise and therefore allows nodes to
enforce the same consistency guarantees as protocols
without imprecise invalidations.

2. For liveness, the system must eventually unblock wait-
ing reads. The core signals the controller when a read
of an IMPRECISE interest set blocks, and the con-
troller is responsible for arranging for the missing pre-
cise invalidations to be sent. When the missing in-
validations arrive, they advance IS.lastPreciseVV. The
algorithm for processing invalidations guarantees that
any interest set IS can be made PRECISE by receiving
a sequence S of invalidations from IS.lastPreciseVV to
currentVV if S is causally sorted and includes all pre-
cise invalidations targeting IS in that interval.

3. Storage is limited: each node only needs to store per-
object state for data currently of interest to that node.
Thus, the total metadata state at a node is proportional
to the number of objects of interest plus the number

B  VALID  99@node1
C  VALID  100@node1

A  VALID  98@node1
Per−IS State:      lastPreciseVV[node1] = 100
Global State:      currentVV[node1] = 103

B  INVALID  103@node1
C VALID      100@node1

A  INVALID  101@node1
Per−IS State:      lastPreciseVV[node1] = 103
Per−Obj State:

Global State:      currentVV[node1] = 103

PI1=(A, 101@node1), PI2=(B, 103@node1)

Per−Obj State:
B  VALID  99@node1
C  VALID  100@node1

A  VALID  98@node1

Global State:      currentVV[node1] = 100
Per−IS State:      lastPreciseVV[node1] = 100

I=(target={A,B,C}, start=101@node1, end=103@node1)

1
Initial State
IS is PRECISE

5
Final State
IS is PRECISE

2
Imprecise
Inval Arrives

3
IS is now
IMPRECISE

4
Missing
Precise Invals
Arrive

Per−Obj State:

Fig. 5: Example of maintaining interest set state. For clarity, we
only show node1’s elements of currentVV and lastPreciseVV.

of interest sets. Note that our implementation allows a
node to dynamically repartition its data across interest
sets as its locality patterns change.

4. Imprecise invalidations are efficient to apply, requiring
work that is proportional to the number of interest sets
at the receiver rather than the number of summarized
invalidations.

Example. The example in Figure 5 illustrates the
maintenance of interest set state. Initially, (1) interest set
IS is PRECISE and objects A, B, and C are VALID. Then,
(2) an imprecise invalidation I arrives. I (3) advances
currentVV but not IS.lastPreciseVV, making IS IMPRE-
CISE. But then (4) precise invalidations PI1 and PI2 ar-
rive on a single invalidation channel from another node.
(5) These advance IS.lastPreciseVV, and in the final state
IS is PRECISE, A and B are INVALID, and C is VALID.

Notice that although the node never receives a pre-
cise invalidation with time 102@node1, the fact that a
single incoming stream contains invalidations with times
101@node1 and 103@node1 allows it to infer by the pre-
fix property that no invalidation at time 102@node1 oc-
curred, and therefore it is able to advance IS.lastPrecise-
VV to make IS PRECISE.

3.3 Consistency: Approach and costs
Enforcing cache consistency entails fundamental trade-
offs. For example the CAP dilemma states that a replica-
tion system that provides sequential Consistency cannot
simultaneously provide 100% Availability in an environ-
ment that can be Partitioned [9, 31]. Similarly, Lipton
and Sandberg describe fundamental consistency v. per-
formance trade-offs [22].

A system that seeks to support arbitrary consistency
must therefore do two things. First, it must allow a range
of consistency guarantees to be enforced. Second, it must
ensure that workloads only pay for the consistency guar-
antees they actually need.
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Providing flexible guarantees. Discussing the seman-
tic guarantees of large-scale replication systems requires
careful distinctions along several dimensions. Consis-
tency constrains the order that updates across multiple
memory locations become observable to nodes in the
system, while coherence constrains the order that up-
dates to a single location become observable but does
not additionally constrain the ordering of updates across
multiple locations [12]. Staleness constrains the real-
time delay from when a write completes until it becomes
observable. Finally, conflict resolution [18, 34] provides
ways to cope with cases where concurrent reads and
writes at different nodes conflict.

