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Abstract

Automated, rapid, and effective fault management is
a central goal of large operational IP networks. Today’s
networks suffer from a wide and volatile set of failure
modes, where the underlying fault proves difficult to de-
tect and localize, thereby delaying repair. One of the
main challenges stems from operational reality: IP rout-
ing and the underlying optical fiber plant are typically de-
scribed by disparate data models and housed in distinct
network management systems. We introduce a fault-
localization methodology based on the use of risk models
and an associated troubleshooting system, SCORE (Spa-
tial Correlation Engine), which automatically identifies
likely root causes across layers. In particular, we apply
SCORE to the problem of localizing link failures in IP
and optical networks. In experiments conducted on a
tier-1 ISP backbone, SCORE proved remarkably effec-
tive at localizing optical link failures using only IP-layer
event logs. Moreover, SCORE was often able to auto-
matically uncover inconsistencies in the databases that
maintain the critical associations between the IP and op-
tical networks.

1 Introduction
Operational IP networks are intrinsically exposed to a
wide variety of faults and impairments. These networks
are large, geographically distributed, constantly evolv-
ing, with complex hardware and software artifacts. A
typical tier-1 network consists of about 1,000 routers
from different vendors, with different features, and act-
ing in different roles in the network architecture. Such a
network is supported by access and core transport net-
works, which typically involve at least two orders of
magnitude more network elements (optical amplifiers,
Dense Wavelength Division Multiplexing (DWDM) sys-
tems, ATM/MPLS/Ethernet switches, and so forth).
These network elements and associated telemetry gen-
erate a large number of management events relating to
performance and potential failure conditions. The essen-
tial problem of IP fault management is to monitor the
event stream to detect, localize, mitigate and ultimately
correct any condition that degrades network behavior.

Unfortunately, operational IP networks today lack in-
trinsic robustness; serious faults and outages are not in-
frequent. While existing fault management systems (e.g.,
[12, 21, 8]) provide great value in automating routine
fault management, serious problems can fly “under the

radar,” or, once detected, cannot be rapidly localized and
diagnosed. To appreciate why this is so, it may help to
imagine a network operator faced with the task of IP fault
management. After much effort, network hardware has
been designed and implemented, the protocols control-
ling the network have been designed (often in compli-
ance with published standards), and the associated soft-
ware implemented. In accord with the network archi-
tecture, the network elements have been deployed, con-
nected, and configured. Yet, all these complex endeav-
ors are carried out by multiple teams at rapid pace, in-
volving a large and distributed software component, thus
producing operational artifacts far richer in behavior than
can ever be approximated in a lab. Errors will be intro-
duced at each stage of network definition and go unde-
tected despite best practices in design, implementation,
and testing. External factors, including bugs of all types
(memory leaks, inadequate performance separation be-
tween processes, etc.) in router software and environ-
mental factors such as DoS attacks and BGP-related traf-
fic events originating in peer networks significantly raise
the level of difficulty. It is the task of IP fault manage-
ment to cope with the result, continually learning and
dealing with new failure modes in the field.

In this paper, we introduce a risk modeling methodol-
ogy that allows for faster, more accurate automatic local-
ization of IP faults to support both real-time and offline
analysis. By design, we:

• split our solution into generic algorithmic compo-
nents (Section 4.2) and problem domain specific
components (Section 4.5), and

• create risk models that reflect fundamental architec-
tural elements of the problem domain, but not neces-
sarily implementation details.

As a result, our system is robust to churn in operational
networks and is more likely to be extensible to additional
system components.

We apply our methodology to the specific problem of
fault localization across IP and optical network layers,
a difficult problem faced by network operators today.
Currently, when IP operations receives router-interface
alarms, the systems and staff are often faced with time-
intensive manual investigation of what layer the problem
occurred in, where, and why. This task is hampered by
the architecture of the underlying network: IP uses optics
for transport and (in some cases) for self-healing services
(e.g., SONET ring restoration) in an overlay fashion. The
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task of managing each of the two network layers is natu-
rally separated into independent software systems.

Joining dynamic fault data across IP and optical sys-
tems is highly challenging—the network elements, sup-
porting standards and information models are totally dif-
ferent. Though there are fields, such as circuit IDs,
which can be used to join databases across these sys-
tems, automated mechanisms to assure the accuracy of
these joins are lacking. Unfortunately, the network ele-
ments and protocols provide little help. Path-trace capa-
bilities (counterparts of IP traceroute) are not available
in the optical layer, or, if available, do not work in a
multi-vendor environment (e.g., where the DWDM sys-
tems are provided by multiple vendors). In optical sys-
tems such as SONET, there is no counterpart to IP utiliza-
tion statistics, which might be used to correlate traffic at
the IP layer with the optical layer. Both IP and optical
network topologies are rapidly changing as equipment is
upgraded, network reach is extended, and capacities are
re-engineered to manage changing demands.

Our key contribution is the novel and successful ap-
plication of risk modeling to localize faults across the
IP and optical layers in operational networks. Roughly
speaking, a physical object such as a fiber span or an op-
tical amplifier represents a shared risk for a group of log-
ical entities (such as IP links) at the IP layer. That is, if
the optical device fails or degrades, all of the IP compo-
nents that had relied upon that object fail or degrade. In
the literature, these associations are referred to as Shared
Risk Link Groups or SRLGs [4]. Using only event data
gathered at IP layer, and topology data gathered at both
IP and optical layers, we bridge the gap between the op-
erational information network managers need and what
is actually reported at IP layer. SCORE (Spatial Corre-
lation Engine) relieves operators of the burden of cross-
correlating dynamic fault information from two disparate
network layers. Once the layer and the location of the
fault has been determined, other systems and tools at the
appropriate layer can be targeted towards identifying the
precise characteristics (for example, rule-based or statis-
tical methods [12, 21]).

2 Troubleshooting using shared risks
Monitoring alarms associated with IP network compo-
nent failures are typically generated on an individual
basis—for example, a router failure will appear as a fail-
ure of all of the links terminating at that router. Best cur-
rent practice requires a manual correlation of the individ-
ual link failure notifications to determine that they are all
a result of a common network element (e.g., router). In
more complicated failure scenarios, however, it is sub-
stantially more challenging to group individual alarms
into common groups, and often difficult to even identify
in which layer the fault occurred (e.g., in the transport
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Figure 1: Example illustrating the concept of SRLGs.

network interconnecting routers, or in the routers them-
selves). By identifying the set of possible components
that could have caused the observed symptoms, shared
risk analysis can serve as the first step of diagnosing
a network problem. For events being investigating by
operations personnel in real time, reducing the time re-
quired for troubleshooting directly decreases down time.

