
Design and Implementation of a Routing Control Platform

Matthew Caesar
UC Berkeley

Donald Caldwell
AT&T Labs-Research

Nick Feamster
MIT

Jennifer Rexford
Princeton University

Aman Shaikh
AT&T Labs-Research

Jacobus van der Merwe
AT&T Labs-Research

Abstract
The routers in an Autonomous System (AS) must dis-
tribute the information they learn about how to reach ex-
ternal destinations. Unfortunately, today’s internal Bor-
der Gateway Protocol (iBGP) architectures have serious
problems: a “full mesh” iBGP configuration does not
scale to large networks and “route reflection” can in-
troduce problems such as protocol oscillations and per-
sistent loops. Instead, we argue that a Routing Con-
trol Platform (RCP) should collect information about ex-
ternal destinations and internal topology and select the
BGP routes for each router in an AS. RCP is a logically-
centralized platform, separate from the IP forwarding
plane, that performs route selection on behalf of routers
and communicates selected routes to the routers using
the unmodified iBGP protocol. RCP provides scalability
without sacrificing correctness. In this paper, we present
the design and implementation of an RCP prototype on
commodity hardware. Using traces of BGP and inter-
nal routing data from a Tier-1 backbone, we demonstrate
that RCP is fast and reliable enough to drive the BGP
routing decisions for a large network. We show that RCP
assigns routes correctly, even when the functionality is
replicated and distributed, and that networks using RCP
can expect comparable convergence delays to those us-
ing today’s iBGP architectures.

1 Introduction

The Border Gateway Protocol (BGP), the Internet’s in-
terdomain routing protocol, is prone to protocol oscil-
lation and forwarding loops, highly sensitive to topol-
ogy changes inside an Autonomous System (AS), and
difficult for operators to understand and manage. We
address these problems by introducing a Routing Con-
trol Platform (RCP) that computes the BGP routes for
each router in an AS based on complete routing informa-
tion and higher-level network engineering goals [1, 2].

This paper describes the design and implementation of
an RCP prototype that is fast and reliable enough to co-
ordinate routing for a large backbone network.

1.1 Route Distribution Inside an AS

The routers in a single AS exchange routes to external
destinations using a protocol called internal BGP (iBGP).
Small networks are typically configured as a “full mesh”
iBGP topology, with an iBGP session between each pair
of routers. However, a full-mesh configuration does not
scale because each router must: (i) have an iBGP ses-
sion with every other router, (ii) send BGP update mes-
sages to every other router, (iii) store a local copy of
the advertisements sent by each neighbor for each des-
tination prefix, and (iv) have a new iBGP session con-
figured whenever a new router is added to the network.
Although having a faster processor and more memory
on every router would support larger full-mesh config-
urations, the installed base of routers lags behind the
technology curve, and upgrading routers is costly. In
addition, BGP-speaking routers do not always degrade
gracefully when their resource limitations are reached;
for example, routers crashing or experiencing persistent
routing instability under such conditions have been re-
ported [3]. In this paper, we present the design, imple-
mentation, and evaluation of a solution that behaves like
a full-mesh iBGP configuration with much less overhead
and no changes to the installed base of routers.

To avoid the scaling problems of a full mesh, today’s
large networks typically configure iBGP as a hierarchy of
route reflectors [4]. A route reflector selects a single BGP
route for each destination prefix and advertises the route
to its clients. Adding a new router to the system simply
requires configuring iBGP sessions to the router’s route
reflector(s). Using route reflectors reduces the memory
and connection overhead on the routers, at the expense
of compromising the behavior of the underlying network.
In particular, a route reflector does not necessarily select

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 15

RCP

eBGP
iBGP

Physical
Peering

Figure 1: Routing Control Platform (RCP) in an AS

the same BGP route that its clients would have chosen
in a full-mesh configuration. Unfortunately, the routers
along a path through the AS may be assigned differ-
ent BGP routes from different route reflectors, leading
to inconsistencies [5]. These inconsistencies can cause
protocol oscillation [6, 7, 8] and persistent forwarding
loops [6]. To prevent these problems, operators must en-
sure that route reflectors and their clients have a consis-
tent view of the internal topology, which requires config-
uring a large number of routers as route reflectors. This
forces large backbone networks to have dozens of route
reflectors to reduce the likelihood of inconsistencies.

1.2 Routing Control Platform (RCP)

RCP provides both the intrinsic correctness of a full-
mesh iBGP configuration and the scalability benefits of
route reflectors. RCP selects BGP routes on behalf of the
routers in an AS using a complete view of the available
routes and IGP topology. As shown in Figure 1, RCP
has iBGP sessions with each of the routers; these ses-
sions allow RCP to learn BGP routes and to send each
router a routing decision for each destination prefix. Un-
like a route reflector, RCP may send a different BGP
route to each router. This flexibility allows RCP to as-
sign each router the route that it would have selected in
a full-mesh configuration, while making the number of
iBGP sessions at each router independent of the size of
the network. We envision that RCP may ultimately ex-
change interdomain routing information with neighbor-
ing domains, while still using iBGP to communicate with
its own routers. Using the RCP to exchange reachability
information across domains would enable the Internet’s
routing architecture to evolve [1].

To be a viable alternative to today’s iBGP solutions,
RCP must satisfy two main design goals: (i) consis-
tent assignment of routes even when the functionality is
replicated and distributed for reliability and (ii) fast re-
sponse to network events, such as link failures and exter-
nal BGP routing changes, even when computing routes
for a large number of destination prefixes and routers.
This paper demonstrates that RCP can be made fast and
reliable enough to supplant today’s iBGP architectures,

without requiring any changes to the implementation of
the legacy routers. After a brief overview of BGP rout-
ing in Section 2, Section 3 presents the RCP architec-
ture and describes how to compute consistent forward-
ing paths, without requiring any explicit coordination be-
tween the replicas. In Section 4, we describe a proto-
type implementation, built on commodity hardware, that
can compute and disseminate routing decisions for a net-
work with hundreds of routers. Section 5 demonstrates
the effectiveness of our prototype by replaying BGP and
OSPF messages from a large backbone network; we also
discuss the challenges of handling OSPF-induced BGP
routing changes and evaluate one potential solution. Sec-
tion 6 summarizes the contributions of the paper.

1.3 Related Work

We extend previous work on route monitoring [9, 10] by
building a system that also controls the BGP routing de-
cisions for a network. In addition, RCP relates to re-
cent work on router software [11, 12, 13], including the
proprietary systems used in today’s commercial routers;
in contrast to these efforts, RCP makes per-router rout-
ing decisions for an entire network, rather than a single
router. Our work relates to earlier work on applying rout-
ing policy at route servers at the exchange points [14],
to obviate the need for a full mesh of eBGP sessions;
in contrast, RCP focuses on improving the scalability
and correctness of distributing and selecting BGP routes
within a single AS. The techniques used by the RCP for
efficient storage of the per-router routes are similar to
those employed in route-server implementations [15].

Previous work has proposed changes to iBGP that pre-
vent oscillations [16, 7]; unlike RCP, these other pro-
posals require significant modifications to BGP-speaking
routers. RCP’s logic for determining the BGP routes for
each router relates to previous research on network-wide
routing models for traffic engineering [17, 18]; RCP fo-
cuses on real-time control of BGP routes rather than
modeling the BGP routes in today’s routing system. Pre-
vious work has highlighted the need for a system that
has network-wide control of BGP routing [1, 2]; in this
paper, we present the design, implementation, and eval-
uation of such a system. For an overview of architec-
ture and standards activities on separating routing from
routers, see the related work discussions in [1, 2].

