
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

SSU
Extending SSH for Secure Root Administration

Christopher Thorpe, Yahoo!, Inc.

SSU: Extending SSH for Secure
Root Administration

Christopher Thorpe – Yahoo!, Inc.

ABSTRACT

SSU†, ‘‘Secure su,’’ is a mechanism that uses SSH [Ylonen] to provide the security for
distributing access to privileged operations. Its features include both shell or per-command
access, a password for each user that is distinct from the login password and easily changed, and
high portability. By installing SSU, administrators build a solid infrastructure for using SSH for
improving security in other areas, such as file distribution and revision control.

Introduction and Site Information

The EECS research computing environment at
Harvard University is comprised of approximately two
hundred workstations running eight variations of
Unix. Users are primarily faculty, graduate students
and researchers, most of whom need some level of
root access to their workstations. Some students need
only the ability to reboot their workstations or mount
removable storage media, but many computer science
researchers need full root access for their work. In
addition, these Unix-savvy users ease the load on sys-
tem administrators tremendously by performing
administration tasks when possible.

Because the EECS environment is a research-ori-
ented group, machines come and go on the network all
the time, as do users who need privileged access.
There are several independent research groups within
EECS, and researchers in a group generally need priv-
ileged access only to that group’s machines. In addi-
tion, many researchers administer their own research
machines while using our network and home directory
NFS server. Since our environment is comprised of
machines for which we provide various levels of
administration, we built a system to give both admin-
istrators and researchers root access on various groups
of machines. In addition, we made the system easy to
install so that anyone setting up a new machine need
only modify or create two files in addition to the ssh
distribution (which everyone installs anyway.)

SSU sits on top of the widely-used secure shell
protocol SSH. Because of its usefulness in providing
security and ease of access to networked computing
environments, ssh is now in use on all of the Unix-
based machines within EECS. SSH can also be used
for remote administration, where a trusted host uses
the protocol to establish secure connections to other
machines and execute privileged operations. SSH has

†The bulk of this work was completed while the author was
employed as a student systems administrator while an under-
graduate at Harvard University. SSU is currently used in
Harvard’s EECS (Electrical Engineering and Computer Sci-
ence) research environment.

been successfully used to support the secure exchange
of data for programs such as rdist [Cooper] and CVS
[Cyclic].

In any large installation, key management is an
important task for the proper installation and mainte-
nance of SSH. Since we already used SSH, it was nat-
ural to extend the key management system we devel-
oped for remote root operations into a more complex
system supporting SSU. By doing so, researchers
adding a new system need only install SSH and add
the trusted public identity key in root’s autho-
rized_keys file. After this is done, SSU is installed
automatically from the trusted host and keys are peri-
odically updated. Note that SSH uses two types of
RSA keys: one for host identification and another for
user authorization. SSU does not use the host identifi-
cation keys outside their normal use when ssh estab-
lishes a connection between two hosts. All SSU
authentication uses 1024-bit RSA key pairs, com-
pletely separate from a host’s identity keys.

The features we required:
• The ability to easily redefine users’ root access
• Definition of access in terms of groups of

machines and automatic update of machines’
root access configurations when these groups
change

• The ability to administer machines without pos-
sessing a local user id

• Easy installation for researchers installing new
systems

• Seamless portability between all of our operat-
ing systems

Features we wanted:
• A password for privileged operations distinct

from the user’s login password and consistent
for all operations

• Authentication of the user within the EECS
domain before allowing root access

Description of SSU

Table 1 shows the commands and files used by
SSU. Examples 1, 2, and 3 show how to reboot the
local machine, gain a remote shell, and grant access to

1998 LISA XII – December 6-11, 1998 – Boston, MA 27

SSU: Extending SSH for Secure Root Administration Thorpe

a new user. Note that this program asks for multiple
command/host pairs, so that it is possible to define a
different set of commands for each group of hosts.

Command/File Description

ssu Used to invoke a privileged operation locally or remotely.

ssu-passwd Used to modify a user’s RSA passphrases for all SSU commands.

ssu-user Administrators’ tool for creating or modifying SSU privileges.

process-ssu
Processes the configuration files, generates the authorized_keys files,
and pushes the files to the hosts.