Our protocol provides considerable flexibility along
all four of these dimensions.

With respect to consistency and staleness, it provides
a range of traditional guarantees such as the relatively
weak constraints of causal consistency [16, 20] or delta
coherence [32], to the stronger constraints of sequential
consistency [21] or linearizability [13]. Further, it pro-
vides a continuous range of guarantees between causal
consistency, sequential consistency, and linearizability
by supporting TACT’s order error for bounding incon-
sistency and temporal error for bounding staleness [39].
Because our design uses a variation of peer-to-peer log
exchange [26, 37], adapting flexible consistency tech-
niques from the literature is straightforward.

With respect to coherence, although our default read
interface enforces causal consistency, the interface al-
lows programs that do not demand cross-object consis-
tency to issue imprecise reads. Imprecise reads may
achieve higher availability and performance than precise
reads because they can return without waiting for an in-
terest set to become PRECISE. Imprecise reads thus ob-
serve causal coherence (causally coherent ordering of
reads and writes for any individual item) rather than
causal consistency (causally consistent ordering of reads
and writes across all items.)

With respect to conflict resolution, our prototype pro-
vides an interface for detecting and resolving write-
write conflicts according to application-specific seman-
tics [18, 26]. In particular, nodes log conflicting concur-
rent writes that they detect in a way that guarantees that
all nodes that are PRECISE for an interest set will even-
tually observe the same sequence of conflicting writes
for that interest set. The nodes then provide an interface
for programs or humans to read these conflicting writes
and to issue new compensating transactions to resolve
the conflicts.

Costs of consistency. PRACTI protocols should en-
sure that workloads only pay for the semantic guaran-
tees they need. Our protocol does so by distinguishing
the availability and response time costs paid by read and

write requests from the bandwidth overhead paid by in-
validation propagation.

The read interface allows each read to specify its con-
sistency and staleness requirements. Therefore, a read
does not block unless that read requires the local node to
gather more recent invalidations and updates than it al-
ready has. Similarly, most writes complete locally, and a
write only blocks to synchronize with other nodes if that
write requires it. Therefore, as in TACT [39], the perfor-
mance/availability versus consistency dilemmas are re-
solved on a per-read, per-write basis.

Conversely, all invalidations that propagate through
the system carry sufficient information that a later read
can determine what missing updates must be fetched to
ensure the consistency or staleness level the read de-
mands. Therefore, the system may pay an extra cost: if a
deployment never needs strong consistency, then our pro-
tocol may propagate some bookkeeping information that
is never used. We believe this cost is acceptable for two
reasons: (1) other features of the design—separation of
invalidations from bodies and imprecise invalidations—
minimize the amount of extra data transferred; and (2)
we believe the bandwidth costs of consistency are less
important than the availability and response time costs.
Experiments in Section 4 quantify these bandwidth costs,
and we argue that they are not significant.

3.4 Additional features
Three novel aspects of our implementation further our
goal of constructing a flexible framework that can ac-
commodate the broadest range of policies. First, our im-
plementation allows systems to use any desired policy
for limiting the size of their logs and to fall back on an
efficient incremental checkpoint transfer to transmit up-
dates that have been garbage collected from the log. This
feature both limits storage overheads and improves sup-
port for synchronizing intermittently connected devices.
Second, our implementation uses self-tuning body prop-
agation to enable prefetching policies that are simulta-
neously aggressive and safe. Third, our implementation
provides incremental log exchange to allow systems to
minimize the window for conflicting updates. Due to
space constraints, we briefly outline these aspects of the
implementation and provide additional details in an ex-
tended technical report [3].

Incremental checkpoint transfer. Imprecise invalida-
tions yield an unexpected benefit: incremental check-
point transfer.

Nodes can garbage collect any prefix of their logs,
which allows each node to bound the amount local stor-
age used for the log to any desired fraction of its total
disk space. But, if a node n1 garbage collects log en-
tries older than n1.omitVV and another node n2 requests
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Fig. 6: Incremental checkpoints from n1 to n2.

a log exchange beginning before n1.omitVV, then n1 can-
not send a stream of invalidations. Instead, n1 must send
a checkpoint of its per-object state.

