
First Step Towards Automatic Correction
of Firewall Policy Faults

Fei Chen Alex X. Liu
Computer Science and Engineering

Michigan State University

JeeHyun Hwang Tao Xie
Computer Science

North Carolina State University

2/29

What do we do here?
Most firewall policies are poorly configured and contain faults.
[Wool 2004 & 2010]
─ A coworker may mess up your firewall rules
─ Any modification may introduce firewall faults.

We invent methods for fixing firewall policies automatically.
─ We first model 5 types of faults.
─ For each type of faults, we develop an algorithm to fix them.
─ Given a faulty firewall policy, we propose a systematic method to fix the faults

automatically using the 5 algorithms.

3/29

Roadmap
Background
─ Firewalls
─ Firewall Policies
─ Firewall Policy Faults

Technical Challenges
Fault model of firewall policies
─ Five types of faults

Problem formalization
Our solution
Experimental results

4/29

Background – Firewalls
A firewall checks all outgoing and incoming packets
The firewall policy decides whether to accept or discard a packet

Firewall

Private Network

Outgoing Packets

Incoming Packets
Internet

5/29

Background – Firewall Policies
A firewall policy is usually specified as a sequence of rules
Each rule consists of a predicate and a decision.
─ A predicate typically includes five fields:

source IP, destination IP, source port, destination port, protocol type
─ Typical decisions are accept and discard.

Conflict Resolution: first-match

Src IP Dst IP Src Port Dst Port Protocol Payload

1.2.3.5 192.168.1.1 78 25 TCP

Src IP Dst IP Src Port Dst Port Protocol Decision
r1 1.2.3.* 192.168.1.1 * 25 TCP Accept
r2 1.2.3.9 192.168.1.1 * 25 * Discard
r3 * * * * * Discard

Packet

Firewall Policy

6/29

Background – Firewall Policy Faults
Most firewall policies are poorly configured and contain faults.
[Wool 2004 & 2010]
It is dangerous to have faults in a firewall policy. A policy fault
─ either allows malicious traffic to sneak into the private network
─ or blocks legitimate traffic and disrupts normal business processes

A faulty policy evaluates some packets to unexpected decisions.
─ Such packets are called misclassified packets of a faulty firewall policy

Manually locating and correcting firewall faults are impractical.
─ A firewall may consist of thousands of rules

Automatically correcting firewall faults is an important problem.

7/29

Roadmap
Background
─ Firewalls
─ Firewall Policies
─ Firewall Policy Faults

Technical Challenges
Fault model of firewall policies
─ Five types of faults

Problem formalization
Our solution
Experimental results

8/29

Three Key Technical Challenges
It is difficult to determine the number of policy faults and the
type of each fault.
─ A set of misclassified packets can be caused by different types of faults

and different number of faults.

It is difficult to correct a firewall fault.
─ A firewall policy may consists of a large number of rules.
─ Each rule has a predicate over multi-dimensional fields.

It is difficult to correct a fault without introducing other faults
─ Due to the first match, correcting faults in a firewall rule affects the

functionally of all the subsequent rules.

9/29

Roadmap
Background
─ Firewalls
─ Firewall Policies
─ Firewall Policy Faults

Technical Challenges
Fault model of firewall policies
─ Five types of faults

Problem formalization
Our solution
Experimental results

10/29

Fault Model of Firewall Policies (1/2)
We propose a fault model that includes five types of faults
(1) Wrong order: the order of firewall rules is wrong.

Correction technique: Order Fixing
(2) Missing rules: some rules are missed in the firewall policy.

Correction technique: Rule Addition
(3) Wrong predicates: the predicates of some rules are wrong.

Correction technique: Predicate Fixing

Src IP Dst IP Src Port Dst Port Protocol Decision

r1 1.2.3.* 192.168.1.1 * 25 TCP Accept

r2 1.2.3.9 192.168.1.1 * 25 * Discard

Src IP Dst IP Src Port Dst Port Protocol Decision

r1 1.2.3.* 192.168.1.1 * 25 TCP Accept

r2 1.2.3.9 192.168.1.1 * 25 * Discard
r*

Src IP Dst IP Src Port Dst Port Protocol Decision

r1 1.2.3.* 192.168.1.1 * 25 TCP Accept

11/29

Fault Model of Firewall Policies (2/2)
(4) Wrong decisions: the decisions of some rules are wrong.

Correction technique: Decision Fixing
(5) Wrong extra rules: some rules are not needed in the policy.

Correction technique: Rule Deletion

Each operation of these five techniques is called a modification.