SSU.pm
A Perl 5 module that contains local configuration settings and library
functions used by ssu commands.

ssu_cmdgroups Definitions of convenient groups of SSU commands.

ssu_usergroups Definitions of convenient groups of SSU users. These groups may work
with or be instead of the system group file.

ssu_hostgroups Definitions of convenient groups of hosts for SSU. These groups may
work with or be instead of the system netgroup file.

Table 1: User Interface.

% ssu reboot
Enter passphrase for RSA key ’cat:tcsh@eecs’: [passphrase]
Shutdown at Sun Sep 20 14:59:19 1998.
shutdown: [pid 19268]
Connection to localhost closed.

Example 1: Rebooting the local machine.

% ssu tcsh@herbert
Enter passphrase for RSA key ’cat:reboot@eecs’: [passphrase]
herbert#

Example 2: Gaining a shell on a remote machine.

Overview of How SSU Works

When users are granted access they are given
access to commands chosen from a list of SSU com-
mands (checked in a configuration file for sanity).

A configuration file is created or updated by run-
ning ssu-user. This file may be modified by hand to
change users’ permissions in the future. The reason
for using this file is that if a user is granted access to
groups of servers (as defined in the netgroup file or
the GROUPS directory) and those groups change the
user ’s permissions are automatically adjusted to corre-
spond to the changes in those groups the next time
process-ssu is run.

An RSA key pair is generated for each com-
mand, and the passphrase is set to be the same for all
commands for that particular user (in order to facili-
tate ease of remembering the passphrases.) The ssu-
passwd command makes it easy for users to change all
of their SSU passphrases at once.

A user executes a privileged command by typing
‘‘ssu command’’ or ‘‘ssu command@host.’’ The ssu

script then determines the appropriate identity to use,
connects to the SSU port on the remote machine or
loopback interface as root, and ssh executes the com-
mand as root. See Appendix D for a description of
how SSH authenticates a user. Note that SSU does not
allow .rhosts, .shosts or password authentication, and
disables TCP/IP, X, and agent forwarding by default.

Key Management

Key management was probably the most difficult
problem in implementing this solution. Since the sys-
tem’s security is based on RSA public/private key
cryptography, it is vital to correctly administer the
keys. First, we introduce the idea of a ‘‘trusted mas-
ter.’’ This machine holds an RSA private key for the
root user that is trusted by the root users on all other
machines on our network. (It is possible, and probably
wise, to have multiple trusted masters.)

By configuring all the machines in the network
to trust the root identity on this host, it allows all
authentication for user root access to take place on the
trusted machine. Connections with root access can be
established from there. This also has the useful side
effect of creating a machine that can establish secure,
privileged connections to all other machines for any
purpose – e.g., rdist, network monitoring and backups.

28 1998 LISA XII – December 6-11, 1998 – Boston, MA

Thorpe SSU: Extending SSH for Secure Root Administration

Alternatively, private keys may be pushed to all of the
machines on the network or placed in an NFS-
mounted directory (see Appendix C for security con-
cerns). With the keys available everywhere, users can
gain root access through the loopback port. This
allows restricted login access to the trusted master as
well as the ability to gain root access even if the
trusted master is inaccessible.

% ssu-user newbie
SSU New User Configuration for newbie (Nathan Ewbie)

Enter the SSU commands newbie should have access to, space separated:
[Blank exits.]
bash reboot

Enter the hosts on which these commands should be accessible:
[Blank returns to previous prompt.]
bach handel mozart

Enter the SSU commands newbie should have access to, space separated:
[Blank exits.]
vi-aliases

Enter the hosts on which these commands should be accessible:
[Blank returns to previous prompt.]
mailhost
Enter the SSU commands newbie should have access to, space separated:
[Blank exits.]
[return]

Please remember to run process-ssu after you are finished adding new users!

Example 3: Granting access to a new user.

The master’s trusted private key should be care-
fully guarded. We do not protect it with a passphrase
so automatic privileged operations can execute with-
out administrator intervention at boot time. In
Appendix B we describe a method of passphrase pro-
tection that requires minimal administrator interven-
tion for automatic operations. Using this method, how-
ever, it is required to enter the passphrase for each
manually executed remote operation, e.g., updating
the remote keys.