2.1 Shared risk in IP networks
Our challenge is to construct a model of risks that rep-
resent the set of IP links that would likely be impacted
by the failure of each component within the network.
The tremendous complexity of the hardware and soft-
ware upon which an IP network is built implies that con-
structing a model that accounts for every possible fail-
ure mode is impractical. Instead, we identify the key
components of the risk model that represent the preva-
lent network failure modes and those that do not require
deep knowledge of each vendor’s equipment used within
the network. We hasten to add that the better the SRLG
modeling of the network, the more precise the fault diag-
nosis can be. However, as we show later, a solid SRLG
model combined with a flexible spatial correlation al-
gorithm can ensure that fault isolation can be robust to
missing details in the risk model developed.

The basic network topology can be represented as a
set of nodes interconnected via links. Inter-domain and
intra-domain routing protocols such as OSPF and BGP
operate with a basic abstraction of a point-to-point link
between a routers. Of course, OSPF permits other ab-
stractions such as multi-access and non-broadcast, but
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a backbone network typically only consists of point-to-
point links between routers. Figure 1 illustrates a very
simplistic network consisting of five nodes connected via
six optical links (circuits). Each inter-office IP link is
carried on an optical circuit (typically using SONET).
This optical circuit in turns consists of a series of one
or more fibers, optical amplifiers, SONET rings, intelli-
gent optical mesh networks and/or DWDM systems [18].
These systems consist of network elements that pro-
vide O-E-O (optical to electrical) conversion and, in the
case of SONET rings or mesh optical networks, pro-
tection/restoration to recover from optical layer failures.
Multiple optical fibers are then carried in a single con-
duit, commonly known as a fiber span. Typically, each
optical component may carry multiple IP links—the fail-
ure of these components would result in the failure of all
of these IP links. We illustrate this concept in the bottom
half of Figure 1, where we show the optical layer topol-
ogy over which the IP links are routed. In the Figure 1,
these shared risks are denoted as FIBER SPAN 1 to 6,
DWDM 1 and 2. CKT3 and CKT5 are both routed over
FIBER SPAN 4 and thus would both fail with the failure
of FIBER SPAN 4. Similarly DWDM 1 is shared be-
tween CKT 1, 3, 4 and 5, while CKT 6 and CKT 7 share
DWDM 2.

In essence, each network element represents a shared
risk among all the links that traverse through this ele-
ment. Hence, this set of links represents what is known
as the Shared Risk Link Group (SRLG), as defined in
[14, 23]. This concept is well understood in the con-
text of network planning where backup paths are chosen
such that they do not have any SRLG in common with
the primary path, and sufficient capacity is planned to
survive SRLG failures. However, the application of risk
group models to real-time and offline fault analysis has
not been well explored.

2.2 Network SRLGs
We now present the shared risk group model that we
construct to represent a typical IP network. We divide
the model into hardware-related risks and software risks.
Note that this model is not exhaustive, and can be ex-
panded to incorporate, for example, additional software
protocols.

2.2.1 Hardware-related SRLGs
Fiber: At the lowest level, a single optical fiber car-
ries multiple wavelengths using DWDM. One or more IP
links are carried on a given wavelength. All wavelengths
that propagate through a fiber form an SRLG with the
fiber being the risk element. A single fiber cut can si-
multaneously induce faults on all of the IP links that ride
over that fiber.

Fiber span: In practice, a set of fibers are carried to-
gether through a cable. A set of cables are laid out in

a conduit. A cut (from, e.g., a backhoe) can simultane-
ously fail all links carried through the conduit. These set
of circuits that ride through the conduit form the fiber
span SRLG.

SONET network elements: In practice SONET net-
work elements such as optical amplifiers, add-drop mul-
tiplexors etc., are shared across multiple wavelengths
(that represent the circuits). For example, an optical
amplifier amplifies all the wavelengths simultaneously
– hence a problem in the optical amplifier can poten-
tially disrupt all associated wavelengths. We collectively
group these elements together into the SONET network
elements group.

Router modules: A router is usually composed of a
set of modules, each of which can terminate one or more
IP links. A module-related SRLG denotes all of the IP
links terminating on the given module, as these would all
be subject to failure should the module die.

Router: A router typically terminates a significant
number of IP links, all of which would likely be impacted
by a router failure (either software or hardware). Hence,
all of the IP links terminating on a given router collec-
tively belong to a given router SRLG.

Ports: An individual link can also fail due to the fail-
ure of a single port on the router (impacting only the one
link), or through other failure modes that impact only the
single link. Thus, we also include Port SRLGs in our
model. Port SRLGs however are singleton sets consist-
ing of only one circuit. However, we add them in our risk
model in order to be able to explain single link failure.

2.2.2 Software-related SRLGs

Autonomous system: An autonomous system (AS) is
a logical grouping of routers within the Internet or a sin-
gle enterprise or provider network (typically managed by
a common team and systems). These routers are typi-
cally all running a common instance of an intra-domain
routing protocol and, although extremely rare, a single
intra-domain routing protocol software implementation
can cause an entire AS to fail.

OSPF areas: Although an OSPF area is a logical
grouping of a set of links for intra-domain routing pur-
poses, there can be instances where a faulty routing pro-
tocol implementation can cause disruptions across the
entire area. Hence, the IP links in a particular area form
an OSPF Area SRLG.

Not all SRLGs have corresponding failure diagnosis
tools associated with them. For example, a fiber span
is a physical piece of conduit that generally cannot indi-
cate to the network operator that it has been cut. Simi-
larly, there is no monitoring at the OSPF area level that
can indicate if the whole area was affected. On the other
hand, some SONET optical devices can indicate failures
in real time. However, these failure indications are usu-
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Figure 2: CDF of shared risk among real SRLGs

ally at wavelength granularity (i.e circuit or link level
failures) and hence are not representative of that equip-
ment failure. Diagnosis is therefore based on inference
from correlated failures that can be attributed to a partic-
ular SRLG. In the absence of fault notifications directly
from the equipment, this becomes the only approach to
identify the failed component in the network.