2 Interoperating With Existing Routers

This section presents an overview of BGP routing inside
an AS and highlights the implications on how RCP must
work to avoid requiring changes to the installed base of
IP routers.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association16

1
4

1iBGP
session

destination

W

IGP
link

2

V

AS A AS B

eBGP
session

YX

Z

Figure 2: Network with three egress routers connecting to two neigh-
boring ASes: Solid lines correspond to physical links (annotated with
IGP link weights) and dashed lines correspond to BGP sessions.

0. Ignore if egress router unreachable
1. Highest local preference
2. Lowest AS path length
3. Lowest origin type
4. Lowest MED (with same next-hop AS)
5. eBGP-learned over iBGP-learned
6. Lowest IGP path cost to egress router
7. Lowest router ID of BGP speaker

Table 1: Steps in the BGP route-selection process

Partitioning of functionality across routing proto-
cols: In most backbone networks, the routers partici-
pate in three different routing protocols: external Bor-
der Gateway Protocol (eBGP) to exchange reachabil-
ity information with neighboring domains, internal BGP
(iBGP) to propagate the information inside the AS, and
an Interior Gateway Protocol (IGP) to learn how to reach
other routers in the same AS, as shown in Figure 2. BGP
is a path-vector protocol where each network adds its
own AS number to the path before propagating the an-
nouncement to the next domain; in contrast, IGPs such
as OSPF and IS-IS are typically link-state protocols with
a tunable weight on each link. Each router combines the
information from the routing protocols to construct a lo-
cal forwarding table that maps each destination prefix to
the next link in the path. In our design, RCP assumes
responsibility for assigning a single best BGP route for
each prefix to each router and distributing the routes us-
ing iBGP, while relying on the routers to “merge” the
BGP and IGP data to construct their forwarding tables.

BGP route-selection process: To select a route for
each prefix, each router applies the decision process in
Table 1 to the set of routes learned from its eBGP and
iBGP neighbors [19]. The decision process essentially
compares the routes based on their many attributes. In
the simplest case, a router selects the route with the short-
est AS path (step 2), breaking a tie based on the ID of the
router who advertised the route (step 7). However, other
steps depend on route attributes, such as local preference,

that are assigned by the routing policies configured on
the border routers. RCP must deal with the fact that the
border routers apply policies to the routes learned from
their eBGP neighbors and all routers apply the route-
selection process to the BGP routes they learn.

Selecting the closest egress router: In backbone net-
works, a router often has multiple BGP routes that are
“equally good” through step

�
of the decision process.

For example, router � in Figure 2 learns routes to the
destination with the same AS path length from three bor-
der routers � , � , and � . To reduce network resource
consumption, the BGP decision process at each router
selects the route with the closest egress router, in terms
of the IGP path costs. Router � selects the BGP route
learned from router � with an IGP path cost of � . This
practice is known as “early-exit” or “hot-potato” rout-
ing. RCP must have a real-time view of the IGP topology
to select the closest egress router for each destination
prefix on behalf of each router. When the IGP topology
changes, RCP must identify which routers should change
the egress router they are using.

Challenges introduced by hot-potato routing: A
single IGP topology change may cause multiple routers
to change their BGP routing decisions for multiple pre-
fixes. If the IGP weight of link � – � in Figure 2 in-
creased from � to � , then router � would start direct-
ing traffic through egress � instead of � . When mul-
tiple destination prefixes are affected, these hot-potato
routing changes can lead to large, unpredictable shifts
in traffic [20]. In addition, the network may experience
long convergence delays because of the overhead on the
routers to revisit the BGP routing decisions across many
prefixes. Delays of one to two minutes are not uncom-
mon [20]. To implement hot-potato routing, RCP must
determine the influence of an IGP change on every router
for every prefix. Ultimately, we view RCP as a way
to move beyond hot-potato routing toward more flexible
ways to select egress routers, as discussed in Section 5.4.

3 RCP Architecture

In this section, we describe the RCP architecture. We
first present the three building blocks of the RCP: the
IGP Viewer, the BGP Engine, and the Route Control
Server (RCS). We describe the information that is avail-
able to each module, as well as the constraints that the
RCS must satisfy when assigning routes. We then dis-
cuss how RCP’s functionality can be replicated and dis-
tributed across many physical nodes in an AS while
maintaining consistency and correctness. Our analysis
shows that there is no need for the replicas to run a sep-
arate consistency protocol: since the RCP is designed
such that each RCS replica makes routing decisions only
for the partitions for which it has complete IGP topology

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 17

Route Control
Server (RCS)

IGP
Viewer

BGP
Engine

Routing Control Platform (RCP)

	�
 	�

Figure 3: RCP interacts with the routers using standard routing proto-
cols. RCP obtains IGP topology information by establishing IGP ad-
jacencies (shown with solid lines) with one or more routers in the AS
and BGP routes via iBGP sessions with each router (shown with dashed
lines). RCP can control and obtain routing information from routers in
separate network partitions (��� and ���). Although this figure shows
RCP as a single box, the functionality can be replicated and distributed,
as we describe in Section 3.2.

and BGP routes, every replica will make the same rout-
ing assignments, even without a consistency protocol.

3.1 RCP Modules

To compute the routes that each router would have se-
lected in a “full mesh” iBGP configuration, RCP must
obtain both the IGP topology information and the best
route to the destination from every router that learns a
route from neighboring ASes. As such, RCP comprises
of three modules: the IGP Viewer, the BGP Engine, and
the Route Control Server. The IGP Viewer establishes
IGP adjacencies to one or more routers, which allows
the RCP to receive IGP topology information. The BGP
Engine learns BGP routes from the routers and sends
the RCS’s route assignments to each router. The Route
Control Server (RCS) then uses the IGP topology from
the IGP Viewer information and the BGP routes from
the BGP engine to compute the best BGP route for each
router.

RCP communicates with the routers in an AS using
standard routing protocols, as summarized in Figure 3.
Suppose the routers � in a single AS form an IGP con-
nectivity graph ������������� , where � are the edges in
the IGP topology. Although the IGP topology within an
AS is typically a single connected component, failures of
links, routers, or interfaces may occasionally create par-
titions. Thus, � contains one or more connected compo-
nents; i.e., � �"!$#&%$�'#)(*�,+,++,�'#)-/. . The RCS only com-
putes routes for partitions #10 for which it has complete
IGP and BGP information, and it computes routes for
each partition independently.

3.1.1 IGP Viewer

The RCP’s IGP Viewer monitors the IGP topology and
provides this information to the RCS. The IGP Viewer
establishes IGP adjacencies to receive the IGP’s link-
state advertisements (LSAs). To ensure that the IGP
Viewer never routes data packets, the links between the
IGP Viewer and the routers should be configured with
large IGP weights to ensure that the IGP Viewer is not
an intermediate hop on any shortest path. Since IGPs
such as OSPF and IS-IS perform reliable flooding of
LSAs, the IGP Viewer maintains an up-to-date view of
the IGP topology as the link weights change or equip-
ment goes up and down. Use of flooding to disseminate
LSAs implies that the IGP Viewer can receive LSAs from
all routers in a partition by simply having an adjacency to
a single router in that partition. This seemingly obvious
property has an important implication:

Observation 1 The IGP Viewer has the complete IGP
topology for all partitions that it connects to.

The IGP Viewer computes pairwise shortest paths for
all routers in the AS and provides this information to the
RCS. The IGP Viewer must discover only the path costs
between any two routers in the AS, but it need not dis-
cover the weights of each IGP edge. The RCS then uses
these path costs to determine, from any router in the AS,
what the closest egress router should be for that router.