It is also possible to use SSU without allowing
remote root access; to do this the keys must be dis-
tributed as described and connections as root allowed
only through the loopback port. Pushing keys to
remote hosts is difficult without remote root access.
One solution is to make the clients periodically query
the host where keys are stored to obtain the most
recent authorized_keys file and the appropriate private
keys.

If remote root access is desired, the trusted mas-
ter is used to distribute lists of authorized keys to each
of the machines for which privileged access is desired.
These lists are constructed for each machine sepa-
rately from the configuration files described below.
Each entry in the list contains a command, any special

options with which ssh will execute the command
(e.g., environment=‘‘SHELL=/bin/false’’ to prevent
shell escapes from vi or less), and the public key for
the user-command pair generated by ssu-user or pro-
cess-ssu.

Since the private keys of these user-command
pairs are protected by passphrases, even if they are
captured via NFS sniffing or user negligence they are
still secure. Some administrators may wish to place
them on the trusted server’s local disk if root access is
to be limited to connections coming from the trusted
server. Since we allow trusted connections from the
trusted server and from the loopback port, we place
the keys in the users’ NFS-mounted home directories
for convenience. (See Appendix C for further discus-
sion of the security issues here.) We also store the
keys on the trusted server so that if our NFS server
fails it doesn’t disable all privileged access.

Each user requires a separate key for each com-
mand. Fortunately, most users need only execute a few
commands. For example, using ‘‘adminmenu,’’ each
user can be given a specific list of privileges from a
selection of common administrative operations. The
list of allowed operations is set in the configuration for
each user. This cuts down on the administration of
individual commands.

Because these keys are normal SSH public/pri-
vate key pairs, the ssh-agent can be used to store the
passphrases for these keys. We discourage this use of
ssh-agent, as it creates two minor security holes. First,
if a user adds the key to the agent, anyone can sit
down at the computer later and execute the privileged
commands without a passphrase. Second, if the login

1998 LISA XII – December 6-11, 1998 – Boston, MA 29

SSU: Extending SSH for Secure Root Administration Thorpe

is shared, compromised, or a login is left open on
another machine, a malicious user can set environment
variables to use the running ssh-agent to gain access
without a passphrase.

Configuration

Within the /usr/local/etc/SSU directory, there are
five important configuration files: SSU.pm, ssu_host-
groups, ssu_usergroups, ssu_cmdgroups, and ssu_con-
fig. In addition, a COMMANDS directory contains a
file containing definitions for each command SSU will
be used to execute as root and a HOSTS directory
contains the authorized_keys file for each host in the
installation. The HOST_DEFAULTS directory con-
tains files that are prepended to the host definitions
created by process-ssu so that special defaults can be
created on a host-by-host basis. SSU.pm is a Perl 5
module that contains important local configuration
details such as the location of files and how to obtain
the domain name correctly.

The ssu_hostgroups file contains a list of key-
words that map to groups of hosts or other groups. For
example, the lines:

lab-linux: bach handel mozart brahms
linux: lab-linux alfie betty

define groups lab-linux (bach, handel, mozart and
brahms) and linux (bach, handel, mozart, brahms, alfie
and betty). A group must be defined before use as a
subgroup. Obviously groups cannot be subgroups of
each other, so this ‘‘before’’ rule does not limit
groups’ definitions. Such group definitions allow the
administrator to grant a user permission to execute
commands on one or more groups of hosts, e.g., mail-
hosts. When mailhosts changes, users with privileges
for mailhosts automatically have their keys distributed
to the new mailhosts map on the next key distribution
update. Included with the SSU distribution is a utility
that will generate ssu_hostgroups lines from an NIS
[Sun] netgroup format.

The ssu_cmdgroups file contains keywords that
map to lists of commands that a user in that command
group may execute. The file behaves exactly like
ssu_hostgroups, and command groups may contain
other groups already defined. For example, if helpdesk
staff needed a certain group of commands, an adminis-
trator might add the line:

helpdesk: passwd, lprm, reboot

The ssu_usergroups file contains keywords that
map to lists of users. Again, groups may consist of
usernames or other groups. Note that SSU reads the
/etc/group file before processing this file, so groups
defined there need not be redefined, and groups in
ssu_usergroups may use groups defined in /etc/group.
If a group is redefined in ssu_usergroups after being
initially defined in /etc/group, a warning is printed and
the old definition is lost.

