
High Performance Multi-Node
File Copies and Checksums for

Clustered File Systems

Paul Kolano, Bob Ciotti

NASA Advanced Supercomputing Division

{paul.kolano,bob.ciotti}@nasa.gov

Overview

•  Problem background
•  Multi-threaded copies
•  Optimizations

  Split processing of files
  Buffer cache management
  Double buffering

•  Multi-node copies
•  Parallelized file hashing
•  Conclusions and future work

LISA'10 -- San Jose, CA 2

File Copies
•  Copies between local file systems are a frequent

activity
  Files moved to locations accessible by systems with

different functions and/or storage limits
  Files backed up and restored
  Files moved due to upgraded and/or replaced hardware

•  Disk capacity increasing faster than disk speed
  Disk speed reaching limits due to platter RPMs

•  File systems are becoming larger and larger
  Users can store more and more data

•  File systems becoming faster mainly via parallelization
  Standard tools were not designed to take advantage of

parallel file systems
•  Copies are taking longer and longer

LISA'10 -- San Jose, CA 3

Existing Solutions

•  GNU coreutils cp command
  Single-threaded file copy utility that is the

standard on all Unix/Linux systems
•  SGI cxfscp command

  Proprietary multi-threaded file copy utility
provided with CXFS file systems

•  ORNL spdcp command
  MPI-based multi-node file copy utility for

Lustre

LISA'10 -- San Jose, CA 4

Motivation For a New Solution

•  A single reader/writer cannot utilize the full
bandwidth of parallel file systems
  Standard cp only uses a single thread of

execution
•  A single host cannot utilize the full bandwidth

of parallel file systems
  SGI cxfscp only operates across a single host (or

single system image)
•  There are many types of file systems and

operating environments
  ORNL spdcp only operates on Lustre file systems

and only when MPI is available

LISA'10 -- San Jose, CA 5

Mcp

•  Copy program designed for parallel file
systems
  Multi-threaded parallelism maximizes single

system performance
  Multi-node parallelism overcomes single system

resource limitations
•  Portable TCP model

  Compatible with many different file systems
•  Drop-in replacement for standard cp

  All options supported
  Users can take full advantage of parallelism with

minimal additional knowledge

LISA'10 -- San Jose, CA 6

Parallelization of File Copies

•  File copies are mostly embarrassingly
parallel
  Directory creation

•  Target directory must exist when file copy begins

  Directory permissions and ACLs
•  Target directory must be writable when file copy

begins
•  Target directory must have permissions and ACLs

of source directory when file copy completes

LISA'10 -- San Jose, CA 7

Multi-Threaded Copies

•  Mcp based on cp code from GNU coreutils
  Exact interface users are familiar with
  Original behavior

•  Depth-first search
•  Directories are created with write/search

permissions before contents copied
•  Directory permissions restored after subtree

copied

LISA'10 -- San Jose, CA 8

Multi-Threaded Copies (cont.)

•  Multi-threaded parallelization of cp using OpenMP
  Traversal thread

•  Original cp behavior except when regular file encountered
  Create copy task and push onto semaphore-protected task queue
  Pop open queue indicating file has been opened

  Worker threads
•  Pop task from task queue
•  Open file and push notification onto open queue

  Directory permissions and ACLs are irrelevant once file is opened
•  Perform copy
•  Optionally, push final stats onto stat queue

  Stat (and later...hash) thread
•  Pop stats from stat queue
•  Print final stats received from worker threads

LISA'10 -- San Jose, CA 9

Test Environment
•  Pleiades supercluster (#6 on Jun. 2010 TOP500 list)

  1.009 PFLOPs/s peak with 84,992 cores over 9472 nodes
  Nodes used for testing

•  Two 3.0 GHz quad-core Xeon Harpertown
•  1 GB DDR2 RAM per core

•  Copies between Lustre file systems
  1 MDS, 8 OSSs, 60 OSTs each
  IOR benchmark performance

•  Source read: 6.6 GB/s
•  Target write: 10.0 GB/s

  Theoretical peak copy performance: 6.6 GB/s
•  Performance measured with dedicated jobs on (near) idle file systems

