-

Chukwa: a scalable log collector

Ari Rabkin and Randy Katz
UC Berkeley
USENIX LISA 2010

With thanks to... Eric Yang, Jerome Boulon,
Bill Graham, Corbin Hoenes, and all the other
Chukwa developers, contributors, and users

QAD Why collect logs?

 Many uses

— Need logs to monitor/debug systems

— Machine learning is getting increasingly good
at detecting anomalies automatically.

— Web log analysis is key to many businesses
» Easier to process if centralized

Three Bets

1. MapReduce processing
IS necessary at scale.

2. Reliability matters for log

collection

3. Should use Hadoop, not

re-write storage and
processing layers

chubwa

« Really want to use HDFS for storage and
MapReduce for processing.

+Highly scalable, highly robust
+Good integrity properties.

« HDFS has quirks
- Files should be big
- No concurrent appends
- Weak synchronization semantics

The architecture

| | |
'\ App2log | — L.
:E '/

: | | Collector | —, | Archival

Metrics / (ngenr(}i)] — (seconds) / Data Sink | — Storage

cee : (5 minutes) (Indefinitely)
. . One Per Node Per 100 nodes . Map-

SQL DB
(or HBase

.

N

Need more aggressive

'L batching or fan-in control i
Sso I Need better FS!
Sso 1

2] 1

a 1

f :

© ~

© ey

ts! 1 Sso

- 1 ~

> I Chukwa not
I needed - clients
! should write

- ! directto HDFS

e |

>
Data Rate per host (bytes/sec)

o

* Architecture captures the boundary between
monitoring and production services

— Important in practice!
— Particularly nice in cloud context

Respecting boundaries

-IlllllllllllIlllllllll
L

»
Control Protocol = -
|
u ||
__________ " .
!+ App1log u
| App2log \ Agent ::: — Structured
¥ T gent 1=~ | Collector |_—» 3 Storace
i . Metrics j/ = 9
e m =
u ||
vy @

System being monitored Monitoring system

chubwa

Load/Procs

UC Berkeley Grid Load last hour

-

-
2 k
.0k
.8 k
.6 k

2 k

o0 00 0HH
(]

18: 00 18: 20 18: 40
0 1-min Load [@ Nodes [CPUs [Running Processes

Metrics

£ root@s15230301: /var/wwwivhosts/modernlifeisrubbish.co. uk/statistics/logs

Data sources

» We optimize for the case of logs on disk
— Supports legacy systems
— Writes to local disk almost always succeed
— Kept in memory in practice — fs caching

* Can also handle other data sources —
adaptors are pluggable
— Support syslog, other UDP, JMS messages.

v Reliabil
RAD LaE 1abilit
eliability

* Agents can crash

» Record how much data from each source
nas been written successfully.

* Resume at that point after crash
* Fix duplicates in the storage layer

Data Sent and committed

What about collector
crashes?

Want to tolerate
asynchronous HDFS
writes without blocking
agent

Solution: async. acks

Tell agent where data
will be written if write
succeeds.

Uses single-writer
aspect of HDFS

Agent Collector

Data

In Foo.doné

%}

Foo.done@
3000

Committed]

\

Agent
(seconds)

One Per Node

Collector
(seconds)

Per 100 nodes

Fast-path clients
(seconds)

Cleaned

Data Storage
(Indefinitely)

Two modes

Robust delivery

« Data visible in minutes

« Collects everything

« Stores to HDFS

« Will resend after a crash
« Facilitates MapReduce
« Used for bulk analysis

Prompt delivery

Data visible in seconds
User-specified filter
Written over a socket
Delivered at most once

Facilitates near-real-time
monitoring

Used for real-time
graphing

RAD == Overhead [with Cloudstone]

54

52
50 :ii
48

46

e
\l/!\

Ops per sec
e
/V\I a0

Without Chukwa With Chukwa

o

Collection rates

N
9 O3B
5 30
=
s 20
2 s
* Tested on EC2 > 10
* Able to write 3S0MB/ 2 s
sec/collector S 0