The COMMANDS directory contains several
short files that function as SSU command aliases.
These aliases are used in the ssu-user script so that the
full pathname and environment need not be specified
for commands. This file contains part of line that will
go into the ˜root/.ssh/authorized_keys file. Example 4
shows how one might configure files for a root tcsh
shell and a command to modify the mail aliases. In
Example 5 we set the SHELL environment variable to
/bin/false to prevent the user from performing shell
operations through vi. We set the path explicitly as
well for security, and because kill is not in the same
location on all of our hosts.

command="/usr/local/bin/tcsh"
Example 4: Configuring a root tcsh; file tcsh.

no-port-forwarding,no-X11-forwarding,
o-agent-forwarding,
environment="SHELL=/bin/false",
PATH="/bin:/usr/local/sbin:/usr/bin"
command"vi /etc/sendmail.cf;

kill -HUP ‘cat /var/run/sendmail.pid‘"

Example 5: Preventing shell operations from vi, file
vi-aliases.

The HOSTS directory contains a file for each
host on which SSU is to be run. It is initialized from
the HOST_DEFAULTS directory each time process-
ssu runs. process-ssu then appends to or creates files
in this directory to complete its list of authorized_keys
files. To do so, it examines the list of commands for
each user in the configuration file, and creates a line in
the appropriate host file for each user-command pair.
These lines are constructed by concatenating the com-
mand definitions with the user’s public key for that
command and eliminating all internal newlines.

Once the user/command pairs have been pro-
cessed, process-ssu then goes through each host in the
HOSTS directory and sends the new authorized_keys
file to the host via scp (part of ssh). If a passphrase is
needed, the administrator should run ssh-agent before
process-ssu.

Host Configuration

For security reasons, we want to limit privileged
connections to the loopback port and trusted hosts.
Since ssh does not allow limiting connections on a
per-user basis, we run two ssh daemons – one on the
standard port 22 for general access, and another on
another privileged port (we use 122). The only recom-
mendation we make with regard to the standard ssh
configuration is that it contain the line Permit-
RootLogin no so that root access is only available
through the special ssh daemon.

We then configure another ssh daemon to run for
supplying privileged access, using a file including the
following lines:

Port 122

30 1998 LISA XII – December 6-11, 1998 – Boston, MA

Thorpe SSU: Extending SSH for Secure Root Administration

RandomSeed /etc/ssh_root_random_seed
PidFile /var/run/sshd_root.pid
PermitRootLogin nopwd
RhostsAuthentication no
RhostsRSAAuthentication no
RSAAuthentication yes
PasswordAuthentication no
AllowHosts 127.0.0.1

140.247.60.30 140.247.60.20
(See the source for a complete listing of the file we
use.)

The Port, RandomSeed and PidFile lines prevent
conflict with the standard ssh daemon. We turn pass-
word authentication completely off so that users will
never be prompted for root’s password – even if they
know it. We allow only RSA authentication using the
trusted keys and those generated from SSU-user.
Finally, we restrict the hosts that may connect as root
to the two trusted servers and the loopback port. This
makes certain that even if intruders break into a non-
trusted machine and gain a passphrase and private key,
they cannot gain root access elsewhere on the net-
work.

Related Solutions

Others have implemented similar solutions to
this problem. These include priv [Hill], sudo [Courte-
san], and op [Christiansen] which are very similar pro-
grams. These allow users to execute certain com-
mands with root privileges. Each of these uses a con-
figuration file describing privileged commands, users
allowed to execute those commands, and the hosts on
which and arguments with which the commands may
be executed. Users invoke privileged commands by
using a prefix (‘‘priv,’’ ‘‘sudo’’ or ‘‘op’’), then the
command which is to be executed. While these sys-
tems are useful, we found them to be inadequate for
our needs.