In existing server replication protocols [26], in order
to ensure consistency, such a checkpoint exchange must
atomically update n2’s state for all objects in the system.
Otherwise, the prefix property and causal consistency in-
variants could be violated. Traditional checkpoint ex-
changes, therefore, may block interactive requests while
the checkpoint is atomically assembled at n1 or applied
at n2, and they may waste system resources if a check-
point transfer is started but fails to complete.

Rather than transferring information about all objects,
an incremental checkpoint updates an arbitrary interest
set. As Figure 6 illustrates, an incremental checkpoint for
interest set IS includes (1) an imprecise invalidation that
covers all objects from the receiver’s currentVV up to the
sender’s currentVV, (2) the logical time of the sender’s
per-object state for IS (IS.lastPreciseVV), and (3) per-
object state: the logical timestamp for each object in IS
whose timestamp exceeds the receiver’s IS.lastPrecise-
VV. Thus, the receiver’s state for IS is brought up to in-
clude the updates known to the sender, but other interest
sets may become IMPRECISE to enforce consistency.

Overall, this approach makes checkpoint transfer a
much smoother process than under existing protocols.
As Figure 6 illustrates, the receiver can receive an in-
cremental checkpoint for a small portion of its ID space
and then either background fetch checkpoints of other
interest sets or fault them in on demand.

Self-tuning body propagation. In addition to support-
ing demand-fetch of particular objects, our prototype
provides a novel self-tuning prefetching mechanism. A
node n1 subscribes to updates from a node n2 by send-
ing a list L of directories of interest along with a startVV
version vector. n2 will then send n1 any bodies it sees
that are in L and that are newer than startVV. To do this,
n2 maintains a priority queue of pending sends: when a
new eligible body arrives, n2 deletes any pending sends
of older versions of the same object and then inserts a ref-
erence to the updated object. This priority queue drains

to n1 via a low-priority network connection that ensures
that prefetch traffic does not consume network resources
that regular TCP connections could use [36]. When a lot
of spare bandwidth is available, the queue drains quickly
and nearly all bodies are sent as soon as they are inserted.
But, when little spare bandwidth is available, the buffer
sends only high priority updates and absorbs repeated
writes to the same object.

Incremental log propagation. The prototype imple-
ments a novel variation on existing batch log exchange
protocols. In particular, in the batch log exchange used
in Bayou, a node first receives a batch of updates com-
prising a start time startVV and a series of writes, it then
rolls back its checkpoint to before startVV using an undo
log, and finally it rolls forward, merging the newly re-
ceived batch of writes with its existing redo log and ap-
plying updates to the checkpoint. In contrast, our incre-
mental log exchange applies each incoming write to the
current checkpoint state without requiring roll-back and
roll-forward of existing writes.

The advantages of the incremental approach are ef-
ficiency (each write is only applied to the checkpoint
once), concurrency (a node can process information from
multiple continuous streams), and consistency (con-
nected nodes can stay continuously synchronized which
reduces the window for conflicting writes.) The disad-
vantage is that it only supports simple conflict detec-
tion logic: for our incremental algorithm, a node detects
a write/write conflict when an invalidation’s prevAccept
logical time (set by the original writer to equal the log-
ical time of the overwritten value) differs from the logi-
cal time the invalidation overwrites in the node’s check-
point. Conversely, batch log exchange supports more
flexible conflict detection: Bayou writes contain a depen-
dency check procedure that can read any object to deter-
mine if a conflict has occurred [34]; this approach works
in a batch system because rollback takes all of the sys-
tem’s state to a logical moment in time at which these
checks can be re-executed. Note that this variation is
orthogonal to the PRACTI approach: a full replication
system such as Bayou could be modified to use our in-
cremental log propagation mechanism, and a PRACTI
system could use batch log exchange with roll-back and
roll-forward.

