conference

proceedings

LISA "10: 24th Large
Installation System
Administration
Conference

89UaJ8ju0g uonesisiuiwpy waisAg uoneeisu| abieq yipeg (0L, YS|7 40 sbuipasaoiy

San Jose, California
November 7-12, 2010

Sponsored by

USENIX

in cooperation with
LOPSA & SNIA

0102 ‘zl—/ 18qwanop ‘eiulojijes ‘asor ues

© 2010 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. USENIX acknowledges all trademarks herein.

ISBN 978-931971-78-2

USENIX Association

Proceedings of LISA °10:
24th Large Installation System

Administration Conference

November 7-12, 2010

San Jose, California

Conference Organizers

Program Chair
Rudi van Drunen, Competa IT and Xlexit Technology,
The Netherlands

Program Committee

Alva L. Couch, Tufts University

Narayan Desai, Argonne National Laboratory

Matt Disney, Oak Ridge National Laboratory

Duncan Hutty, Carnegie Mellon University

Sean Kamath, PDI/Dreamworks

Eser Kandogan, /BM Research

Karst Koymans, University of Amsterdam (NL)

William LeFebvre, Digital Valence, LLC

Cory Lueninghoener, Los Alamos National Laboratory

Tom Limoncelli, Google Inc.

Carolyn Rowland, National Institute of Standards and
Technology (NIST)

Matthew Sacks, GlassCode Inc.

Chad Verbowski, eBay

Steering Committee

Paul Anderson, University of Edinburgh
David N. Blank-Edelman, Northeastern University
Mark Burgess, Oslo University College
Alva L. Couch, Tufts University

Zleen Frisch, Exponential Consulting
Xev Gittler, Morgan Stanley

William LeFebvre, Digital Valence, LLC
Mario Obejas, Raytheon

Ellie Young, USENIX

Elizabeth Zwicky, Consultant

Invited Talks Coordinators

Zleen Frisch, Exponential Consulting
Doug Hughes, D. E. Shaw Research, LLC
Amy Rich, Tufts University

Workshops Coordinator
Kent Skaar, Zendesk, Inc.

Guru Is In Coordinator
Chris St. Pierre, Oak Ridge National Laboratory

Training Program
Dan Klein, USENIX

USENIX Board Liaison
Alva L. Couch, Tufts University

Refereed Papers External Reviewer
Tobias Oetiker, OETIKER+PARTNER AG, Switzerland

The USENIX Association Staff

LISA °10:
24th Large Installation System Administration Conference
November 7-12, 2010
San Jose, California

Message from the Program Chair v

Wednesday, November 10

11:00 a.m.—12:30 p.m.

A Survey of System Configuration TOOIS |
Thomas Delaet, Wouter Joosen, and Bart Vanbrabant, DistriNet, K.U. Leuven

High Performance Multi-Node File Copies and Checksums for Clustered File Systems...................... 15
Paul Z. Kolano and Robert B. Ciotti, NASA Ames Research Center

Fast and Secure Laptop Backups with Encrypted De-duplication 29
Paul Anderson and Le Zhang, University of Edinburgh

2:00 p.m.—3:30 p.m.

The Margrave Tool for Firewall Analysis et 41
Timothy Nelson, Worcester Polytechnic Institute; Christopher Barratt, Brown University; Daniel J. Dougherty
and Kathi Fisler, Worcester Polytechnic Institute; Shrirvam Krishnamurthi, Brown University

Towards Automatic Update of Access Control Policy. i 59
Jinwei Hu, University of Western Sydney and Huazhong University of Science and Technology; Yan Zhang,
University of Western Sydney, Ruixuan Li, Huazhong University of Science and Technology

First Step Towards Automatic Correction of Firewall Policy Faults....... 75
Fei Chen and Alex X. Liu, Michigan State University, JeeHyun Hwang and Tao Xie, North Carolina State
University

USENIX Association LISA ’10: 24th Large Installation System Administration Conference iii

Thursday, November 11

9:00 a.m.—10:30 a.m.

Using TCP/IP Traffic Shaping to Achieve iSCSI Service Predictability 91
J. Bjorgeengen, University of Oslo; H. Haugerud, Oslo University College

YAF: Yet Another FIOWMEter.o 107
Christopher M. Inacio, Carnegie Mellon University; Brian Trammell, ETH Zurich

Nfsight: NetFlow-based Network Awareness Tool e 119
Robin Berthier, University of Illinois at Urbana-Champaign, Michel Cukier, University of Maryland, College
Park; Matti Hiltunen, Dave Kormann, Gregg Vesonder, and Dan Sheleheda, AT&T Labs—Research

2:00 p.m.—3:30 p.m.

Using Syslog Message Sequences for Predicting Disk Failures 135
R. Wesley Featherstun and Errin W. Fulp, Wake Forest University

Log Analysis and Event Correlation Using Variable Temporal Event Correlator (VTEC). 147
Paul Krizak, Advanced Micro Devices, Inc.

Chukwa: A System for Reliable Large-Scale Log Collection i, 163
Ariel Rabkin and Randy Katz, University of California, Berkeley

4:00 p.m.—5:30 p.m.

How to Tame Your VMs: An Automated Control System for Virtualized Services. 179
Akkarit Sangpetch, Andrew Turner, and Hyong Kim, Carnegie Mellon University

Empirical Virtual Machine Models for Performance Guarantees.c..c.uiiiiuiineeneen.... 189
Andrew Turner, Akkarit Sangpetch, and Hyong S. Kim, Carnegie Mellon University

RC2—A Living Lab for Cloud Computingttt e e 201
Kyung Dong Ryu, Xiaolan Zhang, Glenn Ammons, Vasanth Bala, Stefan Berger, Dilma M Da Silva, Jim Doran,
Frank Franco, Alexei Karve, Herb Lee, James A Lindeman, Ajay Mohindra, Bob Oesterlin, Giovanni Pacifici,
Dimitrios Pendarakis, Darrell Reimer, and Mariusz Sabath, IBM T.J. Watson Research Center

Friday, November 12

9:00 a.m.—10:30 a.m.

PeerMon: A Peer-to-Peer Network Monitoring System.ot 209
Tia Newhall, Janis Libeks, Ross Greenwood, and Jeff Knerr, Swarthmore College

Keeping Track of 70,000+ Servers: The Akamai Query System 223
Jeff Cohen, Thomas Repantis, and Sean McDermott, Akamai Technologies, Scott Smith, Formerly of Akamai
Technologies; Joel Wein, Akamai Technologies

Troubleshooting with Human-readable Automated Reasoning. o, 239
Alva L. Couch, Tufts University; Mark Burgess, Oslo University College and Cfengine AS

LISA ’10: 24th Large Installation System Administration Conference USENIX Association

Message from the Program Chair

Dear LISA Attendee,

Technology is advancing fast, and we all need to be on top of it. Our job is to design, build, and maintain it to serve
business needs. Our job is a highly dynamic one, not only due to rapid changes in technology itself, but also be-
cause the way that technology is used or delivered changes as well. For example, new ways of computing mean that
many of us are busily moving applications to the cloud or from machines that run multiple applications to virtual-
ized boxes or appliances just running one task.

These developments have a huge impact on the sysadmin profession, both in a technical and a nontechnical fashion.
It is important for us to have a venue to continuously learn, share experiences, and develop ourselves and our skills.
LISA is there for you and by you to serve these needs. In addition to attending presentations, please get completely
immersed and experience the hallway track and the Birds-of-a-Feather sessions. This is the place to discuss tech in
general, as well as to present your issues in the workplace (tech and nontech alike) and help others with theirs.

LISA has come a long way from the small workshops of the 1980s. It has always been the place for sysadmins, but
it has matured into one of the flagship conferences USENIX organizes. The week is packed full: 3 days of tech ses-
sions, 6 days of training comprising 48 classes led by world experts, 7 workshops, 2 poster sessions, and numerous
other sessions and events. Be proud that you are part of this event!

Organizing such a conference takes about a year and involves over 200 people. All have their own important parts
to play in building the event. My job was just being one of those people. It happened to be labeled “Program Chair,
but the credit goes to all the others, who are just as important as “the chair.” Please give them a huge thank you.

il

This year we decided to add a second track, practice and experience reports, in addition to the regular refereed pa-
pers track. We did this because we want to encourage people to share experiences and best practices in a more for-
mal way. We wanted the reports to include a small write-up, so that there would be a record of what was presented.
Looking at the submission numbers, we find that this idea worked out quite well. Of the total of 63 submissions, we
had 45 regular papers and 18 experience reports. In a day-long meeting the program committee accepted 18 papers
and 9 experience reports. I hope you like the selection and take home some good experiences and practical ideas.
Also, please think about submitting something yourself for next year!

As a last word, I would thank you all for coming. Be sure to enjoy yourselves and have as much fun at the confer-
ence as I did in helping organizing it.

Rudi van Drunen, Competa IT and Xlexit Technology, The Netherlands
Program Chair

USENIX Association LISA ’10: 24th Large Installation System Administration Conference v

A survey of system configuration tools

Thomas Delaet

Wouter Joosen

Bart Vanbrabant
DistriNet, Dept. of Computer Science
K.U.Leuven, Belgium
{thomas.delaet, wouterjoosen, bart.vanbrabant} @ cs.kuleuven.be

Abstract

We believe that informed choices are better choices.
When you adopt a system configuration tool, it implies
a significant investment in time and/or money. Before
making such an investment, you want to pick the right
tool for your environment. Therefore, you want to com-
pare tools with each other before making a decision. To
help you make an informed choice, we develop a com-
parison framework for system configuration tools. We
evaluate 11 existing open-source and commercial system
configuration tools with this framework. If you use our
framework, you will make a better choice in less time.

1 Introduction

When you adopt a system configuration tool, it implies
a significant investment in time and/or money. Before
making such an investment, you want to know you have
picked the right tool for you environment. Therefore, you
want to compare tools with each other before making a
decision.

Since there exist a lot of tools with different goals,
characteristics and target users, it is a difficult and time-
intensive task to make an objective comparison of sys-
tem configuration tools. Moreover, people using a tool
already made a significant investment in that tool (and
not others) and as a consequence are involved in that
tool. But they themselves have difficulty comparing their
“own” tool to other tools.

To help you make an informed choice, we developed
a comparison framework for system configuration tools.
In addition to more subjective or political decision fac-
tors, this framework can help you with the more objective
factors when selecting a system configuration tool that is
right for you. The framework consists of four categories
of properties.

1. Properties related to the input specification

2. Properties related to deploying the input specifica-
tion

3. Process-oriented properties
4. Tool support properties

We evaluated 11 existing open-source and com-
mercial system configuration tools with our frame-
work. This paper contains a summary of these evalu-
ations. The full evaluations are available on our web-
site at http://distrinet.cs.kuleuven.be/
software/sysconfigtools. You can comment
on these evaluations, provide suggestions for modifica-
tions or add your own evaluations.

The remainder of this paper is structured as follows:
We start with the description of the framework in Section
2. Next, we summarize our findings for the 11 tools we
evaluated in Section 3. Section 4 answers the questions
on how to choose a tool and how to evaluate another tool
using the framework. In Section 5, we use our framework
and the evaluations to analyze the gaps in the state of the
art. Section 6 concludes the paper.

2 The comparison framework

Every system configuration tool provides an interface to
the system administrator. Within this interface, the sys-
tem administrator expresses the configuration of the de-
vices managed by the tool. The tool uses this specifica-
tion as input and enforces it on all machines it manages.
This conceptual architecture of a system configuration
tool is illustrated in Figure 1.

In Figure 1, the system administrators inputs the de-
sired configuration of the devices managed by the tool.
This input it stored in a repository. The tool uses this in-
put to generate device-specific profiles that are enforced
on every managed device. The translation agent is the
component of the tool that translates the system admin-
istrator input to device-specific profiles. The deployment

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 1

agent is the component of the tool that runs on the man-
aged device and executes the generated profile.

Our comparison framework contains properties for
both the specification of the input and the enforcement
phase. The third type of properties that are present in
our comparison framework are meta-specification prop-
erties: how does a tool deal with managing the input
specification itself? The last type of properties deal with
tool support: How easy is it to adopt the tool?

2.1 Specification properties
2.1.1 Specification paradigm

We define the specification paradigm of a tool by answer-
ing two questions:

1. Is the input language declarative or imperative?

2. Does the tool use a GUI-based or command-line
user interface?

Tools that use a declarative input language enable to
express the desired state of the computer infrastructure.
The runtime of the tool compares this desired state with
the configuration on every managed device and derives
a plan to move to the desired state. In the system con-
figuration literature, this process is described as conver-
gence [1]. A system configuration tool that supports con-
vergence has the additional benefit that divergences from
the desired state are automatically corrected.

Tools that use an imperative input language distribute,
schedule and deploy scripts written in its imperative in-
put language on the managed devices. For an impera-
tive script to work reliable, all possible states of the man-
aged devices need to covered and checked in the script.
Moreover, the system configuration tool must also keep
track of what scripts are already executed on every de-
vice. An alternative is to make all the operations in the
script idempotent.

Let us contrast the practical differences between an
imperative and a declarative language. Suppose a system
administrator does not want file /et c/hosts_deny to
be present on a device.

In a declarative language, the system administrator
must ensure that the file is not included in the model or
explicitly define that the file must not exist.

In an imperative language, the system administrator
must first write a test to verify if /etc/hosts_deny
exists. If the file exists, another instruction is needed
to remove the file. If the system administrator does not
write the first test, the action fails if the file was already
removed.

Orthogonal on the choice of declarative or impera-
tive specification language is the choice of user interface:

does the tool use a command-line or graphical user inter-
face?

Command-line interfaces typically have a steeper
learning curve than graphical approaches but, once mas-
tered, can result in higher productivity. Command-line
interfaces also have the advantage that they can be in-
tegrated with other tools through scripting. In contrast,
system administrators are typically quicker up to speed
with graphical approaches [12].

2.1.2 Abstraction mechanisms

A successful configuration tool is able to make abstrac-
tion of the complexity and the heterogeneity that char-
acterises IT infrastructures where hardware and software
of several vendors and generations are used simultane-
ously [3]. Making abstraction of complexity and hetero-
geneity is very similar to what general purpose program-
ming languages have been doing for decades.

Abstraction from complexity is an important concept
in programming paradigms such as object orientation. In
object orientation, implementation details are encapsu-
lated behind a clearly defined API. Encapsulation is a
concept that is valuable for modeling configurations as
well. Responsibilities and expertise in a team of system
administrators are not defined on machine boundaries,
but based on subsystems or services within the infras-
tructure, for example: DNS or the network layer. Encap-
sulation enables experts to model an aspect of the con-
figuration and expose a well documented API to other
system administrators.

Modern IT infrastructures are very heterogeneous en-
vironments. Multiple generations of software and hard-
ware of several vendors are used in production at the
same time. These heterogeneous “items” need to be con-
figured to work together in one infrastructure.

Based on how a system configuration tool’s language
deals with complexity and heterogeneity, we define six
levels to classify the tool. These levels range from
high-level end-to-end requirements, to low-level bit-
configurations. [3] inspired us in the definition of these
levels.

1. End-to-end requirements: End-to-end require-
ments are typical non-functional requirements [23].
They describe service characteristics that the com-
puting infrastructure must achieve. Figure 2 shows
an example of a performance characteristic for a
mail service. Other types of end-to-end require-
ments deal with security, availability, reliability, us-
ability, ...One example of an approach that deals
with end-to-end requirements is given in [17]. [17]
uses first-order logic for expressing end-to-end re-
quirements.

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

Repository

X

sysadmin input

Translation agent @

operator

profile

E

profile

file

Managg)

Managed de\%/

d device ‘x\{\a\naged device

Deployment agent @

Deployment agent @

Deployment agent @

Figure 1: A conceptual architectu

. Instance distribution rules: Instance distribution
rules specify the distribution of instances in the net-
work. We define an instance as a unit of configura-
tion specification that can be decomposed in a set of
parameters. Examples of instances are mail servers,
DNS clients, firewalls and web servers. A web
server, for example, has parameters for expressing
its port, virtual hosts and supported scripting lan-
guages. In Figure 2, the instance distribution rule
prescribes the number of mail servers that need to
be activated in an infrastructure. The need for such
a language is explicited in [3] and [2].

. Instance configurations: At the level of instance
configurations, each instance is an implementation
independent representation of a configuration. An
example of a tool at this level is Firmato [6]. Fir-
mato allows modeling firewall configurations inde-
pendent from the implementation software used.

. Implementation dependent instances The level of
implementation dependent instances specifies the
required configuration in more detail. It describes
the configuration specification in terms of the con-
tents of software configuration files. In the example
in Figure 2 a sendmail.cf file is used to describe the
configuration of mail server instances.

. Configuration files: At the level of configuration
files, complete configuration files are mapped on a
device or set of devices. In contrast with the pre-
vious level, this level has no knowledge of the con-
tents of a configuration file.

. Bit-configurations: At the level of Bit-
configurations, disk images or diffs between
disk images are mapped to a device or set of
devices. This is the lowest level of configuration
specification. Bit-level specifications have no
knowledge of the contents of configuration files or

re of system configuration tool.

the files itself. Examples of tools that operate on
this level are imaging systems like Partimage [21],
g4u [9] and Norton Ghost [24].

Figure 2 shows the six abstraction levels for system
configuration, illustrated with an email setup. The illus-
tration in Figure 2 is derived from an example discussed
in [3]. The different abstraction levels are tied to the con-
text of system configuration. In the context of policy lan-
guages, the classification of policy languages at different
levels of abstraction is often done by distinguishing be-
tween high-level and low-level policies [16,25]. The dis-
tinction of what exactly is a high-level and low-level pol-
icy language is rather vague. In many cases, high-level
policies are associated with the level that we call end-to-
end requirements, while low-level policies are associated
with the implementation dependent instances level. We
believe that a classification tied to the context of system
configuration gives a better insight in the different ab-
straction levels used by system configuration tools.

In conclusion, a system configuration tool automates
the deployment of configuration specifications. At the
level of bit-configurations, deployment is simply copying
bit-sequences to disks, while deploying configurations
specified as end-to-end requirements is a much more
complex process.

2.1.3 Modularization mechanisms

One of the main reason system administrators want to
automate the configuration of their devices is to avoid
repetitive tasks. Repetitive tasks are not cost efficient.
Moreover, they raise the chances of introducing errors.
Repetitive tasks exist in a computer infrastructure be-
cause there are large parts of the configuration that are
shared between a subset (or multiple overlapping sub-
sets) of devices ([3]). For example, devices need the
same DNS client configuration, authentication mecha-
nism, shared file systems, ... A system configuration tool

USENIX Association

LISA ’10: 24

th Large Installation System Administration Conference

1. End-to-end requirements
Configure enough mail servers to guarantee an SMTP response time of X seconds
3
2. Instance distribution rules
Configure N suitable machines as a mail server for this cluster
3
3. Instance configurations
Configure machines X, Y, Z as a mail server
3
4. Implementation dependent instances
Put these lines in sendmail.cf on machines X, Y, Z
4
5. Configuration files
Put configuration files on machines
3
6. Bit-configurations
Copy disk images onto machines

Figure 2: An example of different abstraction levels of configuration specification for an email setup.

that supports the modularization of configuration chunks
reduces repetition in the configuration specification.

In its most basic form, modularization is achieved
through a grouping mechanism: a device A is declared
to be a member of group X and as a consequence inherits
all system configuration chunks associated with X. More
advanced mechanisms include query based groups, auto-
matic definition of groups based on environmental data
of the target device and hierarchical groups.

An additional property of a modularization mecha-
nism is whether it enables third parties to contribute
partial configuration specifications. Third parties can
be hardware and software vendors or consultancy firms.
System administrators can then model their infrastruc-
ture in function of the abstractions provided by the third-
party modules and reuse the expertise or rely on support
that a third party provides on their configuration mod-
ules.

2.1.4 Modeling of relations

One of the largest contributors to errors and downtime in
infrastructures are wrong configurations [19,20,22] due
to human error. An error in a configuration is commonly
caused by an inconsistent configuration. For example, a
DNS service that has been moved to an other server or
moving an entire infrastructure to a new IP range. Ex-
plicitly modeling relations that exist in the network helps
keeping a configuration model consistent.

Modeling relations is, like the modularization prop-
erty of Section 2.1.3, a mechanism for minimizing re-
dundancy in the configuration specification. When rela-
tions are made explicit, a tool can automatically change
configurations that depend on each other. For example,

when the location of a DNS server changes and the re-
lation between the DNS server and clients is modeled
in the configuration specification, a system configuration
tool can automatically adapt the client configurations to
use the new server. Again, modeling relations reduces
the possibility of introducing errors in the configuration
specification.