By extending our installation of SSH to SSU, we
did not introduce any new binaries. All of the features
SSU provides are written in Perl. SSH and Perl are
already ported and thoroughly tested on all of the
operating systems we use, and are utilities that we
already use and maintain for other purposes. By using
only existing binaries, the system is completely
portable, and we avoid potential security holes intro-
duced by writing and porting setuid C code. Given the
highly diverse nature of our environment, portability
and ease of installation is a very high priority.

None of the above solutions allows for a pass-
word distinct from login passwords in the password
database. Op allows for specifying the password of
another user; priv allows for that as well as ‘‘safe
deposit box’’ authentication where two distinct users
must type their password. These solutions are better,
but login passwords are notorious for being sniffed
and cracked, even in shadow password systems. Priv
also provides mechanisms for password challenges

and single-use passwords, but we concluded that these
solutions were too cumbersome for our users. SSU has
four levels of security: the standard login password,
the hosts’ RSA key pairs, and the user’s RSA keys and
the passphrase protecting the private key.

SSU also is unique in that it allows privileged
operations on a host to which the user does not have
login access. If a researcher wishes to restrict user
access or not to install NIS on a system, staff members
might not have logins on systems (particularly those
that are new or unstable). While one might argue that
machines should always have staff logins, it is unreal-
istic to expect all researchers to repeatedly update
their systems with the most up-to-date staff informa-
tion. An SSU public key in root’s authorized_keys
file gives users gives users the ability to perform oper-
ations on remote systems through authentication on a
trusted host.

There are some useful features in these systems
that ssu lacks. For example, priv allows the adminis-
trator to specify time of day and terminals at which
users may execute privileged operations. SSH has no
mechanism for supporting this, and hence, neither
does SSU. With sudo, users need not retype their pass-
words each time sudo is executed – it ‘‘remembers’’
authentication for a few minutes. (As described above,
we discourage SSU users from using ssh-add to add an
SSU key to an ssh-agent for this purpose.)

Another advantage of sudo, priv and op is that
they act more like ‘‘su’’ than SSU. Commands such as
sendmail and shutdown ‘‘remember ’’ the user id of the
original user and report it, where SSU creates a login
as the root user. While it might be possible to modify
SSH or the login shell to solve this problem, that
defeats the portability of our system. To do what we
can, we do set the USER and LOGNAME variables of
the new shell’s environment to the root-invoking user
when creating the authorized_keys files.

ksu

Before installing SSU, we used Kerberos [Neu-
man] ksu to give root shells to trusted users. While ksu
requires a Kerberos root instance password distinct
from the Kerberos password and the login password, it
does not allow execution of limited privileged com-
mands. The most significant reason we discarded ksu
was that a full installation required compiling and
maintaining Kerberos binaries on multiple platforms.
Using Kerberos would have inconvenienced
researchers, as they would have to install and config-
ure it on each machine they added to the network. We
found that SSH provided the security features we used
Kerberos for; the administration cost of Kerberos for
ksu alone outweighs its benefit.

s/key

s/key [Haller] and other one-time password
schemes for granting root access do not provide much

1998 LISA XII – December 6-11, 1998 – Boston, MA 31

SSU: Extending SSH for Secure Root Administration Thorpe

more administrative flexibility than giving users the
root password. Revoking access from a user who has a
list of valid s/key passphrases involves distributing
new passphrases to the other users who need them.
These systems may provide extra security, but they do
not solve the problem of managing access to privi-
leged operations.

Feature root s/key priv sudo op ksu SSU

• - 1 • 1 • •
Same root-invoking password
everywhere

- - • • • - •Allows only specific commands

- • • • • • •Each user has a unique password

- • 2 - - • •
Root passwords are independent from
login passwords

• • • • • - 3
Can gain root access locally if trusted
master is unreachable

4 - • • • • •
Requires authentication as a known
user before gaining root access

- - • • • • •
The root password itself is never
requested

• • - - - - •Does not require a local user login

• • • - -
Simple to configure command
limitations

• • • - -
Can specify arguments to operations on
the root-invoking command line

• • - - - • •
Secure if user’s login password is
compromised

5 • • • • • •
Secure if someone captures the local
network traffic when run

- • - - - - -
Secure if root access is obtained
through an unencrypted link

Key

• yes

- no

space not applicable

1 priv and op allow specified passwords for each command

2 priv allows for challenges and one-time passwords

3
SSU requires keys to be distributed or NFS-mounted for this to work. See Appendix
C for a discussion of the security ramifications of this.