4 Evaluation
We have constructed a prototype PRACTI system writ-
ten in Java and using BerkeleyDB [33] for per-node lo-
cal storage. All features described in this paper are im-
plemented including local create/read/write/delete, flex-
ible consistency, incremental log exchange, remote read
and prefetch, garbage collection of the log, incremental
checkpoint transfer between nodes, and crash recovery.
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We use this prototype both (1) to evaluate the PRACTI
architecture in several environments such as web service
replication, data access for mobile users, and grid scien-
tific computing and (2) to characterize PRACTI’s prop-
erties across a range of key metrics.

Our experiments seek to answer two questions.
1. Does a PRACTI architecture offer significant advan-

tages over existing replication architectures? We find
that our system can dominate existing approaches by
providing more than an order of magnitude better
bandwidth and storage efficiency than AC-TI repli-
cated server systems, as much as an order of magni-
tude better synchronization delay compared to PR-AC
hierarchical systems, and consistency guarantees not
achievable by PR-TI per-object replication systems.

2. What are the costs of PRACTI’s generality? Given
that a flexible PRACTI protocol can subsume exist-
ing approaches, is it significantly more expensive to
implement a given system using PRACTI than to im-
plement it using narrowly-focused specialized mech-
anisms? We find that the primary “extra” cost of
PRACTI’s generality is that our system can transmit
more consistency information than a customized sys-
tem might require. But, our implementation reduces
this cost compared to past systems via separating in-
validations and bodies and via imprecise invalidations,
so these costs appear to be minor.
To provide a framework for exploring these issues, we

first focus on partial replication in 4.1. We then examine
topology independence in 4.2. Finally, we examine the
costs of flexible consistency in 4.3.

4.1 Partial replication
When comparing to the full replication protocols from
which our PRACTI system descends, we find that sup-
port for partial replication dramatically improves perfor-
mance for three reasons:

1. Locality of Reference: partial replication of bodies and
invalidations can each reduce storage and bandwidth
costs by an order of magnitude for nodes that care
about only a subset of the system’s data.

2. Bytes Die Young: partial replication of bodies can
significantly reduce bandwidth costs when “bytes die
young” [2].

3. Self-tuning Replication: self-tuning replication mini-
mizes response time for a given bandwidth budget.

It is not a surprise that partial replication can yield signif-
icant performance advantages over existing server repli-
cation systems. What is significant is that (1) our exper-
iments provide evidence that despite the good properties
of server replication systems (e.g., support for discon-
nected operation, flexible consistency, and dynamic net-
work topologies) these systems may be impractical for
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Fig. 7: Impact of locality on replication cost.

many environments; and (2) they demonstrate that these
trade-offs are not fundamental—a PRACTI system can
support PR while retaining the good AC-TI properties of
server replication systems.

Locality of reference. Different devices in a dis-
tributed system often access different subsets of the sys-
tem’s data because of locality and different hardware ca-
pabilities. In such environments, some nodes may ac-
cess 10%, 1%, or less of the system’s data, and partial
replication may yield significant improvements in both
bandwidth to distribute updates and space to store data.

Figure 7 examines the impact of locality on replication
cost for three systems implemented on our PRACTI core
using different controllers: a full replication system simi-
lar to Bayou, a partial-body replication system that sends
all precise invalidations to each node but that only sends
some bodies to a node, and a partial-replication system
that sends some bodies and some precise invalidations to
a node but that summarizes other invalidations using im-
precise invalidations. In this benchmark, we overwrite
a collection of 1000 files of 10KB each. A node sub-
scribes to invalidations and body updates for the subset
of the files that are of interest to that node. The x axis
shows the fraction of files that belong to a node’s sub-
set, and the y axis shows the total bandwidth required to
transmit these updates to the node.

The results show that partial replication of both bod-
ies and invalidations is crucial when nodes exhibit local-
ity. Partial replication of bodies yields up to an order
of magnitude improvement, but it is then limited by full
replication of metadata. Using imprecise invalidations
to provide true partial replication can gain over another
order of magnitude as locality increases.

Note that Figure 7 shows bandwidth costs. Partial
replication provides similar improvements for space re-
quirements (graph omitted.)