In some cases, a group of routers in the IGP graph all
select the same router en route to one or more destina-
tions. For example, a network may have a group of ac-
cess routers in a city, all of which send packets out of that
city towards one or more destinations via a single gate-
way router. These routers would always use the same
BGP router as the gateway. These groups can be formed
according to the IGP topology: for example, routers can
be grouped according to OSPF “areas”, since all routers
in the same area typically make the same BGP routing
decision. Because the IGP Viewer knows the IGP topol-
ogy, it can determine which groups of routers should be
assigned the same BGP route. By clustering routers in
this fashion, the IGP Viewer can reduce the number of
independent route computations that the RCS must per-
form. While IGP topology is a convenient way for the
IGP Viewer to determine these groups of routers, the
groups need not correspond to the IGP topology; for ex-
ample, an operator could dictate the grouping.

3.1.2 BGP Engine

The BGP Engine maintains an iBGP session with each
router in the AS. These iBGP sessions allow the RCP to
(1) learn about candidate routes and (2) communicate its
routing decisions to the routers. Since iBGP runs over

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association18

TCP, a BGP Engine need not be physically adjacent to
every router. In fact, a BGP Engine can establish and
maintain iBGP sessions with any router that is reachable
via the IGP topology, which allows us to make the fol-
lowing observation:

Observation 2 A BGP Engine can establish iBGP ses-
sions to all routers in the IGP partitions that it connects
to.

Here, we make a reasonable assumption that IGP con-
nectivity between two endpoints is sufficient to establish
a BGP session between them; in reality, persistent con-
gestion or misconfiguration could cause this assumption
to be violated, but these two cases are anomalous. In
practice, routers are often configured to place BGP pack-
ets in a high-priority queue in the forwarding path to en-
sure the delivery of these packets even during times of
congestion.

In addition to receiving BGP updates, the RCP uses
the iBGP sessions to send the chosen BGP routes to the
routers. Because BGP updates have a “next hop” at-
tribute, the BGP Engine can advertise BGP routes with
“next hop” addresses of other routers in the network.
This characteristic means that the BGP Engine does not
need to forward data packets. The BGP routes typi-
cally carry “next hop” attributes according to the egress
router at which they were learned. Thus, the RCS can
send a route to a router with the next hop attribute un-
changed, and routers will forward packets towards the
egress router.

A router interacts with the BGP Engine in the same
way as it would with a normal BGP-speaking router, but
the BGP Engine can send a different route to each router.
(In contrast, a traditional route reflector would send the
same route to each of its neighboring routers.) A router
only sends BGP update messages to the BGP Engine
when selecting a new best route learned from a neighbor-
ing AS. Similarly, the BGP Engine only sends an update
when a router’s decision should change.

3.1.3 Route Control Server (RCS)

The RCS receives IGP topology information from the
IGP Viewer and BGP routes from the BGP Engine, com-
putes the routes for a group of routers, and returns the
resulting route assignments to the routers using the BGP
Engine. The RCS does not return a route assignment to
any router that has already selected a route that is “better”
than any of the other candidate routes, according to the
decision process in Table 1. To make routing decisions
for a group of routers in some partition, the following
must be true:

Observation 3 An RCS can only make routing decisions
for routers in a partition for which it has both IGP and
BGP routing information.

Note that the previous observations guarantee that the
RCS can (and will) make path assignments for all routers
in that partition. Although the RCS has considerable
flexibility in assigning routes to routers, one reasonable
approach would be to have the RCS send to each router
the route that it would have selected in a “full mesh”
iBGP configuration. To emulate a full-mesh iBGP con-
figuration, the RCS executes the BGP decision process
in Table 1 on behalf of each router. The RCS can per-
form this computation because: (1) knowing the IGP
topology, the RCS can determine the set of egress routers
that are reachable from any router in the partitions that it
sees; (2) the next four steps in the decision process com-
pare attributes that appear in the BGP messages them-
selves; (3) for step 5, the RCS considers a route as eBGP-
learned for the router that sent the route to the RCP, and
as an iBGP-learned route for other routers; (4) for step 6,
the RCS compares the IGP path costs sent by the IGP
Viewer; and (5) for step 7, the RCS knows the router ID
of each router because the BGP Engine has an iBGP ses-
sion with each of them. After computing the routes, the
RCS can send each router the appropriate route.

Using the high-level correctness properties from pre-
vious work as a guide [21], we recognize that routing
within the network must satisfy the following properties
(note that iBGP does not intrinsically satisfy them [6,
21]):

Route validity: The RCS should not assign routes
that create forwarding loops, blackholes, or other
anomalies that prevent packets from reaching their
intended destinations. To satisfy this property, two in-
variants must hold. First, the RCS must assign routes
such that the routers along the shortest IGP path from
any router to its assigned egress router must be assigned
a route with the same egress router. Second, the RCS
must assign a BGP route such that the IGP path to the
next-hop of the route only traverses routers in the same
partition as the next-hop.

When the RCS computes the same route assignments
as those the routers would select in a full mesh iBGP
configuration, the first invariant will always hold, for the
same reason that it holds in the case of full mesh iBGP
configuration. In a full mesh, each router simply selects
the egress router with the shortest IGP path. All routers
along the shortest path to that egress also select the same
closest egress router. The second invariant is satisfied be-
cause the RCS never assigns an egress router to a router
in some other partition. Generally, the RCS has consid-
erable flexibility in assigning paths; the RCS must guar-
antee that these properties hold even when it is not emu-

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 19

lating a full mesh configuration.
Path visibility: Every router should be able to ex-

change routes with at least one RCS. Each router in the
AS should receive some route to an external destination,
assuming one exists. To ensure that this property is sat-
isfied, each partition must have at least one IGP Viewer,
one BGP Engine, and one RCS. Replicating these mod-
ules reduces the likelihood that a group of routers is par-
titioned such that it cannot reach at least one instance of
these three components. If the RCS is replicated, then
two replicas may assign BGP routes to groups of routers
along the same IGP path between a router and an egress.
To guarantee that two replicas do not create forwarding
loops when they assign routes to routers in the same par-
tition, they must make consistent routing decisions. If a
network has multiple RCSes, the route computation per-
formed by the RCS must be deterministic: the same IGP
topology and BGP route inputs must always produce the
same outcome for the routers.

If a partition forms such that a router is partitioned
from RCP, then we note that (1) the situation is no worse
than today’s scenario, when a router cannot receive BGP
routes from its route reflector and (2) in many cases, the
router will still be able to route packets using the routes it
learns via eBGP, which will likely be its best routes since
it is partitioned from most of the remaining network any-
way.

3.2 Consistency with Distributed RCP

In this section, we discuss the potential consistency prob-
lems introduced by replicating and distributing the RCP
modules. To be robust to network partitions and avoid
creating a single point of failure, the RCP modules
should be replicated. (We expect that many possible de-
sign strategies will emerge for assigning routers to repli-
cas. Possible schemes include using the closest replica,
having primary and backup replicas, etc.) Replication in-
troduces the possibility that each RCS replica may have
different views of the network state (i.e., the IGP topol-
ogy and BGP routes). These inconsistencies may be
either transient or persistent and could create problems
such as routing loops if routers were learning routes from
different replicas. % The potential for these inconsisten-
cies would seem to create the need for a consistency pro-
tocol to ensure that each RCS replica has the same view
of the network state (and, thus, make consistent routing
decisions). In this section, we discuss the nature and con-
sequences of these inconsistencies and present the sur-
prising result that no consistency protocol is required to
prevent persistent inconsistencies.