4
some operating systems restrict terminals where root can login and the users who may
su

5 If a user telnets as root this is a risk; otherwise there is no problem.

Table 2: Comparison of various solutions.

login

Sharing the root password with everyone is prob-
ably the simplest solution, but is also the least secure.

When the root password changes, everyone who needs
to know it must be notified, and whenever anyone no
longer should have root access, it must be changed.
This solution is generally only viable in small opera-
tions with a small number of capable administrators.

Comparisons

Table 2 compares the various solutions.

32 1998 LISA XII – December 6-11, 1998 – Boston, MA

Thorpe SSU: Extending SSH for Secure Root Administration

Drawbacks

The most serious drawback of SSU is its reliance
on the RSA keys. If the keys are kept on a master
server or NFS server and that machine goes down,
root access is disabled. The only way to completely
remove this problem is by distributing the private keys
to every machine’s local disk. This (as does sharing
them via NFS) increases the risk that an intruder could
gain a private key. The solution with two master
servers, each with local copies of the passphrase-
encrypted keys, is probably solid enough for most
installations.

Any SSU operation runs under a root login,
whether executing a shell or a single command.
Accountability is not provided on the local host,
though the system logs from the ssh daemon provide
ample information for this purpose. Broadcast mes-
sages and mail sent appear as from ‘‘root’’ rather than
the invoking user.

SSU does not allow arguments to commands on
the root-invoking command line. This forces the use
of scripts or shell access for simple operations like
renicing or killing processes, changing the ownership
of files or setting the time for reboot of a machine. In
addition, since the commands are executed in a remote
manner, interactivity is limited. With priv, sudo and op
a shutdown command is easily undone; SSU requires
another connection to stop the shutdown process. Lim-
iting command parameters is complicated in SSU, as it
must be done using the backend script. However, there
is less room for error in a commonly used language
like perl than in a unique, single-purpose language.

Conclusion

SSU is a very useful tool for distributing root
access among a large group of skilled researchers and
faculty. Its most important features are that it allows
distinct root passwords and configurable commands
for each individual, uses a secure infrastructure for
authorization throughout an installation, and is
extremely portable. The security is solid and well-
tested. It logs all commands or shells started for
accountability. We have several examples of com-
mands that can be used for common system adminis-
tration tasks, and hope that others who use this system
will share their work.

Availability

The SSU distribution is available via anonymous
ftp at ftp://eecs.harvard.edu/pub/cat/ssu and contains
the most recent version of this document, all of the
programs referenced herein, and additional utilities
and documentation as ssu is improved.

Acknowledgements

Special thanks to Michael Barrientos, who sup-
plied Appendix D and provided moral support and
excellent feedback during the preparation of this work.

Also special thanks to Peg Schafer, who encouraged
me (‘‘strongly’’ would be an understatement) to com-
plete this work and submit it for publication at LISA.
Phil Cox, for his help preparing the work for LISA.

Author Information

Christopher Thorpe graduated in June 1998 with
an A. B. in Computer Science and Music from Har-
vard University. While at Harvard, Chris worked as a
system administrator for Harvard’s EECS (Electrical
Engineering and Computer Science) research group.
In addition to working as a system administrator,
Chris was a head teaching fellow for introductory
computer science courses at the university. Christo-
pher is now employed at Yahoo! in Santa Clara, Cali-
fornia as a member of the Yahoo! Store team. He
lives in Sunnyvale, California and spends his negligi-
ble free time playing the piano and french horn, partic-
ipating in community theatre, scuba diving, and play-
ing computer games.

References

[Christiansen] Christiansen, T. ‘‘Op: A Flexible Tool
for Restricted Superuse Access,’’ Proceedings of
the Workshop on Large Installation System
Administration (LISA 88). Monterey, CA, USA,
1988. pp. 89-94.

[Cooper] Cooper, M. ‘‘Overhauling Rdist for the
90’s,’’ Proceedings of the Sixth Conference on
Systems Administration (LISA 92). Long Beach,
CA, USA, 1992. pp. 175-188.

[Cyclic] CVS, Cyclic Software http://www.cyclic.
com .