To evaluate how well a tool supports modeling of rela-
tions, we describe two orthogonal properties of relations:
their granularity and their arity.

1. granularity: In Section 2.1.2, we defined an in-
stance as a unit of configuration specification that
can be decomposed in a set of parameters. Exam-
ples of instances are mail servers, DNS clients, fire-
walls and web servers. A web server, for example,
has parameters for expressing its port, virtual hosts
and supported scripting languages. Based on this
definition, we can classify relations in three cate-
gories: (1) relations between instances, (2) relations
between parameters and (3) relations between a pa-
rameter and an instance.

(a) Instance relations represent a coarse grained
dependency between instances. Instance de-
pendencies can exist between instances on the
same device, or between instances on different
devices. An example of the former is the de-
pendency between a DNS server instance and
the startup system instance on a device: if a
startup system instance is not present on a de-
vice (for example: /etc/init.d), the DNS server
instance will not work. An example of depen-
dencies between instances on different devices

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

is the dependency between DNS servers and
their clients.

(b) Parameter relations represent a dependency
between parameters of instances. An example
of this is a CNAME record in the DNS system:
every CNAME record also needs an A record.

(c) Parameter - instance relations are used to
express a relation between an individual pa-
rameter and an instance. For example a mail
server depends on the existence of an MX
record in the DNS server.

Note that it depends on the abstraction level of a tool
which dependencies it can support. The two low-
est abstraction layers in Figure 2, configuration files
and bit-configurations, have no knowledge of pa-
rameters and as a consequence, they can only model
instance dependencies.

2. arity: Relations can range from one-to-one to
many-to-many relationships. A simple one-to-one
relationship is a middleware platform depending on
a language runtime. A many-to-many relationship
is for example the relation between all DNS clients
and DNS servers in a network. A system configura-
tion tool can also provide support facilities to query
and navigate relations in the system configuration
specification. An example that motivates such facil-
ities for navigating and querying relations involves
an Internet service. For example, a webservice runs
on a machine in the DMZ. This DMZ has a dedi-
cated firewall that connects to the Internet through
an edge router in the network. The webservice con-
figuration has a relation to the host it is running on
and a relation to the “Internet”. The model also con-
tains relations that represent all physical network
connections. Using these relations, a firewall spec-
ification should be able to derive firewall rules for
the webservice host, the DMZ router and the edge
router [6].

An extra feature is the tool’s ability to support the
modeling of constraints on relations. We distinguish two
types of constraints: validation constraints and genera-
tive constraints.

1. validation constraints are expressions that need to
hold true for your configuration. Because of policy
or technical factors, the set of allowable values for a
relation can be limited. Constraints allow to express
these limitations. Examples of such limitations are:

e A server can only serve 100 clients.

e Clients can only use the DNS server that is
available in their own subnet.

e Every server needs to be configured redun-
dantly with a master and a slave server.

2. generative constraints are expressions that leave
a degree of freedom between a chunk of config-
uration specification and the device on which this
chunk needs to be applied. Languages without sup-
port for generative constraints need a 1-1 link be-
tween a chunk of configuration specification and the
device on which is needs to be applied. Languages
with support for generative constraints leave more
degrees of freedom for the tool. An example of a
generative constraint is: “One of the machines in
this set of machines needs to be a mail server”.

2.2 Deployment properties
2.2.1 Scalability

Large infrastructures are subject to constant change in
their configuration. System configuration tools must deal
with these changes and be able to quickly enforce the
configuration specification, even for large infrastructures
with thousands of nodes, ten thousands of relations and
millions of parameters.

Large infrastructures typically get more benefit of us-
ing a higher level specification (see Figure 2). How-
ever, the higher-level the specification, the more process-
ing power is needed to translate this high level specifi-
cation to enforceable specifications on all managed de-
vices. System configuration tools must find efficient al-
gorithms to deal with this problem or restrict the expres-
siveness of the system configuration tool.

2.2.2 Workflow

Workflow management deals with planning and execu-
tion of (composite) changes in a configuration specifica-
tion. Changes can affect services distributed over mul-
tiple machines and with dependencies on other services
[3,18].

One aspect of workflow management is state transfer.
The behavior of a service is not only driven by its config-
uration specification, but also by the data it uses. In the
case of a mail server, the data are the mail spool and mail-
boxes, while web pages serve as data for a web server.
When upgrading a service or transferring a service to an-
other device, one has to take care that the state (collection
of data) remains consistent in the face of changes.

Another aspect of workflow management is the coor-
dination of distributed changes. This has to be done very
carefully as not to disrupt operations of the computing in-
frastructure. A change affecting multiple machines and
services has to be executed as a single transaction. For
example, when moving a DNS server from one device to

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 5

another, one has to first activate the new server and make
sure that all clients use the new server before deactivat-
ing the old server. For some services, characteristics of
the managed protocol can be taken into account to make
this process easier. For example, the SMTP protocol re-
tries for a finite span of time to deliver a mail when the
first attempt fails. A workflow management protocol can
take advantage of this characteristic by allowing the mail
server to be unreachable during the change.

A last aspect of workflow management is non-
technical: if the organizational policy is to use mainte-
nance windows for critical devices, the tool must under-
stand that changes to these critical devices can influence
the planning and execution of changes on other devices.

2.2.3 Deployment architecture

The typical setup of a system configuration tool is illus-
trated in Figure 1. A system configuration tool starts
from a central specification for all managed devices.
Next, it (optionally) processes this specification to device
profiles and distributes these profiles (or the full spec-
ification) to every managed device. An agent running
on the device then enforces the device’s profile. For the
rest of this section, we define the processing step from a
central specification to device profiles as the translation
agent. The agent running on every device is defined as
the deployment agent.

System configuration tools differentiate their deploy-
ment architecture along two axises: 1. the architecture of
the translation agent and 2. whether they use pull or push
technology to distribute specifications .

1. architecture of translation agent: Possible ap-
proaches for the architecture of the translation agent
can be classified in three categories, based on the
number of translation agents compared to the num-
ber of managed devices: centralized management,
weakly distributed management and strongly dis-
tributed management [15].

(a) centralized management is the central server
approach with only one translation agent.
When dealing with huge networks, the central
server quickly becomes a bottleneck. This is
certainly the case when a system configuration
tool uses a high-level abstraction, as the algo-
rithm for computing a device’s configuration
will become complex.

(b) weakly distributed management is an ap-
proach where multiple translation agents are
present in the network. This approach can
be realized for many centralized management
tools by replicating the server and providing a

shared policy repository for all servers. An-
other possible realization of this approach is
organizing translation agents hierarchically.

(c) strongly distributed management systems
use a separate translation agent for each man-
aged device. The difficulty with this ap-
proach is enforcing inter-device relations be-
cause each device is responsible for translat-
ing its own configuration specification. As a
consequence, devices need to cooperate with
each other to ensure consistency.

2. push or pull: In all approaches, each managed de-
vice contains a deployment agent that can be push
or pull based. In the case of a pull based mech-
anism, the deployment agent needs to contact the
translation agent to fetch the translated configura-
tions. In a push based mechanism, the translation
agent contacts the deployment agent. Deployment
agents also have to be authenticated and their capa-
bilities for fetching policies or configurations have
to be limited. Configurations often contain sensi-
tive information like passwords or keys and expos-
ing this information to all deployment agents intro-
duces a security risk.

2.2.4 Platform support

Modern infrastructures contain a variety of computing
platforms: Windows/Unix/Mac OS X servers, but also
desktop machines, laptops, handhelds, smartphones and
network equipment. Even in relatively homogeneous
environments, we can not assume that all devices run
the same operating system: operating systems running
on network equipment are fundamentally different than
those running on servers/desktops and smartphones are
yet another category of operating systems.

Good platform support or interaction with other tools
is essential for reducing duplication in the configuration
specification. Indeed, many relations exist between de-
vices running different operating systems. For example:
a server running Unix and a router/firewall running Cisco
IOS. If different tools are used to manage the server and
router, relations between the router and server need to
be duplicated in both tools which in turn introduces con-
sistency problems if one of the relations changes. An
example of such a relation is the the firewall rule on a
Cisco router that opens port 25 and the SMTP service on
a Unix server.

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

2.3 Specification management properties
2.3.1 Usability

We identify three features concerning usability of a sys-
tem configuration tool: 1. ease of use of the language,
2. support for testing specifications and, 3. monitoring
the infrastructure.

1. ease of use of the language: The target audience
of a system configuration tool are system adminis-
trators. The language of the system configuration
tool should be powerful enough to replace their ex-
isting tools, which are mostly custom tools. But it
should also be easy enough to use, so the average
system administrator is able to use it. Good system
administrators with a good education [13] are al-
ready scarce, so a system configuration tool should
not require even higher education.

2. support for testing specifications: To understand
the impact of a change in the specification, the sys-
tem configuration tool can provide support for test-
ing specifications through something as trivial as a
dry-run mode or more complex mechanisms like the
possibility to replicate parts of the production in-
frastructure in a (virtualized) testing infrastructure
and testing the changes in that testing infrastructure
first [5].

3. monitoring the infrastructure: A system config-
uration tool can provide an integrated (graphical)
monitoring system and/or define a (language-based)
interface for other tools to check the state of an
infrastructure. A language-based interface has the
advantage that multiple monitoring systems can be
connected with the system configuration tool. A
monitoring system enables the user to check the cur-
rent state of the infrastructure and the delta with the
configuration specification.

2.3.2 Versioning support

Some system configuration tools store their specification
in text files. For those tools, a system configuration spec-
ification is essentially code. As a consequence, the same
reasoning to use a version control system for source code
applies. It enables developers and system administrators
to document their changes and track them through his-
tory. In a configuration model this configuration history
can also be used to rollback configuration changes and it
makes sure an audit trail of changes exists.

The system configuration tool can opt to implement
versioning of configuration specification using a custom
mechanism or, when the specification is in text files,
reuse an external version control system and make use

of the hooks most generic version control systems pro-
vide.

2.3.3 Specification documentation

Usability studies [4, 12] show that a lot of time of a sys-
tem administrator is spent on communication with other
system administrators. These studies also show that a
lot of time is lost because of miscommunication, where
discussions and solutions are based on wrong assump-
tions. A system configuration tool that supports struc-
tured documentation can generate documentation from
the system configuration specification itself and thus re-
move the need to keep the documentation in sync with
the real specification.

2.3.4 Integration with environment

The infrastructure that is managed by the system con-
figuration tool is not an island: it is connected to other
networks, is in constant use and requires data from
other sources than the system configuration specifica-
tion to operate correctly. As a consequence, a Sys-
tem administrator may need information from external
databases in its configuration specification (think LDAP
for users/groups) or information about the run-time char-
acteristics of the managed nodes. A system configuration
tool that leverages on these existing sources of informa-
tion integrates better with the environment in which it is
operating because it does not require all existing infor-
mation to be duplicated in the tool.

2.3.5 Conflict management

A configuration specification can contain conflicting def-
initions, so a system configuration tool should have a
mechanism to deal with conflicts. Despite the presence
of modularization mechanisms and relations modeling,
a configuration specification can still contain errors, be-
cause it is written by a human. In case of such an error,
a conflict is generated. We distinguish two types of con-
flicts: application specific conflicts and contradictions in
the configuration specification, also called modality con-
flicts [14].

1. application specific conflicts: An example of an
application specific conflict is the specification of
two Internet services that use the same TCP port. In
general, application specific conflicts can not be de-
tected in the configuration specification. Examples
of research on application specific protocols can be
found in [10] and [7], where conflict management
for IPSec and QoS policies is described.

2. modality conflicts: An example of a modality con-
flict is the prohibition and obligation to enable an

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 7

instance (for example a mail server) on a device. In
general, modality conflicts can be detected in the
configuration specifications.

When a configuration specification contains rules that
cause a conflict, this conflict should be detected and acted
upon.

2.3.6 Workflow enforcement

In most infrastructures a change to the configuration will
never be deployed directly on the infrastructure. A pol-
icy describes which steps each update need to go through
before it can be deployed on the production infrastruc-
ture. These steps can include testing on a development
infrastructure, going through Q&A, review by a security
specialist, testing on a exact copy of the infrastructure
and so on. Exceptions on such policies can exist because
not every update can go through all stages, updates can
be so urgent that they need to be allowed immediately,
but only with approval of two senior managers. A sys-
tem configuration tool that provides support for model-
ing these existing workflows can adapt itself to the habits
and processes of the system administrators and will thus
be easier to use than system configuration tools without
this support.

2.3.7 Access control

If an infrastructure is configured and managed based on
a system configuration specification, control of this spec-
ification implies control of the full infrastructure. So
it might be necessary to restrict access to the configu-
ration specification. This is a challenge, especially in
large infrastructures where a lot of system administrators
with different responsibilities need to make changes to
this specification. A lot of these large infrastructures are
also federated infrastructures, so one specification can be
managed from different administrative domains.

Authenticating and authorizing system administrators
before they are making changes to the system configu-
ration can prevent a junior system administrator who is
only responsible for the logging infrastructure to make
changes to other critical software running on the man-
aged devices.

Many version control systems can enforce access con-
trol but the level on which the authorisation rules are
expressed differs from the abstraction level of the spec-
ification itself. In most systems, this is based on the
path of the file that contains the code or specification.
But in most programming languages and system config-
uration tools, the relation between the name of the file
and the contents of the file is very limited or even non-
existing. For example an authorisation rule could express

that users of the logging group should only set parame-
ters of object from types in the logging namespace. With
path-based access control this becomes: users of group
logging should only access files in the /config/logging
directory. The latter assumes that every system admin-
istrator uses the correct files to store configuration speci-
fications.

2.4 Support
2.4.1 Available documentation

To quickly gain users, tools have to make their barriers
to entry as low as possible. A “ten minutes” tutorial is
often invaluable to achieve this. When users get more
comfortable with the tool, they need extensive reference
documentation that describes all aspects of the tool in
detail alongside documentation that uses a more process-
oriented approach covering the most frequent use cases.

Thus, documentation is an important factor in the
adoption process of a tool.

2.4.2 Commercial support

Studies [13] show that the need for commercial support
varies amongst users. Unix users don’t call support lines
as often as their Window-colleagues. The same holds
true for training opportunities. In all cases, the fact that
there is a company actively developing and supporting
a tool helps to gain trust amongst system administrators
and thus increases adoption.

2.4.3 Community

In our online society, community building is integral part
of every product or service. Forums, wiki’s and social
networks can provide an invaluable source of informa-
tion that complements the official documentation of a
tool and introduces system administrators to other users
of their preferred tool.

2.4.4 Maturity

Some organizations prefer new features above stability,
and others value stability higher than new features There-
fore, it is important to know what the maturity of the
tool is: Is it a new tool with some cutting edge features
and frequent syntax changes in its language or a well-
established tool with infrequent updates?

3 System configuration tools comparison

In this section we provide a summary of our evaluation
of eleven tools. These tools consist of commercial and
open-source tools. The set of commercial tools is based

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

| Tool | Version |
BCFG2 1.0.1
Cfengine 3 3.04
Opscode Chef 0.8.8
Puppet 0.25
LCFG 20100503
BMC Bladelogic Server Automation 8
Suite
CA Network and Systems Manage- R11.x
ment (NSM)
IBM Tivoli System Automation for 4.3.1
Multiplatforms
Microsoft Server Center Configuration 2007 R2
Manager (SCCM)
HP Server Automation System 2010/08/12
Netomata Config Generator 0.9.1

Table 1: Version numbers of the set of evaluated tools.

on market research reports [8, 11] and consists of BMC
Bladelogic Server Automation Suite, Computer Asso-
ciates Network and Systems Management, IBM Tivoli
System Automation for Multiplatforms, Microsoft Sys-
tem Center Configuration Manager and HP Server Au-
tomation System. For the open-source tools we selected
a set of tools that were most prominently present in dis-
cussions at the previous LISA edition and referenced
in publications. This set of tools consists of BCFG2,
Cfengine3, Chef, Netomata, Puppet and LCFG.

Due to space constraints we limit the results of our
evaluation to a summary of our findings for each prop-
erty. The full evaluation of each tool is available on our
website at http://distrinet.cs.kuleuven.
be/software/sysconfigtools. We intend to
keep the evaluations on this website in sync with ma-
jor updates of each tool. For this paper we based our
evaluation on the versions of each tool listed in Table 1.

3.1 Specification properties
3.1.1 Specification paradigm

Language type Cfengine, Puppet, Tivoli, Netomata
and Bladelogic use a declarative DSL for their input
specification. BCFG2 uses a declarative XML specifi-
cation. Chef on the other hand uses an imperative ruby
DSL. LCFG uses a DSL that instantiates components and
set parameters on them. CA NSM, HP Server Automa-
tion and MS SCCM are like LCFG limited to setting pa-
rameters on their primitives.

User interface As with the language type, the tools
can be grouped in open-source and commercial tools.

The open-source tools focus on command-line interface
while the commercial tools also provide a graphical in-
terfaces. Tools such as Cfengine, Chef and Puppet pro-
vide a web-interface that allows to manage some aspects
with a graphical interface. In the commercial tools all
management is done through coommand-line and graph-
ical interfaces.

3.1.2 Abstraction mechanisms
3.1.3 Modularization mechanisms

Type of grouping All tools provide a grouping mech-
anism for managed devices or resources. HP Server Au-
tomation, Tivoli and Netomata only provide static group-
ing. CA NSM and BCFG allow static grouping and
hierarchies of groups. LCFG supports limited static,
hierarchical and query based grouping through the C-
preprocessor. Bladelogic supports static, hierarchical
and query based groups. Cfengine and Puppet use the
concept of classes to group configuration. Classes can
include other classes to create hierarchies. Cfengine can
assign classes statically or conditionally using expres-
sions. Puppet can assign classes dynamically using ex-
ternal tools. Chef and MS SCCM can define static groups
and groups based on queries.

Configuration modules BCFG, HP Server Automa-
tion, MS SCCM and Netomata have no support for
configuration modules. Bladelogic can parametrise re-
sources based on node characteristics to enable reuse.
Tivoli includes sets of predefined policies that can be
used to manage IBM products and SAP. LCFG can use
third party components that offer a key-value interface
to other policies, CA NSM provides a similar approach
for third party agents that manage a device or subsystem.
Cfengine uses bundles, Chef uses cookbooks and Puppet
uses modules to distribute a reusable configuration spec-
ification for managing certain subsystems or devices.

3.1.4 Modeling of relations

BCFG, CA NSM, HP Server Automation and MS SCCM
have no support for modeling relations in a configura-
tion specification. Bladelogic can model one-to-one de-
pendencies between scripts that need to be executed as a
prerequisite, these are instance relations. Cfengine sup-
ports one-to-one, one-to-many and many-to-many rela-
tions between instances, parameters and between param-
eters and instances. On these relations generative con-
straints can be expressed. Chef can express many-to-
many dependency relations between instances. Tivoli
can also express relations of all arities between instances
and parameters and just like Cfengine express generative

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 9

constraints. LCFG can express one-to-one and many-to-
many relations using spanning maps and references be-
tween instances and parameters. Netomata can model
one-to-one network links and relations between devices.
Finally Puppet can define one-to-many dependency rela-
tions between instances. The virtual resource functional-
ity can also be used to define one-to-many relations be-
tween all instances.

3.2 Deployment properties
3.2.1 Scalability

The only method to evaluate how well a tool scales is to
test each tool in a deployment and scale the number of
managed nodes. In this evaluation we did not do this.
To have an indication of the scalability we searched for
cases of real-life deployments and divided the tools in
three groups based on the number of managed devices
and a group of tools for which no deployment informa-
tion was available.

less than 1000 BCFG2
between 1000 and 10k LCFG and Puppet
more than 10k Bladelogic and Cfengine,

unknown CA NSM, Chef, HP Server Automation,
Tivoli, MS SCCM and Netomata,

3.2.2 Workflow

BMC Bladelogic and HP Server Automation integrate
with an orchestration tool to support coordination of dis-
tributed changes. Cfengine and Tivoli can coordinate
distributed changes as well. MS SCCM and CA NSM
support maintenance windows. Distributed changes in
Puppet can be sequenced by exporting and collecting re-
sources between managed devices. BCFG2, LCFG, Chef
and Netomata have no support for workflow.