After discussing why we are primarily concerned with
consistency of the RCS replicas in steady state, we ex-
plain how our replication strategy guarantees that the

eBGP/IGP
Events

Propagation of
iBGP updates

TimeTransience Convergence Steady−State

Persistent path
assignments complete

(analysis in Section 3.2)

Figure 4: Periods during convergence to steady state for a single desti-
nation. Routes to a destination within an AS are stable most of the time,
with periods of transience (caused by IGP or eBGP updates). Rather
than addressing the behavior during the transient period, we analyze
the consistency of paths assigned during steady state.

RCS replicas make the same routing decisions for each
router in the steady state. Specifically, we show that,
if multiple RCS replicas have IGP connectivity to some
router in the AS, then those replicas will all make the
same path assignment for that router. We focus our
analysis on the consistency of RCS path assignments in
steady state (as shown in Figure 4).

3.2.1 Transient vs. Persistent Inconsistencies

Since each replica may receive BGP and IGP updates at
different times, the replicas may not have the same view
of the routes to every destination at any given time; as a
result, each replica may make different routing decisions
for the same set of routers. Figure 4 illustrates a timeline
that shows this transient period. During transient peri-
ods, routes may be inconsistent. On a per-prefix basis,
long transient periods are not the common case: although
BGP update traffic is fairly continuous, the update traffic
for a single destination as seen by a single AS is rel-
atively bursty, with prolonged periods of silence. That
is, a group of updates may arrive at several routers in an
AS during a relatively short time interval (i.e., seconds to
minutes), but, on longer timescales (i.e., hours), the BGP
routes for external destinations are relatively stable [22].

We are concerned with the consistency of routes for
each destination after the transient period has ended. Be-
cause the network may actually be partitioned in “steady
state”, the RCP must still consider network partitions that
may exist during these periods. Note that any intra-AS
routing protocol, including any iBGP configuration, will
temporarily have inconsistent path assignments when
BGP and IGP routes are changing continually. Com-
paring the nature and extent of these transient inconsis-
tencies in RCP to those that occur under a typical iBGP
configuration is an area for future work.

3.2.2 RCP Replicas are Consistent in Steady State

The RCS replicas should make consistent routing deci-
sions in steady state. Although it might seem that such a
consistency requirement mandates a separate consistency
protocol, we show in this section that such a protocol is
not necessary.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association20

Proposition 1 If multiple RCSes assign paths to routers
in # 0 , then each router in # 0 would receive the same route
assignment from each RCS.

Proof. Recall that two RCSes will only make different
assignments to a router in some partition # 0 if the repli-
cas receive different inputs (i.e., as a result of having
BGP routes from different groups of routers or differ-
ent views of IGP topology). Suppose that RCSes 2 and3

both assign routes to some router in #10 . By Obser-
vation 1, both RCSes 2 and

3
must have IGP topology

information for all routers in #10 , and from Observation 2,
they also have complete BGP routing information. It fol-
lows from Observation 3 that both RCSes 2 and

3
can

make route assignments for all routers in # 0 . Further-
more, since both RCSes have complete IGP and BGP in-
formation for the routers in # 0 (i.e., the replicas receive
the same inputs), then RCSes 2 and

3
will make the

same route assignment to each router in # 0 . 4

We note that certain failure scenarios may violate Ob-
servation 2; there may be circumstances under which
IGP-level connectivity exists between the BGP engine
and some router but, for some reason, the iBGP session
fails (e.g., due to congestion, misconfiguration, software
failure, etc.) As a result, Observation 3 may be overly
conservative, because there may exist routers in some
partition for which two RCSes may have BGP routing
information from different subsets of routers in that parti-
tion. If this is the case, then, by design, neither RCS will
assign routes to any routers in this partition, even though,
collectively, both RCSes have complete BGP routing in-
formation. In this case, not having a consistency proto-
col affects liveness, but not correctness—in other words,
two or more RCSes may fail to assign routes to routers
in some partition even when they collectively have com-
plete routing information, but in no case will two or more
RCSes assign different routes to the same router.

4 RCP Architecture and Implementation

To demonstrate the feasibility of the RCP architecture,
this section presents the design and implementation of an
RCP prototype. Scalability and efficiency pose the main
challenges, because backbone ASes typically have many
routers (e.g., 500–1000) and destination prefixes (e.g.,
150,000–200,000), and the routing protocols must con-
verge quickly. First, we describe how the RCS computes
the BGP routes for each group of routers in response to
BGP and IGP routing changes. We then explain how
the IGP Viewer obtains a view of the IGP topology and
provides the RCS with only the necessary information
for computing BGP routes. Our prototype of the IGP
Viewer is implemented for OSPF; when describing our

Figure 5: Route Control Server (RCS) functionality

prototype, we will describe the IGP Viewer as the “OSPF
Viewer”. Finally, we describe how the BGP Engine ex-
changes BGP routing information with the routers in the
AS and the RCS.

4.1 Route Control Server (RCS)

The RCS processes messages received from both the
BGP Engine(s) and the OSPF Viewer(s). Figure 5 shows
the high level processing performed by the RCS. The
RCS receives update messages from the BGP Engine(s)
and stores the incoming routes in a Routing Information
Base (RIB). The RCS perform per-router route selection
and stores the selected routes in a per-router RIB-Out.
The RIB-In and RIB-Out tables are implemented as a trie
indexed on prefix. The RIB-In maintains a list of routes
learned for each prefix; each BGP route has a “next hop”
attribute that uniquely identifies the egress router where
the route was learned. As shown in Figure 5, the RCS
also receives the IGP path cost for each pair of routers
from the IGP Viewer. The RCS uses the RIB-In to com-
pute the best BGP routes for each router, using the IGP
path costs in steps 5 and 6 of Table 1. After comput-
ing a route assignment for a router, the RCS sends that
route assignment to the BGP Engine, which sends the
update message to the router. The path cost changes re-
ceived from the OSPF Viewer might require the RCS to
re-compute selected routes when step 6 in the BGP de-
cision process was used to select a route and the path
cost to the selected egress router changes. Finding the
routes that are affected can be an expensive process and
as shown in Figure 5, our design uses a path-cost based
ranking of egress routers to perform this efficiently. We
now describe this approach and other design insights in

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 21

Figure 6: RCS RIB-In and RIB-Out data structures and egress lists

more detail with the aid of Figure 6, which shows the
main RCS data structures:

Store only a single copy of each BGP route. Stor-
ing a separate copy of each router’s BGP routes for every
destination prefix would require an extraordinary amount
of memory. To reduce storage requirements, the RCS
only stores routes in the RIB-In table. The “next hop”
attribute of the BGP route uniquely identifies the egress
router where the BGP route was learned. Upon receiv-
ing an update message, the RCS can index the RIB-In
by prefix and can add, update, or remove the appropriate
route based on the next-hop attribute. To implement the
RIB-Out, the RCS employs per-router shadow tables as
a prefix-indexed trie containing pointers to the RIB-In ta-
ble. Figure 6 shows two examples of these pointers from
the RIB-Out to the RIB-In: router1 has been assigned the
route1 for prefix2, whereas router2 and router3 have both
been assigned route2 for prefix2.