Src IP Dst IP Src Port Dst Port Protocol Decision

r1 1.2.3.* 192.168.1.1 * 25 TCP Accept

r2 1.2.3.9 192.168.1.1 * 25 * Discard

Src IP Dst IP Src Port Dst Port Protocol Decision

r1 1.2.3.* 192.168.1.1 * 25 TCP Accept

r2 1.2.3.9 192.168.1.1 * 25 * Discard

r3 * * * * * Discard

12/29

Roadmap
Background
─ Firewalls
─ Firewall Policies
─ Firewall Policy Faults

Technical Challenges
Fault model of firewall policies
─ Five types of faults

Problem formalization
Our solution
Experimental results

13/29

Detection of Faulty Firewall Policies
A faulty firewall policy is detected when
─ administrators find that the policy allows some malicious packets or blocks

some legitimate packets.

These packets cannot provide enough information about the faults
─ The number of these observed packets is typically small

Bruteforce testing every possible packets needs 2104

How to generate test packets for faulty firewall policies?

Faulty Firewall
Policy

Administrator

Malicious
Packets

Legitimate
Packets×

14/29

Generating Test Packets for Faulty Policies

We employ the automated packet generation techniques in [Hwang
et al. 2008] to generate test packets
Administrators identify passed/failed tests automatically or manually
According to security requirements for the firewall policy,
─ If the decision of a packet is correct, administrators classify it as a passed test.
─ Otherwise, administrators classify it as a failed test.

Faulty Firewall
Policy

Packet
Generation

Classify
Packets

Passed
Packets

Failed
Packets

15/29

Problem Statement
Input:
(1) A faulty firewall policy FW
(2) A set of passed tests PT, |PT|≥0
(3) A set of failed tests FT, |FT|>0
Output:
A sequence of modifications <M1, …, Mm>, where Mj (1≤j ≤m)
denotes one modifition, satisfies the following two conditions:
(1) After applying <M1, …, Mm> to FW, all tests in PT and FT
become passed tests.
(2) No other sequence that satisfies the first condition has the
smaller number of modifications than m.
This is a global optimization problem and hard to solve because
─ a policy may consist of a large number of rules, and
─ different combinations of modifications can be made.

16/29

Roadmap
Background
─ Firewalls
─ Firewall Policies
─ Firewall Policy Faults

Technical Challenges
Fault model of firewall policies
─ Five types of faults

Problem formalization
Our solution
Experimental results

17/29

Automatic Correction of Firewall Policy Faults
We propose a greedy algorithm to address this problem.
─ For each step, we correct one fault in the policy such that |PT| increases.
─ To determine which technique should be used, we try the five correction

techniques and then find the one that maximizes |PT|.

Faulty Firewall
Policy

Passed
Packets

Failed
Packets

Order
Fixing

Rule
Addition

Predicate
Fixing

Decision
Fixing

Rule
Deletion

|Failed Tests|=0 ?

Fixed Firewall Policy

No

Yes

18/29

Running Example

r1: F1 ∈ [1, 5] ∧ F2 ∈ [1, 10] → a
r2: F1 ∈ [1, 6] ∧ F2 ∈ [3, 10] → a
r3: F1 ∈ [6,10] ∧ F2 ∈ [1, 3] → d
r4: F1 ∈ [7,10] ∧ F2 ∈ [4, 8] → a
r5: F1 ∈ [1,10] ∧ F2 ∈ [1, 10] → d

p1: (3, 2) → a
p2: (5, 7) → a
p3: (6, 7) → a
p4: (7, 2) → d
p5: (8,10)→ d

p6: (6, 3) → d
p7: (7, 9) → a
p8: (8, 5) → d

A faulty firewall policy

A set of passed tests A set of failed tests

19/29

Order Fixing (1/2)
Swapping every two rules is computationally expensive.
─ There are (n-1)(n-2)/2 pairs of rules that can be swapped

We use all-match firewall decision diagrams (all-match FDDs)
[Liu et al. 2008] as the core data structure.
─ Any firewall policy can be converted to an equivalent all-match FDD.

[1, 5] [7, 10]F1

[1, 2]
F2 F2

[1,2]
F2

[3, 10]
[3,3]

[4,10] [1,3]
[4,8]

[9,10]

[6, 6]

1,5 1,2,5 3,5 2,3,5 2,5 3,5 4,5 5

r1: F1 ∈ [1, 5] ∧ F2 ∈ [1, 10] → a
r2: F1 ∈ [1, 6] ∧ F2 ∈ [3, 10] → a
r3: F1 ∈ [6,10] ∧ F2 ∈ [1, 3] → d
r4: F1 ∈ [7,10] ∧ F2 ∈ [4, 8] → a
r5: F1 ∈ [1,10] ∧ F2 ∈ [1, 10] → d

20/29

Order Fixing (2/2)
All-match FDD has the following nice property.
Swapping two rules is equivalent to swapping the sequence

numbers of the two rules in the terminal nodes of all-match FDD

For the running example, this technique can find that swapping
r2 and r3 can increase |PT| by 1
─ change the failed test (6, 3) d to a passed test

[1, 5] [7, 10]F1

[1, 2]
F2 F2

[1,2]
F2

[3, 10]
[3,3]

[4,10] [1,3]
[4,8]

[9,10]

[6, 6]

1,5 1,2,5 3,5 2,3,5 2,5 3,5 4,5 5

<r1, r2, r3, r4, r5>

3,2,5

⇒ <r1, r3, r2, r4, r5>

21/29

Rule Addition
Bruteforce addition for each position is computationally expensive
─ The number of possible rules that can be added for each position is O(2204).