3.2.3 Deployment architecture

Translation agent Cfengine uses a strongly distributed
architecture where the emphasis is on the agents that run
on each managed device. The central server is only used
for coordination and for policy distribution. Bladelogic,
CA NSM and MS SCCM use one or more central servers.
BCFG2, Chef, HP Server Automation, Tivoli, Netomata
and Puppet use a central server. Chef and Puppet can
also work in a standalone mode without central server to
deploy a local specification.

| Tool

Platform support |

BCFG2 *BSD, AIX, Linux, Mac OS
X and Solaris

Cfengine 3 *BSD, AIX, HP-UX, Linux,
Mac OS X, Solaris and Win-
dows

Opscode Chef *BSD, Linux, Mac OS X, So-
laris and Windows

Puppet *BSD, AIX, Linux, Mac OS
X, Solaris

LCFG Linux (Scientific Linux)

BMC Bladelogic | AIX, HP-UX, Linux, Net-

Server Automation | work equipment, Solaris and

Suite Windows

CA Network and | AIX, HP-UX, Linux, Mac

Systems Manage- | OS X, Network equipment,

ment (NSM) Solaris and Windows

IBM Tivoli System | AIX, Linux, Solaris and Win-

Automation for Mul- | dows
tiplatforms

Microsoft Server | Windows
Center Configuration

Manager (SCCM)

AIX, HP-UX, Linux, Net-
work equipment, Solaris and
Windows

Network equipment

HP Server Automa-
tion System

Netomata
Generator

Config

Table 2: Version information for the set of evaluated
tools.

Distribution mechanism The deployment agent of
BCFG?2, Cfengine, Chef, LCFG, MS SCCM and Puppet
pull their specification from the central server. Bladel-
ogic, CA NSM, HP Server Automation and Tivoli push
the specification to the deployment agents. The central
servers of Chef, MS SCCM and Puppet can notify the de-
ployment agents that a new specification can be pulled.
Netomata relies on external tools for distribution.

3.2.4 Platform support

The platforms that each tool supports is listed in Table 2.

3.3 Specification management properties
3.3.1 Usability

Usability Usability is a very hard property to quantify.
We categorised the tools in easy, medium and hard. We
determined this be assessing how easy a new user would
be able to use and learn a tool. We tried to be as ob-
jective as possible to determine this but this part of the

10

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

evaluation is subjective. We found Bladelogic, CA NSM,
HP Server Automation, Tivoli and MSCCM easy to start
using. The usability of Cfengine, LCFG and Puppet is
medium, partially because of the custom syntax. Pup-
pet also has a lot of confusing terminology but tools such
as puppetdoc and puppetca make up for it so we did not
classify it as hard to use. We found BCFG2 hard to use
because of the XML input and the specification is dis-
tributed in a lot of different directories because of their
plugin system. Chef is also hard to use because of its syn-
tax and the use of a lot of custom terminology. Netomata
is also hard to use because of its very concise syntax but
powerful language.

Support for testing specifications BCFG2, Cfengine,
LCFG and Puppet have a dry run mode. Netomata is in-
herently dry-run because it has no deployment part. Chef
and Puppet support multiple environments such as test-
ing, staging and production.

Monitoring the infrastructure BCFG2, Bladelogic,
HP Server Automation, CA NSM, Tivoli, LCFG, Pup-
pet and MS SCCM have various degrees of support for
reporting about the deployment and collecting metrics
from the managed devices. The commercial tools have
more extensive support for this. Chef, LCFG, Puppet
and Netomata can automatically generate the configura-
tion for monitoring systems such as Nagios.

3.3.2 Versioning support

BCFG2, Bladelogic, Cfengine, Chef, Tivoli, LCFG, Ne-
tomata and Puppet use a textual input to create their con-
figuration specification. This textual input can be man-
aged in an external repository such as subversion or git.
CA NSM and MS SCCM have internal support for policy
versions. The central Chef server also maintains cook-
book version information. For HP Server Automation it
is unclear what is supported.

3.3.3 Specification documentation

BCFG2, Bladelogic, Chef, HP Server Automation,
Tivoli, LCFG, Netomata and Puppet specifications can
include free form comments. Cfengine can include struc-
tured comments that are used to generate documentation.
Because Chef uses a Ruby DSL, Rdoc can also be used
to generated documentation from structured comments.
Puppet can generate reference documentation for built-
in types from the comments included in the source code.
No documentation support is available in CA NSM and
MS SCCM.

3.3.4 Integration with environment

BCFG?2, Cfengine, Chef, Tivoli, LCFG, MS SCCM and
Puppet can discover runtime characteristics of managed
devices which can be used when the profiles of each de-
vice are generated. Bladelogic can interact with external
data sources like Active Directory.

3.3.5 Conflict management

BCFG and Puppet can detect modality conflict such as
a file managed twice in a specification. Cfengine3 also
detects modality conflicts such as an instable configura-
tion that does not converge. Bladelogic and CA NSM
have no conflict management support. Puppet also sup-
ports modality conflicts by allowing certain parameters
of resources to be unique within a device, for example
the filename of file resources.

3.3.6 Workflow enforcement

None of the evaluated tools have integrated support for
enforcing workflows on specification updates. Bladel-
ogic can tie in a change management system that defines
workflows.

3.3.7 Access control

The tool that support external version repositories can
reuse the path based access control of that repository.
BMC, CA NSM, HP Server Automation, Tivoli, MS
SCCM and the commercial version of Chef allow fine
grained access control on “resources” in the specifica-
tion.

3.4 Support
3.4.1 Available documentation

Bladelogic, CA NSM and HP Server Automation pro-
vide no public documentation. IBM Tivoli provides
extensive documentation in their evaluation download.
BCFG?2, Cfengine, Chef, LCFG, MS SCCM and Puppet
all provide extensive reference documentation, tutorials
and examples on their websites. Netomata provides lim-
ited examples and documentation on their website and
Wiki.

3.4.2 Commercial support

Not very surprising the commercial tools all provide
commercial support. But most open-source tools also
have a company behind them that develops the tool and
provides commercial support. LCFG and BCFG2 have
both been developed in academic institutes and have no
commercial support.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 11

3.4.3 Community

Cfengine, Chef, Tivoli, MS SCCM and Puppet have large
and active communities. BCFG2 has a small but active
community. CA NSM has a community but it is very
scattered. BMC, Netomata and LCFG have small and
not very active communities. For HP Server Automation
we were unable to determine if a community exists.

3.4.4 Maturity

Some of the evaluated tools such as Tivoli and CA NSM
are based on tools that exist for more than ten years,
while other tools such as Chef and Netomata are as
young as two years. However no relation between the
feature set of a tool and their maturity seems to exist.

4 Putting the framework to use

4.1 How do I choose a tool for my environ-
ment?

Our framework and tool evaluations can help you to
quickly trim down the list of tools to the tools that match
your requirements. You list your required features, see
which tools support these features and you have a lim-
ited list of tools to continue evaluating. In fact, our
website at http://distrinet.cs.kuleuven.
be/software/sysconfigtools provides a handy
wizard to help you with this process.

The limitation of our framework is that it can not cap-
ture all factors that influence the process for choosing
a system configuration tool: 1. We limit our evaluation
to system configuration and do not include adjacent pro-
cesses like provisioning, 2. Politics often play an impor-
tant role when deciding on a tool, 3. your ideal solution
might be too pricey, or 4. other, more subjective, factors
come into play.

For all these reasons, we see our framework more as an
aid that can quickly give you a high-level overview of the
features of the most popular tools. Based on our frame-
work, you can decide which tools deserve more time in-
vestment in your selection process.

4.2 How do I evaluate another tool using
this framework?

We welcome clarifications to our existing evaluations
and are happy to add other tool evaluations on the web-
site. Internally, the website defines our framework as
a taxonomy and every property is a term in this taxon-
omy. We associated a description with every term which
should allow you to asses whether the property is sup-
ported by the tool you want to evaluate. Feel free to con-

tact us for an account on the website so that you can add
your evaluated tool.

5 Areas for improvement

Based on our evaluations in Section 3, we identify six
areas for improvement in the current generation of tools.
We believe that tools who address these areas will have
a significant competitive advantage over other tools. The
areas are:

1. Create better abstractions: Very few tools support
creating higher-level abstractions like those men-
tioned in Figure 2 on page 4. If they do, those
capabilities are hidden deep in the tool’s documen-
tation and not used often. We believe this is a
missed opportunity. Creating higher-level abstrac-
tions would enable reuse of configuration specifica-
tions and lower the TCO of a computer infrastruc-
ture. To realize this, the language needs to (a) sup-
port primitives that promote reuse of configuration
specifications like parametrization and modulariza-
tion primitives, (b) support constraints modeling
and enforcement, (c) deal with conflicts in the con-
figuration specification and (d) model and enforce
relations.

2. Adapt to the target audience’s processes: A tool
that adapts to the processes for system administra-
tion that exist in an organization is much more intu-
itive to work with than a tool that imposes its own
processes on a system administrators. A few ex-
amples of how tools could support the existing pro-
cesses better:

o structured documentation and knowledge
management: Cfengine3 is the only tool in our
study that supports structured documentation
in the input specification and has a knowledge
management system that uses this structured
documentation. Yet, almost all system admin-
istrators document their configurations. Some
do it in comments in the configuration specifi-
cation, some do it in separate files or in a fully-
fledged content management system. In all
cases, documentation needs to be kept in sync
with the specification. If you add structured
documentation to the configuration specifica-
tion, the tool can generate the documentation
automatically.

e integrate with version control systems: A lot
of system administrator teams use a version
control system to manage their input specifica-
tion. It allows them to quickly rollback a con-
figuration and to see who made what changes.

12

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

Yet, very few tools provide real integration
with those version control systems. A tool
could quickly set up a virtualized test infras-
tructure for a branch that I created in my con-
figuration. I would be able to test my config-
uration changes before I merge them with the
main branch in the version control system that
gets deployed on my real infrastructure.

e semantic access controls: In a team of system
administrators, every admin has his own ex-
pertise: some are expert in managing network-
ing equipment, other know everything from
the desktop environment the company sup-
ports, others from the web application plat-
form, As a consequence, responsibilities
are assigned based on expertise and this ex-
pertise does not always aligns with machine
boundaries. The ability to specify and en-
force these domains of responsibility will pre-
vent that for example a system administrator
responsible for the web application platform
modifies the mail infrastructure setup.

e flexible workflow support. Web content man-
agement systems like Drupal have support for
customized workflows: If a junior editor sub-
mits an article, it needs to be reviewed by two
senior editors, all articles need to be reviewed
by one of the senior editors, The same
type of workflows exist in computer infras-
tructures: junior system administrators need
the approval from a senior to roll out a change,
all changes in the DMZ needs to be approved
by one of the managers and a senior system
administrator, Enforcing such workflows
would lower the number of accidental errors
that are introduced in the configuration and
aligns the tool’s operation with the existing
processes in the organization.

3. Support true integrated management: We would
like to see a tool that provides a uniform interface
to manage all types of devices that are present in a
computer infrastructure: desktops, laptops, servers,
smartphones and network equipment. Why would
this be useful? When you have one tool, with one
language that can specify the configuration of all de-
vices, every system administrator speaks the same
language and thinks in the same primitives: whether
they are responsible for the network equipment, the
data center or your desktops. The tool can then also
support the specification and enforcement of rela-
tionships that cross platform boundaries: the de-
pendencies between your web server farm and your
Cisco load balancer, dependencies between desk-

tops and servers, dependencies between your fire-
wall and your DMZ servers, The current gen-
eration of tools either focuses on a single platform
(Windows or Unix), focuses on one type of devices
(servers) or needs different products with different
interfaces for your devices (one product for network
equipment, one for servers and one for desktops).

4. Become more declarative: The commercial tools
in our study all start from scripting functional-
ity: the system administrator can create or reuse
a set of scripts and the tool provides a script-
management layer. Research and experience with
many open-source tools has shown that declarative
specifications are far more robust than the tradi-
tional paradigm of imperative scripting. Imperative
scripts have to deal with all possible states to be-
come robust which results in a lot of if-else state-
ments and spaghetti-code.

5. Take the CIO’s agenda into account: Most open-
source tools in our study have their origin in
academia. As a result, they lag behind on the fea-
tures that are on the CIO’s checklists when decid-
ing on a system configuration tool: (a) easy to use
(graphical) user interface, reporting, (b) auditing,
compliance, reporting capabilities in nice graphs
and (c) access control support.

6. Know that a system is software + configuration +
data: No tool has support for the data that is on the
managed machines. Take a web server as example:
the web server is software, that needs configuration
files and serves data. System configuration tools can
manage the software and configuration but have no
support for state transfer: if my tool moves the web
server to another node, I need to move the data man-
ually.

6 Conclusion

We believe that this paper and our website can help
system administrators make a more informed, and as
a consequence better, choice for a system configura-
tion tool. Our framework is not a mechanical tool:
you can not check off the things you need and it will
give you the perfect tool for you. We see it more as
one of the decision factors that will save you a lot of
time in the process of researching different tools: it
quickly gives you a high-level overview of the features
of each tool and enables you to trim down the list of
possibilities for your use case. We will keep the web-
site at http://distrinet.cs.kuleuven.be/
software/sysconfigtools up to date when new

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 13

versions of tools are released and are open for adding
new tool evaluations to our website.

7 Acknowledgements

We would like to thank our shepherd, Eser Kandogan
for his comments on the draft versions of the paper and
Mark Burgess for sharing his insights in the constraints-
part of our framework. We would also like thank our
anonymous reviewers and all people who commented on
the tool evaluations on the website.

This research is partially funded by the Agency for In-
novation by Science and Technology in Flanders (IWT),
by the Interuniversity Attraction Poles Programme Bel-
gian State, Belgian Science Policy, and by the Research
Fund K.U.Leuven.

References

[1] ALvVA COUCH, JOHN HART, E. G. I., AND KALLAS, D. Seek-
ing closure in an open world: A behavioral agent approach to
configuration management. In Proceedings of the 17th Large In-
stallations Systems Administration (LISA) conference (Baltimore,
MD, USA, 10/2003 2003), Usenix Association, Usenix Associa-
tion, p. 125-148.

[2] ANDERSON, P., AND COUCH, A. What is this thing called “sys-
tem configuration”? LISA Invited Talk, November 2004.

[3] ANDERSON, P., AND SMITH, E. Configuration tools: Working
together. In Proceedings of the Large Installations Systems Ad-
ministration (LISA) Conference (Berkeley, CA, December 2005),
Usenix Association, pp. 31-38.

[4] BARRETT, R., KANDOGAN, E., MAGLIO, P. P., HABER, E. M.,
TAKAYAMA, L. A., AND PRABAKER, M. Field studies of
computer system administrators: analysis of system management
tools and practices. In Proceedings of the 2004 ACM conference
on Computer supported cooperative work (New York, NY, USA,
2004), ACM, ACM, pp. 388-395.

[5] BARRETT, R., MAGLIO, P. P., KANDOGAN, E., AND BAILEY,
J. Usable autonomic computing systems: The system admin-
istrators’ perspective. Advanced Engineering Informatics 19, 3
(2005), 213 —221. Autonomic Computing.

[6] BARTAL, Y., MAYER, A., NissiM, K., AND WooOL, A. Fir-
mato: A novel firewall management toolkit. ACM Trans. Comput.
Syst. 22, 4 (2004), 381-420.

[7] CHARALAMBIDES, M., FLEGKAS, P., PAvLOU, G., BAN-
DARA, A. K., Lupru, E. C., Russo, A., DULAY, N., SLo-
MAN, M., AND RUBIO-LOYOLA, J. Policy conflict analysis for
quality of service management. In POLICY ’05: Proceedings
of the Sixth IEEE International Workshop on Policies for Dis-
tributed Systems and Networks (POLICY’05) (Washington, DC,
USA, 2005), IEEE Computer Society, pp. 99-108.

[8] COLVILLE, R. J., AND SCOTT, D. Vendor Landscape: Server
Provisioning and Configuration Management. Gartner Research,
May 2008.

[9] FEYRER, H. g4u homepage. http://www.feyrer.de/g4u/.

[10] Fu, Z.J., AND WU, S. F. Automatic generation of ipsec/vpn

security policies in an intra-domain environment, 2001.

[11] GARBANI, J.-P., AND O’NEILL, P. The IT Management Soft-

ware Megavendors. Forrester, August 2009.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

HABER, E. M., AND BAILEY, J. Design guidelines for system
administration tools developed through ethnographic field stud-
ies. In CHIMIT ’07: Proceedings of the 2007 symposium on
Computer human interaction for the management of information
technology (New York, NY, USA, 2007), ACM, ACM, p. 1.

HREBEC, D. G., AND STIBER, M. A survey of system admin-
istrator mental models and situation awareness. In SIGCPR ’01:
Proceedings of the 2001 ACM SIGCPR conference on Computer
personnel research (New York, NY, USA, 2001), ACM, ACM,
pp. 166-172.

Lupru, E., AND SLOMAN, M. Conflict analysis for management
policies. In Proceedings of the Vth International Symposium on
Integrated Network Management IM’97 (May 1997), Chapman
& Hall, pp. 1-14.

MARTIN-FLATIN, J.-P., ZNATY, S., AND HUBAUX, J.-P. A
survey of distributed enterprise network andsystems management
paradigms. J. Netw. Syst. Manage. 7, 1 (1999), 9-26.

MOFFETT, J. D. Requirements and policies. In Proceedings of
the Policy Workshop (November 1999).

NARAIN, S. Towards a foundation for
building distributed systems via configuration.
http://www.argreenhouse.com/papers/narain/Service-Grammar-
‘Web-Version.pdf, 2004.

OPPENHEIMER, D. The importance of understanding distributed
system configuration. In Proceedings of the 2003 Conference on
Human Factors in Computer Systems workshop (April 2003).

OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D. A.
Why do internet services fail, and what can be done about it? In
USITS 03: Proceedings of the 4th conference on USENIX Sympo-
sium on Internet Technologies and Systems (Berkeley, CA, USA,
2003), USENIX Association, USENIX Association, p. 1-1.

OPPENHEIMER, D., AND PATTERSON, D. A. Studying and us-
ing failure data from large-scale internet services. In EWI0: Pro-
ceedings of the 10th workshop on ACM SIGOPS European work-
shop (New York, NY, USA, 2002), ACM, ACM, p. 255-258.

Partimage homepage. http://www.partimage.org.

PATTERSON, D. A. A simple way to estimate the cost of down-
time. In Proceedings of the 16th USENIX conference on System
administration (Berkeley, CA, USA, 11/2002 2002), USENIX
Association, USENIX Association, p. 185-188.

RAYMER, D., STRASSNER, J., LEHTIHET, E., AND VAN DER
MEER, S. End-to-end model driven policy based network man-
agement. In Policies for Distributed Systems and Networks, 2006.
Policy 2006. Seventh IEEE International Workshop (2006), p. 4.

SYMANTEC. Norton Ghost

http://www.symantec.com/ghost.

Homepage.

VERMA, D. Simplifying network administration using policy-
based management. IEEE Network 16,2 (Mar/Apr 2002), 20-26.

LISA ’10: 24th Large Installation System Administration Conference

USENIX Association

High Performance Multi-Node File Copies and Checksums
for Clustered File Systems*

Paul Z. Kolano, Robert B. Ciotti
NASA Advanced Supercomputing Division
NASA Ames Research Center, M/S 258-6
Moffett Field, CA 94035 U.S.A.
{paul.kolano,bob.ciotti}@nasa.gov

Abstract

Mcp and msum are drop-in replacements for the stan-
dard cp and md5sum programs that utilize multiple types
of parallelism and other optimizations to achieve maxi-
mum copy and checksum performance on clustered file
systems. Multi-threading is used to ensure that nodes are
kept as busy as possible. Read/write parallelism allows
individual operations of a single copy to be overlapped
using asynchronous I/O. Multi-node cooperation allows
different nodes to take part in the same copy/checksum.
Split file processing allows multiple threads to operate
concurrently on the same file. Finally, hash trees allow
inherently serial checksums to be performed in parallel.
This paper presents the design of mcp and msum and de-
tailed performance numbers for each implemented opti-
mization. It will be shown how mcp improves cp perfor-
mance over 27x, msum improves md5sum performance
almost 19x, and the combination of mcp and msum im-
proves verified copies via cp and mdSsum by almost
22x.

1 Introduction

Copies between local file systems are a daily activity.
Files are constantly being moved to locations accessible
by systems with different functions and/or storage lim-
its, being backed up and restored, or being moved due
to upgraded and/or replaced hardware. Hence, maximiz-
ing the performance of copies as well as checksums that
ensure the integrity of copies is desirable to minimize
the turnaround time of user and administrator activities.
Modern parallel file systems provide very high perfor-
mance for such operations using a variety of techniques
such as striping files across multiple disks to increase ag-
gregate 1/0 bandwidth and spreading disks across multi-
ple servers to increase aggregate interconnect bandwidth.