  Minimal interference from other activity
•  Test cases, baseline performance, and stripe count

LISA'10 -- San Jose, CA 10

tool stripe count 64x1 GB 1x128 GB
cp default (4) 174 102
cp max (60) 132 240

Multi-Threaded Copy Performance
(MB/s)

LISA'10 -- San Jose, CA 11

•  Less than expected and diminishing returns
•  No benefit in single large file case

tool threads 64 x 1 GB 1 x 128 GB
cp 1 174 240

mcp 1 177 248
mcp 2 271 248
mcp 4 326 248
mcp 8 277 248

Handling Large Files
(Split Processing)

•  Large files create imbalances in thread
workloads
  Some may be idle
  Others may still be working

•  Mcp supports parallel processing of
different portions of the same file
  Files are split at a configurable threshold
  The main traversal thread adds n “split” tasks
  Worker threads only process portion of file

specified in task

LISA'10 -- San Jose, CA 12

Split Processing Copy Performance
(MB/s)

LISA'10 -- San Jose, CA 13

•  Less than expected and diminishing returns
•  Minimal difference in overhead

  Will use 1 GB split size in remainder

tool threads split size 1 x 128 GB
mcp * 0 248
mcp 2 1 GB 286
mcp 2 16 GB 296
mcp 4 1 GB 324
mcp 4 16 GB 322
mcp 8 1 GB 336
mcp 8 16 GB 336

Less Than Expected Speedup
(Buffer Cache Management)

•  Buffer cache becomes liability during copies
  CPU cycles wasted caching file data that is only

accessed once
  Squeezes out existing cache data that may be in

use by other processes
•  Mcp supports two alternate management

schemes
  posix_fadvise()

•  Use buffer cache but advise kernel that file will only be
accessed once

  Direct I/O
•  Bypass buffer cache entirely

LISA'10 -- San Jose, CA 14

Managed Buffer Cache Copy
Performance (64x1 GB)

LISA'10 -- San Jose, CA 15

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8

Co
py

 P
er

fo
rm

an
ce

 (M
B/

s)

Threads

direct I/O
posix_fadvise()
none
cp

Managed Buffer Cache Copy
Performance (1x128 GB)

LISA'10 -- San Jose, CA 16

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6 7 8

Co
py

 P
er

fo
rm

an
ce

 (M
B/

s)

Threads

direct I/O
posix_fadvise()
none
cp

We Can Still Do Better On One Node
(Double Buffering)

•  Read/writes of file blocks are serially
processed within the same thread
  Time:

n_blocks * (time(read) + time(write))

•  Mcp uses non-blocking I/O to read next
block while previous block being written
  Time:

time(read) +
(n_blocks-1) * max(time(read), time(write)) +
time(write)

LISA'10 -- San Jose, CA 17

Double Buffered Copy Performance
(64x1 GB)

LISA'10 -- San Jose, CA 18

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8

Co
py

 P
er

fo
rm

an
ce

 (M
B/

s)

Threads

direct I/O (double buffered)
direct I/O (single buffered)
posix_fadvise() (double buffered)
posix_fadvise() (single buffered)
cp

Double Buffered Copy Performance
(1x128 GB)

LISA'10 -- San Jose, CA 19

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6 7 8

Co
py

 P
er

fo
rm

an
ce

 (M
B/

s)

Threads

direct I/O (double buffered)
direct I/O (single buffered)
posix_fadvise() (double buffered)
posix_fadvise() (single buffered)
cp

Multi-Node Copies

•  Multi-threaded copies have diminishing
returns due to single system bottlenecks

•  Need multi-node parallelism to maximize
performance

•  Mcp supports both MPI and TCP models
  Only TCP will be discussed (MPI similar)

•  Lighter weight
•  More portable
•  Ability to add/remove workers nodes dynamically

  Can use larger set of smaller jobs instead of one large job
  Can add workers during off hours and remove during peak