10 20 30 40 50 60 70 80 90
Agent send rate (MB/sec)

 Note: data is about
12 months old

« Scales linearly

 Able to saturate
underlying FS

Total Throughput (MB/sec)

220
200
180
160
140
120
100

80

60

40

10 12 14 16 18

Collectors

Experiences

» Currently in use at:

» UC Berkeley's RAD Lab, to monitor Cloud
experiments

 CBS Interactive, Selective Media, and
Tynt for web log analysis

— Dozens of machines
— Gigabytes to Terabytes per day

 Other sites t00...we don't have a census

Related Work

Handles Crash Metadata Interface Agent-side
logs recovery? control

nowy No No No UDP No

other NMS

™ Yes No No RPC Yes
M Yes Yes Yes flexible No
Chukwa

Yes Yes Yes flexible Yes

Next steps

» Tighten security, to make Chukwa suitable
for world-facing deployments

» Adjustable durability

— Should be able to buffer arbitrary non-file data
for reliability

» HBase for near-real-time metrics display
 Built-in indexing
* Your idea here: Exploit open source!

RAD

J
BN

Conclusions

Chukwa is a distributed log collection
system that is

Practical

— In use at several sites

Scalable
— Builds on Hadoop for storage and processing

Reliable

— Able to tolerate multiple concurrent failures
without losing or mangling data

Open Source

— Former Hadoop subproject, currently in Apache
iIncubation, enroute to top level project.

Questions?

e -
RAD Lot ...VS Splunk
! P

» Significant overlap with Splunk.
— Splunk uses syslog for transport.

— Recently shifted towards MapReduce for
evaluation.

» Chukwa on its own doesn’t [yet] do
Indexing or analysis.

* Chukwa helps extract data from systems
— Reliably
— Customizably

.QAD Assumptions about App

* Processing should happen off-node.
(Production hosts are sacrosanct)

 Data should be available within minutes
— Sub-minute delivery a non-goal.

 Data rates between 1 and 100KB/sec/node

— Architecture tuned for these cases, but Chukwa
could be adapted to handle lower/higher rates.

* No assumptions about data format

« Administrator or app needs to tell Chukwa
where logs live.

— Support for directly streaming logs as well.

o —
S~ On the back end

* Chukwa has a notion of parsed records,
with complex schemas

— Can put into structured storage
— Display with HICC, a portal-style web interface.

SCTSUlES [Dashboard Bullder fill Options {= Save Dashboard

mem_total,mem_buffers,mem_cached,mem_used,mem_free

Cluster Metrics by Percentage

. o
cpu_idle_pcnt,cpu_system_pcnt,cpu_user_pent 1.00x10
100.00
—e e & 5.00x10
e ——— —
50.00 0.00

23:40 23:50 00:00 00:10 00:20
I mem_total Ml mem_buffers mem_cached

mem_used mem_free

0.00

23:40 23:50 00:00 00:10 00:20

) cpu_idle_pent I cpu_system_pent (5] cpu_user_pent
\ load_15,load_5,load_1

ethO_busy_pcnt,eth1_busy_pcnt
100.00 2.50 "
2.00
50.00

23:40 23:50 00:00 00:10 00:20

=

Dashboard Bulider jill Options {5 Save Dashboard

=g DFS Status

Time Zone: [US/Pacific v
Style: [Time Period @

Refresh (min): 0

“sove | rount |

cpu_idle_pcnt,cpu_system_pcnt,cpu_user_pcnt

100.00

/’\/\/\H’\/\M—W\N\/\

50.00

23:40 23:50 00:00
I cpu_idle_pcnt Il cpu_system_pcnt

00:10
cpu_user_pcnt

00:20

ethO_busy_pcnt,eth1_busy pcnt
100.00

50.00

Cluster Selector

Cluster [rcluster '3‘ m
Cluster Metrics

mem_total,mem_buffers,mem_cached,mem_used,mem_free

1.50x10°

1.00x10°

5.00x10°

0.00

23:40 23:50 00:00
B mem_total Il mem_buffers mem_cached
mem_used [l mem_free

00:10 00:20

load_15,load_5,load_1

2.00

1.50

23:40

23:50 00:00 00:10 00:20

storage, not processing

» Chukwa is a collection system.