*This work is supported by the NASA Advanced Supercomputing
Division under Task Number ARC-013 (Contract NNA0O7CA29C) with
Computer Sciences Corporation

To achieve peak performance from such systems, it is
typically necessary to utilize multiple concurrent read-
ers/writers from multiple systems to overcome various
single-system limitations such as number of processors
and network bandwidth. The standard cp and md5sum
tools of GNU coreutils [11] found on every modern
Unix/Linux system, however, utilize a single execution
thread on a single CPU core of a single system, hence
cannot take full advantage of the increased performance
of clustered file system.

This paper describes mcp and msum, which are drop-
in replacements for cp and mdSsum that utilize multi-
ple types of parallelism to achieve maximum copy and
checksum performance on clustered file systems. Multi-
threading is used to ensure that nodes are kept as busy
as possible. Read/write parallelism allows individual op-
erations of a single copy to be overlapped using asyn-
chronous I/0. Multi-node cooperation allows different
nodes to take part in the same copy/checksum. Split
file processing allows multiple threads to operate con-
currently on the same file. Finally, hash trees allow in-
herently serial checksums to be performed in parallel.

This paper is organized as follows. Section 2 presents
related work. Section 3 describes the test environment
used to obtain performance numbers. Section 4 dis-
cusses the various optimization strategies employed for
file copies. Section 5 details the additional optimizations
employed for file checksums. Section 6 describes how
adding checksum capabilities to file copies decreases
the cost of integrity-verified copies. Finally, Section 7
presents conclusions and related work.

2 Related Work

There are a variety of efforts related to the problem ad-
dressed by this paper. SGI ships a multi-threaded copy
program called cxfscp [25] with their CXFS file system
[27] that supports direct I/O and achieves significant per-
formance gains over cp on shared-memory systems, but

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 15

offers minimal benefit on cluster architectures. Stream-
ing parallel distributed cp (spdcp) [17] has similar goals
as mcp and achieves very high performance on clustered
file systems using MPI to parallelize transfers of files
across many nodes. Like mcp, spdcp can utilize multiple
nodes to transfer a single file. The spdcp designers made
the conscious decision to develop from scratch, however,
instead of using GNU coreutils as a base, whereas mcp
started with coreutils to support all available cp options
and to take advantage of known reliability characteris-
tics. Mcp can also use a TCP model as well as MPI to
support a larger class of systems.

Ong et al. [20] describe the parallelization of cp and
other utilities using MPI. The cp command described,
however, was designed to transfer the same file to many
nodes as opposed to mcp, which was designed to allow
many nodes to take part in the transfer of the same file.
Desai et al. [9] use a similar strategy to create a paral-
lel rsync utility that can synchronize files across many
nodes at once. Peer-to-peer file sharing protocols such as
BitTorrent [6] utilize multiple data streams for a single
file to maximize network utilization from low bandwidth
sources and support parallel hashing where the integrity
of each piece may be verified independently.

High performance remote file transfer protocols such
as bbFTP [3] and GridFTP [1] use multiple data streams
for portions of the same file to overcome single stream
TCP performance limitations. GridFTP additionally sup-
ports striped many-to-many transfers to aggregate net-
work and I/O bandwidth. HPN-SSH [22] is a high perfor-
mance version of SSH that achieves significant speedups
using dynamically adjusted TCP receive windows. In ad-
dition, HPN-SSH incorporates a multi-threaded version
of the AES counter mode cipher that increases perfor-
mance further by parallelizing MAC and cipher opera-
tions on both the sender and receiver.

There are several related multi-threaded programs for
the Windows operating systems. RichCopy [14] supports
multi-threading in addition to the ability to turn off the
system buffer, which is similar to mcp’s direct I/O op-
tion. MTCopy [15] operates in a similar manner as mcp
with a single file traversal thread and multiple worker
threads. MTCopy also has the ability like mcp to split
the processing of large files amongst multiple threads.
HP-UX MDS5 Secure Checksum [13] is an md5sum util-
ity that uses multi-threading to compute the checksums
of multiple files at once. Unlike msum, however, it can-
not parallelize the checksum of a single file.

A variety of work uses custom hardware to increase
checksum performance. Deepakumara et al. [8] describe
a high speed FPGA implementation of MDS5 using loop
unrolling. Campobello et al. [4] describe a technique to
generate high performance parallelized CRC checksums
in compact circuits. CRCs are fast but are unsuitable for

integrity checks of large files.

In general, checksums are not easily parallelizable
since individual operations are not commutative. A
general technique, used by mcp and msum, is based
on Merkle trees [18], which allow different subtrees of
hashes to be computed independently before being con-
solidated at the root. A similar approach is described
by Sarkar and Schellenberg [23] to parallelize any hash
function using a predetermined number of processors,
which was used to create a parallel version of SHA-256
call PARSHA-256 [21]. Fixing the number of proces-
sors limits achievable concurrency, however, so mcp and
msum instead use a predetermined leaf size in the hash
tree, which allows an arbitrary number of processors to
operate on the same file.

The underlying file system and hardware determine
the maximum speed achievable by file copies and check-
sums. High performance file systems such as Lustre
[26], CXFS [27], GPFS [24], and PVFS [5] utilize par-
allel striping across large numbers of disks to achieve
higher aggregate performance than can be achieved from
a single-disk file system.

3 Test Environment

All performance testing was carried out using dedicated
jobs on the Pleiades supercluster at NASA Ames Re-
search Center, which was recently ranked as the sixth
fastest computer system in the world [29] with peak per-
formance of 1.009 PFLOPs/s. Pleiades currently con-
sists of 84,992 cores spread over 9472 nodes, which are
connected by DDR and QDR Infiniband. There are three
types of nodes with different processor and memory con-
figurations. The nodes used for testing consist of a pair
of 3.0 GHz quad-core Xeon Harpertown processors with
6 MB cache per pair of cores and 1 GB DDR2 memory
per core for a total of 8 GB per node.

All file copies were performed between Lustre file sys-
tems, each with 1 Metadata Server (MDS) and 8 Object
Storage Servers (OSS) serving 60 Object Storage Targets
(OST). Based on the IOR benchmark [12], the source
file system has peak read performance of 6.6 GB/s while
the destination file system has peak write performance of
10.0 GB/s. Since copies can only progress at the mini-
mum of the read and write speeds, the peak copy per-
formance of this configuration is 6.6 GB/s. Checksums
were performed on the same source file system, hence
peak achievable checksum performance is also 6.6 GB/s.
Both file systems had zero to minimal load during test-
ing.

Two test cases are used throughout the paper. One case
consists of 64 1 GB files while the other consists of a sin-
gle 128 GB file. Both sets of files were generated from
an actual 650 GB user data set. Before any tests could

16

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

be done, it was necessary to choose a Lustre stripe count
for the files that determines how many OSTs they are
striped across. Table 1 shows the performance of cp for
the two cases at the default (4 OSTs) and the maximum
(60 OSTs) stripe counts. As can be seen, the 64 file case
performs best at the default stripe count while the single
file case performs best at the maximum. In the 64 file
case, the maximum stripe count yields too much paral-
lelism as every OST has to be consulted for every file.
In the single file case, the default stripe count yields too
little parallelism as large chunks of the file will reside on
the same OST, which limits how much I/O bandwidth is
available for the copy.

All operations in the remainder of the paper will use
the default stripe count for the 64 file case and the max-
imum stripe count for the single file case. The corre-
sponding cp performance of 174 MB/s for the 64 file
case and 240 MB/s for the single file case represent the
baseline that the various optimizations throughout the re-
mainder should be compared against.

[tool | stripe count | 64x1 GB [1x128 GB
cp default 174 102
cp maximum 132 240

Table 1: Copy performance (MB/s) vs. stripe count

4 File Copy Optimization

4.1 Multi-Threaded Parallelism

In general, copying regular files is an embarrassingly par-
allel task since files are completely independent from one
another. The processing of the hierarchy of directories
containing the files, however, must be handled with care.
In particular, a file’s parent directory must exist and must
be writable when the copy begins and must have its orig-
inal permissions and ACLs when the copy completes.

The multi-threaded modifications to the cp command
of GNU coreutils [11] utilize three thread types as shown
in Figure 1 implemented via OpenMP [7]. A single
traversal thread operates like the original cp program,
but when a regular file is encountered, a copy task is
pushed onto a shared task queue instead of performing
the copy. Mutual exclusivity of all queues discussed is
provided by semaphores based on OpenMP locks. Be-
fore setting properties of the file, such as permissions,
the traversal thread waits until an open notification is re-
ceived on a designated open queue, after which it will
continue traversing the source tree.

One or more worker threads wait for tasks on the
task queue. After it receives a task, each worker opens
the source and target files, pushes a notification onto

the open queue, then reads/writes the source/target un-
til done. When stats are enabled, the worker pushes the
task (with embedded stats) onto a designated stat queue
and then waits for another task. The stat queue is pro-
cessed by the stat thread, which prints the results of each
copy task.

Table 2 shows the performance of multi-threading for
varying numbers of threads. As can be seen, multi-
threading alone has some benefit in the many file case
up to 4 threads, after which the kernel buffer cache most
likely becomes a bottleneck. For the single file case,
multi-threading alone has no benefit since all but one
thread sit idle while the file is being transferred. This
case will be addressed in the next section.

[tool | threads | 64x1 GB [1x128 GB
mcp 1 177 248
mcp 2 271 248
mcp 4 326 248
mcp 8 277 248

Table 2: Multi-threaded copy performance (MB/s)

4.2 Single File Parallelization

As seen in the previous section, a number of files less
than the number of threads results in imbalanced utiliza-
tion and correspondingly lower performance. To evenly
distribute workload across threads, mcp supports split
processing of a single file so that multiple threads can
operate on different portions of the same file. Figure 2
shows the processing by the traversal thread and worker
threads when split processing is added. The main dif-
ference is that the traversal thread may add a number of
tasks up to the size of the file divided by the split size and
worker threads will seek to the correct location first and
only process up to split size bytes.

Table 3 shows the performance of multi-threaded
copies of a single large file when different split sizes are
used. As can be seen, performance is increased from
the unsplit case, but only minimal speedup is seen as
the number of threads increases. In Section 4.5, how-
ever, significant benefits will be shown when splitting
over multiple nodes. In addition, the table shows very lit-
tle difference between the performance at different split
sizes indicating that overhead from splitting is minimal.
Since there is minimal difference, a split size of 1 GB
will be used throughout the remainder of the results in
the paper.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 17

Traversal Thread

(ﬁle = traverse(source))

vh

regular(file) | normal_cp_behavior |

Stat Thread

task = pop(send_q)
print(stats(task))

Worker Thread

task = pop(task_q)
open(files(task))

push(task_q, new_task(file)) |

pop(open_gq)

| set_properties(file) |

| push(open_q, done) |

| read(src_file(task), buffer) |

v}

| write(dst_file(task), buffer) |

/

| push(send_q, task) |

Figure 1: Multi-threaded copy processing

[tool | threads | split size | 1x128 GB
mcp 2 1 GB 286
mcp 2 16 GB 296
mcp 4 1 GB 324
mcep 4 16 GB 322
mcp 8 1 GB 336
mcp 8 16 GB 336

Table 3: Split file copy performance (MB/s)

4.3 Buffer Management

As witnessed in the Section 4.1, increasing the number of
threads yields minimal gains at a certain point. One is-
sue is that file copies generally exhibit poor buffer cache
utilization since file data is read once, but then never ac-
cessed again. This increases CPU workload by the kernel
and decreases performance of other I/O as it thrashes the
buffer cache. To address this problem, mcp supports two
buffer cache management approaches.

The first approach is to use file advisory informa-
tion via the posix_fadvise() function, which allows pro-
grams to inform the kernel about how it will access data
read/written from/to a file. Since mcp only uses data
once, it advises the kernel to release the data as soon as it
is read/written. The second approach is to skip the buffer
cache entirely using direct I/O. In this case, all reads and
writes go direct to disk without ever touching the buffer
cache.

Table 4 shows the performance of multi-threaded
copies when fadvise and direct I/O are utilized with dif-
ferent buffer sizes. As can be seen, performance in-
creases significantly for both cases. Direct I/O achieves

about double the performance of fadvise for a single
node, but as will be seen in Section 4.5, the performance
difference decreases as the number of nodes increases.
From this point forward, 128 MB buffers will be used
to maximize performance, although this size of buffer is
impractical on multi-user systems due to memory limi-
tations. More reasonable 4 MB buffers, however, have
been found in testing to achieve a significant fraction of
the performance of larger buffers.

4.4 Read/Write Parallelism

In the original cp implementation, a file is copied through
a sequence of blocking read and write operations across
each section of the file. Through the use of double buffer-
ing, it is possible to exploit additional parallelism be-
tween reads of one section and writes of another. Fig-
ure 3 shows how each worker thread operates in double
buffering mode. The main difference is with the write
of each file section. Instead of using a standard blocking
write, an asynchronous write is triggered via aio_write(),
which returns immediately. The read of the next section
of the file cannot use the same buffer as it is still being
used by the previous asynchronous write, so a second
buffer is used. During the read, a write is also being per-
formed, thereby theoretically reducing the original time
to read each section from time(read) + time(write) to
max(time(read), time(write)). After the read completes,
the worker thread blocks until the write is finished (if not
already done by that point) and the next cycle begins.
Table 5 shows the copy performance of double buffer-
ing for each buffer management scheme across a vary-
ing number of threads. As can be seen, double buffering
increases the performance of the 64 file case across all

18

LISA ’10: 24th Large Installation System Administration Conference

USENIX Association

Traversal Thread

(ﬁle = traverse(source))

vi

regular(file) | normal_cp_behavior |

push(task_q, new_task(file, offset)) |

pop(open_q)

offset += split_size

/

Worker Thread

task = pop(task_q)
open(files(task))

| push(open_q, done) |

y
| seek(files(task), offset(task)) |

| set_properties(file) |

| read(src_file(task), buffer) |

bytes <= split_size

| write(dst_file(task), buffer) |

./

| push(send_q, task) |

Figure 2: Split file copy processing

numbers of threads. The single file case, however, yields
minimal benefit with the exception of the 1 thread case.
It is clear a bottleneck exists in the single file case from a
single node, but further investigation is needed to deter-
mine the exact cause. Double buffering is enabled in all
remaining copy results.

4.5 Multi-Node Parallelism

While the results in Table 5 show significant speedup
compared to the original cp implementation, it is still a
fraction of the peak performance of the file system, hence
it is unlikely that a single node can ever achieve the max-
imum. For this reason, mcp supports multi-node paral-
lelism using both TCP and MPI models. Only the TCP
model will be discussed as it is the more portable case
and many of the processing details are similar.

In the multi-node TCP model, one node is designated
as the manager node and parcels out copy tasks to worker
nodes. The manager node is the only node that runs a
traversal thread and stat thread. Both types of nodes have
some number of worker threads as in the multi-threaded
case. In addition, each node runs a TCP thread that is re-
sponsible for handling TCP-related activities, whose be-
havior is shown in Figure 4. The manager TCP thread
waits for connections from worker TCP threads. A con-
nection is initiated by a worker TCP thread whenever a
worker thread on the same node is idle. If the worker
previously completed a task, its stats are forwarded to
the manager stat thread via the manager TCP thread. In

all cases, the manager thread pops a task from the task
queue and sends it back to the worker TCP thread, where
it is pushed onto the local task queue for worker threads.

TCP communication introduces security concerns, es-
pecially for copies invoked by the root user. Integrity
concerns include lost or blocked tasks, where files may
not be updated that are supposed to be, replayed tasks
where files may have changed between legitimate copies,
and/or modified tasks with the source and destination
changed arbitrarily. The main confidentiality concern is
that contents of normally unreadable directories may be
revealed if tasks are intercepted on the network or falsely
requested from the manager. Finally, availability can be
disrupted by falsely requesting tasks and/or by normal
network denials of service.

To protect against TCP-based attacks, all communica-
tion is secured by Transport Layer Security (TLS) with
Secure Remote Password (SRP) authentication [28].
TLS [10] provides integrity and privacy using encryp-
tion so tasks cannot be intercepted, replayed, or modi-
fied over the network. SRP [30] provides strong mutual
authentication so worker nodes will only perform tasks
from legitimate manager nodes and manager nodes will
only reveal task details to legitimate worker nodes.

Table 6 shows the copy performance for different
numbers of total threads spread across a varying num-
ber of nodes. As can be seen, multi-node parallelism
achieves significant speedups over multi-threading alone,
especially for the single file case. For the same number
of total threads, performance increases as the number of

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 19

tool | threads | buffer size | 64x1 GB | 64x1 GB | 1x128 GB | 1x128 GB
(MB) (fadvise) | (directi/o) | (fadvise) | (directi/o)
mcp 1 32 216 383 227 408
1 64 219 401 226 411
1 128 226 388 204 415
mcp 2 32 360 689 319 670
2 64 372 723 317 696
2 128 402 683 313 723
mcp 4 32 541 1065 330 679
4 64 575 1039 327 699
4 128 610 1055 331 721
8 32 653 1185 332 685
8 64 681 1223 328 718
mcp 8 128 692 1336 328 743

Table 4: Buffer cache managed copy performance (MB/s)

tool | threads | 64x1 GB | 64x1 GB 1x128 GB | 1x128 GB
(fadvise) | (directi/o) | (fadvise) | (directi/o)
mcp 1 303 645 329 645
mcp 2 503 1111 329 709
mcp 4 653 1557 327 725
mcp 8 663 1763 325 731

Table 5: Double buffered copy performance (MB/s)

nodes increases as there is greater aggregate bandwidth

unsuitable for verifying standard hashes.

Hence, the

and less resource contention. Direct I/O achieved the
highest performance using 16 nodes and a single thread,
while fadvise was best in the cases with the largest num-
ber of nodes and threads. While fadvise performed sig-
nificantly worse than direct I/O in earlier sections, it ac-
tually surpasses direct I/O in some of the larger 64 file
cases and achieved the fastest overall performance at 4.7
GB/s.

5 File Checksum Optimization

5.1 Multi-Threaded Parallelism

The greater the amount of data copied, the greater the
possibility for data corruption [2]. The traditional ap-
proach to verifying integrity is to checksum the file at
both the source and target and ensure that the values
match. Checksums are inherently serial, however, so
many of the techniques of the previous sections cannot be
applied to any but the most trivial checksum algorithms.

Instead of parallelizing the algorithms themselves, se-
rial algorithms are utilized in parallel through the use of
Merkle (hash) trees [18] as mentioned previously. This
functionality is implemented in a modification to the
md5Ssum command of GNU coreutils called msum. Note
that the use of hash trees makes multi-threaded msum

main purpose of msum is to verify the integrity of copies
within the same organization or across organizations that
both use msum. This limitation is necessary for perfor-
mance, however, as most standard hashes cannot be par-
allelized.

Msum uses a processing model that is similar to the
mcp model shown in Figure 1. The msum traversal
thread, however, is based on mdSsum functionality with
correspondingly less complexity. Figure 5 shows the pro-
cessing by the msum stat thread (which has become the
stat/hash thread) and worker threads. After copying their
portion of the file, worker threads also create a hash tree
of that portion, which is embedded in the task sent back
to the stat/hash thread through the TCP threads. The
stat/hash thread computes the root of the hash tree when
all portions have been received.

Table 7 shows the performance of msum across vary-
ing numbers of threads and buffer management schemes.
Note that msum utilizes libgcrypt [16] to enable support
for many different hash types besides MDS5, hence per-
formance is not strictly comparable between the md5sum
implementation and msum. As can be seen, significant
performance gains are achieved by multi-threading even
without buffer management. Direct I/O yields sizable
gains while the gains by fadvise are more minimal.

20

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

Manager Node TCP Thread

Worker Node TCP Thread

(worker = accept)

(n_threads * push(send_q, empty))

read(worker, data)
empty(data)

push(stat_q, data)
\ 4

task = pop(task_q)
\

| write(worker, task) |

| data = pop(send_q) |_

| main = connect(main_host) |

write(main, data)
read(main, task)

push(task_q, task)

Figure 4: Multi-node copy processing

Worker Thread

task = pop(task_q)
open(files(task)) ‘\

| push(open_q, done) |

| seek(files(task), offset(task)) |

| read(src_file(task), buffer[i]) |

v

| aio_suspend(write) |

| aio_write(dst_file(task), buffer[i]) |

bytes <= split_size

| push(send_q, task) |

Figure 3: Double buffered copy processing

5.2 Read/Hash Parallelism

Like the original cp implementation, the original
md5sum implementation uses blocking I/O during reads
of each section of the file. Double buffering can again
be used to exploit additional parallelism between reads
of one section and the hash computation of another. Fig-
ure 6 shows how each worker thread operates in double
buffered mode within msum. In this mode, an initial read

Worker Thread

task = pop(task_q)
open(files(task))

| push(open_q, done) |

Stat/Hash Thread

task = pop(send_q)

print(stats(task))

last_split(task)

y
| hash_final(task) | seek(files(task), offset(task)) |

X |/ v

| print(hash(task)) | | read(src_file(task), buffer) |

bytes <= split_size

/

| push(send_q, task) |

| hash_tree(task, buffer) |

Figure 5: Multi-threaded checksum processing

is used to seed one buffer. When that read completes,
an asynchronous read is triggered via aio_read() into the
second buffer. During this read, the hash of the first
buffer is computed, after which the buffers are swapped
and execution proceeds to the next section of the file after
blocking until the previous read completes.