Keep track of the routers that have been assigned
each route. When a route is withdrawn, the RCS must
recompute the route assignment for any router that was
using the withdrawn route. To quickly identify the af-
fected routers, each route stored in the RIB-In table in-
cludes a list of back pointers to the routers assigned this
route. For example, Figure 6 shows two pointers from
route2 in the RIB-In for prefix2 to indicate that router2
and router3 have been assigned this route. Upon re-
ceiving a withdrawal of the prefix from this next-hop
attribute, the RCS reruns the decision process for each
router in this list, with the remaining routes in the RIB-In,
for those routers and prefix. Unfortunately, this ME op-
timization cannot be used for BGP announcements, be-
cause when a new route arrives, the RCS must recompute
the route assignment for each router (.

Maintain a ranking of egress routers for each
router based on IGP path cost. A single IGP path-

cost change may affect the BGP decisions for many des-
tination prefixes at the ingress router. To avoid revis-
iting the routing decision for every prefix and router,
the RCS maintains a ranking of egress points for each
router sorted by the IGP path cost to the egress point
(the “Egress lists” table in Figure 6). For each egress,
the RCS stores pointers to the prefixes and routes in the
RIB-Out that use the egress point (the “using table”). For
example, router1 uses eg1 to reach both prefix2 and pre-
fix3, and its using table contains pointers to those en-
tries in the RIB-Out for router1 (which in turn point to
the routes stored in the RIB-In). If the IGP path cost
from router1 to eg1 increases, the RCS moves eg1 down
the egress list until it encounters an egress router with
a higher IGP path cost. The RCS then only recomputes
BGP decisions for the prefixes that previously had been
assigned the BGP route from eg1 (i.e., the prefixes con-
tained in the using table). Similarly, if a path-cost change
causes eg3 to become router1’s closest egress point, the
RCS resorts the egress list (moving eg3 to the top of the
list) and only recomputes the routes for prefixes associ-
ated with the egresses routers “passed over” in the sorting
process, i.e., eg1 and eg2, since they may now need to be
assigned to eg3.

Assign routes to groups of related routers. Rather
than computing BGP routes for each router, the RCS can
assign the same BGP route for a destination prefix to
a group of routers. These groups can be identified by
the IGP Viewer or explicitly configured by the network
operator. When the RCS uses groups, the RIB-Out and
Egress-lists tables have entries for each group rather than
each router, leading to a substantial reduction in storage
and CPU overhead. The RCS also maintains a list of the
routers in each group to instruct the BGP Engine to send
the BGP routes to each member of the group. Groups in-
troduce a trade-off between the desire to reduce overhead
and the flexibility to assign different routes to routers in
the same group. In our prototype implementation, we
use the Points-of-Presence (which correspond to OSPF
areas) to form the groups, essentially treating each POP
as a single “node” in the graph when making BGP rout-
ing decisions.

4.2 IGP Viewer Instance: OSPF Viewer

The OSPF Viewer connects to one or more routers in
the network to receive link-state advertisements (LSAs),
as shown in Figure 3. The OSPF Viewer maintains an
up-to-date view of the network topology and computes
the path cost for each pair of routers. Figure 7 shows
an overview of the processing performed by the OSPF
Viewer. By providing path-cost changes and group mem-
bership information, the OSPF Viewer offloads work
from the RCS in two main ways:

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association22

OSPF adjacencies to the router(s)

Refresh LSA Change LSA

Intra−area LSASummary LSA

Summary LSA

Link State Advertisement (LSA)

RCS

Group change
calculation

Inter−area SPF
calculation

Intra−area or

Intra−area SPF
calculation

summary LSA?

Refresh or
change LSA?

Topology model

Path cost

changes

Path cost change
calculationRouting

changes
Group
changes

STOP

Figure 7: LSA Processing in OSPF Viewer

Send only path-cost changes to the RCS. In addition
to originating an LSA upon a network change, OSPF pe-
riodically refreshes LSAs even if the network is stable.
The OSPF Viewer filters the refresh LSAs since they do
not require any action from the RCS. The OSPF Viewer
does so by maintaining the network state as a topology
model [9], and uses the model to determine whether a
newly received LSA indicates a change in the network
topology, or is merely a refresh as shown in Figure 7.
For a change LSA, the OSPF Viewer runs shortest-path
first (SPF) calculations from each router’s viewpoint to
determine the new path costs. Rather than sending all
path costs to the RCS, the OSPF Viewer only passes the
path costs that changed as determined by the “path cost
change calculation” stage.

The OSPF Viewer must capture the influence of OSPF
areas on the path costs. For scalability purposes, an
OSPF domain may be divided into areas to form a hub-
and-spoke topology. Area 0, known as the backbone
area, forms the hub and provides connectivity to the non-
backbone areas that form the spokes. Each link belongs
to exactly one area. The routers that have links to mul-
tiple areas are called border routers. A router learns the
entire topology of the area it has links into through “intra-
area” LSAs. However, it does not learn the entire topol-
ogy of remote areas (i.e., the areas in which the router
does not have links), but instead learns the total cost of
the paths to every node in remote areas from each border
router the area has through “summary” LSAs.

It may seem that the OSPF Viewer can perform the
SPF calculation over the entire topology, ignoring area
boundaries. However, OSPF mandates that if two routers
belong to the same area, the path between them must stay
within the area even if a shorter path exists that traverses

multiple areas. As such, the OSPF Viewer cannot ignore
area boundaries while performing the calculation, and in-
stead has to perform the calculation in two stages. In the
first stage, termed the intra-area stage, the viewer com-
putes path costs for each area separately using the intra-
area LSAs as shown in Figure 7. Subsequently, the OSPF
Viewer computes path costs between routers in different
areas by combining paths from individual areas. We will
term this stage of the SPF calculation as the inter-area
stage. In some circumstances, the OSPF Viewer knows
the topology of only a subset of areas, and not all ar-
eas. In this case, the OSPF Viewer can perform intra-
area stage calculations only for the visible areas. How-
ever, use of summary LSAs from the border routers al-
lows the OSPF Viewer to determine path costs to routers
in non-visible areas from routers in visible areas during
inter-area stage.

Reduce overhead at the RCS by combining routers
into groups. The OSPF Viewer can capitalize on the area
structure to reduce the number of routers the RCS must
consider. To achieve this, the OSPF Viewer: (i) provides
path cost information for all area 0 routers (which also
includes border routers in non-zero areas), and (ii) forms
a group of routers for each non-zero area and provides
this group information. As an added benefit, the OSPF
Viewer does not need physical connections to non-zero
areas, since the summary LSAs from area 0 allows it
to compute path costs from every area 0 router to every
other router. The OSPF Viewer also uses the summary
LSAs to determine the groups of routers. It is impor-
tant to note that combining routers into groups is a con-
struct internal to the RCP to improve efficiency, and it
does not require any protocol or configuration changes
in the routers.

4.3 BGP Engine

The BGP Engine receives BGP messages from the
routers and sends them to the RCS. The BGP Engine also
receives instructions from the RCS to send BGP routes to
individual routers. We have implemented the BGP En-
gine by modifying the Quagga [11] software router to
store the outbound routes on a per-router basis and ac-
cept route assignments from the RCS rather than com-
puting the route assignments itself. The BGP Engine of-
floads work from the RCS by applying the following two
design insights:

Cache BGP routes for efficient refreshes. The BGP
Engine stores a local cache of the RIB-In and RIB-Out.
The RIB-In cache allows the BGP Engine to provide the
RCS with a fresh copy of the routes without affecting
the routers, which makes it easy to introduce a new RCS
replica or to recover from an RCS failure. Similarly, the
RIB-Out cache allows the BGP Engine to re-send BGP

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 23

route assignments to operational routers without affect-
ing the RCS, which is useful for recovering from the tem-
porary loss of iBGP connectivity to the router. Because
routes are assigned on a per-router basis, the BGP En-
gine maintains a RIB-Out for each router, using the same
kind of data structure as the RCS.