[Courtesan] Sudo, Courtesan Consulting http://www.
courtesan.com/courtesan/products/sudo .

[Haller] Haller, N. M. ‘‘The S/KEY One-time Pass-
word System,’’ Proceedings of The Internet Soci-
ety Symposium on Network and Distributed Sys-
tem Security, 1994, pp. vi+173, 151-57.

[Hill] Hill, B. University of California, Davis ‘‘Priv:
Secure and Flexible Privileged Access Dissemi-
nation,’’ Proceedings of the Tenth USENIX Sys-
tem Administration Conference (LISA 96).
Chicago, IL, USA, Sept. 29-Oct. 4, 1996. pp.
1-8.

[Neuman] Neuman, B. C. and Ts’o, T. ‘‘Kerberos: An
Authentication Service for Computer Net-
works,’’ IEEE Communications Magazine, vol.
32, no. 9, pp. 33-38.

[Sun] NIS+, Sun Microsystems Incorporated.
[Ylonen] Ylonen, T. ‘‘SSH – Secure Login Connec-

tions over the Internet,’’ Proceedings of the Sixth
USENIX UNIX Security Symposium, San Jose
CA, USA, July 22-25, 1996. pp. 214, 37-42.

1998 LISA XII – December 6-11, 1998 – Boston, MA 33

SSU: Extending SSH for Secure Root Administration Thorpe

Appendix A: United States Export Restrictions

The United States government restricts export of
certain strong encryption algorithms. Since SSH is
freely available from sites outside the US, we assume
that anyone who wishes to install SSU can obtain and
install a working version of SSH. The SSU distribu-
tion contains no encryption code; this is taken care of
entirely by SSH. Those users who need information on
installing SSH should consult the SSH FAQ
(http://www.uni-karlsruhe.de/˜ig25/ssh-faq/) and the
SSH Distribution (ftp://ftp.cs.hut.fi/pub/ssh/).

Appendix B: Security Issues with Automatic
Administration from a Trusted Host

The ssh-agent utility allows ssh users to enter the
passphrases for a private key and saves the decrypted
private key in memory. Further ssh connections use
sockets administered by the ssh-agent. When a system
is brought up, an ssh-agent running as root should be
started with something like (assuming the trusted key
is /root/.ssh/trusted)
csh% ssh-agent > /var/run/trusted-agent
csh% source /var/run/trusted-agent
Agent pid 1234;
csh% ssh-add -p
Need passphrase for /root/.ssh/trusted

(root@foo.com).
Enter passphrase: [passphrase]
Identity added: /root/.ssh/trusted

(root@foo.com).

(The -p option prevents ssh-add from starting an X11
window to read the passphrase if X is running.)

In scripts, one need only add the line

source /var/run/trusted-agent
before using ssh to make privileged connections to
remote hosts. This will connect the process with the
agent that already has the decrypted trusted key in
memory. If any user other than root attempts to use
this agent, they will fail.

This only increases security completely against
someone obtaining the private key. The identity file is
useless without the passphrase. If someone obtains a
root shell on the trusted host while this is running, it is
more difficult but still possible to gain remote access.
In this scenario, they need only to examine
/var/run/trusted-agent or use the agent-socket attack
described below. Even if there is no trusted-agent file
and a single ssh-agent is started for a master script
running all remote operations, intruders could check
the process table and the /tmp/ssh-root directories to
find an ssh-agent process and agent-socket file with
the same timestamp. They could then set the appropri-
ate environment variables and ‘‘piggyback’’ on that
agent to other hosts. Obviously this takes some
knowledge of ssh and the local configuration, but is
not particularly challenging. (Perhaps someone should
add an option to ssh-agent to only allow connections
from processes that are children of the agent itself.)

The other option, using the ˜root/.shosts file, has
its own weaknesses. (For some reason, SSH 1.2 does
not like /etc/{s,}hosts.equiv for root.) The .shosts file
essentially uses the hosts’ private keys, which are
never encrypted with a passphrase, as the sole source
of authentication. With .shosts, if intruders obtain the
trusted host’s private key then they can spoof a con-
nection. This may or may not be more difficult than
gaining a shell or the root user’s private key on the
trusted host. Clearly, if they gain root access to the
trusted host then they can ssh over through .shosts
anyway. Since security-conscious configurations will
limit trusted connections to trusted hosts, .shosts is no
more secure than an RSA trusted key pair without
passphrase protection.