Double buffering theoretically reduces the original
time to process each section of the file from time(read)
+ time(hash) to max(time(read), time(hash)) with best
performance achieved when the time to read each sec-

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 21

tool | threads || nodes threads 64x1 GB | 64x1 GB | 1x128 GB | 1x128 GB
(total) (per node) | (fadvise) | (directi/o) | (fadvise) | (directi/o)
mep| 2 [2 | 1 | 578 | 1161 | 273 | 1080 |
mcp 4 2 2 969 1673 379 1248
mcp 4 4 1 1119 2074 689 2001
mcp 8 2 4 1256 1857 426 1239
mcp 8 4 2 1818 2996 1068 2316
mcp 8 8 1 2058 3213 1289 3196
mcp 16 2 8 1276 2807 451 1226
mcp 16 4 4 2398 3446 1187 2208
mcp 16 8 2 3187 3599 1787 3723
mcp 16 16 1 3474 4098 2786 4501
mcp 32 4 8 2411 2957 1189 2142
mcp 32 8 4 3430 3459 2257 3706
mcp 32 16 2 4510 4011 3110 3930
mcp 64 8 8 3216 3346 2253 3626
mcp 64 16 4 4735 4011 3620 3914
mep | 128 [16 | 8 \ - \ - | 3824 [4400 |
Table 6: Multi-node copy performance (MB/s)
tool threads | 64x1 GB | 64x1 GB | 64x1 GB | 1x128 GB | 1x128 GB | 1x128 GB
(fadvise) | (direct i/0) (fadvise) | (direct i/0)
md5sum 1 309 - - 286 - -
msum 1 278 284 330 263 265 349
msum 2 541 536 625 378 385 483
msum 4 906 903 1092 570 626 698
msum 8 886 908 1355 508 692 711

Table 7: Multi-threaded checksum performance (MB/s)

tion is the same as the time to hash each section. Ta-
ble 8 shows the performance achieved by double buffer-
ing within msum for each buffer management scheme
across a varying number of threads. As can be seen, dou-
ble buffering increases the performance of all the 64 file
cases except the 8 thread direct I/O case and all the sin-
gle file cases except the 8 thread fadvise case. Double
buffering is enabled in all remaining checksum results.

5.3 Multi-Node Parallelism

Msum supports the same TCP and MPI models as mcp
for multi-node parallelism. TCP threads behave identi-
cally to those shown for mcp in Figure 4. Table 9 shows
the checksum performance for different numbers of to-
tal threads spread across a varying number of nodes. As
can be seen, multi-node parallelism achieves significant
speedups over multi-threading alone. As was the case
with mcp, performance generally increases for the same
number of total threads as the number of nodes increases
as there is greater aggregate bandwidth and less resource

contention.

Both fadvise and direct I/O achieved the highest per-
formance with 16 nodes and 2 threads in the 64 file case
and with 16 nodes and 8 threads in the single file case.
Once again, fadvise began to yield higher performance
than direct I/O in some of the larger cases and once again
had the highest overall performance at 5.8 GB/s. Note
that this is 88% of peak of the file system and includes
hashes as well as reads.

6 Verified File Copy Optimization

6.1 Buffer Reuse

In a typical integrity-verified copy, a file is checksummed
at the source, copied, and then checksummed again at the
destination to gain assurance that the bits at the source
were copied accurately to the destination. This pro-
cess normally requires two reads at the source since the
checksum and copy programs are traditionally separate
so each must access the data independently. Adding

22

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

tool | threads | 64x1 GB | 64x1 GB | 1x128 GB | 1x128 GB
(fadvise) | (directi/o) | (fadvise) | (directi/o)

msum 1 428 489 461 520

msum 2 811 973 462 522

msum 4 926 1647 662 766

msum 8 936 1315 613 776

Table 8: Double buffered checksum performance (MB/s)
tool threads || nodes threads 64x1 GB | 64x1 GB 1x128 GB | 1x128 GB
(total) (per node) | (fadvise) | (directi/o) | (fadvise) | (directi/o)
] msum \ 2 H 2 \ 1 \ 821 \ 928 \ 471 \ 603 ‘

msum 2 2 1522 1834 832 939
msum 4 4 1 1487 1744 820 1027
msum 8 2 4 1819 2845 1298 1330
msum 8 4 2 2837 3122 1454 1798
msum 8 8 1 2844 3130 1808 2225
msum 16 2 8 1649 2979 1165 1076
msum 16 4 4 3218 3689 1891 1944
msum 16 8 2 4820 5292 3148 3654
msum 16 16 1 4770 4957 3248 3397
msum 32 4 8 3248 3719 1759 1936
msum 32 8 4 4664 4183 4640 4256
msum 32 16 2 5812 5613 4533 4856
msum 64 8 8 4114 3680 4256 3579
msum 64 16 4 5543 5131 4595 5114
[msum | 128 [16 | 8 - - | 5192 [5227

Table 9: Multi-node checksum performance (MB/s)

checksum functionality into the copy portion eliminates
one of the reads to increase performance. Mcp incorpo-
rates checksums for this reason. This processing is sim-
ilar to Figure 5 except the buffer is written between the
read and the hash computation.

Table 10 shows the performance of copying with
checksums for varying numbers of threads and different
buffer management schemes. As was the case with the
standard copy results in Table 4, direct I/O outperforms
fadvise on a single node with the 64 file case achieving
better results than the single file case.

6.2 Read/Hash Parallelism

The double buffering improvements of Section 5.2 were
incorporated into mcp’s checksum functionality with
processing similar to Figure 6 with an additional write af-
ter the hash. Ideally, both the read of the next section and
the write of the current section could be performed while
the hash of the current section was being computed. This
approach was implemented, but did not behave as ex-
pected, possibly due to concurrency controls within the

file system. Further investigation is warranted as this
would provide an additional increase in performance. Ta-
ble 11 shows the performance increases achieved with
double buffering during copies with checksums. As can
be seen, performance increases in all but the 64 file fad-
vise case.

6.3 Multi-Node Parallelism

Table 12 shows the multi-node performance of copies in-
corporating checksum functionality. Peak performance
of just under 4.0 GB/s was achieved with 8 nodes and 4
threads in the 64 file direct I/O case.

Table 13 is a composite view of Tables 5, 6, 8, 9, 11,
and 12 that shows the performance of integrity-verified
copies using the traditional checksum + copy + check-
sum versus a copy with embedded checksum + check-
sum. As can be seen, performance is better in almost ev-
ery case with only a few scattered exceptions. Both fad-
vise and direct I/O achieve verified copies over 2 GB/s
with 16 nodes and 2 threads in the 64 file case.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 23

tool threads | 64x1 GB | 64x1 GB | 1x128 GB | 1x128 GB
(fadvise) | (directi/o) | (fadvise) | (directi/o)
mcp (w/ sum) 1 156 224 92 201
mcp (w/ sum) 2 294 428 152 376
mcp (w/ sum) 4 503 770 216 510
mcp (w/ sum) 8 629 1102 266 602
Table 10: Copy with checksum performance (MB/s)
tool threads | 64x1 GB | 64x1 GB | 1x128 GB | 1x128 GB
(fadvise) | (directi/o) | (fadvise) | (directi/o)
mcp (w/ sum) 1 190 290 104 222
mcp (w/ sum) 2 356 558 171 400
mcp (w/ sum) 4 561 966 235 560
mcp (w/ sum) 8 626 1498 275 671

Table 11: Double buffered copy with checksum performance (MB/s)

7 Conclusions and Future Work

Mcp and msum provide significant performance im-
provements over standard cp and mdSsum using multi-
ple types of parallelism and other optimizations. Tables
14, 15, and 16 show the maximum speedups obtained at
each stage of optimization for copies, checksums, and
integrity-verified copies, respectively. The relative ef-
fectiveness of each optimization is difficult to discern
as they build upon each other and would have different
peak speedups if applied in a different order. The total
speedups from all improvements, however, is significant.
Mcp improves cp performance over 27X, msum improves
mdSsum performance almost 19x, and the combination
of mcp and msum improves verified copies via cp and
mdSsum by almost 22x. These improvements come in
the form of drop-in replacements for cp and mdSsum so
are easily used and are available for download as open
source software [19].

There are a variety of directions for future work. Cur-
rently, only optimized versions of cp and mdSsum have
been implemented from GNU coreutils. Optimized ver-
sions of the coreutils install and mv utilities should also
be implemented as they would immediately benefit from
the same techniques. In general, other common single-
threaded utilities should be investigated to see if similar
optimizations can be made.

Another area of study is to determine if mcp can be
made into a remote transfer utility. While it currently
can only be used for copies between local file systems,
mcp already contains network authentication process-
ing in the multi-node parallelization. In addition, most
of the other techniques would be directly applicable to
a high performance multi-node striping transfer utility.
The missing component is a network bridge between the

local read buffer and remote write buffer. The buffer
reuse optimizations to checksums can be used directly
to support integrity-verified remote transfers.

Although not discussed, mcp and msum both have
the ability to store intermediate hash tree values within
file system extended attributes. The purpose of this fea-
ture is to allow file corruption to be detected and pre-
cisely located over time in persistent files. The use of ex-
tended attributes has been found to be impractical, how-
ever, when the hash leaf size is small since only some
file systems such as XFS support large extended attribute
sizes and read/write performance of extended attributes
is suboptimal. Further investigation is required to deter-
mine if greater generality and higher performance can be
achieved using a mirrored hierarchy of regular files that
contain the intermediate hash tree values.

References

[1] W. Allcock, J. Bresnahan, R. Kettimuthu, M.
Link, C. Dumitrescu, I. Raicu, I. Foster: The
Globus Striped GridFTP Framework and Server.
ACM/IEEE Supercomputing 2005 Conf., Nov.
2005.

[2] L.N. Bairavasundaram, G.R. Goodson, B.
Schroeder, A.C. Arpaci-Dusseau, R.H. Arpaci-
Dusseau: An Analysis of Data Corruption in the
Storage Stack. 6th USENIX Conf. on File and
Storage Technologies, Feb. 2008.

[3] BbFTP. http://doc.in2p3.fr/bbftp.

[4] G.Campobello, G. Patane, M. Russo: Paralle]l CRC
Realization. IEEE Trans. on Computers, vol. 52,
no. 10, Oct. 2003.

[5] PH. Carns, W.B. Ligon, R.B. Ross, R. Thakur:
PVES: A Parallel File System for Linux Clusters.

24

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

tool threads || nodes threads 64x1 GB | 64x1 GB | 1x128 GB | 1x128 GB
(total) (per node) | (fadvise) | (directi/o) | (fadvise) | (directi/o)

] mcp (w/ sum) \ 2 H 2 \ 1 \ 375 \ 554 \ 197 \ 439 ‘
mcp (w/ sum) 4 2 2 682 1028 257 779
mcp (wW/ sum) 4 4 1 714 1028 380 833
mcp (w/ sum) 8 2 4 1075 1756 398 1106
mcp (wW/ sum) 8 4 2 1304 1815 611 1396
mcp (w/ sum) 8 8 1 1387 1858 722 1545
mcp (w/ sum) 16 2 8 1185 2506 617 1568
mcp (W/ sum) 16 4 4 2000 2716 825 1905
mcp (w/ sum) 16 8 2 2362 3032 1151 2233
mcp (w/ sum) 16 16 1 2439 2858 1319 2274
mcp (w/ sum) 32 4 8 2166 2809 907 2215
mcp (w/ sum) 32 8 4 3124 3952 1494 2318
mcp (w/ sum) 32 16 2 3229 3595 1973 3088
mcp (w/ sum) 64 8 8 2139 3147 1525 2693
mcp (w/ sum) 64 16 4 3275 3739 2353 3277

[mep (w/sum) [128 [16 | 8 \ - \ - | 2481 | 3183 |

Table 12: Multi-node copy with checksum performance (MB/s)

4th Annual Linux Showcase and Conf., Oct. 2000.

[6] B. Cohen: Incentives Build Robustness in BitTor-
rent. 1st Wkshp. on Economics of Peer-to-Peer Sys-
tems, Jun. 2003.

[7] L. Dagum, R. Menon: OpenMP: An Industry-
Standard API for Shared-Memory Programming.
IEEE Computational Science and Engineering, vol.
5, no. 1, Jan.-Mar. 1998.

[8] J. Deepakumara, H.M. Heys, R. Venkatesan: FPGA
Implementation of MD5 Hash Algorithm. 14th
IEEE Canadian Conf. on Electrical and Computer
Engineering, May 2001.

[9] N. Desai, R. Bradshaw, A. Lusk, E. Lusk:
MPI Cluster System Software. 11th European
PVM/MPI Users’ Group Meeting, Sept. 2004.

[10] T. Dierks, E. Rescorla: The Transport Layer Secu-
rity (TLS) Protocol Version 1.2. IETF Request for
Comments 5246, Aug. 2008.

[11] GNU Core Utilities. http://www.gnu.
org/software/coreutils/manual/
coreutils.html.

[12] R. Hedges, B. Loewe, T. McLarty, C. Morrone:
Parallel File System Testing for the Lunatic Fringe:
the care and feeding of restless /O Power Users.
22nd IEEE / 13th NASA Goddard Conf. on Mass
Storage Systems and Technologies, Apr. 2005.

[13] Hewlett Packard: HP-UX MDS5 Secure Check-
sum A.01.01.02 Release Notes. Sept. 2007.
http://docs.hp.com/en/5992-2115/
5992-2115.pdf.

[14] J. Hoffman: Utility Spotlight: RichCopy. TechNet

Magazine, Apr. 2009.

[15] Y.S. Li: MTCopy: A Multi-threaded Sin-
gle/Multi File Copying Tool. CodeProject arti-
cle, May 2008. http://www.codeproject.
com/KB/files/Lys_MTCopy.aspx.

[16] Libgcrypt. http://www.gnupg.org/
documentation/manuals/gcrypt.

[17] K.Matney, S. Canon, S. Oral: A First Look at Scal-
able I/O in Linux Commands. 9th LCI Intl. Conf.
on High-Performance Clustered Computing, Apr.
2008.

[18] R.C. Merkle: Protocols for Public Key Cryptosys-
tems. 1st IEEE Symp. on Security and Privacy, Apr.
1980.

[19] Multi-Threaded Multi-Node Utilities. http://
mutil.sourceforge.net.

[20] E. Ong, E. Lusk, W. Gropp: Scalable Unix
Commands for Parallel Processors: A High-
Performance Implementation. 8th European
PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message
Passing Interface, Sept. 2001.

[21] P. Pal, P. Sarkar: PARSHA-256 — A New Paralleliz-
able Hash Function and a Multithreaded Implemen-
tation. 10th Intl. Wkshp. on Fast Software Encryp-
tion, Feb. 2003.

[22] C. Rapier, B. Bennett: High Speed Bulk Data
Transfer Using the SSH Protocol. 15th ACM Mardi
Gras Conf., Jan. 2008.

[23] P. Sarkar, PJ. Schellenberg: A Parallel Algorithm
for Extending Cryptographic Hash Functions. 2nd

USENIX Association LISA ’10: 24th Large Installation System Administration Conference 25

[24]

[25]

[26]

(27]

(28]

[29]

(30]

Worker Thread

task = pop(task_q)
open(files(task))

| push(open_q, done) |

| seek(files(task), offset(task)) |

| aio_read(src_file(task), buffer[i]) |

aio_suspend(read)

v

| aio_read(src_file(task), buffer[!i]) |

v

| hash_tree(task, buffer[i]) |

bytes <= split_size

| push(send_q, task) |

Figure 6: Double buffered checksum processing

Intl. Conf. on Cryptology in India, Dec. 2001

F. Schmuck, R. Haskin: GPFS: A Shared-Disk
File System for Large Computing Clusters. 1st
USENIX Conf. on File and Storage Technologies,
Jan. 2002.

Silicon Graphics Intl.: Cxfscp Man Page.
http://techpubs.sgi.com/library/
tpl/cgi-bin/getdoc.cgi?coll=
0650&db=man&fname=/usr/share/
catman/a_man/catlm/cxfscp.z.

P. Schwan: Lustre: Building a File System for
1,000-node Clusters. 2003 Linux Symp., Jul. 2003.
L. Shepard, E. Eppe: SGI InfiniteStorage Shared
Filesystem CXFS: A High-Performance, Multi-OS
Filesystem from SGI. Silicon Graphics, Inc. white
paper, 2004.

D. Taylor, T. Wu, N. Mavrogiannopoulos, T. Perrin:
Using the Secure Remote Password (SRP) Protocol
for TLS Authentication. IETF Request for Com-
ments 5054, Nov. 2007.

TOP500 Supercomputing Sites, Jun. 2010. http:
//www.top500.0rg/lists/2010/06.

T. Wu: The Secure Remote Password Protocol.
5th ISOC Network and Distributed System Secu-
rity Symp., Mar. 1998.

26

LISA ’10: 24th Large Installation System Administration Conference

USENIX Association

tool threads || nodes threads 64x1 GB | 64x1 GB | 1x128 GB | 1x128 GB
(total) (per node) | (fadvise) | (directi/o) | (fadvise) | (directi/o)
’ mdSsum + cp + md5sum \ 1 H 1 \ 1 \ 100 \ 90 ‘
msum + mcp + msum 1 1 1 125 177 135 185
mcp (w/ sum) + msum 1 1 1 131 182 84 155
msum + mcp + msum 2 1 2 224 338 135 190
mcp (w/ sum) + msum 2 1 2 247 354 124 226
msum + mcp + msum 2 2 1 240 331 126 235
mcp (w/ sum) + msum 2 2 1 257 346 138 254
msum + mcp + msum 4 1 4 270 538 164 250
mcp (w/ sum) + msum 4 1 4 349 608 173 323
msum + mcp + msum 4 2 2 426 592 198 341
mcp (w/ sum) + msum 4 2 2 470 658 196 425
msum + mcp + msum 4 4 1 446 613 257 408
mcp (w/ sum) + msum 4 4 1 482 646 259 459
msum + mcp + msum 8 1 8 274 478 157 253
mcp (w/ sum) + msum 8 1 8 375 700 189 359
msum + mcp + msum 8 2 4 527 805 257 432
mcp (w/ sum) + msum 8 2 4 675 1085 304 603
msum + mcp + msum 8 4 2 796 1026 432 647
mcp (w/ sum) + msum 8 4 2 893 1147 430 785
msum + mcp + msum 8 8 1 840 1052 531 825
mcp (w/ sum) + msum 8 8 1 932 1165 515 911
msum + mcp + msum 16 2 8 500 973 254 373
mcp (w/ sum) + msum 16 2 8 689 1361 403 638
msum + mcp + msum 16 4 4 962 1201 526 674
mcp (w/ sum) + msum 16 4 4 1233 1564 574 962
msum + mcp + msum 16 8 2 1372 1524 836 1225
mcp (w/ sum) + msum 16 8 2 1585 1927 842 1386
msum + mcp + msum 16 16 1 1414 1544 1025 1233
mcp (w/ sum) + msum 16 16 1 1613 1812 938 1362
msum + mcp + msum 32 4 8 970 1141 505 666
mcp (w/ sum) + msum 32 4 8 1299 1600 598 1033
msum + mcp + msum 32 8 4 1388 1303 1144 1351
mcp (w/ sum) + msum 32 8 4 1870 2032 1130 1500
msum + mcp + msum 32 16 2 1767 1651 1311 1500
mcp (w/ sum) + msum 32 16 2 2075 2191 1374 1887
msum + mcp + msum 64 8 8 1254 1187 1094 1198
mcp (w/ sum) + msum 64 8 8 1407 1696 1122 1536
msum + mcp + msum 64 16 4 1748 1564 1405 1546
mcp (w/ sum) + msum 64 16 4 2058 2162 1556 1997
msum + mcp + msum 128 16 8 - - 1546 1639
mcp (w/ sum) + msum 128 16 8 - - 1678 1978

Table 13: Multi-node verified copy performance (MB/s)

USENIX Association

LISA °10: 24th Large Installation System Administration Conference

27

’ origin \ optimization \ peak speedup ‘
cp multi-threading 1.9
multi-threading split files 1.4
split files posix_fadvise 2.5
spit files direct I/O 4.8
posix_fadvise | double buffering 1.3
direct I/O double buffering 1.6
double buffering | multiple nodes 7.1
cp all 27.2

Table 14: Summary of copy optimizations

origin optimization peak speedup
mdSsum multi-threading 29
multi-threading split files 2.2
split files posix_fadvise 1.4
split files direct I/O 1.5
posix_fadvise | double buffering 1.7
direct I/O double buffering 1.6
double buffering | multiple nodes 6.2
’ md5Ssum \ all 18.8

Table 15: Summary of checksum optimizations

origin

optimization

\ peak speedup ‘

mdSsum + cp + md5sum

multi-threaded + split files +
buffer management + buffer reuse

6.1

multi-threaded + split files +
buffer management + buffer reuse

double buffering

1.2

double buffering

multiple nodes

10.7

’ mdSsum + cp + md5sum

|

all

21.9

Table 16: Summary of verified copy optimizations

28 LISA °10: 24th Large Installation System Administration Conference

USENIX Association

Fast and Secure Laptop Backups with Encrypted De-duplication

Paul Anderson
University of Edinburgh
dcspaul@ed.ac.uk

Keywords: backup, de-duplication, encryption, cloud
computing.