Manage the low-level communication with the
routers. The BGP Engine provides a simple, stable layer
that interacts with the routers and maintains BGP ses-
sions with the routers and multiplexes the update mes-
sages into a single stream to and from the RCS. It man-
ages a large number of TCP connections and supports
the low-level details of establishing BGP sessions and
exchanging updates with the routers.

5 Evaluation

In this section, we evaluate our prototype implementa-
tion, with an emphasis on the scalability and efficiency
of the system. The purpose of the evaluation is twofold.
First, to determine the feasible operating conditions for
our prototype, i.e., its performance as a function of the
number of prefixes and routes, and the number of routers
or router groups. Second, we want to determine what
the bottlenecks (if any), would require further enhance-
ments. We present our methodology in Section 5.1 and
the evaluation results in Sections 5.2 and 5.3. In Sec-
tion 5.4 we present experimental results of an approach
that weakens the current tight coupling between IGP
path-cost changes and BGP decision making.

5.1 Methodology
For a realistic evaluation, we use BGP and OSPF data
collected from a Tier-1 ISP backbone on August 1, 2004.
The BGP data contains both timestamped BGP updates
as well as periodic table dumps from the network 7 .
Similarly, the OSPF data contains timestamped Link
State Advertisements (LSAs). We developed a router-
emulator tool that reads the timestamped BGP and OSPF
data and then “plays back” these messages against in-
strumented implementations of the RCP components.
To initialize the RCS to realistic conditions, the router-
emulator reads and replays the BGP table dumps before
any experiments are conducted.

By selectively filtering the data, we use this single
data set to consider the impact of network size (i.e., the
number of routers or router groups in the network) and
number of routes (i.e., the number of prefixes for which
routes were received). We vary the network size by only
calculating routes for a subset of the router groups in the
network. Similarly, we only consider a subset of the pre-
fixes to evaluate the impact of the number of routes on
the RCP. Considering a subset of routes is relevant for

networks that do not have to use a full set of Internet
routes but might still benefit from the RCP functionality,
such as private or virtual private networks.

For the RCS evaluation, the key metrics of interest are
(i) the time taken to perform customized per-router route
selection under different conditions and (ii) the memory
required to maintain the various data structures. We mea-
sure these metrics in three ways:

8 Whitebox: First, we perform whitebox testing by in-
strumenting specific RCS functions and measuring
on the RCS both the memory usage and the time
required to perform route selection when BGP and
OSPF related messages are being processed.

8 Blackbox no queuing: For blackbox no queuing,
the router-emulator replays one message at a time
and waits to see a response before sending the next
message. This technique measures the additional
overhead of the message passing protocol needed to
communicate with the RCS.

8 Blackbox real-time: For blackbox real-time testing,
the router-emulator replays messages based on the
timestamps recorded in the data. In this case, ongo-
ing processing on the RCS can cause messages to
be queued, thus increasing the effective processing
times as measured at the router-emulator.

For all blackbox tests, the RCS sends routes back to
the router-emulator to allow measurements to be done.

In Section 5.2, we focus our evaluation on how the
RCP processes BGP updates and performs customized
route selection. Our BGP Engine implementation ex-
tends the Quagga BGP daemon process and as such in-
herits many of its qualities from Quagga. Since we made
no enhancements to the BGP protocol part of the BGP
Engine but rely on the Quagga implementation we do
not present an evaluation of its scalability in this paper 9 .
Our main enhancement, the shadow tables maintained to
realize per-router RIB-Outs, use the same data structures
as the RCS, and hence, the evaluation of the RCS mem-
ory requirements is sufficient to show its feasibility.

In Section 5.3, we present an evaluation of the OSPF
Viewer and the OSPF-related processing in the RCS. We
evaluate the OSPF Viewer by having it read and process
LSAs that were previously dumped to a file by a moni-
toring process. The whitebox performance of the OSPF
Viewer is determined by measuring the time it takes to
calculate the all pairs shortest paths and OSPF groups.
The OSPF Viewer can also be executed in a test mode
where it can log the path cost changes and group changes
that would be passed to the RCS under normal operat-
ing conditions. The router-emulator reads and then plays
back these logs against the RCS for blackbox evaluation
of the RCS OSPF processing.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association24

The evaluations were performed with the RCS and
OSPF Viewer running on a dual 3.2 GHz Pentium-4 pro-
cessor Intel system with 8 GB of memory and running
a Linux 2.6.5 kernel. We ran the router-emulator on a
1 GHz Pentium-3 Intel system with 1 GB of memory and
running a Linux 2.4.22 kernel.

5.2 BGP Processing

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

us
ed

 [m
eg

ab
yt

es
]

Number of groups

all (203,000) prefixes
50,000 prefixes
5,000 prefixes

Figure 8: Memory: Memory used for varying numbers of prefixes.

0

0.2

0.4

0.6

0.8

1

1e-05 0.0001 0.001 0.01 0.1

Fr
ac

tio
n

Time used [seconds]

whitebox
blackbox no queuing

blackbox realtime

Figure 9: Decision time, BGP updates: RCS route selection time
for whitebox testing (instrumented RCS), blackbox testing no queuing
(single BGP announcements sent to RCS at a time), blackbox testing
real-time (BGP announcements sent to RCS in real-time)

Figure 8 shows the amount of memory required by
the RCS as a function of group size and for different
numbers of prefixes. Recall that a group is a set of
routers that would be receiving the same routes from the
RCS. Backbone network topologies are typically built
with a core set of backbone routers that interconnect
points-of-presence (POPs), which in turn contain access
routers [23]. All access routers in a POP would typi-
cally be considered part of a single group. Thus the
number of groups required in a particular network be-
comes a function of the number of POPs and the number

LSA Type Percentage
Refresh 99.9244
Area 0 change 0.0057
Non-zero area change 0.0699

Table 2: LSA traffic breakdown for August 1, 2004

of backbone routers, but is independent of the number of
access routers. A 100-group network therefore translates
to quite a large network : .

We saw more than 200,000 unique prefixes in our data.
The effectiveness of the RCS shadow tables is evident
by the modest rate of increase of the memory needs as
the number of groups are increased. For example, stor-
ing all 203,000 prefixes for 1 group takes 175MB, while
maintaining the table for 2 groups only requires an ad-
ditional 21MB, because adding a group only increases
the number of pointers into the global table, not the to-
tal number of unique routes maintained by the system.
The total amount of memory needed for all prefixes and
100 groups is 2.2 GB, a fairly modest amount of memory
by today’s standards. We also show the memory require-
ments for networks requiring fewer prefixes.

For the BGP (only) processing considered in this sub-
section, we evaluate the RCS using 100 groups, all
203,000 prefixes and BGP updates only. Specifically, for
these experiments the RCS used static IGP information
and no OSPF related events were played back at the RCS.

Figure 9 shows BGP decision process times for
100 groups and all 203,000 prefixes for three different
tests. First, the whitebox processing times are shown.
The 90th percentile of the processing times for whitebox
evaluation is 726 microseconds. The graph also shows
the two blackbox test results, namely blackbox no queu-
ing and blackbox realtime. As expected, the message
passing adds some overhead to the processing times. The
difference between the two blackbox results are due to
the bursty arrival nature of the BGP updates, which pro-
duces a queuing effect on the RCS. An analysis of the
BGP data show that the average number of BGP updates
over 24 hours is only 6 messages per second. However,
averaged over 30 second intervals, the maximum rate is
much higher, going well over 100 messages per second
several times during the day.