Bytes die young. Bytes are often overwritten or
deleted soon after creation [2]. Full replication systems
send all writes to all servers, even if some of the writes
are quickly made obsolete. In contrast, PRACTI repli-
cation can send invalidations separately from bodies: if
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a file is written multiple times on one node before being
read on another, overwritten bodies need never be sent.

To examine this effect, we randomly write a set of files
on one node and randomly read the files on another node.
Due to space constraints, we defer the graph to the ex-
tended report [3]. To summarize: when the write to read
ratio is 2, PRACTI uses 55% of the bandwidth of full
replication, and when the ratio is 5, PRACTI uses 24%.

Self-tuning replication. Separation of invalidations
from bodies enables a novel self-tuning data prefetching
mechanism described in Section 3.4. As a result, systems
can replicate bodies aggressively when network capacity
is plentiful and replicate less aggressively when network
capacity is scarce.

Figure 8 illustrates the benefits of this approach by
evaluating three systems that replicate a web service
from a single origin server to multiple edge servers. In
the dissemination services we examine, all updates occur
at the origin server and all client reads are processed at
edge servers, which serve both static and dynamic con-
tent. We compare the read response time observed by the
edge server when accessing the database to service client
requests for three replication policies: Demand Fetch fol-
lows a standard client-server HTTP caching model by
replicating precise invalidations to all nodes but sending
new bodies only in response to demand requests, Repli-
cate All follows a Bayou-like approach and replicates
both precise invalidations and all bodies to all nodes, and
Self Tuning exploits PRACTI to replicate precise invali-
dations to all nodes and to have all nodes subscribe for all
new bodies via the self-tuning mechanism. We use a syn-
thetic workload where the read:write ratio is 1:1, reads
are Zipf distributed across files (α = 1.1), and writes are
uniformly distributed across files. We use Dummynet to
vary the available network bandwidth from 0.75 to 5.0
times the system’s average write throughput.

As Figure 8 shows, when spare bandwidth is available,
self-tuning replication improves response time by up to
a factor of 20 compared to Demand-Fetch. A key chal-
lenge, however, is preventing prefetching from overload-
ing the system. Whereas our self-tuning approach adapts

Storage Dirty Data Wireless Internet
Office server 1000GB 100MB 10Mb/s 100Mb/s
Home desktop 10GB 10MB 10Mb/s 1Mb/s
Laptop 10GB 10MB 10Mb/s 50Kb/s

1Mb/s Hotel only
Palmtop 100MB 100KB 1Mb/s N/A

Fig. 9: Configuration for mobile storage experiments.

bandwidth consumption to available resources, Replicate
All sends all updates regardless of workload or environ-
ment. This makes Replicate All a poor neighbor—it con-
sumes prefetching bandwidth corresponding to the cur-
rent write rate even if other applications could make bet-
ter use of the network.

4.2 Topology independence
We examine topology independence by considering two
environments: a mobile data access system distributed
across multiple devices and a wide-area-network file sys-
tem designed to make it easy for PlanetLab and Grid
researchers to run experiments that rely on distributed
state. In both cases, PRACTI’s combined partial repli-
cation and topology independence allows our design to
dominate topology-restricted hierarchical approaches by
doing two things:

1. Adapt to changing topologies: a PRACTI system can
make use of the best paths among nodes.

2. Adapt to changing workloads: a PRACTI system can
optimize communication paths to, for example, use di-
rect node-to-node transfers for some objects and dis-
tribution trees for others.

We primarily compare against standard restricted-
topology client-server systems like Coda and IMAP. For
completeness, our graphs also compare against topology-
independent, full replication systems like Bayou.

Mobile storage. We first consider a mobile storage
system that distributes data across palmtop, laptop, home
desktop, and office server machines. We compare a
PRACTI system to a client-server system that supports
partial replication but that distributes updates via a cen-
tral server and to a full-replication system that can dis-
tribute updates directly between any nodes but that re-
quires full replication. All three systems are realized by
implementing different controller policies.