Abstract

Many people now store large quantities of personal and
corporate data on laptops or home computers. These of-
ten have poor or intermittent connectivity, and are vulner-
able to theft or hardware failure. Conventional backup
solutions are not well suited to this environment, and
backup regimes are frequently inadequate. This paper
describes an algorithm which takes advantage of the data
which is common between users to increase the speed of
backups, and reduce the storage requirements. This al-
gorithm supports client-end per-user encryption which is
necessary for confidential personal data. It also supports
a unique feature which allows immediate detection of
common subtrees, avoiding the need to query the backup
system for every file. We describe a prototype implemen-
tation of this algorithm for Apple OS X, and present an
analysis of the potential effectiveness, using real data ob-
tained from a set of typical users. Finally, we discuss the
use of this prototype in conjunction with remote cloud
storage, and present an analysis of the typical cost sav-
ings.

1 Introduction

Data backup has been an important issue ever since com-
puters have been used to store valuable information.
There has been a considerable amount of research on
this topic, and a plethora of solutions are available which
largely satisfy traditional requirements. However, new
modes of working, such as the extensive use of personal
laptops, present new challenges. Existing techniques do
not meet these challenges well, and many individuals and
organisations have partial, ad-hoc backup schemes which
present real risks. For example:

Le Zhang
University of Edinburgh
zhang.lel@ed.ac.uk

e Backups are often made to a local disk and copies
are not stored offsite.

e Backups are not encrypted and vulnerable to theft.

e Personal (rather than corporate) information is ac-
cidentally stored in plaintext on a corporate service
where it can be read by other employees.

e Backups often just include “user files” in the as-
sumption that “system files” can be easily recovered
from elsewhere!.

e The inconvenience of making backups leads to in-
frequent and irregular scheduling.

Even recent attempts to make backups largely transpar-
ent, such as Apple’s Time Machine [10] suffer from the
first two of the above problems, and may even lead users
into a false sense of data security.

There has recently been a proliferation of “Cloud”
backup solutions [3, 7, 12, 4, 1, 8, 6, 2]. In theory,
these are capable of addressing some of the above prob-
lems. But, in practice, complete backups are unreason-
ably slow?:

”I have a home Internet backup service and
about ITB of data at home. It took me about
three months to get all of the data copied off
site via my cable connection, which was the
bottleneck. If I had a crash before the off-site
copy was created, I would have lost data”

And many organisations may prefer to hold copies of the
backup data themselves.

!n practice, we found a small but significant number of unique files
outside of the "user space” (figure 3) which means that this may not be
such a reasonable assumption.

2Home broadband connections usually have upload speeds which
are very significantly less than the download speed

3Henry Newman, October 9th 2009 - http://www.
enterprisestorageforum.com/technology/features/
article.php/3843151

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 29

1.1 De-duplication & Encryption

We observed that there is a good deal of sharing between
the data on typical laptops (figure 3). For example, most
(but not all) of the “system files” are likely to be shared
with at least one other user. And it is common for users in
the same environment to share copies of the same papers,
or software packages, or even music files. Exploiting this
duplication would clearly enable us to save space on the
backup system. But equally importantly, it would signifi-
cantly reduce the time required for backups in most cases
— upgrading an operating system, or downloading a new
music file should not require any additional backup time
at all if someone else has already backed-up those same
files.

There has been a lot of interest recently in de-
duplication techniques, using content-addressable stor-
age (CAS). This is designed to address exactly the above
problem. However, most of these solutions are intended
for use in a local filesystem [18, 9, 11] or SAN [20].
This has two major drawbacks: (i) clients must send the
data to the remote filesystem before the duplication is
detected — this forfeits the potential saving in network
traffic and time. And (ii) any encryption occurs on the
server, hence exposing sensitive information to the owner
of the service — this is usually not appropriate for many
of the files on a typical laptop which are essentially “’per-

sonal”, rather than ”corporate”4.

1.2 A Solution

This paper presents an algorithm and prototype software
which overcome these two limitations. The algorithm
allows data to be encrypted independently without inval-
idating the de-duplication. In addition, it is capable of
identifying shared sub-trees of a directory hierarchy, so
that a single access to the backup store can detect when
an entire subtree is already present and need not be re-
copied. Clearly, this algorithm works for any type of sys-
tem, but it is particularly appropriate for laptops where
the connection speed and network availability are bigger
issues than the processing time.

Initial versions of the prototype were intended to make
direct use of cloud services such as Amazon S3 for re-
mote storage. However, this has proven to be unwork-
able, and we discuss the reasons for this, presenting a
practical extension to enable the use of such services.

Section 2 describes the algorithm. Section 3 describes
the prototype implementation and gives some prelimi-
nary performance results. Section 4 presents the data
collected from a typical user community to determine

40f course, performing local encryption with personal keys would
produce different cipher-text copies of the same file and invalidate any
benefits of the de-duplication.

the practical extent and nature of shared files. This data is
used to predict the performance in a typical environment,
and to suggest further optimisations. Section 5 discusses
the problems with direct backup to the cloud and presents
a practical solution, including an analysis of the cost sav-
ings. Section 6 presents some conclusions.

2 The Backup Algorithm

The backup algorithm builds on existing de-duplication
and convergent encryption technology:

2.1 De-duplication

A hashing function (e.g. [14]) can be used to return a
unique key for a block of data, based only on the con-
tents of the data; if two people have the same data, the
hashing function will return the same key>. If this key
is used as the index for storing the data block, then any
attempt to store multiple copies of the same block will be
detected immediately. In some circumstances, it may be
necessary store additional metadata, or a reference count
to keep track of the multiple “owners”, but it is not nec-
essary to store multiple copies of the data itself.

2.2 Convergent Encryption

Encrypting data invalidates the de-duplication; two iden-
tical data blocks, encrypted with different keys, will yield
different encrypted data blocks which can no longer be
shared. A technique known as convergent encryption
[16, 21, 19, 23] is designed to overcome this — the en-
cryption key for the data block is derived from the con-
tents of the data using a function which is similar to
(but independent of) the hash function. Two identical
data blocks will thus yield identical encrypted blocks
which can be de-duplicated in the normal way. Of course
each block now has a separate encryption key, and some
mechanism is needed for each owner to record and re-
trieve the keys associated with “their” data blocks.

Typical implementations (such as [25]) involve com-
plex schemes for storing and managing these keys as part
of the block meta-data. This can be a reasonable ap-
proach when the de-duplication is part of a local filesys-
tem. But there is considerable overhead in interrogat-
ing and maintaining this meta-data, which can be sig-
nificant when the de-duplication and encryption is being
performed remotely — and this is necessary in our case,
to preserve the privacy of the data.

STechnically, it is possible for two different data blocks to return the
same key. However, with a good hash function, the chances of this are
sufficiently small to be insignificant - ”if you have something less than
95 EB of data, then your odds don’t appear in 50 decimal places”[5]
- i.e. many orders of magnitude less than the chances of failure in any
other part of the system.

30

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

2.3 The Algorithm

We have developed an algorithm which takes advantage
of the hierarchical structure of the filesystem:

e Files are copied into the backup store as file objects
using the convergent encryption process described
above.

e Directories are stored as directory objects — these
are simply files which contain the normal directory
meta-data for the children, and the encryption/hash
keys for each child.

To recover a complete directory hierarchy, we need
only know the keys for the root node — locating this di-
rectory object and decrypting it yields the encryption and
hash keys for all of the children and we can recursively
recover the entire tree. This has some significant advan-
tages:

e Each user only needs to record the keys for the root
node. Typically, these would be stored indepen-
dently on the backup system (one set for each stored
hierarchy), and encrypted with the user’s personal
key.

e The hash value of a directory object acts as a unique
identifier for the whole subtree; if the object repre-
senting a directory is present in the backup store,
then we know that the entire subtree below it is also
present. This means that we do not need to query
the store for any of the descendants. It not uncom-
mon to see fairly large shared subtrees®, so this is a
significant saving for remote access where the cost
of queries is likely to be high. Section 4.3 presents
some concrete experimental results.

e No querying or updating of additional metadata is
required’. This means that updates to the backup
store are atomic.

This algorithm does have some disadvantages. In par-
ticular, a change to any node implies a change to all of the
ancestor nodes up to the root. It is extremely difficult to
estimate the impact of this in a production environment,
but preliminary testing seems to indicate that this is not
a significant problem. There is also some disclosure of
information; if a user has a copy of a file, it it possible
to tell whether or not some other user also has a copy of
the same file. This is an inevitable consequence of any
system which supports storage sharing — if a user stores a
file, and the size of the stored data does not increase, then
there must have been a copy of this file already present.

SFor example, between successive backups of the same system, or
as the same application downloaded to different systems.

7If it is necessary to support deletion of shared blocks, then some
kind of reference counting or garbage-collection mechanism is neces-
sary, and this may be require additional metadata.

2.4 Implementation

An efficient implementation of this algorithm requires
some care. The hash key for a directory object depends
on its contents. This in turn depends on the keys for all
of the children. Hence the computation of keys must
proceed bottom-up. However, we want to prevent the
backup from descending into any subtree whose root is
already present. And this requires the backup itself to
proceed top-down. For example:

BackupNode(N) {
If N is a directory, then let O = DirectoryObjectFor(N)
Otherwise, let O = contents of N
Let H=Hash(O)
if there is no item with index H in the backup store, then {
Store O in the backup store with index H
If N is a directory {
For each entry E in the directory, BackupNode(E)

}
}
}

DirectoryObjectFor(D) {

Create an empty directory object N

For each entry E in the directory D {
If E is a directory, then let O = DirectoryObjectFor(E)
Otherwise, let O = contents of E
Let H=Hash(O)
Add the metadata for E, and the hash H to N

}

Return N

Of course, this is still a rather naive implementation
— the hash for a particular object will be recomputed
once for every directory in its path. This would be
unacceptably expensive in practice and the hash func-
tion would probably be memoized. A production im-
plementation presents many other opportunities for opti-
misation; caching of directory objects, parallelisation of
compute-intensive tasks (encryption,hashing), and care-
ful detection of files which have been (un-)modified
since a previous run.

3 Prototype System

We developed a prototype backup system for Apple OS
X as a proof of concept of the proposed algorithm®. The
purpose is to be able to backup all files on a user’s lap-
top to a central remote storage. The prototype was im-
plemented as a set of command line utilities each per-
forms a single task in the backup process such as scan-

8 An earlier, simpler proof-of-concept was implemented under Win-
dows as a student project [22].

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 31

ning file system changes, uploading files, restoring file
system from backup etc. When wrapped in a GUI front-
end, our application can be used as a drop-in replacement
for the built-in Time Machine backup application [10].

3.1 Architecture

The underlying storage model we adopt is a write once,
read many model. This model assumes that once a file is
stored on the storage, it will never be deleted or rewrit-
ten. This is the common practice employed in enterprise
environment where key business data such as electronic
business records and financial data are required by law
to be kept for at least five and seven years respectively
[13]. This kind of storage model, commonly found in
DVD-R or tape backup storage, is usually optimised for
throughput rather than random access speed. The alter-
native storage model is write many, read many model that
permits deleting older backups to reclaim some space.
To achieve that some kind of reference counting mech-
anism is needed to safely delete un-referred files on the
storage. To keep the prototype simple we opt to use the
write once, read many storage model.

Our system is architected as a client/server applica-
tion, where a backup client running on a user’s laptop
uploads encrypted data blocks to a central server which
includes dedicated server side processing. This is in
contrast to the thin-cloud approach where only mini-
mal cloud-like storage interface is required on the server
end as proposed in the Cumulus system [24]. Cumulus
demonstrated that with careful client side data aggrega-
tion, backing up to the thin-cloud can be as efficient as
integrated client/server approaches. This thin-cloud ap-
proach is appealing in a single user environment, how-
ever it raises three problems in a multi-user setting with
data de-duplication technology:

1. The cloud storage model used by the thin-cloud
backup solution does not have a straightforward
way of sharing data between different user accounts
without posing serious security threat.

2. There is no way to validate the content address of an
uploaded object on the server. A malicious user can
start an attack by uploading random data with a dif-
ferent content address to corrupt the whole backup.

3. The client side data aggregation used in the thin-
cloud approach for performance reason will make
data de-duplication very difficult, if not impossible.

In our prototype system we argue for a thin-server ap-
proach that addresses all these issues. The majority of
computation will happen on the client side (hashing, en-
cryption, data aggregation). A dedicated backup server

will handle per-user security required in a multi-user en-
vironment. Instead of going for a full-blown client/server
backup architecture with custom data transfer protocol,
user authentication mechanism and hefty server end soft-
ware we want to re-use the existing services provided
by operating system itself as much as possible. To this
end, we used standard services that come with many
POSIX systems (Access control list (ACL) mechanism,
user account management, Common Internet File Sys-
tem/Server Message Block (CIFS/SMB) server) and de-
ployed a small server application written in Python on
the server side to handle data validation. In addition, the
whole server, once properly configured with ACL per-
missions, server application scripts, storage devices, can
be packed as a virtual machine image and deployed into
an enterprise’s existing visualised storage architecture.
This means the number of supported clients can be easily
scaled to meet the backup demands.

Figure 1 depicts the architecture employed in our pro-
totype. The system consists of several modules described
below.

3.1.1 FSEvents Module

FSEvents was introduced as a system service in the OS
X Leopard release (version 10.5). It logs file changes at
the file system level and can report file system changes
since a given time stamp in the past. This service is part
of the foundational technologies used by Apple’s built-
in backup solution Time Machine. Our prototype system
utilises the FSEvents service to get a list of changed files
for incremental backup.

For efficiency reason, the event reported by the FSEv-
ents API is at directory level only, i.e. it only tells which
directory has changes in it but not exactly what was
changed. To identify which files are changed we use a lo-
cal meta database to maintain and compare current files’
meta information with their historical values.

3.1.2 Local Meta DB

The local meta DB is used to implement incremental
backup. The content of the DB includes: pathname, file
size, last modification time, block-level checksums, and
a flag indicates if the file has been backed up or not. For
each backup session, the local meta DB will produce a
list of files to backup which is sorted by directory-depth
from bottom up. This is to ensure that a directory will be
backed up only after all its children have been backed-up.

3.1.3 Backup Module

The backup module encapsulates the backup logic and
interfaces with other modules. For each backup session,
it first retrieves a list of files to backup from the local

32

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

FS Events

Changed files
Meta Update

Files
List of files
to backup Backup status
update

! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
- :
! 1
! 1
. Backup Module ¢ !
1

! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
! \
- :
! 1
! 1
! 1
! 1
1

- :

Data Compression (Optional) |

v

| Convergent Encryption |

v

Encrypted blocks
Client ‘ VP

Upload Queue

Figure 1: Architecture of the proposed backup system.
Optionally data on the backup server can be replicated to
multiple cloud storages in background.

meta DB, then it fetches those files from the local disk,
calculates file hashs at block level, and encrypts each
data block with an encryption key generated from the
block’s hash value. The final sequence of encrypted data
blocks, together with their unique content addresses, are
put in an upload queue to be dispatched to the remote
storage. Optionally, data compression can be applied
prior to the data encryption step to further reduce the size
of the data to upload. We use a 256-bit cryptographically
strong hash function (SHA2 [14]) for the content address
and a 256-bit symmetric-key encryption (Salsa20 [17])
for data encryption.

3.1.4 Upload Queue

The system maintains an upload queue in memory for
those data blocks to be uploaded to the backup server
via CIFS protocol. First the content address of each data
block is checked to see if the same data block is already
on the server. If not the block will be scheduled to one of
the uploading threads. A typical user machine contains
many small files, which are less efficient to transfer over
a standard network file system like CIFS compared to
a custom upload protocol. We therefore perform data
aggregation in the upload queue to pack small blocks into
bigger packets of 2 MB before sending them over the
network.

3.1.5 Server Application

A Python script on the server periodically checks any
new files in a user’s upload directory. ACL permission
was set up so that the server application can read/write
files in both public data pool and users’ own upload di-
rectories. For each incoming packet, the server will dis-
assemble the packet into original encrypted data blocks.
If the block checksum matches its content address, the
block will be moved to the public data pool. If a block
has incorrect checksum due to network transmission er-
ror, it will be discarded and a new copy will be requested
from the client.

Optionally, the server can choose to replicate its data
to multiple public cloud storage vaults in the background.
The use of cloud storage will be discussed in section 5.

4 Laptop Filesystem Statistics

The characteristics of the data, and the way in which it
is typically organised and evolved, can have a significant
effect on the performance of the algorithm and the im-
plementation. We are aware of several relevant studies
of filesystem statistics (e.g. [15]), however these have
significant differences from our environment, such as the

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 33

operating system, or the type of user. We therefore de-
cided to conduct our own small study of laptop users
within our typical target environment. We are reasonably
confident that this represents “typical usage”.

A data collection utility was distributed to voluntary
participants in the university to compute a 160-bit cryp-
tographically strong hash for each file on their Mac lap-
top, along with other meta information such as file size,
directory depth etc. Each file was scanned multiple times
to get hash values of the following block sizes:128KB,
256KB, 512KB and 1024KB as well as single file hash
value. Filenames were not collected to maintain pri-
vacy. We grouped the stats gathered from each ma-
chine into three categories: USR, APP and SYS. All data
within a user’s home folder is labelled as USR, data in
/Applications is classified as APP, and all the rest
are labelled as SYS. This is to help us identify where
the data duplication occurs. We would expect a high de-
gree of inter-machine data redundancy among Applica-
tion and System files, but not so much between users’
own data. In a real backup system, the amount of data
transfer for subsequent incremental backups is typically
much smaller than that of the initial uploads. To help
estimate the storage request of incremental backup we
collected the statistics twice over a two-month period.

4.1 Key Statistics

We gathered filesystem statistics from 24 Mac machines
within the university, all of them are running either OS X
10.5 or 10.6. Although this is a small sample, we believe
that this is a good representation of a typical target envi-
ronment. Key statistics of the data are given in table 1.
The histogram of file sizes is given in figure 2. The file
size distribution follows normal distribution. A further
breakdown reveals that the majority (up to 95%) of the
files are relatively small (less than 100 KB).

The presence of huge number of small files will likely
impose a speed issue when backing up due to I/O over-
head and network latency. In addition, a cloud service
provider is likely to charge for each upload/download
operation. Therefore direct uploading to a cloud stor-
age may not be an economically viable option, as will be
seen in section 5.1.

4.2 Backup Simulation

We simulated a backup process by backing up one ma-
chine a time to the backup server. After each simulated
backup, the projected and actual storage was recorded
and the data duplication rate calculated. This was re-
peated until all machines were added to the backup stor-
age, and this clearly demonstrates the increasing sav-
ings (in space per machine) as more machines partici-

Table 1: Filesystem statistics from Mac laptops.

Frequency

Machines

Files

Directories

Entries (File + Dir)

File Sizes
Median
Average
Maximum
Total

File Category
USR
APP
SYS

Harddisk Size
Average HD Size
Average Used HD

24
20,332,615
4,607,966
24,940,581

24K
779K
32.2GB
1.94 TB

1.22 TB (62.94%)
149.32 GB (7.68%)
570.8 GB (29.38%)

290 GB
115 GB

0 10Bytes 1K
File size distribution (in log10 domain)

100K 1MB

Figure 2: Histogram of file size distribution, the X-Axis
is logio(file size).