5.3 OSPF and Overall Processing

In this section, we first evaluate only the OSPF pro-
cessing of RCP by considering both the performance of
the OSPF Viewer and the performance of the RCS in
processing OSPF-related messages. Then we evaluate
the overall performance of RCP for combined BGP and
OSPF related processing.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 25

Measurement type Area 0 Non-zero area
change change

LSA LSA
Topology model 0.0089 0.0029
Intra-area SPF 0.2106 –
Inter-area SPF 0.3528 0.0559
Path cost change 0.2009 0.0053
Group change – 0.0000
Miscellaneous 0.0084 0.0010
Total (whitebox) 0.7817 0.0653
Total (blackbox no queuing) 0.7944 0.0732
Total (blackbox realtime) 0.7957 0.1096

Table 3: Mean LSA processing time (in seconds) for the OSPF Viewer

OSPF: Recall that per LSA processing on the OSPF
Viewer depends on the type of LSA. Table 2 shows
the breakdown of LSA traffic into these types for Au-
gust 1, 2004 data. Note that the refreshes account for
99.9% of the LSAs and require minimal processing in
the OSPF Viewer; furthermore, the OSPF Viewer com-
pletely shields RCS from the refresh LSAs. For the re-
maining, i.e., change LSAs, Table 3 shows the whitebox,
blackbox no queuing, and blackbox real-time measure-
ments of the OSPF Viewer. The table also shows the
breakdown of white-box measurements into various cal-
culation steps.

The results in Table 3 allow us to make several im-
portant conclusions. First, and most importantly, the
OSPF Viewer can process all change LSAs in a reason-
able amount of time. Second, the SPF calculation and
path cost change steps are the main contributors to the
processing time. Third, the area 0 change LSAs take an
order of magnitude more processing time than non-zero
change LSAs, since area 0 changes require recomputing
the path costs to every router; fortunately, the delay is
still less than 5�+ ; seconds and, as shown in Table 2, area 0
changes are responsible for a very small portion of the
change LSA traffic.

We now consider the impact of OSPF related events on
the RCS processing times. Recall that OSPF events can
cause the recalculation of routes by the RCS. We con-
sider OSPF related events in isolation by playing back to
the RCS only OSPF path cost changes; i.e., the RCS was
pre-loaded with BGP table dumps into a realistic opera-
tional state, but no other BGP updates were played back.

Figure 10 shows RCS processing times caused by
path cost changes for three different experiments with
100 router groups. Recall from Section 4.1 and Figure 6
that the sorted egress lists are used to allow the RCS to
quickly find routes that are affected by a particular path
cost change. The effectiveness of this scheme can be
seen from Figure 10 where the 90th percentile for the
whitebox processing is approximately 82 milliseconds.
Figure 10 also shows the blackbox results for no queu-

0

0.2

0.4

0.6

0.8

1

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000

Fr
ac

tio
n

Time used [seconds]

whitebox
blackbox no queuing

blackbox realtime
blackbox realtime, filtered

Figure 10: Decision time, Path cost changes: RCS route selection time
for whitebox testing (instrumented RCS), blackbox testing no queuing
(single path cost change sent to RCS at a time), blackbox testing real-
time (path cost changes sent to RCS in real-time), blackbox testing
real-time with filtered path cost changes

ing and realtime evaluation. As before the difference be-
tween the whitebox and blackbox no queuing results are
due to the message passing overhead between the route-
emulator (emulating the OSPF Viewer in this case) and
the RCS. The processing times dominate relative to the
message passing overhead, so these two curves are al-
most indistinguishable. The difference between the two
blackbox evaluations suggests significant queuing effects
in the RCS, where processing gets delayed because the
RCS is processing earlier path cost changes, which is
confirmed by an analysis of the characteristics of the path
cost changes: while relatively few events occur during
the day, some generate several hundred path cost changes
per second. The 90th percentile of the blackbox realtime
curve is 150 seconds. This result highlights the difficulty
in processing internal topology changes. We discuss a
more efficient way of dealing with this (the “filtered”
curve in Figure 10) in Section 5.4.

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1 10 100 1000

Fr
ac

tio
n

Time used [seconds]

blackbox realtime
blackbox realtime, filtered

Figure 11: Overall Processing Time, Blackbox testing BGP updates
and Path cost changes combined: All path cost changes (unfiltered)
and filtered path cost changes

Overall: The above evaluation suggests that process-

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association26

ing OSPF path cost changes would dominate the overall
processing time. This is indeed the case and Figure 11
shows the combined effect of playing back both BGP
updates and OSPF path cost changes against the RCS.
Clearly the OSPF path cost changes dominate the over-
all processing with the 90th percentile at 192 seconds.
(The curve labeled “filtered” will be considered in the
next section.)

5.4 Decoupling BGP from IGP

Although our RCP prototype handles BGP update mes-
sages very quickly, processing the internal topology
changes introduces a significant challenge. The problem
stems from the fact that a single event (such as a link fail-
ure) can change the IGP path costs for numerous pairs of
routers, which can change the BGP route assignments for
multiple routers and destination prefixes. This is funda-
mental to the way the BGP decision process uses the IGP
path cost information to implement hot-potato routing.

The vendors of commercial routers also face chal-
lenges in processing the many BGP routing changes that
can result from a single IGP event. In fact, some ven-
dors do not execute the BGP decision process after IGP
events and instead resort to performing a periodic scan
of the BGP routing table to revisit the routing decision
for each destination prefix. For example, some versions
of commercial routers scan the BGP routing table once
every 60 seconds, introducing the possibility of long in-
consistencies across routers that cause forwarding loops
to persist for tens of seconds [20]. The router can be con-
figured to scan the BGP routing table more frequently, at
the risk of increasing the processing load on the router.

RCP arguably faces a larger challenge from hot-potato
routing changes than a conventional router, since RCP
must compute BGP routes for multiple routers. Although
optimizing the software would reduce the time for RCP
to respond to path-cost changes, such enhancements can-
not make the problem disappear entirely. Instead, we
believe RCP should be used as a platform for moving
beyond the artifact of hot-potato routing. In today’s net-
works, a small IGP event can trigger a large, abrupt shift
of traffic in a network [20]. We would like RCP to pre-
vent these traffic shifts from happening, except when
they are necessary to avoid congestion or delay.

To explore this direction, we performed an experiment
where the RCP would not have to react to all internal
IGP path cost changes, but only to those that impact the
availability of the tunnel endpoint. We assume a back-
bone where RCP can freely direct an ingress router to
any egress point that has a BGP route for the destina-
tion prefix, and can have this assignment persist across
internal topology changes. This would be the case in a
“BGP-free” core network, where internal routers do not

have to run BGP, for example, an MPLS network or in-
deed any tunneled network. The edge routers in such a
network still run BGP and therefore would still use IGP
distances to select amongst different routes to the same
destination. Some commercial router vendors accommo-
date this behavior by assigning an IGP weight to the tun-
nels and treating the tunnels as virtual IGP links. In the
case of RCP, we need not necessarily treat the tunnels as
IGP links, but would still need to assign some ranking to
tunnels in order to facilitate the decision process.

We simulate this kind of environment by only consid-
ering OSPF path cost changes that would affect the avail-
ability of the egress points (or tunnel endpoints) but ig-
noring all changes that would only cause internal topol-
ogy changes. The results for this experiment are shown
with the filtered lines in Figures 10 and 11 respectively.
From Figure 10, the 90th percentile for the decision time
drops from 185 seconds when all path cost changes are
processed to 0.059 seconds when the filtered path cost
changes are used. Similarly, from Figure 11, the 90th
percentile for the combined processing times drops from
192 seconds to 0.158 seconds when the filtered set is
used. Not having to react to all path cost changes leads to
a dramatic improvement on the processing times. Ignor-
ing all path cost changes except those that would cause
tunnel endpoints to disappear is clearly somewhat opti-
mistic (e.g., a more sophisticated evaluation might also
take traffic engineering goals into account), but it does
show the benefit of this approach.