2.3 Shared risk in real networks
Spatial correlation is inherently enabled by richness in
sharing of risks between links. In particular, spatial
correlation will typically be most effective in networks
where SRLGs consist of multiple IP links, and each IP
link consists of multiple SRLGs. Figure 2 depicts the cu-
mulative distribution of the SRLG cardinality (the num-
ber of IP links in each SRLG) in a segment of a large tier-
1 IP network backbone (in particular, customer-facing in-
terfaces are not included here). The figure gives an idea
of the SRLG cardinality (number of IP links per SRLG)
in real-life. We can observe from this figure that, as ex-
pected, OSPF areas typically consist of a large number of
links (and, hence, are included in their SRLG), whereas
port SRLGs (by definition) comprise only a single cir-
cuit. In between, we can see that fiber spans typically
have a significant number of IP links sharing them, while
SONET network elements typically have fewer. The im-
portant observation here is that there is a significant de-
gree of sharing of network components that can be uti-
lized in spatial correlation in real IP networks. Studies
of the number of SRLGs along each IP link show simi-
lar results. Thus, shared risk group analysis holds great
promise for large-scale IP networks.

3 Shared Risk Group analysis
We begin by defining the notation we shall use through-
out the remainder of the paper. Define an observation as
a set of link failures that are potentially correlated, either
temporally or otherwise. In other words, if a given set of
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Figure 3: A bipartite graph formulation of the Shared
Risk Group problem.

links fail simultaneously or share a similar pattern or sig-
nature of a failure, these events form an observation. A
hypothesis is a candidate set of circuit failures that could
explain the observation. That is, a hypothesis is a set of
risk groups that contain the set of links seen to fail in a
given observation.

The goal, then, of shared risk group analysis is to ob-
tain a hypothesis that best explains a given observation.
The principle of Occam’s razor suggests that the simplest
explanation is the most likely; hence, we consider the
best hypothesis to be the one with the fewest number of
risk groups. We note, however, that there could be other
formulations of the problem where a best hypothesis is
optimizing some other metric.

3.1 Problem formulation
We can define the problem formally as follows. Given
a set of links, C = {c1, c2, . . . , cn}, and risk groups
G = {G1, G2, . . . , Gm}. Each risk group Gi ∈ G
contains a set of links Gi = {ci1, ci2, . . . , cik} ⊆ C
that are likely to fail simultaneously. (We use the terms
“links” and “circuits” here to aid intuition, though it will
be apparent that the formulation and the algorithm to
be described simply deals with sets, and can be applied
to arbitrary problem domains). Note that each circuit
here can potentially belong to many different groups.
Given an input observation consisting of events on a
subset of circuits, O = ce1, ce2, . . . , cem, the prob-
lem is to identify the most probable hypothesis, H =
{Gh1, Gh2, . . . , Ghk} ⊆ G such that H explains O, i.e.,
every member of O belongs to at least one member of H
and all the members of a given group Ghi belong to O.
The latter constraint stems from the fact that if a compo-
nent fails, all the associated member links fail and hence
should be a part of the observation. H is a set cover for
O; finding a minimum set cover is known to be NP com-
plete.

The problem can be modeled visually using a bipar-
tite graph as shown in Figure 3. Each circuit, ci, and
group, Gj , is represented by a node in the graph. The
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bottom partition consists of nodes corresponding to the
risk groups; the top nodes correspond to circuits. An
edge exists between a circuit node and a group node if
that circuit is a member of the risk group. Given this
bipartite graph and a subset of vertices in the top par-
tition (corresponding to an observation), the problem is
to identify the smallest possible set of group nodes that
cover the events.

Before proceeding, we observe that if multiple risk
groups have the same membership—that is, the same set
of circuits may fail for two or more different reasons—it
is impossible to distinguish between the causes. We call
any such risk groups aliases, and collapse all identical
groups into one in our set of risk groups. For example,
in Figure 3, group g5 and g6 have the same membership:
l4. Hence, g5 and g6 are collapsed into a single group as
a pre-processing step.

3.2 Greedy approximation
There are potentially many different ways to solve the
problem as formulated above; we use a greedy approx-
imation to model imperfect fault notifications and other
inconsistencies due to operational realities (as discussed
in Section 3.3). Our greedy approximation also reduces
the computation cost involved in identifying the most
likely hypothesis among all hypotheses (which can po-
tentially be large).

Before presenting the algorithm, however, we must
first introduce two metrics we will use to quantify the
utility of a risk group. Let |Gi| be the total number of
links that belong to the group Gi (known as the cardinal-
ity of Gi). Similarly, |Gi ∩O| is the number of elements
of Gi that also belong to O. We define the hit ratio of the
group Gi as |Gi ∩ O|/|Gi|. In other words, the hit ratio
of a group is the fraction of circuits in the group that are
part of the observation. The coverage ratio of a group Gi

is defined as |GI ∩ O|/|O|. Basically, the coverage ratio
is the portion of the observation explained by a given risk
group.

Intuitively, our greedy algorithm attempts to itera-
tively select the risk group that explains the greatest num-
ber of faults in the observation with the least error: in
other words, the highest coverage and hit ratios. More
concretely, in every iteration, the algorithm computes the
hit ratio and coverage ratio for all the groups that contain
at least one element of the observation (i.e., the neighbor-
hood of the observation in the bipartite graph). It selects
the risk group with maximum coverage (subject to some
restrictions on the hit ratio which we shall describe later)
and prunes both the group and its member circuits from
the graph. In the next iteration, the algorithm recomputes
the hit and coverage ratio for the remaining set of groups
and circuits. This process repeats, adding the group with
the maximum coverage in each iteration to the hypothe-

Algorithm 1 greedyHypothesis(input links,threshold)

1: explained = {}; // EmptySet
2: unexplained = input links;
3: // All groups that contain at least one link
4: groups = getAllGroups(unexplained);
5: while (unexplained 6= {}) do
6: // Compute hit and coverage for all groups
7: hitCoverage(groups, explained, unexplained);
8: // F ind a candidate group for pruning
9: grp = findCandidateGroup(groups, threshold);

10: pruneGrp(grp, explained, unexplained);
11: addGroup(hypothesis, grp);
12: end while
13: return hypothesis;

Algorithm 2 findCandidateGroup(groups,threshold)
1: for all group such that group.hitratio ≥

threshold do
2: maxGroup = updateMaxCoverage(group)
3: end for
4: return maxGroup

sis, until finally terminating when there are no circuits re-
maining in the observation. The pseudocode is presented
in Algorithm 1.

The algorithm maintains two separate lists: explained
and unexplained. When a risk group is selected for in-
clusion in the hypothesis, all circuits in the observa-
tion that are explained by this risk group are removed
from the unexplained list and placed in the explained list.
The hit ratio is computed based on the union of the ex-
plained and unexplained list, but coverage ratio is com-
puted based only on the unexplained list. The reason for
this is straightforward: multiple failures of the same cir-
cuit will result in only one failure observation. Hence,
the hit ratio of a risk group should not be reduced sim-
ply because some other risk group also accounts for the
failure observation.