34

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

1GB 10GB

pate. Figure 3 shows the projected and actual storage
for different numbers of machines. As expected, there is
greater data sharing among System and Application files,
but less so between users’ own files.

4.3 Data Duplication

To measure data duplication (or redundancy) we define
the data duplication rate as:

Projected Storage Size-Actual Storage Size

100
Projected Storage Size % %

where the projected storage size is the sum of all data to
backup, actual storage size is the actual amount of stor-
age required due to data de-duplication. For instance, if
we need to store a total amount of 100 GB data from two
machines A and B, and only 70 GB is needed for ac-
tual storage, then the data duplication rate for A and B is
30%.

Backup Block Size

File backup can be performed at whole file level or sub-
file level where a file is split into a series of fixed-
size blocks. There are two main benefits of perform-
ing backup at sub-file block level. First is the increased
level of data de-duplication as a result of inter-file block
sharing, which will use less storage space. Second, it is
more efficient to backup certain type of files where only
a small portion of the file content is constantly chang-
ing. For instance, database files and virtual machine disk
images are usually a few GB in size and are known to
subject to frequent updating. Modifications to those files
are usually made in-place at various small portions of the
file for performance reason. Block-level backup enables
us to only backup those changed blocks. Finally, there
is also a practical benefit: it is more reliable to upload a
small block of data over remote network than a big file.
Even the transfer fails due to network glitch, only the last
block needs to be resent.

Despite the listed advantages, backup at block-level
will incur some overhead that can be significant. De-
pending on the size of the block, the number of to-
tal stored objects could be much higher than whole file
backup, which would be an concern when backing up
to a cloud storage where the network I/O requests are
charged (see section 5.1). Also extra storage is needed to
record the block relationship which could offset some of
the benefit of data de-duplication.

We tested different block sizes as well as whole file,
single block backup in the simulation experiment. The
result is plotted in figure 4.

As expected, all the sub-file blocks achieve a higher
data duplication rate than single block, shown in figure

Overall
29.31%

USR SYS
891% 63.34%

APP
63.06%

Table 2: Overall data duplication rate by category.

4a. The bigger the block size is, the lower data duplica-
tion rate due to less inter-file block sharing. For block
size of 128KB, we the data duplication rate of 32.08%,
which is 9.5% higher than the 29.31% of single block.
This transfers into less storage used for all sub-file blocks
(Figure 4b). However, the increased number of block ob-
jects could be quite substantial: for block size of 128KB,
the total number of objects is 38m (million), 64.4% more
than that of single block objects which is 24.94m (Figure
4c¢).

Directory Tree Duplication

As mentioned in section 2, the directory meta data is
stored in directory objects. The size of all directory ob-
jects is 16.24 GB. With data de-duplication, the actual re-
quired storage is 6.4 GB, or 0.47% of total used storage.
The collected stats also reveals that, among all 4,607,966
directory objects, only 1,052,338 unique ones are stored
on the server. This suggests that up to 77% directory
objects are shared. This strongly supports the value of
sub-tree de-duplication.

Finally, we report overall data duplication rate in table
2.

Changes Over Time

Once an initial, full backup of a user machine is made,
subsequent backups can be much faster as only changed
data needs to be uploaded. To get an estimate of the
file change rate, we collected and analysed the data for
a second time towards the end of the two-month pi-
lot experiment. We are mainly interested in the sizes
of newly added files and changed files that will be in-
cluded in the incremental backup. Files deleted since last
scan were not included. The average daily and monthly
per-machine data change rates calculated using a block
size of 128KB are presented in table 3. In addition, we
observed that the estimated monthly per-machine data
change rate would raise from 17.17 GB to 20.61 GB if
the backup is performed at file level. This confirms our
earlier assumption that backing up at sub-file level can
be more efficient in dealing with partial changes in large
files. In our scenario it would reduce the amount of data
to backup by 3.44 GB for each machine on a monthly
basis.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 35

Duplication Rate %

n w w w
N O w9 w *w d
© o0 o o = O N g

28.5

a. Data duplication rate vs block size

Overall Storage Saving

I Actual Storage (TB)
[]Saved Storage (TB)

&

Storage (TB)

0.5

0 5 10 15
Number of machines added

APP Storage Saving

25

I Actual Storage (TB)
[]Saved Storage (TB)

o

APP Storage (TB)
o
o
(5]

0 5 10 15
Number of machines added

25

SYS Storage (TB)

USR Storage (TB)

SYS Storage Saving

I Actual Storage (TB)
0.5F [__]Saved Storage (TB)

0.4r

0.3r

021

0.1r

0 5 10 15
Number of machines added

USR Storage Saving

25

14T S Actual Storage (TB)
1.2}| [___]Saved Storage (TB)

© o o
2 ® o =

021

0 5 10 15
Number of machines added

25

Figure 3: Projected and actual storage by number of machines added during simulated backup.

b. Actual storage needed vs block size

c. Number of backup objects vs block size

1.4
g
5 135
(o))
!
<}
(2]
S 13
O
<

128K 256K 512K 1024K File

128K 256K 512K 1024K File

40

30

20

Million Objects

10

I All Objs
[] Stored Objs

128K 256K 512K 1024K File

Figure 4: Data duplication rate and actual storage under different block sizes (File means the whole file is treated as a
single block).

36

LISA ’10: 24th Large Installation System Administration Conference

USENIX Association

Overall USR SYS APP
Daily 0.57GB 031GB 0.10GB 0.03GB
Monthly 17.17GB 9.20GB 290GB 0.86 GB
Table 3: Estimated daily and monthly (30 days) per-

machine data change rates by category.

5 Using Cloud Storage

Backing up to cloud-based storage becomes increasing
popular in recent years. The main benefits of using a
cloud storage are lower server maintenance cost, cheaper
long term operational cost, and sometimes enhanced data
safety via a vendor’s own geographically diverse data
replication. However, there are still some obstacles to
integrating cloud storage into a full-system backup solu-
tion:

1. Network bandwidth can be a bottle-neck: uploading
data directly to a cloud storage can be very slow
while requiring a reliable network connection.

2. The cloud interface has yet be standardised with
each vendor offering its own security and data trans-
fer models. In addition, many organisations pre-
fer to have a backup policy that can utilise multiple
cloud services to avoid vendor lock-in.

3. A cloud service provider is likely to impose a
charge on individual data upload/download opera-
tions, which means backing up directly to a cloud
can be very costly.

Despite these disadvantages, in the next section we will
show that the proposed de-duplicated backup algorithm
can effectively reduce the cost of backing up to a cloud
storage by a large margin. Furthermore, in our backup ar-
chitecture it is possible to adopt cloud storage as the sec-
ondary storage of the backup server (Figure 1), thereby
largely ameliorating the above issues. In particular, the
benefits of employing a cloud-based secondary storage
are:

1. Backing up to local backup server can still be very
fast with all the security features enabled, while the
data replication to cloud storage can be performed
in the background.

2. New cloud services can be added easily on the
backup server to provide enhanced data safety and
to reduce the risk of vendor lock-in.

3. Upload cost to cloud storage can be reduced via data
aggregation techniques such as employed in [24].

5.1 Cost Saving: Data De-Duplication

In this section we measure the estimated cost of backup
to a cloud storage in terms of the bill charged by a typical
storage provider: Amazon S3°. Its data transfer model is
based on standard HTTP protocol requests like GET and
PUT.

For de-duplication backup, the client first needs to
check if an object exists on the cloud via an HEAD opera-
tion. If not, the object is then uploaded via a PUT opera-
tion. Fortunately, if a file already exists on the server due
to data de-duplication, we do not need to use the more
expensive PUT operation, and no data will be uploaded.

Using the Amazon S3 price model'” we plot the esti-
mated cost of backing up 1.94 TB data from 24 machines
to S3 in terms of US dollars in figure 5. The data de-
duplication technology, coupled with data aggregation
(see next section), is able to achieve 60% cost reduction
for the initial data upload.

5.2 Cost Saving: Data Aggregation

Backing up directly to Amazon S3 can be very slow and
costly due to large number of I/O operations and the way
Amazon S3 charges for the uploads. Client side data
aggregation packs small files into bigger packets before
sending them to the cloud. We packed individual files
into packets with a size of 2 MB each and compared the
estimated cost against that of direct upload (see figure
6). The result shows that an overall of 25% of cost sav-
ing can be achieved via data aggregation alone. More-
over, even when cost is not an issue, as is the case when
backing up to a departmental server, data aggregation can
still speed up the process significantly. In our experi-
ment we observed that the underlying file system (CIFS
in this case) did not handle large amount of small I/O re-
quests efficiently between the client and the server, even
on a high-speed network. This resulted in a much slower
backup speed. Uploading aggregated data to the server
and unpacking the data there overcomes this problem.

5.3 Case Study: Six-Month Bill Using S3

Using the gathered information so far, we are able to es-
timate the cost of backing up all the machines we have
to Amazon S3 over a six-month period. The initial up-
load of 1.94 TB data (25m objects) will cost $434 with-
out data de-duplication, together with storage cost ($291)
that is $725. With data de-duplication, only a total of

Shttps://s3.amazonaws.com/

10As of writing this paper, data upload to Amazon S3 is charged
at $0.1 per GB. Data storage rate is $0.15 per GB for the first 50
TB/Month of storage. Operating cost is $0.01 per 1,000 requests for
PUT operation and $0.01 per 10,000 requests for HEAD operation, re-
spectively. All prices quoted are from US Standard tier.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 37

Overall Cost Saving

I Actual S3 Cost
$4001| [] Saved S3 Cost 1
$300 1

$200 J

Amazon S3 Price

$1001 : J

0 5 10 15 20 25
Number of machines added

APP Cost Saving

$80 | I Actual S3 Cost M4
[JSaved S3 Cost
Q
£ $601 1
o
(s
1)
S $40
N
©
£
$20
0
0 5 10 15 20 25

Number of machines added

<«
a
o

$100

Amazon S3 Price

$50

$200 " B Actual S3 Cost
[JSaved S3 Cost

SYS Cost Saving

0 5 10 15 20 25

$150

$100

$50

Amazon S3 Price

Number of machines added

USR Cost Saving

| I Actual S3 Cost 1
[JSaved S3 Cost

0 5 10 15 20 25
Number of machines added

Figure 5: Estimated cost when backing up 24 machines to Amazon S3 (total cost for the initial backup of all machines)

Overall Cost Comparison

I S3 Packet Cost
$200 |)53 File Overhead 1
k]
a $1501 1
(5]
@
S $100f 1
©
£
<
$50 1
0 5 10 15 20 25
Number of machines added
APP Cost Comparison
$25F E 3
I S3 Packet Cost
[1S3 File Overhead
$20+ J
3
O
o $15} 1
@
S
N $10f 1
1S
<
$51 J

0 5 10 15 20 25
Number of machines added

SYS Cost Comparison

$60¢ N S3 Packet Cost 1

$50 H 1S3 File Overhead |
8
o $401 1
&
s $30 1
&
£ $20¢ 1
<

$101 1

$150F E|

$10

Amazon S3 Price

©“
a
=]

0 5 10 15 20 25
Number of machines added

USR Cost Comparison

I S3 Packet Cost
[153 File Overhead

0]

0 5 10 15 20 25

Number of machines added

Figure 6: Estimated cost comparison of client side data aggregation (packet) and normal upload (file).

38

LISA ’10: 24th Large Installation System Administration Conference

USENIX Association

Conventional De-Duplicated data before transmitting to the cloud. This is shown to

Months Storage Cost Storage Cost achieve significant cost savings.

1 1.94TB $725 1.37TB $370
2 235TB $445 1.66 TB $284 7 Acknowledgements
3 2776 TB $507 195TB $328
4 3.18TB $569 225TB $372 This project has been funded by the Edinburgh Univer-
5 359TB $630 254TB $415 sity Initiating Knowledge Transfer Fund (iKTF)!' and
6 400TB $692 283TB $459 the IDEA Lab 2. Thanks to Toby Blake from the School

Total $3.568 $2.008 of Informatics for support with the infrastructure, and to

all those who contributed data.

Table 4: Estimated monthly and accumulated bills for
backing up to Amazon S3 over a six-month period with-
out and with the De-Duplicated backup. The monthly
data change rate is estimated to be 0.49 TB for 24 ma-
chines using figures in table 3 with an estimated duplica-
tion rate of 29.31%. The monthly cost is the sum of S3
storage bill (currently $150 per TB) plus the estimated
data upload cost from the pilot experiment.

$370 ($164 for upload and $206 for storage) is needed,
saving $355 or 49.0% of the initial upload cost. More-
over, as only 1.37 TB of data needs to be uploaded, it is
estimated to save 29.4% uploading time. The saving can
be even greater over time as less cloud storage is used
and billed. The accumulated costs of using Amazon S3
over the course of six months are $3,568 using conven-
tional backup method, and $2,228 using de-deuplicated
backup. Monthly estimated bills are presented in table 4.

6 Conclusions

We have shown that a typical community of laptop users
share a considerable amount of data in common. This
provides the potential to significantly decrease backup
times, and storage requirements. However, we have
shown that manual selection of the relevant data - for
example, backing up only home directories - is a poor
strategy; this fails to backup some important files, at the
same time as unnecessarily duplicating other files.

We have presented a prototype backup program which
achieves an optimal degree of sharing at the same time
as maintaining confidentiality. This exploits a novel al-
gorithm to reduce the number of files which need to be
scanned and hence decreases backup times.

We have shown that typical cloud interfaces, such as
Amazon S3 are not well suited to this type of applica-
tion, due to the time and cost of typical transfers, and the
lack of multi-user authentication to shared data. We have T) 4

. . i R K http://www.eri.ed.ac.uk/commercial/

described a implementation using a local server which development funding/ikta.htm
can avoid these problems by caching and pre-processing http://www.idea.ed.ac.uk/IDEA/Welcome.html

USENIX Association LISA °10: 24th Large Installation System Administration Conference 39

References

(1

(2]

(3]

[4]

(3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Backblaze: online backup [cited 2nd April 2010].
http://www.backblaze.com/.

Backjack: online backup [cited 2nd April 2010].
http://www.backjack.com.

Carbonite: online backup [cited 2nd April 2010].
http://www.carbonite.com/.

Crashplan: online backup [cited 2nd April 2010].
http://www.crashplan.com.

Hash collisions: The real odds [cited 31st March 2010].
http://www.backupcentral.com/content/view/
145/47/.

Humyo: online backup [cited 2nd April 2010].
http://humyo.com/.

IDrive: remote data backup [cited 2nd April 2010].
http://www.idrive.com.

JungleDisk: online backup [cited 2nd April 2010].
http://www. jungledisk.com/.

Lessfs — a high performance inline data deduplicating filesystem
for Linux [cited 2nd April 2010].
http://www.lessfs.com.

Mac OS X Time Machine [cited 2nd April 2010].
http://www.apple.com/macosx/what-is—-macosx/
time-machine.html.

SDFS: A deduplication file-system for Linux [cited 2nd April
2010].
http://www.opendedup.org/.

Soonr: active backup [cited 2nd April 2010].
http://www.soonr.com/.

Sarbanes-Oxley act of 2002, February 2002.
http://www.gpo.gov/fdsys/pkg/
PLAW-107publ204/content-detail.html.

Federal information processing standards publications 180-2:
Secure hash standard (SHS). Technical report, National Institute
of Standards and Technology Gaithersburg, MD 20899-8900,
October 2008.
http://csrc.nist.gov/publications/fips/
fipsl180-3/fips180-3_final.pdf.

N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A
five-year study of file-system metadata. In Proceedings of the 5th
USENIX Conference on File and Storage Technologies, pages
31-45,2007.
http://www.usenix.org/events/fast07/tech/
agrawal.html.

K. Bennett, C. Grothoff, T. Horozov, and I. Patrascu. Efficient
sharing of encrypted data. In In Proceedings of ASCIP 2002,
pages 107-120. Springer-Verlag, 2002.
http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.19.9837.

D. Bernstein. The Salsa20 family of stream ciphers. New Stream
Cipher Designs, pages 84-97, 2008.
http://dx.doi.org/10.1007/
978-3-540-68351-3_8.

W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single
instance storage in Windows 2000. In Proceedings of 4th
USENIX Windows Systems Symposium. Usenix, 2000.
http://research.microsoft.com/apps/pubs/
default.aspx?id=74261.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility
of a serverless distributed file system deployed on an existing set
of desktop PCs. In Proceedings of the international conference
on measurement and modeling of computer systems (SIGMET-
RICS), 2007.
http://research.microsoft.com/apps/pubs/
default.aspx?id=74262.

A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentral-
ized deduplication in SAN cluster file systems. In Proceedings
of the 2009 Usenix Annual Technical Conference. Usenix, June
2009.
http://www.usenix.org/events/usenix09/tech/
full_papers/clements/clements.pdf.

J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and
M. Theimer. Reclaiming space from duplicate files in a
serverless distributed file system. In In Proceedings of 22nd
International Conference on Distributed Computing Systems
(ICDCS, 2002.

http://citeseerx.ist.psu.edu/
viewdoc/download; jsessionid=
75E78117EB6C02C4493CA49F28775D652doi=10.
1.1.8.7586&rep=replé&type=pdf.

G. Gonsalves. Content addressable storage for encrypted shared
backup. Master’s thesis, School of Informatics, University of
Edinburgh, 2009.
http://homepages.inf.ed.ac.uk/dcspaul/
publications/CASFESB.pdf.

M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller. Secure
data deduplication. In StorageSS ’'08: Proceedings of the 4th
ACM international workshop on Storage security and survivabil-
ity, pages 1-10, New York, NY, USA, 2008. ACM.
http://portal.acm.org/citation.cfm?id=
1456469.1456471+%.

M. Vrable, S. Savage, and G. M. Voelker. Cumulus: Filesystem
backup to the cloud. In Proceedings of the 7th USENIX Confer-
ence on File and Storage Technologies (FAST), February 2009.
http://cseweb.ucsd.edu/~voelker/pubs/
cumulus-fast09.pdf.

D. Wang, L. Wang, and J. Song. SEDBRS: A secure and efficient
desktop backup and recovery system. Data, Privacy, and
E-Commerce, International Symposium on, 0:304-309, 2007.
http://www.computer.org/portal/web/csdl/
doi/10.1109/ISDPE.2007.27.

40

LISA ’10: 24th Large Installation System Administration Conference

USENIX Association

The Margrave Tool for Firewall Analysis

Timothy Nelson

Worcester Polytechnic Institute

tm@cs.wpi.edu

Christopher Barratt
Brown University
charratt@cs.brown.edu

Daniel J. Dougherty Kathi Fisler Shriram Krishnamurthi
Worcester Polytechnic Institute Worcester Polytechnic Institute Brown University
dd@cs.wpi.edu kfisler @cs.wpi.edu sk@cs.brown.edu
Abstract Does a specific rule control decisions on certain traf-

Writing and maintaining firewall configurations can be
challenging, even for experienced system administrators.
Tools that uncover the consequences of configurations
and edits to them can help sysadmins prevent subtle yet
serious errors. Our tool, Margrave, offers powerful fea-
tures for firewall analysis, including enumerating con-
sequences of configuration edits, detecting overlaps and
conflicts among rules, tracing firewall behavior to spe-
cific rules, and verification against security goals. Mar-
grave differs from other firewall-analysis tools in sup-
porting queries at multiple levels (rules, filters, firewalls,
and networks of firewalls), comparing separate firewalls
in a single query, supporting reflexive ACLs, and pre-
senting exhaustive sets of concrete scenarios that em-
body queries. Margrave supports real-world firewall-
configuration languages, decomposing them into multi-
ple policies that capture different aspects of firewall func-
tionality. We present evaluation on networking-forum
posts and on an in-use enterprise firewall-configuration.

1 Introduction

Writing a sensible firewall policy from scratch can be
difficult; maintaining existing policies can be terrifying.
Oppenheimer, Ganapathi, and Patterson [31] have shown
that operator errors, specifically configuration errors, are
a major cause of online-service failure. Configuration
errors can result in lost revenue, breached security, and
even physical danger to co-workers or customers. The
pressure on system administrators is increased by the fre-
netic nature of their work environment [6], the occasional
need for urgent changes to network configurations, and
the limited window in which maintenance can be per-
formed on live systems.

Many questions arise in checking a firewall’s behav-
ior: Does it permit or block certain traffic? Does a col-
lection of policies enforce security boundaries and goals?

fic? What prevents a particular rule from applying to a
packet? Will a policy edit permit or block more traffic
than intended? These questions demand flexibility from
firewall-analysis tools: they cover various levels of gran-
ularity (from individual rules to networks of policies), as
well as reasoning about multiple versions of policies (to
check the impact of edits). Margrave handles all these
and more, offering more functionality than other pub-
lished firewall tools.