The results presented in this paper, while critically im-
portant, do not tell the whole story. From a network-wide
perspective, we ultimately want to understand how long
an RCP-enabled network will take to converge after a
BGP event. Our initial results, presented in the technical
report version of this paper [24], suggest that RCP con-
vergence should be comparable to that of an iBGP route
reflector hierarchy. In an iBGP topology with route re-
flection, convergence can actually take longer than with
RCP in cases where routes must traverse the network
multiple times before routing converges.

6 Conclusion

The networking research community has been struggling
to find an effective way to redesign the Internet’s rout-
ing architecture in the face of the large installed base of
legacy routers and the difficulty of having a “flag day”
to replace BGP. We believe that RCP provides an evolu-
tionary path toward improving, and gradually replacing,
BGP while remaining compatible with existing routers.

This paper takes an important first step by demonstrat-
ing that RCP is a viable alternative to the way BGP routes
are distributed inside ASes today. RCP can emulate a
full-mesh iBGP configuration while substantially reduc-

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 27

ing the overhead on the routers. By sending a customized
routing decision to each router, RCP avoids the prob-
lems with forwarding loops and protocol oscillations that
have plagued route-reflector configurations. RCP assigns
routes consistently even when the functionality is repli-
cated and distributed. Experiments with our initial proto-
type implementation show that the delays for reacting to
BGP events are small enough to make RCP a viable al-
ternative to today’s iBGP architectures. We also showed
the performance benefit of reducing the tight coupling
between IGP path cost changes and the BGP decision
process.

Acknowledgments

We would like to thank Albert Greenberg, Han Nguyen,
and Brian Freeman at AT&T for suggesting the idea of an
“Network Control Point for IP networks.” Thanks also
to Chris Chase, Brian Freeman, Albert Greenberg, Ali
Iloglu, Chuck Kalmanek, John Mulligan, Han Nguyen,
Arvind Ramarajan, and Samir Saad for collaborating
with us on this project. We are grateful to Chen-Nee
Chuah and Mythili Vutukuru, and our shepherd Ramesh
Govindan, for their feedback on drafts of this paper.

7 REFERENCES
[1] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and

J. van der Merwe, “The case for separating routing from
routers,” in Proc. ACM SIGCOMM Workshop on Future
Directions in Network Architecture, August 2004.

[2] O. Bonaventure, S. Uhlig, and B. Quoitin, “The case for more
versatile BGP route reflectors.” Internet Draft
draft-bonaventure-bgp-route-reflectors-00.txt, July 2004.

[3] D.-F. Chang, R. Govindan, and J. Heidemann, “An empirical
study of router response to large BGP routing table load,” in
Proc. Internet Measurement Workshop, November 2002.

[4] T. Bates, R. Chandra, and E. Chen, “BGP Route Reflection - An
Alternative to Full Mesh IBGP.” RFC 2796, April 2000.

[5] R. Dube, “A comparison of scaling techniques for BGP,” ACM
Computer Communications Review, vol. 29, July 1999.

[6] T. G. Griffin and G. Wilfong, “On the correctness of IBGP
configuration,” in Proc. ACM SIGCOMM, August 2002.

[7] A. Basu, C.-H. L. Ong, A. Rasala, F. B. Shepherd, and
G. Wilfong, “Route oscillations in IBGP with route reflection,”
in Proc. ACM SIGCOMM, August 2002.

[8] D. McPherson, V. Gill, D. Walton, and A. Retana, “Border
Gateway Protocol (BGP) Persistent Route Oscillation
Condition.” RFC 3345, August 2002.

[9] A. Shaikh and A. Greenberg, “OSPF monitoring: Architecture,
design, and deployment experience,” in Proc. Networked
Systems Design and Implementation, March 2004.

[10] Ipsum Route Dynamics. http://www.ipsumnetworks.
com/route_dynamics_overview.html.

[11] Quagga Software Routing Suite.
http://www.quagga.net.

[12] M. Handley, O. Hudson, and E. Kohler, “XORP: An open
platform for network research,” in Proc. SIGCOMM Workshop
on Hot Topics in Networking, October 2002.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The Click modular router,” ACM Trans. Computer Systems,

vol. 18, pp. 263–297, August 2000.
[14] R. Govindan, C. Alaettinoglu, K. Varadhan, and D. Estrin,

“Route servers for inter-domain routing,” Computer Networks
and ISDN Systems, vol. 30, pp. 1157–1174, 1998.

[15] R. Govindan, “Time-space tradeoffs in route-server
implementation,” Journal of Internetworking: Research and
Experience, vol. 6, June 1995.

[16] V. Jacobson, C. Alaettinoglu, and K. Poduri, “BST - BGP
Scalable Transport .” NANOG27
http://www.nanog.org/mtg-0302/ppt/van.pdf,
February 2003.

[17] N. Feamster, J. Winick, and J. Rexford, “A model of BGP
routing for network engineering,” in Proc. ACM SIGMETRICS,
June 2004.

[18] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and
J. Rexford, “NetScope: Traffic engineering for IP networks,”
IEEE Network Magazine, pp. 11–19, March 2000.

[19] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4
(BGP-4).” Internet Draft draft-ietf-idr-bgp4-26.txt, work in
progress, October 2004.

[20] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics of
hot-potato routing in IP networks,” in Proc. ACM SIGMETRICS,
June 2004.

[21] N. Feamster and H. Balakrishnan, “Detecting BGP configuration
faults with static analysis,” in Proc. Networked Systems Design
and Implementation, May 2005.

[22] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing
stability of popular destinations,” in Proc. Internet Measurement
Workshop, November 2002.

[23] N. Spring, R. Mahajan, and D. Wetheral, “Measuring ISP
topologies with RocketFuel,” in Proc. ACM SIGCOMM, August
2002.

[24] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing
control platform.” http://www.research.att.com/
˜kobus/rcp-nsdi-tr.pdf, 2005.

Notes� The seriousness of these inconsistencies depends on the mech-
anism that routers use to forward packets to a chosen egress router.
If the AS uses an IGP to forward packets between ingress and egress
routers, then inconsistent egress assignments along a single IGP path
could result in persistent forwarding loops. On the other hand, if the
AS runs a tunneling protocol (e.g., MPLS) to establish paths between
ingress and egress routers, inconsistent route assignments are not likely
to cause loops, assuming that the tunnels themselves are loop-free.� Note that this optimization requires MED attributes to be com-
pared across all routes in step 4 in Table 1. If MED attributes are only
compared between routes with the same next-hop AS, the BGP de-
cision process does not necessarily form a total ordering on a set of
routes; consequently, the presence or absence of a non-preferred route
may influence the BGP decision [17]. In this case, our optimization
could cause the RCS to select a different best route than the router
would in a regular BGP configuration.<

We filtered the BGP data so that only externally learned BGP up-
dates were used. This represents the BGP traffic that an RCP would
process when deployed.=

Our modular architecture would allow other BGP Engine imple-
mentations to be utilized if needed. Indeed, if required for scalability
reasons, multiple BGP Engines can be deployed to “cover” a network.>

The per-process memory restrictions on our 32-bit platform pre-
vented us from evaluating more groups.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association28