3.3 Modeling imperfections
In our discussion so far, we have skirted the issue of se-
lecting risk groups with hit ratios less than one. What
does it mean to have a hypothesis that explains more cir-
cuit failures than actually occurred? In a straightforward
model, such a result is nonsensical: if the shared com-
ponent generating the risk group failed, all constituent
circuits should have been affected. Operational reality,
however, is seemingly contradictory for a number of rea-
sons, including incomplete or erroneous monitoring data,
and inaccurate modeling of the shared risk groups.

The failure notices (e.g., SNMP traps) are often trans-
mitted using unreliable protocols such as UDP which can
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result in partial failure observations. Hence, the accuracy
of the diagnosis can be impacted if the data is erroneous
or incomplete. For example, if due to the failure of a
particular optical component failure, six links went down
out of which only five, say, messages made it to the mon-
itoring system. The hit ratio for the risk group represent-
ing the shared component is then 5/6. Without expressly
allowing for the selection of this risk group, the algo-
rithm would output a hypothesis, that, while plausible, is
likely far from reality.

Furthermore, while theoretically it should be possi-
ble to precisely model all risk groups, it is impossible
in practice to exactly capture all possible failure modes.
This difficulty leads to two interesting cases of inaccu-
rate modeling. One is failure to model high-level risk
groups (e.g., all links terminating in a particular point of
presence may share a power grid) while the other is fail-
ure to model low-level risk groups (for example, some
internal risk group within a router). Our algorithm needs
to be robust against imprecise failure groups and, if pos-
sible, learn from real observations. We discuss one real
instance of learning of new risk groups from actual fail-
ure observations in Section 6.

We allow for these operational realities by selecting
the risk group with greatest coverage out of those with
hit ratios above a certain error threshold. So, even if a
particular circuit is omitted (either due to incorrect mod-
eling or missing data), the error threshold allows consid-
eration of groups that have most links but not quite all
and cover a large number of failures.

Note that there could be two different cases once
we include groups with hit ratios above a certain error
threshold. It is possible that there are genuinely only few
failures but due to information loss the algorithm with
no error threshold outputs a hypothesis with larger num-
ber of failures. Relaxing the error threshold would ac-
count for this loss thereby outputting a better (smaller)
hypothesis. On the other hand, there could be genuinely
larger number of failures in which case relaxing the error
threshold can output a wrong hypothesis.

It turns out to be extremely difficult to select a sin-
gle error threshold for all observations, as it depends
greatly on the size of individual risk groups involved in
the observation. In practice, we run the algorithm mul-
tiple times and generate hypotheses for decreasing er-
ror thresholds until a plausible hypothesis is generated.
More generally, we can assign a cost function to evalu-
ate the confidence of a particular hypothesis based on the
number of component failures in the hypothesis and the
threshold used and choose the one with lowest cost.

4 System overview
We created SCORE with generality in mind. Accord-
ingly, key systems and algorithmic components are fac-
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Figure 4: System architecture framework of SCORE.

tored out so that they may be reused in multiple problem
domains or in variations for a single problem domain.
A stand-alone spatial correlation module is driven by an
extensible set of problem domain dependent diagnosis
processes. Intelligence from the problem domain is built
into the SRLG database, and is reflected in the SCORE
queries. Figure 4 depicts the SCORE system architecture
as it is implemented today. The following subsections
describe the various modules in more detail.

4.1 SRLG database
The SRLG database manages relationships between
SRLG groups and corresponding links. For example,
in our application, the database atoms used to form
SRLGs at SONET layer describe SONET level equip-
ment IDs that particular IP links traverses, extracted
from databases populated from operational optical ele-
ment management systems. Other risk groups such as
area, router, modules, etc. are similarly formed from the
native databases extracted from the various network el-
ements (e.g. router configurations). We note that the
underlying databases track the network and therefore ex-
hibit churn. The SCORE software is currently snapshot
driven, and copes with churn by reloading multiple times
during the course of the day. As mentioned in Section 3
on alias aggregation, we collapse risk groups with identi-
cal member links, prior to performing spatial correlation.

4.2 Spatial correlation engine
The Spatial Correlation Engine (SCORE) forms the core
of the system. This engine periodically loads the spa-
tial database hierarchy and responds to queries for fault
localization. SCORE implements the greedy algorithm
discussed in Section 3. That is, SCORE obtains the
minimum set hypothesis using the SRLG database and
a given set of inputs. Optionally, an error threshold can
be specified, as described in Section 3.
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4.3 Data sources
The set of observations upon which spatial correlation is
applied are obtained from the network fault notifications
and performance reports (including IP performance-
related alarms). These in turn come from a wide range
of data sources. We discuss below some of the more
popular fault and performance-related data sources that
have been used within the SCORE architecture to date.
Though we describe certain optical layer event data
sources (such as SONET PM data) and have experi-
mented with such sources with SCORE, only IP event
sources were used to obtain the results described in this
paper.

4.3.1 IP layer Fault notifications
IP link failures and other faults will be observed by the
routers, and reported to centralized network operations
systems via SNMP traps sent from the router. These
SNMP traps provide the key event notifications that al-
low network operators to learn of faults as they occur.

Router operating systems, much like Unix operat-
ing systems, log important events as they are observed.
These are known as router syslogs and provide a wealth
of useful information regarding network events. These
can be used as additional information to complement the
SNMP traps and the alarms that they generate. Table 1
shows sample Syslog messages for a failure observed on
a Cisco router, and another failure observed on an Avici
router. The failures are reported at different layers—
illustrated here for the SONET layer, PPP layer and IP
layer (OSPF). Note that there is no standardized format
for these messages as they are usually output for debug-
ging purposes.

4.3.2 Performance reports
SNMP performance data is generated by the routers on
either a per-interface or per-router basis, as applicable.
It typically contains 5 minute aggregate measurements
of statistics such as traffic volumes, router CPU average
utilization, memory utilization of the router, number of
packet errors, packet discards and so on.

Performance metrics are also available on a per cir-
cuit basis from SONET network elements along an opti-
cal path (as are alarms, although these are not discussed
here). Numerous parameters will be reported in, for ex-
ample, 15 minute aggregates. These include parameters
such as coding violations, errored seconds and severely
errored seconds (indicative of bit error rates and out-
ages), and protection switching counts on SONET rings.