The basic idea of rule addition is that for each position
─ Find all possible failed tests that can be corrected by adding a rule

─ Compute a rule that matches the maximum number of failed tests
● For adding a rule between r1, r2, we can compute F1 ∈ [6, 8] ∧ F2 ∈ [3, 5] → d to

correct two failed tests p6: (6, 3) → d and p8: (8, 5) → d .

r1: F1 ∈ [1, 5] ∧ F2 ∈ [1, 10] → a

r2: F1 ∈ [1, 6] ∧ F2 ∈ [3, 10] → a

r3: F1 ∈ [6,10] ∧ F2 ∈ [1, 3] → d

r4: F1 ∈ [7,10] ∧ F2 ∈ [4, 8] → a

r5: F1 ∈ [1,10] ∧ F2 ∈ [1, 10] → d

p7: (7, 9) → a p6: (6, 3) → d p8: (8, 5) → d

p7: (7, 9) → a p6: (6, 3) → d p8: (8, 5) → d
p6: (6, 3) → d

p7: (7, 9) → a p8: (8, 5) → d

p7: (7, 9) → a p8: (8, 5) → d
p8: (8, 5) → d

p7: (7, 9) → a

r*: F1 ∈ [,] ∧ F2 ∈ [,] → dec

r*: F1 ∈ [,] ∧ F2 ∈ [,] → dec

r*: F1 ∈ [,] ∧ F2 ∈ [,] → dec

r*: F1 ∈ [,] ∧ F2 ∈ [,] → dec

r*: F1 ∈ [,] ∧ F2 ∈ [,] → dec

22/29

Evaluation Setup
We generate faulty firewall policies from 40 real-life policies.
─ Each faulty policy contains one type of fault, and the number of faults

ranges from 1 to 5.
─ For each faulty policy, we employed the packet generating technique

[Hwang et al. 2008] and then classified them into passed and failed tests
─ We applied our greedy algorithm to produce the fixed policy.

Methodology
─ Difference ratio over FWreal, FWfaulty, and FWfixed

─ The average number of modifications

Real Policy
FWreal

Faulty Policy
FWfaulty

Fixed Policy
FWfixed

Δ(FWreal , FWfaulty)
Δ(FWreal , FWfixed)

23/29

Roadmap
Background
─ Firewalls
─ Firewall Policies
─ Firewall Policy Faults

Technical Challenges
Fault model of firewall policies
─ Five types of faults

Problem formalization
Our solution
Experimental results

24/29

Effectiveness (1/4)
For wrong decision faults
The percentages of fixed policies that are equivalent to their corresponding real-
life policies are 73.5%, 68.8%, 63.7%, 59.3%, and 53.8%, respectively.

25/29

Effectiveness (2/4)
For wrong order faults
The percentages of fixed policies that are equivalent to their corresponding real-
life policies are 69.7%, 64.2%, 59.7%, 54.3%, and 48.9%, respectively.

26/29

Effectiveness (3/4)
For wrong extra rule faults
The percentages of fixed policies that are equivalent to their corresponding real-
life policies are 68.3%, 63.5%, 59.3%, 53.2%, and 47.3%, respectively.

27/29

Effectiveness (4/4)
In terms the number of modifications
The number of modifications of our approach is close to the minimum number.

28/29

Contributions

Propose the first comprehensive fault model for firewall policies

Propose the first systematic approach that can automatically
correct all or part of the misclassified packets of a faulty policy.

Conduct extensive experiments on real-life firewall policies to
evaluate the effectiveness of our approach.

29/29

Questions

Thank you!

	First Step Towards Automatic Correction �of Firewall Policy Faults
	What do we do here?
	Roadmap
	Background – Firewalls
	Background – Firewall Policies
	Background – Firewall Policy Faults
	Roadmap
	Three Key Technical Challenges
	Roadmap
	Fault Model of Firewall Policies (1/2)
	Fault Model of Firewall Policies (2/2)
	Roadmap
	Detection of Faulty Firewall Policies
	Generating Test Packets for Faulty Policies
	Problem Statement
	Roadmap
	Automatic Correction of Firewall Policy Faults
	Running Example
	Order Fixing (1/2)
	Order Fixing (2/2)
	Rule Addition
	Evaluation Setup
	Roadmap
	Effectiveness (1/4)
	Effectiveness (2/4)
	Effectiveness (3/4)
	Effectiveness (4/4)
	Contributions
	Questions
	Reference
	Limitation of Prior Art
	Predicate Fixing
	Decision Fixing
	Rule Deletion