LISA'10 -- San Jose, CA 20

Multi-Node Copies Using TCP
•  Manager node

  Traversal thread, worker threads, and stat/hash thread
  TCP thread

•  Listens for connections from worker nodes
  Task request

•  Pop task queue
•  Send task to worker

  Stat report
•  Push onto stat queue

•  Worker nodes
  Worker threads

•  Push task request onto send queue
•  Perform copy in same manner as original worker threads
•  Push stat report onto send queue instead of stat queue

  TCP thread
•  Pop send queue
•  Send request/report to TCP thread on manager node
•  For task request, receive task and push onto task queue

LISA'10 -- San Jose, CA 21

TCP Security Considerations
•  Communication over TCP is vulnerable to attack (especially for root

copies)
  Integrity

•  Lost/blocked tasks
  Files may not be updated that were supposed to be

•  e.g. cp /new/disabled/users /etc/passwd

•  Replayed tasks
  Files may have been changed between legitimate copies

•  e.g. cp /tmp/shadow /etc/shadow
•  Modified tasks

  Source and destination of copies
•  e.g. cp /attacker/keys /root/.ssh/authorized_keys

  Confidentiality
•  Contents of normally unreadable directories can be revealed

  Tasks intercepted on the network
  Tasks falsely requested from the manager

  Availability
•  Copies can be disrupted by falsely requesting tasks
•  Normal network denials of service (won’t discuss)

LISA'10 -- San Jose, CA 22

TCP Security Implementation

•  Mcp secures all communication via TLS-
SRP
  Transport Layer Security (TLS)

•  Provides integrity and privacy using encryption
  Tasks cannot be intercepted, replayed, or modified over

the network

  Secure Remote Password (SRP)
•  Provides strong mutual authentication using simple

passwords
  Workers will only perform tasks from legitimate managers
  Manager will only reveal task details to legitimate

workers

LISA'10 -- San Jose, CA 23

Multi-Node Copy Performance
(64x1 GB w/ posix_fadvise())

LISA'10 -- San Jose, CA 24

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6 7 8

C
op

y
Pe

rfo
rm

an
ce

 (M
B/

s)

Threads Per Node

theoretical peak
16 nodes
8 nodes
4 nodes
2 nodes
1 nodes
cp

Multi-Node Copy Performance
(1x128 GB w/ direct I/O)

LISA'10 -- San Jose, CA 25

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6 7 8

C
op

y
Pe

rfo
rm

an
ce

 (M
B/

s)

Threads Per Node

theoretical peak
16 nodes
8 nodes
4 nodes
2 nodes
1 nodes
cp

Good New and Bad News

•  Good news
  We can do fast copies

•  10x/27x of original cp on 1/16 nodes
•  72% of peak based on 6.6 GB/s max read/write

•  Bad news
  The more data copied, the greater the probability

for corruption
•  Disk corruption, memory glitches, etc.
•  Traditional approach to verify integrity

  Hash file at source (e.g. md5sum)
  Hash file at destination and verify (e.g. md5sum –c)

  Hashes are inherently serial
•  hash(ab) != hash(ba)

LISA'10 -- San Jose, CA 26

Good News About the Bad News

•  Use hash trees
  Leaf nodes are standard hashes of each

subset of file at a given granularity
  Internal nodes are hashes of concatenated

child hashes
  Root is single hash value

•  Hash trees can be parallelized
  All subtrees computed in parallel
  Computation of remaining root of tree done

serially

LISA'10 -- San Jose, CA 27

Another Utility: Msum
•  Drop-in replacement for md5sum

  Based on md5sum code from GNU coreutils
•  Supports multiple hash types
•  Supports all the performance enhancements of mcp

  Multi-threading, split processing, buffer cache management,
double buffering

•  Details and performance in paper

  Multi-node support via TCP/MPI
•  Works mostly the same as mcp but instead of copy tasks, there are

sum tasks
  Worker threads compute hash subtrees they are responsible for
  Subtree roots sent to stat/hash thread on main node
  Stat/hash thread computes remaining root of tree once all

subtrees received

LISA'10 -- San Jose, CA 28

Multi-Node Checksum Performance
(64x1 GB w/ posix_fadvise())

LISA'10 -- San Jose, CA 29

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6 7 8

C
he

ck
su

m
 P

er
fo

rm
an

ce
 (M

B/
s)