4.4 Data translation/normalization
Each of these monitoring data are usually collected from
different network elements (such as routers, SONET
DWDM equipment etc.) and streamed to a centralized

database. These different data are usually stored in dif-
ferent formats with different candidate keys. For exam-
ple, the candidate key for SNMP database is an inter-
face number as it collects interface-level statistics. OSPF
messages are based on link IP addresses. SONET per-
formance monitoring data is based on a circuit identifier.
All these data sources are mapped into link circuit iden-
tifiers using a set of mapping databases.1

4.5 Fault localization policies
Fault localization is performed on various monitoring
data sources (such as those mentioned in the previous
section) using flexible data-dependent policies. In Fig-
ure 4, fault isolation policies form the bridge between
the various monitoring data sources (translators) and the
main SCORE engine. These policies dictate how a par-
ticular type of fault can be localized. The main functions
include:

• Event Clustering. Clustering events that represent
either temporally correlated events or events with
similar failure signature (hence could be spatially
correlated)

• Localization Heuristics. Heuristics that dictate how
to identify the hypothesis that can best explain these
event clusters.

Event Clustering: Data sources that are based on dis-
crete asynchronous events, (e.g. OSPF messages, Sys-
log messages) need to be clustered to identify an obser-
vation. This clustering captures all the events that took
place in a fixed time interval as potentially correlated.
Note that a failure can have events that are slightly off
in time either due to time synchronization issues across
various elements, or propagation delays in an event to
be recorded. Hence, event clustering has to account for
these in recording observations.

There are many different ways to cluster events. A
naive approach to clustering is based on fixed time bins.
For example, we can make observations (set of links po-
tentially correlated) by clustering together all events in a
fixed 5 minute bin. The problem with this approach how-
ever is the fact that events related to a particular failure
can potentially straddle the time bin boundary. In this
case, this quantization will create two different observa-
tions for correlated events thus affecting the accuracy of
the diagnosis.

In our system, we use a clustering algorithm based on
gaps between failure events. We use the largest chain of
events that are spaced apart within a set threshold (called
quiet period) as potentially correlated events. The intu-
ition here is that two events that occur within a time pe-
riod less than a given threshold (say 30 seconds) are po-

1We map all the databases into link circuit identifiers since the net-
work database itself is organized based on link circuit identifiers. How-
ever, any unified format would work equally well.
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Syslog Message on Cisco/Avici Routers Layer Router
Aug 16 04:01:29.302 EDT: %LINEPROTO-5-UPDOWN: Line protocol on
Interface POS0/0, changed state to down

SONET layer Cisco

Aug 16 04:01:29.305 EDT: %LINK-3-UPDOWN: Interface POS0/0, changed
state to down

PPP layer Cisco

Aug 16 04:01:29.308 EDT: %OSPF-5-ADJCHG: Process 11, Nbr 1.1.1.1
On POS0/0 from FULL to DOWN, Neighbor Down: Interface down or
detached

OSPF/IP layer Cisco

module0036:SUN SEP 12 17:23:29 2004 [030042FF] MINOR:snmp-traps
:Sonet link POS 1/0/0 has new adminStatus up and operStatus up.

Sonet Layer Avici

server0001:SUN SEP 12 17:25:01 2004 [030042FF] MINOR:snmp-traps
:PPP link POS 1/0/0 has new adminStatus up and operStatus up.

PPP layer Avici

server0002:THU AUG 12 07:21:58 2004 [030042FF] MINOR:snmp-traps:OSPF
with routerId 1.1.1.1 had non-virtual neighbor state change with
neighbor 1.1.1.2 (address less 0) (router id 1.1.1.4) to state
Down.

OSPF/IP layer Avici

Table 1: Syslog messages output by Cisco and Avici routers when a link goes down at different layers of the stack.
When the link comes back up, the router writes similar messages indicating that each of the layer is back up.

tentially correlated and can be attributed to the same fail-
ure. Note however that this particular parameter needs to
be tuned for the particular problem domain. These clus-
tered events are then fed to the SCORE system to obtain
a hypothesis that represents the failed components in the
network.

Although currently we use temporally correlated
events as a good indication of events that potentially can
have the same root cause, it is possible to apply different
methods to cluster events. One such alternative method
effective for software bugs where a particular type of
router with a particular version of software might have
fault signatures for different links although not necessar-
ily temporally correlated. An offline analysis tool that
can observe these signatures can then query and find out
the risk group associated with these links.

Localization Heuristics: Fault localization often re-
quires heuristics that are either derived intuitively or
through domain knowledge to make multiple queries to
the system with different parameters in order to obtain
higher confidence hypothesis. SCORE architecture it-
self allows flexible overlay of such troubleshooting poli-
cies depending on the problem domain. We implemented
one such localization heuristic for handling IP link down
events (including possible database errors).

A simple heuristic we implemented is to query Spatial
Correlation engine with multiple error thresholds (reduc-
ing from 1.0 to 0.5) and obtain many different hypothe-
ses. We compare these hypotheses obtained using dif-
ferent relaxations (error thresholds) to account for data
inconsistencies or database issues. The most likely hy-
pothesis is based on a cost function that depends on the
amount of error threshold, number of failures in the hy-
pothesis and finally the individual types of groups in the
hypothesis. This policy is more applicable to link failures
identified at the IP layer. Currently we use the ratio be-
tween number of groups and the threshold; we would like
to identify cases where a small relaxation in the thresh-
old (say error threshold of 0.9) can reduce the number of

Figure 5: SCORE screen shot.

groups significantly.
Another heuristic is to query the Spatial Correlation

engine using clustered events that have similar signature
(e.g. links that had same number of bit errors in a given
time frame). This policy is guided by the intuition that
correlated events in terms of the actual signature poten-
tially have the same root cause. This heuristic is more
suitable to diagnose root-causes of soft errors in SONET
performance monitoring data.

4.6 Implementation issues
The main core engine loads (and periodically refreshes)
an SRLG database that has associations from groups to a
set of links. It constructs two hashtables, one for the set
of circuits and one for the set of groups. Each group con-
sists of the circuit identifiers that can be used to query the
circuits hashtable. This particular implementation allows
for fast associations and traversals to implement the spa-
tial correlation algorithm outlined in Section 3. The total
implementation of this main SCORE engine is slightly
more than 1000 lines of C code. This engine also has a
listening server at a particular port on which various di-
agnosis agents can connect via popular socket interface
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Figure 6: Percentage correct hypotheses as a function of
error probability and for various algorithm error thresh-
olds (three simultaneous failures).

and perform queries on the cluster of link-failures. The
SCORE engine then responds with the hypotheses that
can best explain the cluster.

