
UC Berkeley

Ari Rabkin and Randy Katz
UC Berkeley

USENIX LISA 2010

Chukwa: a scalable log collector

With thanks to… Eric Yang, Jerome Boulon,
Bill Graham, Corbin Hoenes, and all the other
Chukwa developers, contributors, and users

Why collect logs?

•  Many uses
– Need logs to monitor/debug systems
– Machine learning is getting increasingly good

at detecting anomalies automatically.
– Web log analysis is key to many businesses

•  Easier to process if centralized

Three Bets
1.  MapReduce processing

is necessary at scale.
2.  Reliability matters for log

collection
3.  Should use Hadoop, not

re-write storage and
processing layers

Leveraging Hadoop

•  Really want to use HDFS for storage and
MapReduce for processing.
+ Highly scalable, highly robust
+ Good integrity properties.

•  HDFS has quirks
- Files should be big
- No concurrent appends
- Weak synchr onization semantics

HDFS

Map-
Reduce
Jobs

The architecture

Data Sink
(5 minutes)

Archival
Storage
(Indefinitely)

Data
App1 log

App2 log

Metrics
…

Agent
(seconds) Agent

(seconds) Agent
(seconds)

One Per Node

Collector
(seconds) Collector

(seconds)

Per 100 nodes

SQL DB
(or HBase)

Design envelope

Data Rate per host (bytes/sec)

Chukwa not
needed – clients
should write
direct to HDFS

N
um

be
r o

f H
os

ts

Don’t need Chukwa:
use NFS instead

Need better FS!

Need more aggressive
batching or fan-in control

Respecting boundaries

•  Architecture captures the boundary between
monitoring and production services
–  Important in practice!
– Particularly nice in cloud context

ds)
s) Agent Co Collector Data Sink

Structured
Storage

…

App1 log

App2 log

Metrics

Monitoring system System being monitored

Control Protocol

Comparison

Amazon CloudWatch
Metrics

Logs

Data sources

•  We optimize for the case of logs on disk
– Supports legacy systems
– Writes to local disk almost always succeed
– Kept in memory in practice – fs caching

•  Can also handle other data sources –
adaptors are pluggable
– Support syslog, other UDP, JMS messages.

Reliability

•  Agents can crash
•  Record how much data from each source

has been written successfully.
•  Resume at that point after crash
•  Fix duplicates in the storage layer

Data Sent and committed not committed

Collector Agent HDFS

Incorporating Asynchrony

•  What about collector
crashes?

•  Want to tolerate
asynchronous HDFS
writes without blocking
agent

•  Solution: async. acks
•  Tell agent where data

will be written if write
succeeds.

•  Uses single-writer
aspect of HDFS

ls

Data

In Foo.done
 @ 3000

Length of
Foo.done
= 3000

Data

Foo.done@
3000
….

Committed

Query

Fast path

HDFS

Map-
Reduce
Jobs

Data Sink
(5 minutes)

Cleaned

Data Storage
(Indefinitely)

Data
App1 log

App2 log

Metrics
…

Agent
(seconds) Agent

(seconds) Agent
(seconds)

One Per Node

Collector
(seconds) Collector

(seconds)

Per 100 nodes

Fast-path clients
(seconds)

Two modes

Robust delivery
•  Data visible in minutes
•  Collects everything
•  Stores to HDFS
•  Will resend after a crash
•  Facilitates MapReduce
•  Used for bulk analysis

Prompt delivery
•  Data visible in seconds
•  User-specified filter
•  Written over a socket
•  Delivered at most once
•  Facilitates near-real-time

monitoring
•  Used for real-time

graphing

Overhead [with Cloudstone]

 46

 48

 50

 52

 54

Without Chukwa With Chukwa

O
p

s
p

er
 s

ec

Collection rates

•  Tested on EC2
•  Able to write 30MB/

sec/collector
•  Note: data is about

12 months old

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90

C
o

ll
ec

to
r

w
ri

te
 r

at
e

(M
B

/s
ec

)
Agent send rate (MB/sec)

Collection rates

•  Scales linearly
•  Able to saturate

underlying FS

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 4 6 8 10 12 14 16 18 20

T
o

ta
l

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

Collectors

Experiences

•  Currently in use at:
•  UC Berkeley's RAD Lab, to monitor Cloud

experiments
•  CBS Interactive, Selective Media, and

Tynt for web log analysis
– Dozens of machines
– Gigabytes to Terabytes per day

•  Other sites too…we don't have a census

Related Work
Handles
logs

Crash
recovery?

Metadata Interface Agent-side
control

Ganglia/
Nagios/
other NMS

No No No UDP No
Scribe Yes No No RPC Yes
Flume Yes Yes Yes flexible No
Chukwa Yes Yes Yes flexible Yes

Next steps

•  Tighten security, to make Chukwa suitable
for world-facing deployments

•  Adjustable durability
– Should be able to buffer arbitrary non-file data

for reliability
•  HBase for near-real-time metrics display
•  Built-in indexing
•  Your idea here: Exploit open source!