— Not responsible for storage:
« Use HDFS.
« Our model is store-everything, prune late

— Not responsible for processing
» Use MapReduce, or custom layer on HDFS

» Responsible for facilitating storage and
processing

* Framework for processing collected data
* Includes Pig support

Goal: Low Footprint

* Wanted minimal footprint on s¥stem and
minimal changes to user worktlow.

— Application logging need not change.
— Local logs stay put, Chukwa just copies them.

— Can either specify filenames in static config, or
else do some dynamic discovery.

* Minimal human-produced metadata

— We track what data source + host a chunk
came from. Can store additional tags.

— Chunks are numbered: can reconstruct order.
— No schemas required to collect data

o

'aI o]a) “YaHOO!

* Major motivation for Chukwa was storing
and analyzing Hadoop logs.

— At Yahoo!, common to dynamically allocate
hundreds of nodes for a particular task.

— This can generate MBs of logs per second.
— Log analysis becomes difficult

MapReduce and Hadoop

QAD Why Ganglia doesn’t do this

* Many systems for metrics collection

— Ganglia particularly well-known.

— Many similar systems, including network
management systems like OpenView

— Focus on collecting and aggregating metrics in
scalable low-cost way
 But logs aren’t metrics. Want to archive
everything, not summarize aggressively.

» Really want reliable delivery; missing key
parts of logs might make rest useless

e
RAD LaE Clouds
. m_\

* Log processing needs to be scalable,
since apps can get big quickly

* This used to be a problem for the
Microsofts and Googles of the world. Now

it affects many more.

« Can’t rely on local storage
— Nodes are ephemeral
— Need to move logs off-node

« Can’t do analysis on single host
— The data is too big

QAD Questions about Goals

 How many nodes” How much data?
* What data sources and delivery semantics?
* Processing expressiveness?

« Storage”?

QAD Chukwa goals

 How many nodes? How much data?

— Scale to thousands of nodes. Hundreds of KB/
sec/node on average, bursts above that OK

* What data sources and delivery semantics?

— Console Logs and Metrics. Reliable delivery (as
much as possible.) Minutes of delay are OK.

* Processing expressiveness?
— MapReduce

« Storage?

— Should be able to store data indefinitely.
Support petabytes of stored data.

/
RAD In contrast

. Gan%\lia, Network Management systems,
and Amazon’s CloudWatch are all metrics-
oriented.

— Goal is collecting and disseminating numerical
metrics data in a scalable way.

 Significantly different problem.
— Metrics have well defined semantics
— Can tolerate data loss
— Easy to aggregate/compress for archiving
— Often time-critical

* Chukwa can serve these purposes, but
Isn’t optimized for it.

Real-time Chukwa

» Chukwa was originally designed to support
batch processing of logs

— Minutes of latency OK.

» But we can do [best effort] real-time “for free”
— Watch data go past at the collector

— Check chunks against a search attern forward
matching ones to a listener via

— Don’t need long-term storage or rellable delivery
(do those via the regular data path)

* Director uses this real-time path.

N — Related work summary

* Ganglia (and traditional NMS) don’t do
large data volumes or data rates
* Facebook’s Scribe+Hive
— Scribe is streaming, not batch
— Hive is batch, and atop Hadoop
— Doesn't do collection or visualization.
— Doesn’t have strong reliability properties
* Flume (from Cloudera)
— Very similar to Chukwa
— Emphasis on centralized management