As summarized in Figure 9 our workload models a
department file system that supports mobility: an office
server stores data for 100 users, a user’s home machine
and laptop each store one user’s data, and a user’s palm-
top stores 1% of a user’s data. Note that due to resource
limitations, we store only the “dirty data” on our test ma-
chines, and we use desktop-class machines for all nodes.
We control the network bandwidth of each scenario using
a library that throttles transmission.

Figure 10 shows the time to synchronize dirty data
among machines in three scenarios: (a) Plane: the user

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 69
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Fig. 10: Synchronization time among devices for different network topologies and protocols.
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Fig. 11: Execution time for the WAN-Experiment benchmark
on 50 distributed nodes with a remote server.

is on a plane with no Internet connection, (b) Hotel: the
user’s laptop has a 50Kb/s modem connection to the In-
ternet, and (c) Home: the user’s home machine has a
1Mb/s connection to the Internet. The user carries her
laptop and palmtop to each of these locations and co-
located machines communicate via wireless network at
speeds indicated in Figure 9. For each location, we mea-
sure time for machines to exchange updates: (1) P↔L:
the palmtop and laptop exchange updates, (2) P↔H:
the palmtop and home machine exchange updates, (3)
L→H: the laptop sends updates to the home machine,
(4) O→All: the office server sends updates to all nodes.

In comparing the PRACTI system to a client-server
system, topology independence has significant gains
when the machines that need to synchronize are near one
another but far from the server: in the isolated Plane lo-
cation, the palmtop and laptop can not synchronize at
all in a client-server system; in the Hotel location, di-
rect synchronization between these two co-located de-
vices is an order of magnitude faster than synchronizing
via the server (1.7s v. 66s); and in the Home location, di-
rectly synchronizing co-located devices is between 3 and
20 times faster than synchronization via the server.

WAN-FS for Researchers. Figures 11 and 12 evaluate
a wide-area-network file system called PLFS designed
for PlanetLab and Grid researchers. The controller for
PLFS is simple: for invalidations, PLFS forms a mul-
ticast tree to distribute all precise invalidations to all
nodes. And, when an INVALID file is read, PLFS uses
a DHT-based system [38] to find the nearest copy of the
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Fig. 12: Execution time for the WAN-Experiment benchmark
on 50 cluster nodes plus a remote server.

file; not only does this approach minimize transfer la-
tency, it effectively forms a multicast tree when multiple
concurrent reads of a file occur [1, 35].

We examine a 3-phase benchmark that represents run-
ning an experiment: in phase 1 Disseminate, each node
fetches 10MB of new executables and input data from
the user’s home node; in phase 2 Process, each node
writes 10 files each of 100KB and then reads 10 files
from randomly selected peers; in phase 3, Post-process,
each node writes a 1MB output file and the home node
reads all of these output files. We compare PLFS to
three systems: a client-server system, client-server with
cooperative caching of read-only data [1], and server-
replication [26]. All 4 systems are implemented via
PRACTI using different controllers.

The figures show performance for an experiment run-
ning on 50 distributed nodes each with a 5.6Mb/s con-
nection to the Internet (we emulate this case by throt-
tling bandwidth) and 50 cluster nodes at the University
of Texas with a switched 100Mb/s network among them
and a shared path via Internet2 to the origin server at the
University of Utah.

The speedups range from 1.5 to 9.2, demonstrating the
significant advantages enabled by the PRACTI architec-
ture. Compared to client/server, it is faster in both the
Dissemination and Process phases due to its multicast
dissemination and direct peer-to-peer data transfer. Com-
pared to full replication, it is faster in the Process and
Post-process phases because it only sends the required
data. And compared to cooperative caching of read only
data, it is faster in the Process phase because data is trans-
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ferred directly between nodes.

4.3 Arbitrary consistency
This subsection examines the costs of PRACTI’s gen-
erality. As Section 3.3 describes, our protocol ensures
that requests pay only the latency and availability costs
of the consistency they require. But, distributing suffi-
cient bookkeeping information to support a wide range
of per-request semantics does impose a bandwidth cost.
If all applications in a system only care about coherence
guarantees, a customized protocol for that system could
omit imprecise invalidations and thereby reduce network
overheads.