SCORE system is not extremely difficult to imple-
ment. Obtaining groups from different databases that
contain fiber level, fiber span level, router level and other
independent databases is one of the functions of the
SRLG database module. This module is implemented in
perl and it consists of about 1000 lines of code. The other
function of the SRLG database interface is the group
alias resolution. This group alias resolution algorithm
is not a performance bottleneck as it is refreshed fairly
infrequently (usually twice a day) resolution algorithm
in perl. This collapsing of risk groups itself is about 200
lines of perl code.

Clustering events and writing a per-data source event
collection module is written in perl. Finally, the trou-
bleshooting policies themselves need the flexibility and
hence have been implemented in perl too. The total lines
of code for the two policies we implemented is slightly
less than a thousand.

The SCORE web interfaces consists of a table con-
sisting of the following columns. Figure 5 shows a live
screenshot of the SCORE web interface. The interface
also allows to view archived logs including raw events
and their associated diagnosis results. The first column
outputs the actual event start time and the end time us-
ing one of the clustering algorithms. The second column
represents the set of links that were impacted during the
event. The third and fourth column give descriptions of
the groups of components that form the diagnosis report
for that observation. The diagnosis report also consists
of the hit-ratio, coverage ratio and finally error threshold
used for the groups involved in the diagnosis.

5 Simulated faults
We evaluated the performance of the SCORE spatial cor-
relation algorithm using both artificially generated faults
(this section) and real faults (next section). The main
goal of the initial experiments is to evaluate the accuracy
of the greedy approach within a controlled environment
by using emulated faults. We use an SRLG database
constructed from the network topology and configuration
data of a tier-1 service provider’s backbone. In our simu-
lation, we inject different number of simultaneous faults
into the system and evaluate the accuracy of the algo-
rithm in obtaining the correct hypothesis. We first study
the efficacy of the greedy algorithm under ideal operat-
ing conditions (no losses in data, no database inconsis-
tencies) followed by the presence of noisy data by simu-
lating errors in the SRLG database and observations.

5.1 Perfect fault notification
To evaluate the accuracy of the SCORE algorithm, we
simulated scenarios consisting of multiple simultaneous
failures and evaluated the accuracy in terms of the num-
ber of correct hypotheses (faults correctly localized by
the algorithm) and the number of incorrect hypotheses
(those which we did not successfully localize to the cor-
rect components). We randomly generated a given num-
ber of simultaneous failures selected from the set of all
network risk groups: the set of all SONET components,
fiber spans, OSPF areas, routers, and router ports and
modules in our SRLG database. Once the faults were se-
lected for a given scenario, we identified the union of all
the links that belong to these failures. These link-level
failures were then input to the SCORE system and hy-
potheses were generated. The resulting hypotheses were
then compared with the actual injected failures to de-
termine those which were correctly identified, and those
which were not.

Figure 6 depicts the fraction of correctly identified hy-
potheses as a function of the number of injected faults,
where each data point represents an average across 100
independent simulations. The figure illustrates that the
accuracy of the algorithm on these data sets is greater
than 99% for Ports, Modules and Routers, irrespective of
the number of simultaneous failures generated. In gen-
eral, the accuracy of the algorithm decreases as the num-
ber of simultaneous failures increases, although the ac-
curacy remains greater than 95% for less than five simul-
taneous failures. In reality, it is unlikely that more than
one failure will occur (and be reported) at a single point
in time. Thus, for failures such as fiber cuts, router fail-
ures, and module outages (corresponding to a single si-
multaneous failure), our results indicate that the accuracy
of the system is near 100%. However, it is entirely pos-
sible in a large network that multiple independent com-
ponents will simultaneously be experiencing minor per-
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formance degradations, such as error rates, which are re-
ported and investigated on a longer time scale. Thus, the
results representing higher number of simultaneous fail-
ures are likely indicative of performance troubleshoot-
ing. However, we can still conclude that for realistic
network SRLGs, the greedy algorithm presented here is
highly accurate when we have perfect knowledge of our
SRLGs and failure observations.

5.2 Imperfect fault notification
The SRLG model provides a solid, but not perfect rep-
resentation of the possible failure modes within a com-
plex operational network. Thus, we expect to find sce-
narios where the set of observations cannot be perfectly
described by any SRLG. Similarly, data loss associated
with event notifications and database errors are inher-
ent operational realities in managing large-scale IP back-
bones. In Section 3, we discussed how to adapt the basic
greedy algorithm to account for these operational real-
ities. In this section, we evaluate the accuracy of the
SCORE algorithm when we have loss in our observa-

tions, which may result for example from imperfect event
notifications (where failures are not reported for what-
ever reason). We consider three parameters: the error
threshold used in the SCORE algorithm, the number of
simultaneous failures, and the error probability (which
represents the percentage of IP link failure notifications
lost for a given failure scenario).

Figures 7 and 8 demonstrate the accuracy of the algo-
rithm under a range of error probabilities and algorithm
error thresholds and for different numbers of simultane-
ous failures. Specifically, the figures plot the percentage
of correct hypotheses as a function of the error probabil-
ity. In Figure 7, the algorithm error threshold is varied
from 0.6 to 1.0, whilst the number of simultaneous fail-
ures is set to 3. In Figure 8 the algorithm error threshold
is fixed at 0.6 and the number of simultaneous failures
is varied from 1 to 5. As expected, increasing the error
probability reduces the accuracy of the algorithm. Under
three simultaneous failure events and an error probability
of 0.1, we can observe from Figure 7 that an algorithm
error threshold of between 0.7 and 0.8 restores the accu-
racy of the SCORE algorithm to around 90%. However,
if we mandate perfect matching of failure observations to
SRLGs (i.e., error threshold = 1.0), then our accuracy in
isolating our fault drops to around 78%. This shows the
necessity and effectiveness of the of the error thresholds
introduced into the algorithm for fault localization in the
face of noisy event observation data.

5.3 Performance results
The algorithm’s execution time was also evaluated un-
der a range of conditions. In general, the execution time
recorded increased as the number of IP links (observa-
tions) impacted by the failures increased. This is because
all of the SRLGs associated with each of the failed links
must be included as part of the candidate set of SRLGs
for localization, and thus must be evaluated. Thus, the
execution time increased within increasing numbers of
failures, but on average was below 150 ms for up to ten
failures. Similarly, the execution time for scenarios in-
volving router failures was typically higher than for other
failure scenarios, as the routers typically involved larger
numbers of links. Execution times of up to 400 ms were
recorded for events involving large routers. However,
even in these worst case scenarios, the algorithm is more
than fast enough for real-time operational environments.