Conclusions

•  Chukwa is a distributed log collection
system that is

•  Practical
–  In use at several sites

•  Scalable
– Builds on Hadoop for storage and processing

•  Reliable
– Able to tolerate multiple concurrent failures

without losing or mangling data
•  Open Source

– Former Hadoop subproject, currently in Apache
incubation, enroute to top level project.

Questions?

…vs Splunk

•  Significant overlap with Splunk.
– Splunk uses syslog for transport.
– Recently shifted towards MapReduce for

evaluation.
•  Chukwa on its own doesn’t [yet] do

indexing or analysis.
•  Chukwa helps extract data from systems

– Reliably
– Customizably

Assumptions about App

•  Processing should happen off-node.
(Production hosts are sacrosanct)

•  Data should be available within minutes
– Sub-minute delivery a non-goal.

•  Data rates between 1 and 100KB/sec/node
– Architecture tuned for these cases, but Chukwa

could be adapted to handle lower/higher rates.
•  No assumptions about data format
•  Administrator or app needs to tell Chukwa

where logs live.
– Support for directly streaming logs as well.

On the back end

•  Chukwa has a notion of parsed records,
with complex schemas
– Can put into structured storage
– Display with HICC, a portal-style web interface.

Not storage, not processing

•  Chukwa is a collection system.
– Not responsible for storage:

•  Use HDFS.
•  Our model is store-everything, prune late

– Not responsible for processing
•  Use MapReduce, or custom layer on HDFS

•  Responsible for facilitating storage and
processing

•  Framework for processing collected data
•  Includes Pig support

Goal: Low Footprint

•  Wanted minimal footprint on system and
minimal changes to user workflow.
– Application logging need not change.
– Local logs stay put, Chukwa just copies them.
– Can either specify filenames in static config, or

else do some dynamic discovery.
•  Minimal human-produced metadata

– We track what data source + host a chunk
came from. Can store additional tags.

– Chunks are numbered; can reconstruct order.
– No schemas required to collect data

MapReduce and Hadoop

•  Major motivation for Chukwa was storing
and analyzing Hadoop logs.
– At Yahoo!, common to dynamically allocate

hundreds of nodes for a particular task.
– This can generate MBs of logs per second.
– Log analysis becomes difficult

Why Ganglia doesn’t do this

•  Many systems for metrics collection
– Ganglia particularly well-known.
– Many similar systems, including network

management systems like OpenView
– Focus on collecting and aggregating metrics in

scalable low-cost way
•  But logs aren’t metrics. Want to archive

everything, not summarize aggressively.
•  Really want reliable delivery; missing key

parts of logs might make rest useless

Clouds

•  Log processing needs to be scalable,
since apps can get big quickly

•  This used to be a problem for the
Microsofts and Googles of the world. Now
it affects many more.

•  Can’t rely on local storage
– Nodes are ephemeral
– Need to move logs off-node

•  Can’t do analysis on single host
– The data is too big

Questions about Goals

•  How many nodes? How much data?

•  What data sources and delivery semantics?

•  Processing expressiveness?

•  Storage?

Chukwa goals

•  How many nodes? How much data?
– Scale to thousands of nodes. Hundreds of KB/

sec/node on average, bursts above that OK
•  What data sources and delivery semantics?

– Console Logs and Metrics. Reliable delivery (as
much as possible.) Minutes of delay are OK.

•  Processing expressiveness?
– MapReduce

•  Storage?
– Should be able to store data indefinitely.

Support petabytes of stored data.

In contrast

•  Ganglia, Network Management systems,
and Amazon’s CloudWatch are all metrics-
oriented.
– Goal is collecting and disseminating numerical

metrics data in a scalable way.
•  Significantly different problem.

– Metrics have well defined semantics
– Can tolerate data loss
– Easy to aggregate/compress for archiving
– Often time-critical

•  Chukwa can serve these purposes, but
isn’t optimized for it.

Real-time Chukwa

•  Chukwa was originally designed to support
batch processing of logs
– Minutes of latency OK.

•  But we can do [best effort] real-time “for free”
– Watch data go past at the collector
– Check chunks against a search pattern, forward

matching ones to a listener via TCP.
– Don’t need long-term storage or reliable delivery

(do those via the regular data path)
• Director uses this real-time path.

Related work summary

•  Ganglia (and traditional NMS) don’t do
large data volumes or data rates

•  Facebook’s Scribe+Hive
– Scribe is streaming, not batch
– Hive is batch, and atop Hadoop
– Doesn't do collection or visualization.
– Doesn’t have strong reliability properties

•  Flume (from Cloudera)
– Very similar to Chukwa
– Emphasis on centralized management