Three features of our protocol minimize this cost.
First, transmitting invalidations separately from bodies
allows nodes to maintain a consistent view of data with-
out receiving all bodies. Second, transmitting imprecise
invalidations in place of some precise invalidations al-
lows nodes to maintain a consistent view of data with-
out receiving all precise invalidations. Third, self-tuning
prefetch of bodies allows a node to maximize the amount
of local, valid data in a checkpoint for a given bandwidth
budget. In an extended technical report [3], we quan-
tify how these features can greatly reduce the cost of en-
forcing a given level of consistency compared to existing
server replication protocols.

Figure 13 quantifies the remaining cost to distribute
both precise and imprecise invalidations (in order to sup-
port consistency) versus the cost to distribute only pre-
cise invalidations for the subset of data of interest and
omitting the imprecise invalidations (and thus only sup-
porting coherence.) We vary the fraction of data of inter-
est to a node on the x axis and show the invalidation bytes
received per write on the y axis. Our workload is a series
of writes by remote nodes in which all objects are equally
likely to be written. Note that the cost of imprecise in-
validations depends on the workload’s locality: if there
is no locality and writers tend to alternate between writ-
ing objects of interest and objects not of interest, then the
imprecise invalidations between the precise invalidations
will cover relatively few updates and save relatively little
overhead. Conversely, if writes to different interest sets
arrive in bursts, then the system will generally be able

to accumulate large numbers of updates into imprecise
invalidations. We show two cases: the No Locality line
shows the worst case scenario, with no locality across
writes, and the burst=10 line shows the case when a write
is ten times more likely to hit the same interest set as the
previous write than to hit a new interest set.

When there is significant locality for writes, the cost of
distributing imprecise invalidations is small: imprecise
invalidations to support consistency never add more than
20% to the bandwidth cost of supporting only coherence.
When there is no locality, the cost is higher, but in the
worst case imprecise invalidations add under 50 bytes per
precise invalidation received. Overall, the difference in
invalidation cost is likely to be small relative to the total
bandwidth consumed by the system to distribute bodies.

5 Related work
Replication is fundamentally difficult. As noted in Sec-
tion 3.3, the CAP dilemma [9, 31] and performance/ con-
sistency dilemma [22] describe fundamental trade-offs.
As a result, systems must make compromises or optimize
for specific workloads. Unfortunately, these workload-
specific compromises are often reflected in system mech-
anisms, not just their policies.

In particular, state of the art mechanisms allow a de-
signer to retain full flexibility along at most two of the
three dimensions of replication, consistency, or topology
policy. Section 2 examines existing PR-AC [15, 18, 25],
AC-TI [10, 17, 19, 26, 37, 39], and PR-TI [11, 29] ap-
proaches. These systems can be seen as special case
“projections” of the more general PRACTI mechanisms.

Some recent work extends server replication systems
towards supporting partial replication. Holliday et al.’s
protocol allows nodes to store subsets of data but still re-
quires all nodes to receive updates for all objects [14].
Published descriptions of Shapiro et al.’s consistency
constraint framework focus on full replication, but the
authors have sketched an approach for generalizing the
algorithms to support partial replication [30].

Like PRACTI, the Deceit file system [31] provides a
flexible substrate that subsumes a range of replication
systems. Deceit, however, focuses on replication across a
handful of well-connected servers, and it therefore makes
very different design decisions than PRACTI. For exam-
ple, each Deceit server maintains a list of all files and of
all nodes replicating each file, and all nodes replicating a
file receive all bodies for all writes to the file.

A description of PRACTI was first published in an ear-
lier technical report [7], and an extended technical re-
port [3] describes the current system in more detail.

6 Conclusion
In this paper, we introduce the PRACTI paradigm for
replication in large scale systems and we describe the
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first system to simultaneously provide all three PRACTI
properties. Evaluation of our prototype suggests that
by disentangling mechanism from policy, PRACTI repli-
cation enables significantly better trade-offs for system
designers than possible with existing mechanisms. By
subsuming existing approaches and enabling new ones,
we speculate that PRACTI may serve as the basis for a
unified replication architecture that simplifies the design
and deployment of large-scale replication systems.
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