6 Experience in a tier-1 backbone
The SCORE prototype implementation was recently de-
ployed in a tier-1 backbone network, and used in an of-
fline fashion to isolate IP link failures reported in the net-
work. The implemented system operated on a range of
fault and performance data, including IP fault notifica-
tions and optical layer performance measures. However,
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Type of Component #SRLGS Final Thld #SRLGS #Correctly #Incorrectly Comment
problem Name (Thld.=1.0) (Thld.=Final) localized localized
Router Router A 27 0.8 1 1 0 No event reported by

some links
Router Router B 20 0.9 3 3 0 No event reported by

some links
Router Router C 12 0.7 1 1 0 No event reported by

some links
Router Router D 1 1 1 1 0 -
Router Router E 18 0.8 1 1 0 No event reported by

some links
Router Router F 1 1 1 1 0 -
Router Router G 4 1 4 4 0 -
Module Module A 1 1 1 1 0 -
Module Module B 1 1 1 1 0 -
Module Module C 1 1 1 1 0 -
Optical Sonet A 8 0.9 2 1 1 No observation re-

ported by one link and
database problem

Failed
Transceiver

Sonet B 1 1 1 1 0 -

Short term Flap Sonet C 2 0.7 1 1 0 No observation re-
ported by one link

Optical Amplifier Sonet D 2 0.6 1 1 0 No observation re-
ported by one link

Fiber Cut Fiber A 3 0.5 1 1 2 Database problem
Fiber Span Fiber Span A 1 1 1 1 0 -
Protocol Bug OSPF Area A 20 0.7 4 4 0 Incorrect SRLG mod-

eling
Protocol Bug OSPF Area A 4 1 4 4 0 OSPF Area A MPLS

enabled interfaces

Table 2: Summary of real, tier-1 backbone failures successfully diagnosed by SCORE.

we limit our discussion here to our experience with link
failure events reported in router syslogs.

Determining whether or not the SCORE prototype
correctly localized a given fault requires identification
of the root cause of the fault via other means. In many
cases, identifying this root cause involved sifting through
large amounts of data and reports—a tedious process at
best. We were able to manually confirm the root cause
of 18 faults; we present a comparison with the output
reported by the SCORE prototype. We note, however,
that our methodology has an inherent bias: we cannot ex-
clude the possibility that there may be a correlation (not
necessarily positive) between our ability to diagnose the
fault and SCORE’s performance. While it would have
been preferable to select a subset of the faults at random,
we were not able to manually diagnose every fault, nor
did we have the resources to consider all faults experi-
enced during SCORE’s deployment.

Table 2 denotes the results of our analysis of each of
our 18 faults. For each failure scenario, we report:

• the type of failure that occurred
• a name uniquely identifying the failed component
• the number of SRLG groups localized when the al-

gorithm was run with a threshold of 1.0
• the threshold used to generate a final conclusion
• the number of SRLGs localized when the algorithm

was run with the final threshold
• the number of SRLGs correctly localized

• the number of SRLGs incorrectly localized
• description of the reason why we had to reduce the

threshold, or why we were unable to identify a single
SRLG as the root cause in certain situations

Overall, we were able to successfully localize all of the
faults studied to the SRLGs in which the failed network
elements were classified—except where we encountered
errors in our SRLG database. However, when we used
a threshold of 1.0 (i.e., mandated that an SRLG can be
identified if and only if faults were observed on all IP
links), then we were typically unsuccessful—particularly
for router failures, and for the protocol bug reported. In
the majority of the router failures, even though these
events corresponded to routers being rebooted, the re-
mote ends of the links terminating on these routers did
not always report associated link-level events. This may
be due to a number of possible scenarios: the events may
never have been logged in the syslogs, data may have
been lost from the syslogs, the links may have been op-
erationally shut down and hence did not fail at this point
in time, or the links were not impacted by the reboot. In-
dependent of why the link notifications were not always
observed, the router failures were all successfully local-
ized when the threshold was marginally reduced. This
highlights the importance of the threshold concept in the
SCORE algorithm to localize faults in operational net-
works.

Of course, router failures are typically easy to identify

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 67



through spatial correlation, as all of the links impacted
have a common end point (the failed router). However,
optical layer impairments can impact seemingly logically
independent links at the IP layer if these links are all
routed through a common optical component, making
them much more difficult to identify.

We study four different SONET network element fail-
ures. The first—an optical amplifier failure—induced
faults reported on 13 IP links. Thus, with a threshold
of 1.0 our algorithm identified 8 different SRLGs as be-
ing involved. However, as the threshold was reduced to
0.9, we were able to isolate the fault to only 2 differ-
ent SRLGs. Further reductions in this threshold did not,
however, further reduce the number of SRLGs to which
the fault was localized. Further investigation uncovered
an SRLG database problem—where our SONET net-
work element database did not contain any information
regarding one of the circuits reporting the fault. Thus,
the SCORE algorithm was unable to localize the fault for
this particular IP link to the SRLG containing the failed
optical amplifier, and instead incorrectly concluded that
a router port was also involved (the second SRLG). How-
ever, the SRLG containing the failed amplifier was also
correctly identified for the other 12 IP links—the lower
threshold was required because no fault notification was
observed for one of the IP links routed through the opti-
cal amplifier.

This optical amplifier example highlights a partic-
ularly important capability of the SCORE system—
the ability to highlight potential SRLG database errors.
Links missing from databases, incorrect optical layer
routing information regarding circuits and other poten-
tial errors in databases play havoc with capacity planning
and network operations and so must be identified. In this
scenario, the database error was highlighted by the fact
that we were unable to identify a single SRLG for a sin-
gle network failure, even after lowering threshold using
in the SCORE algorithm.

The other three SONET failures were all correctly iso-
lated to the SRLG containing the failed network element,
in two cases we again had to lower the threshold used
within the algorithm to account for links for which we
had no failure notification (in one of these cases, the
missing link was indeed a result of the interface having
been operationally shut down before the failure).

We tested our SCORE prototype on a second, previ-
ously identified failure scenario impacted by a SRLG
database error (fiber A in table 2). Again, the SCORE
system was unable to identify a single SRLG as being the
culprit even as the threshold was lowered—as no SRLG
in the database contained all of the circuits reporting the
fault. So again, a database error was highlighted by the
inability of the system to correlate the failure to a single
SRLG.

The final case that we evaluated was one in which a
low level protocol implementation problem (commonly
known as a software bug!) impacted a number of links
within a common OSPF area. This scenario occurred
over an extended period of time, during which three
other independent failures were simultaneously observed
in other areas.