With this in mind, if the trusted host is used to
perform automated administration, configurations
should ideally allow only trusted logins, and accept
only ssh connections from other machines within the
network. Such a trusted host should not run any other
daemons that might compromise the security of the
system, e.g., mail or telnet. In general, using any auto-
mated administration that trusts root on another host is
a security risk, because when intruders obtain access
to the trusted host, they can gain access remotely by
modifying the automation scripts themselves.

Appendix C: Security Issues with Distributing
Keys via NFS

While NFS is riddled with security holes, dis-
tributing the private RSA keys used for user authenti-
cation is not the security risk that it might seem to be,
provided that these keys are encrypted with
passphrases. (All of the scripts supplied with SSU
disallow empty passphrases.) For this reason, even if
an intruder were to obtain both pieces of a pri-
vate/public key pair, it would still be necessary to
obtain the passphrase. An intruder with both the public
and private keys of an RSA key pair might be able to
crack the passphrase if it were poorly chosen. Even if
an intruder were able to crack the passphrase, how-
ever, it would then be necessary to gain a shell on a
machine in order to use the passphrase to gain local
root access. Malicious users with login access can
often gain local root access and certainly degrade per-
formance. For this reason, we believe that the barriers
of obtaining the private key (which is never transmit-
ted by ssh) and the public key, discovering the
passphrase, and gaining login access to a machine are
sufficient to prevent NFS-mounted SSU keys from
becoming a security hole.

Another problem with distributing keys via NFS
is that if the NFS server goes down, the keys are inac-
cessible. If the trusted master holds all of the SSU
keys, then it is possible to obtain access to any
machine through the trusted master.

Without using NFS, it is advisable to keep a local
copy of the private keys on each host. The private

34 1998 LISA XII – December 6-11, 1998 – Boston, MA

Thorpe SSU: Extending SSH for Secure Root Administration

keys used for root access to a host should be pushed to
it by the trusted master, or obtained by querying the
trusted master periodically. In this way, an intruder
with access must gain physical access to the files on
the host in order to gain access to the private keys.
This method allows local root access even if the
trusted master and NFS server are inaccessible.

1998 LISA XII – December 6-11, 1998 – Boston, MA 35

SSU: Extending SSH for Secure Root Administration Thorpe

Appendix D: Establishing a Secure Connection via SSH

by Michael Barrientos and Christopher Thorpe
Server Resources Client Resources

* 1024 bit RSA private host key * Database of RSA public host keys
* 768 bit RSA server key,
regenerated hourly and
stored only in memory

Steps

SERVER CLIENT
<--------- 1. Establish a connection.

2. Send the host 3. Compare the host public key
and server public keys =========> against a database of known hosts.
to the client. 4. Generate a 256-bit random number K.

6. Decode K with the 5. Encrypt number K with the
private host and server <--------- host and server public keys and
keys, and ensure send them to the server.
they are consistent.

7. Offer client a choice of 8. Choose an encryption algorithm
encryption algorithms ---------> (e.g., IDEA, 3DES, ...)
to encrypt the data <--------- and notify the server.
exchange using K as a key.

9. Authenticate client user, trying in order, if allowed:
* .rhosts/.shosts <--------> Client’s host key matches known key
* hosts.equiv <--------> and encrypts random number.
* .rhosts with RSA user
identity challenge <--------> Client encrypts random number with

* RSA challenge-response <--------> private identity key, returns result.
* password <--------> Client provides login password.

(Password is sent encrypted.)

10. Port forwarding is set up
for X, TCP/IP and ssh agent.

12. If no command is listed <--------- 11. Client requests a shell/command.
in authorized_keys, give
client a login shell or
execute desired command.
Otherwise, ignore request.

13. Standard input and output Standard input and output of ssh
of the command executed process go to and from the socket
go to and from socket <- O-nn -> linked to the server, encrypted
linked to the client, with K.
encrypted with K.

36 1998 LISA XII – December 6-11, 1998 – Boston, MA