Threads Per Node

theoretical peak
16 nodes
8 nodes
4 nodes
2 nodes
1 nodes
md5sum

Multi-Node Checksum Performance
(1x128 GB w/ direct I/O)

LISA'10 -- San Jose, CA 30

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6 7 8

C
op

y
Pe

rfo
rm

an
ce

 (M
B/

s)

Threads Per Node

theoretical peak
16 nodes
8 nodes
4 nodes
2 nodes
1 nodes
md5sum

Integrity-Verified Copies
•  Cost of verified copies

  msum + mcp + msum = 3 reads + 1 write
  Theoretical peak: 2.2 GB/s

•  Mcp already has access to the source data during the
copy

•  Mcp includes embedded hashing functionality
  Worker threads compute hash subtrees with data read for

copy
  Subtree roots sent to stat/hash thread on main node
  Stat/hash thread computes remaining root of tree once all

subtrees received
•  Final cost of verified copies

  mcp (w/ sum) + msum = 2 reads + 1 write
  Theoretical peak: 3.3 GB/s

LISA'10 -- San Jose, CA 31

Multi-Node Verified Copy Performance
(64x1 GB w/ posix_fadvise())

LISA'10 -- San Jose, CA 32

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 7 8

Ve
rif

ie
d

C
op

y
Pe

rfo
rm

an
ce

 (M
B/

s)

Threads Per Node

theoretical peak
16 nodes (mcp (w/ sum) + msum)
16 nodes (msum + mcp + msum)
8 nodes (mcp (w/ sum) + msum)
8 nodes (msum + mcp + msum)
4 nodes (mcp (w/ sum) + msum)
4 nodes (msum + mcp + msum)
2 nodes (mcp (w/ sum) + msum)
2 nodes (msum + mcp + msum)
1 nodes (mcp (w/ sum) + msum)
1 nodes (msum + mcp + msum)
md5sum + cp + md5sum

Multi-Node Verified Copy Performance
(1x128 GB w/ direct I/O)

LISA'10 -- San Jose, CA 33

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 7 8

Ve
rif

ie
d

C
op

y
Pe

rfo
rm

an
ce

 (M
B/

s)

Threads Per Node

theoretical peak
16 nodes (mcp (w/ sum) + msum)
16 nodes (msum + mcp + msum)
8 nodes (mcp (w/ sum) + msum)
8 nodes (msum + mcp + msum)
4 nodes (mcp (w/ sum) + msum)
4 nodes (msum + mcp + msum)
2 nodes (mcp (w/ sum) + msum)
2 nodes (msum + mcp + msum)
1 nodes (mcp (w/ sum) + msum)
1 nodes (msum + mcp + msum)
md5sum + cp + md5sum

Conclusion

•  Mcp/msum provide significant performance
improvements over cp/md5sum
  Multi-threaded parallelism to maximize single

system performance
•  Buffer cache management to eliminate kernel

bottlenecks
•  Double buffering to overlap reads/writes/hashes
•  Split processing to achieve single file parallelism

  Multi-node parallelism to overcome single system
resource limitations

  Hash trees to achieve checksum parallelism

LISA'10 -- San Jose, CA 34

Conclusion (cont.)

•  Summary of performance improvements
  cp

•  10x/27x on 1/16 nodes
•  72% of peak

  md5sum
•  5x/19x on 1/16 nodes
•  88% of peak

  md5sum + cp + md5sum
•  7x/22x on 1/16 nodes
•  66% of peak

•  Mcp and msum are drop-in replacements for
cp and md5sum

LISA'10 -- San Jose, CA 35

Future Work

•  Find bottleneck in single node single file
case

•  Parallelize other utilities
  install, mv, rm, cmp

•  Extend mcp to high performance remote
transfer utility
  Most of required infrastructure already exists
  Need network bridge between read buffer and

write buffer

LISA'10 -- San Jose, CA 36

Finally...

•  Mcp and msum are open source and
available for download
  http://mutil.sourceforge.net

•  Contact info
  paul.kolano@nasa.gov

•  Questions?

LISA'10 -- San Jose, CA 37