When a threshold of 1.0 was used in the SCORE al-
gorithm, the event in question was identified as being the
result of 20 independent SRLG failures—a large number
even for the extended period of time! As the threshold
was reduced to a final value of 0.7, the event was isolated
to four individual SRLGs—three SRLGs in other OSPF
areas (corresponding to the independent failures) and the
OSPF area in question. Thus, the SCORE algorithm was
correctly able to identify that the event corresponded to
a common OSPF area. However, further investigation
uncovered that the reason why not all links in the OSPF
area were impacted was that only those interfaces that
were currently MPLS-enabled were affected. Thus, an
additional SRLG was added to our SRLG database that
incorporated the links in a given area that were MPLS
enabled—application of this enhanced SRLG database
successfully localized all of the SRLGs impacted by the
four simultaneous failures with a threshold of 1.0. Thus,
this illustrates how the threshold used in the SCORE
algorithm can allow our results to be robust to incom-
plete modeling of all of the possible SRLGs—any level
of modeling of risk groups can be inadequate as there
could be more complicated failure scenarios that cannot
be modeled by humans perfectly a priori. However, we
also illustrated how we can continually learn new SRLGs
through further analysis of new failure scenarios, thereby
enhancing our SRLG modeling.

6.1 Localization Efficiency
While the 18 faults we have studied demonstrate the abil-
ity of SCORE to correctly localize faults, it does not give
an indication about how much we could localize. In this
section, we evaluate the efficiency of SCORE using a
metric we call localization efficiency. The localization
efficiency of a given observation is defined as the ratio
of the number of components after localization to that
before localization. In other words, it is the fraction of
components that are likely to explain a particular fault
(or observation) using our localization algorithm out of
all the components that can cause a given fault.

Define Gi = {Gi1, Gi2, · · · , Gik} as the set of groups
that a circuit ci belongs to. O is an observation consisting
of circuits c1, c2, · · · , ci. The most probable hypothesis
H ⊆ ∪i

k=0
Gk is the hypothesis output by the algorithm.

Then, localization efficiency is given by |H |/|∪i
k=0

Gk|.
In Figure 9, the cumulative distribution function of the

localization efficiency is shown. From the Figure 9, we
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Figure 9: CDF of localization efficiency out of about
3000 real faults we have been able to localize.

can clearly observe that SCORE could localize faults to
less than 5% for more than 40% of the failures and to less
than 10% for more than 80% of the failures. This clearly
demonstrates that SCORE can identify likely root causes
very efficiently out of a large set of possible causes for a
given failure.

7 Related work
Network engineers commonly employ the concept of
Shared Risk Link Groups (SRLGs) to disjoint paths in
optical networks, and serve as a key input into many traf-
fic engineering mechanisms and protocols such as Gen-
eralized Multi-Protocol Label Switching (GMPLS). Due
to their importance, there has been a great deal of recent
work on automatically inferring SRLGs [20]. To the best
of our knowledge, however, we are the first to use SRLGs
in combination with IP-layer fault notifications to isolate
failures in the optical hardware of a deployed network
backbone without the need for monitoring at the physi-
cal layer.

Monitoring and management is a challenging problem
for any large network. It is not surprising, then, that a
number of research prototypes [17, 3, 15, 16, 6, 10] and
commercial products have been developed to diagnose
problems in IP and telephone networks. Commercial net-
work fault management systems such as SMARTS [21],
OpenView [12], IMPACT [13], EXCpert [16], and Net-
FACT [11] provide powerful, generic frameworks for
handling fault indicators, particularly diverse SNMP-
based [2] measurements, and rule-based correlation ca-
pabilities. These systems present a unified reporting in-
terfaces to operators and other production network man-
agement systems. In general, however, they correlate
alarms from a particular layer in order to isolate prob-
lems at that same layer (e.g., route flapping, circuit fail-
ure, etc.).

Roughan et. al. propose a correlation-based approach
to detect forwarding anomalies including BGP-related

anomalies [19]. Their approach was to detect events
of potential interest by correlating multiple data sources
while our approach was to diagnose these events to iden-
tify root causes.

The problem of fault isolation is obviously not limited
to networking; similar problems exist in any complex
system. Regardless of domain, fault detection systems
have taken three basic approaches: rule or model-based
reasoning [12, 1, 7], codebook approaches [21, 25],
or machine learning (such as Bayesian or Belief Net-
works [24, 22, 5]). The difficulty with probabilistic or
machine learning approaches is that they are not pre-
scriptive: it’s not clear what sets of scenarios they can
handle besides the specific training data. Rule-based
and codebook systems (otherwise known as “expert sys-
tems”) are often even more specific, only being able to
diagnose events that are explicitly programmed. Model-
based approaches are more general, but require detailed
information about the system under test. Dependency-
based systems like ours, on the other hand, allow gen-
eral inference without requiring undue specificity. In-
deed, the specific use of dependency graphs for problem
diagnosis has been explored before [9], but not in this
particular domain.

Our problem as defined in Section 3.1 falls into the
more general class of inference problems which include
problems in other domains such as traffic matrix esti-
mation, tomography, etc. Hence, techniques applied in
these domains can be potentially used to solve this prob-
lem. For example, in [26], the authors reduce the prob-
lem of traffic matrix estimation to an ill-posed linear in-
verse problem and apply a regularization technique to es-
timate the traffic matrix. Similarly, our problem also can
be solved using matrix inversion methods, using an in-
cidence matrix to model the risks. While these methods
can work well with perfect data, it is unclear how to adapt
these techniques to deal with imperfect loss notifications
and SRLG database errors. Besides, our greedy approx-
imation works with an accuracy of over 95% for a large
class of failures as shown in our evaluation (Section 5.1).
Hence, the additional benefit in applying any other tech-
nique to solve the problem is only marginal.

8 Conclusions
Using our risk modeling methodology, we have devel-
oped a system that accurately localizes failures in an
IP-over-optical tier-1 backbone. Given a set of IP-layer
events occurring within a small time window, our heuris-
tics pinpoint the shared risk (optical device) that best ex-
plains these events. Given the harsh operational reality
of maintaining complex associations between objects in
the two networking layers in separate databases, we find
that it is necessary to go beyond identifying the single
best explanation, and, instead, to generate a set of likely
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explanations in order to be robust to transient database
glitches.

We put forward a simple, threshold-based scheme that
looks for best explanations admitting inconsistencies in
the data underlying the explanations up to a given thresh-
old. We find that not only does this increase the accuracy
and robustness of fault localization, it also provided a
new capability for identifying topology database prob-
lems, for which we had no alternative automated means
of detecting. Getting shared risk information right is crit-
ical to IP network design. For example, a misidentifica-
tion of a shared risk might produce a design believed to
be resilient to single SRLG failure which in fact is not.
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