Margrave’s flexibility comes from thinking about pol-
icy analysis from an end-user’s perspective. The ques-
tions that users wish to ask about policies obviously af-
fect modeling decisions, but so does our form of answer.
Margrave’s core paradigm is scenario finding: when a
user poses a query, Margrave produces a (usually exhaus-
tive) set of scenarios that witness the queried behavior.
Whether a user is interested in the impact of changes or
how one rule can override another, scenarios concretize
a policy’s behavior. Margrave also allows queries to be
built incrementally, with new queries refining the results
from previous ones.

Margrave’s power comes from choosing an appropri-
ate model. Embracing both scenario-finding and multi-
level policy-reasoning leads us to model policies in first-
order logic. While many firewall-analysis tools are
grounded in logic, most use propositional models for
which analysis questions are decidable and efficient. In
general, one cannot compute an exhaustive and finite
set of scenarios witnessing first-order logic formulas.
Fortunately, the formulas corresponding to many com-
mon firewall-analysis problems do yield such sets. Mar-
grave identifies such cases automatically, thus providing
exhaustive analysis for richer policies and queries than
other tools. Demonstrating that firewall analyzers can
benefit from first-order logic without undue cost is a key
contribution of this paper.

Our other key contribution lies in how we decompose
10S configurations into policies for analysis. Single fire-

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 41

wall configurations cover many functions, such as access
filtering, routing, and switching. Margrave’s I0S com-
piler generates separate policies for each task, thus en-
abling analysis of either specific functionality or whole-
firewall behavior. Task-specific policies aid in isolating
causes of problematic behaviors. Our firewall models
support standard and most extended ACLs, static NAT,
ACL-based and map-based dynamic NAT, static routing,
and policy-based routing. Our support for state is limited
to reflexive access-lists; it does not include general dy-
namic NAT, deep packet inspection, routing via OSFP, or
adaptive policies. Margrave has an iptables compiler in
development; other types of firewalls, such as Juniper’s
JunOS, fit our model as well.

A reader primarily interested in a tool description can
read Sections 2, 6, and 7 for a sense of Margrave and how
it differs from other firewall-analysis tools. Section 2 il-
lustrates Margrave’s query language and scenario-based
output using a multi-step example. Section 3 describes
the underlying theory (based on first-order logic), includ-
ing our notion of policies. Section 4 shows how fire-
wall questions map into Margrave. Section 5 describes
the implementation, including the compiler for firewall-
configurations and a query-rewriting technique that often
improves performance. Section 6 presents experimen-
tal evaluation on both network-forum posts and an in-
use enterprise firewall. Section 7 describes related work.
Section 8 concludes with perspective and future work.

2 Margrave in Action on Firewalls

Margrave presents scenarios that satisfy user-specified
queries about firewall behavior. Queries state a behavior
of interest and optional controls on which data to con-
sider when computing scenarios. Scenarios contain at-
tributes of packet contents that make the query hold. A
separate command language controls how scenarios are
displayed. The extended example in this section high-
lights Margrave’s features; Table 1 summarizes which
of these features are supported by other available (either
free or commercial) firewall analyzers. The Margrave
website [22] contains sources for all examples.

In this paper, a firewall encompasses filtering (via
access-lists), NAT transformation, and routing; we re-
serve the term router for the latter component. The 108
configuration in Figure 1 defines a simple firewall with
only filtering. This firewall controls two interfaces (fe0
and vlanl). Each has an IP address and an access-list
to filter traffic as it enters the interface; in lines 3 and
7, the number (101 or 102) is a label that associates ac-
cess rules (lines 9-16) with each interface, while the in
keyword specifies that the rules should apply on entry.
Rules are checked in order from top to bottom; the first
rule whose conditions apply determines the decision on a

DR W o —

interface fe0
ip address 10.150.1.1 255.255.255.254
ip access-group 101 in

1

interface vlanl

ip address 192.128.5.1 255.255.255.0
ip access-group 102 in

1

101
101
any
101
any
101

access-list
access-list

deny ip host 10.1.1.2 any
permit tcp

host 192.168.5.10 eq 80
permit tcp

host 192.168.5.11 eq 25
deny any

access-list

access-list
1

access-list 102 permit any

Figure 1: Sample 10S configuration

packet. This firewall allows inbound web and mail traffic
to the corresponding servers (the . 10 and . 11 hosts), but
denies a certain blacklisted IP address (the 10.1.1.2
host). All traffic arriving at the inside-facing interface
vlanl is allowed. As this filter is only concerned with
packets as they arrive at the firewall, our queries refer to
the filter as InboundACL.

Basic Queries: All firewall analyzers support basic
queries about which packets traverse the firewall. The
following Margrave query asks for an inbound packet
that InboundACL permits:

‘EXPLORE InboundACL:Permit (<reqg>)

‘SHOW ONE
| Query 1

EXPLORE clauses describe firewall behavior; here, the
behavior is simply to permit packets. <reqg> is shorthand
for a sequence of variables denoting the components of a
request (detailed in Section 4):

(ahostname, src-addr-in, src-port-in, protocol, ...).

Users can manually define this shorthand within Mar-
grave; details and instructions for passing queries into
Margrave are in the tool distribution [22]. SHOW ONE
is an output-configuration command that instructs Mar-
grave to display only a single scenario. The resulting
output indicates the packet contents:

*x%*x*%x% SOLUTION FOUND at size = 15
src-addr-in: IPAddress
protocol: prot-tcp
dest-addr-in: 192.168.5.10
src-port-in: port
exit-interface: interface
entry-interface: fe0
dest-port-in: port-80
length: length

ahostname: hostname-router
src-addr-out: IPAddress

message: icmpmessage
Result

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

ITVal | Fireman | Prometheus | ConfigChecker | Fang/AlgoSec | Vantage

Which packets v v v v v v
User-defined queries v ? v v P
Rule Responsibility v ? v ~ v v
Rule Relationships ~ v v e P v
Change-impact ? v v v
First-order queries ? ? ?
Support NAT v v v v

Support Routing v v v v P
Firewall Networks v v v v v P
Language integration v
Commercial Tool? no no yes no yes yes

Table 1: Feature comparison between Margrave and other available firewall-analysis tools. In each cell, v' denotes
included features; v™P denotes features reported by the authors in private communication but not described in pub-
lished papers; v'~ denotes included features with more limited scope than in Margrave; ~ denotes features that can be
simulated, but aren’t directly supported; ? denotes cases for which we aren’t sure about support. Section 7 describes
nuances across shared features and discusses additional research for which tools are not currently available.

This scenario shows a TCP packet (line 3) arriving on the
fast-ethernet interface (line 7), bound for the web server
(line 4, with line 11 of Figure 1) on port 80 (line 8). The
generic IPaddress in lines 2 and 11 should be read as
“any IP address not mentioned explicitly in the policy”;
lines 5 and 6 are similarly generic. Section 5 explains the
size=15 report on line 1.

A user can ask for additional scenarios that illustrate
the previous query via the command SHOW NEXT: Once
Margrave has displayed all unique scenarios, it responds
to SHOW NEXT queries with no results.

To check whether the filter accepts packets from the
blacklisted server, we constrain src-addr-in to match
the blacklisted IP address and examine only packets that
arrive on the external interface. Both src-addr-in and
entry-interface are variable names in <req>. The
IS POSSIBLE? command instructs Margrave to display
false or true, rather than detailed scenarios.

EXPLORE

InboundACL:Permit (<reg>) AND
10.1.1.2 = src-addr-in AND
fe0 = entry-interface

IS POSSIBLE?

Query 2

In this case, Margrave returns false. Had it returned true,
the user could have inspected the scenarios by issuing a
SHOW ONE or SHOW ALL command.

Rule-level Reasoning: Tracing behavior back to the
responsible rules in a firewall aids in both debugging and
confirming that rules are fulfilling their intent. To support
reasoning about rule effects, Margrave automatically de-

fines two formulas for every rule in a policy (where R is
a unique name for the rule):

e R matches(<reg>) is true when <reqg> satisfies the
rule’s conditions, and

e R applies(<reg>) is true when the rule both
matches <req> and determines the decision on <reqgq>
(as the first matching rule within the policy).

Distinguishing these supports fine-grained queries about
rule behavior. Margrave’s 10S compiler constructs the
R labels to uniquely reference rules across policies. For
instance, ACL rules that govern an interface have labels
of the form hostname-interface-1ine#, where hostname
and interface specify the names of the host and interface
to which the rule is attached and # is the line number at
which the rule appears in the firewall configuration file.

The following query refines query 2 to ask for deci-
sion justification: the EXPLORE clause now asks for Deny
packets, while the INCLUDE clause instructs Margrave to
compute scenarios over the two Deny rules as well as the
formulas in the EXPLORE clause:

EXPLORE

InboundACL:Deny (<reqg>) AND

10.1.1.2 = src-addr-in AND

fe0 = entry-interface

INCLUDE

InboundACLl:Router-fe0-1line9 applies(<reg>),
InboundACLl:Router-fel0-lineld4 applies(<reqgq>)

SHOW REALIZED
InboundACLl:Router-fe0-1line9 applies(<reg>),

InboundACLl:Router-fel0-lineld4 applies(<reqgq>)
Query 3

The sHOW REALIZED command asks Margrave to dis-
play the subset of listed facts that appear in some result-

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 43

ing scenario. The following results indicate that the rule
at line 9 does (at least sometimes) apply. More telling,
however, the absence of the rule at line 14 (the catch-all
deny) indicates that that rule never applies to any packet
from the blacklisted address. Accordingly, we conclude
that line 9 processes all blacklisted packets.
< InboundACL:1line9 applies(<reg>) >
Result

The INCLUDE clause helps control Margrave’s perfor-
mance. Large policies induce many rule-matching for-
mulas; enabling these formulas only as needed trims the
scenario space. SHOW REALIZED (and its dual, SHOW
UNREALIZED) controls the level of detail at which users
view scenarios. The lists of facts that do (or do not) ap-
pear in scenarios often raise red flags about firewall be-
havior (such as an unexpected port being involved in pro-
cessing a packet). Unlike many verification tools, Mar-
grave does not expect users to have behavioral require-
ments or formal security goals on hand. Lightweight
summaries such as SHOW REALIZED try to provide in-
formation that suggests further queries.

Computing Overshadowed Rules through Scripting:
Query 3 checks the relationship between two rules on
particular packets. A more general question asks which
rules never apply to any packet; we call such rules super-
fluous. The following query computes superfluous rules:

EXPLORE true

UNDER InboundACL
INCLUDE
InboundACL:
InboundACL:
InboundACL:
InboundACL:
InboundACL:

router-fe0-1line9 applies(<reg>),

router-fe0-linel0_applies(<reqg>),
router-fe0-linel2 applies(<reqg>),
router-fe0-linel4_ applies(<reqg>),
router-vlanl-linel6_applies(<reg>)

SHOW UNREALIZED

InboundACL:router-fe0-1line9 applies(<reqg>),
InboundACL:router-fe0-1linel0_applies(<reg>),
InboundACL:router-fe0-linel2 applies(<reg>),
InboundACL:router-fe0-linel4 applies(<reg>),

InboundACL:router-vlanl-linel6_applies(<reqg>)
Query 4

As this computation doesn’t care about request con-
tents, the EXPLORE clause is simply true. The heart
of this query lies in the INCLUDE clause and the SHOW
UNREALIZED command: the first asks Margrave to con-
sider all rules; the second asks for listed facts that are
never true in any scenario. UNDER clauses load policies
referenced in INCLUDE but not EXPLORE clauses.

While the results tell us which rules never apply, they
don’t indicate which rules overshadow each unused rule.
Such information is useful, especially if an overshadow-
ing rule ascribes the opposite decision. Writing queries
to determine justification for each superfluous rule, how-
ever, is tedious. Margrave’s query language is embedded

in a host language (Racket [13], a descendent of Scheme)
through which we can write scripts over query results. In
this case, our script uses a Margrave command to obtain
lists of rules that yield each of Permit and Deny, then is-
sues queries to isolate overshadowing rules for each su-
perfluous rule. These are similar to other queries in this
section. Scripts could also compute hotspot rules that
overshadow a large percentage of other rules.

Change-Impact: Sysadmins edit firewall configura-
tions to provide new services and correct emergent prob-
lems. Edits are risky because they can have unexpected
consequences such as allowing or restricting traffic that
the edit should not have affected. Expecting sysadmins
to have formal security requirements against which to
test policy edits is unrealistic. In the spirit of lightweight
analyses that demand less of users, Margrave computes
scenarios illustrating packets whose decision or applica-
ble rule changes in the face of edits.

For example, suppose we add the new boldface rule
below to access-list 101 (the line numbers start with 14 to
indicate that lines 1-13 are identical to those in Figure 1):

access-list 101 deny tcp
host 10.1.1.2 host 192.168.5.10 eq 80

If we call the modified filter InboundACL_new, the
following query asks whether the original and new
InboundACLs ever disagree on Permit decisions:

EXPLORE

(InboundACL:Permit (<reqg>) AND

NOT InboundACL_new:Permit(<reg>)) OR
(InboundACL_new:Permit(<reqg>) AND
NOT InboundACL:Permit(<reg>)))

IS POSSIBLE?

Query 5

Margrave returns false, since the rule at line 9 always
overrides the new rule. If instead the new rule were:

access-list 101 deny tcp
host 10.1.1.3 host 192.168.5.10 eq 80

Margrave would return true on query 5. The correspond-
ing scenarios show packet headers that the two firewalls
treat differently, such as the following:

*%xx%%xx%%x%x SOLUTION FOUND at size =
src-addr-in: 10.1.1.3

protocol: prot-tcp

dest-addr-in: 192.168.5.10
src-port-in: port

exit-interface: interface
entry-interface: fel

dest-port-in: port-80
Result

15

As we might expect, this scenario involves packets from
10.1.1.3. A subsequent query could confirm that no
other hosts are affected.

44

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

Corporate LAN

Contractors
(192.168.4.%)

Employees
(192.168.3.%)

Manager
(192.168.1.2)

Mail WWwW
Server Server
(10.1.1.3) (10.1.1.4)

External
Firewall

Internet

Figure 2: A small-business network-topology

Networks of Firewalls: So far, our examples have
considered only single firewalls. Margrave also han-
dles networks with multiple firewalls and NAT. Figure
2 shows a small network with web server, mail server,
and two firewalls to establish a DMZ. The internal fire-
wall performs both NAT and packet-filtering, while the
external firewall only filters. The firewall distinguishes
machines for employees (192.168.3.x), contractors
(192.168.4.%), and a manager (192.168.1.2). This
example captures the essence of a real problem posted to
a networking help-forum.

hostname int

!

interface in_dmz

ip address 10.1.1.1 255.255.255.0

ip nat outside

1

interface in_lan

ip access-group 102 in

ip address 192.168.1.1 255.255.0.0

ip nat inside

1

access-list 102 permit tcp any any eq 80
access-1list 102 deny any

!

list 1 interface
overload
192.168.1.1 0.0.255.255

ip nat inside source
in_dmz

access-list 1 permit

!

ip route 0.0.0.0 0.0.0.0 in_dmz

Internal Firewall
Lines 1517 in the internal firewall apply NAT to traffic

from the corporate LAN.! Line 11 in the external firewall
blacklists a specific external host (10.200.200.200).

!n this example, we use the 10.200.* private address space to rep-
resent the public IP addresses.

22

Despite the explicit rule on lines 19-20 in the external
firewall, the manager cannot access the web. We have
edited the configurations to show only those lines rele-
vant to the manager and web traffic.

hostname ext

1

interface out_dmz

ip access-group 103 in

ip address 10.1.1.2 255.255.255.0
1

interface out_inet

ip access-group 104 in

ip address 10.200.1.1 255.255.0.0

1

deny 10.200.200.200
permit tcp any host
eq 80

deny any

access-list 104
access-list 104 10.1.1.4

access-list 104
1

103 deny ip any

host 10.200.200.200

deny tcp any any eq 23
permit tcp host 192.168.1.2
any eq 80

deny any

access-list

103
103

access-list
access-list

access-list 103

External Firewall

The following query asks “What rules deny a connec-
tion from the manager’s PC (line 2) to port 80 (line 10)
somewhere outside our network (line 8) other than the
blacklisted host (line 9)?”

EXPLORE prot-TCP = protocol AND
192.168.1.2 = fwl-src-addr-in AND
in lan = fwl-entry-interface AND
out_dmz = fw2-entry-interface AND
hostname-int = fwl AND
hostname-ext = fw2 AND

fwl-dest-addr-in IN 10.200.0.0/255.255.0.0
NOT 10.200.200.200 = fwl-dest-addr-in AND
port-80 = fwl-dest-port-in AND

internal-result(<reqfull-1>) AND

(NOT passes-firewall (<regpol-1>) OR
internal-result(<reqfull-2>) AND
NOT passes-firewall (<regpol-2>))

UNDER InboundACL

INCLUDE

InboundACL:int-in_ lan-line-12_ applies
(<regpol-1>),

InboundACL:int-in_lan-line-17_applies
(<regpol-1>),

InboundACL:ext-out_dmz-line-19_applies
(<regpol-2>),

InboundACL:ext-out_dmz-line-21_applies
(<regpol-2>),

InboundACL:ext-out_dmz-line-24 applies
(<regpol-2>)

Query 6

Lines 12-16 capture both network topology and
the effects of NAT. The internal-result and
passes-firewall formulas capture routing in the face

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference

45

S

of NAT and passing through the complete firewall (in-
cluding routing, NAT and ACLs) whose hostname appears
in the request, respectively; Section 4 describes them in
detail. The variables sent to the two passes-firewall
formulas through <regpol-1> and <reqgpol-2> en-
code the topology: for example, these shorthands use
the same variable name for dest-addr-out in the inter-
nal firewall and src-addr-in in the external firewall. The
fwl-entry-interface and fw2-entry-interface
variables (bound to specific interfaces in lines 3—-4)
appear as the entry interfaces in <regpol-1> and
<regpol-2>, respectively.

A SHOW REALIZED command over the INCLUDE
terms (as in query 3) indicates that line 21 of the exter-
nal firewall configuration is denying the manager’s con-
nection. Asking Margrave for a scenario for the query
(using the SHOW ONE command) reveals that the internal
firewall’s NAT is changing the packet’s source address:

fwl-src-addr-out=fw2-src-addr =
fw2-src-addr-out: 10.1.1.1
‘fwl—src—addr_=fw1—src—addr—in: 192.168.1.2 ‘

Result

The external firewall rule (supposedly) allowing the
manager to access the Internet (line 19) uses the internal
pre-NAT source address; it never matches the post-NAT
packet. Naively editing the NAT policy, however, can
leak privileges to contractors and employees. Change-
impact queries are extremely useful for confirming that
the manager, and only the manager, gain new privileges
from an edit. An extended version of this example with
multiple fixes and the change-impact queries, is provided
in the Margrave distribution.

Summary: These examples illustrate Margrave’s abil-
ity to reason about both combinations of policies and
policies at multiple granularities. The supported query
types include asking which packets satisfy a condi-
tion (query 1), verification (query 2), rule responsibility
(query 3), rule relationships (query 4) and change-impact
(query 5). A formal summary of the query language and
its semantics is provided with the Margrave distribution.

3 Defining Scenarios

Margrave views a policy as a mapping from requests to
decisions. In a firewall, requests contain packet data
and some routing data, while decisions include Per-
mit and Deny (for ACLs), Drop (for routing), and a
few others. Policies often refer to relationships be-
tween objects, such as “permit access by machines
on the same subnet”. Queries over policies often re-
quire quantification: “Every host on the local subnet

can access some gateway router”. First-order logic ex-
tends propositional logic with relational formulas (such
as SameSubnet (121.34.42.133,121.34.42.166))
and quantifiers (V and 3). For firewall policies, the avail-
able relations include the decisions, R_matches and
R_applies (as shown in Section 2) and unary relations
capturing sets of IP addresses, ports, and protocols.
Margrave maps both policies and queries into first-
order logic formulas. To answer a query, Margrave first
conjoins the query formula with the formulas for all poli-
cies referenced in the query, then computes solutions to
the combined formula. A solution to a first-order formula
contains a set of elements to quantify over (the universe)
and two mappings under which the formula is true: one
maps each relation to a set of tuples over the universe,
and another maps each unquantified variable in the query
to an element of the universe.> For example, the formula

Va host(x) = Ty (router(y) A CanAccess(x,y))

says that “every host can access some router”. One so-
lution has a universe of {h1,r1,72} and relation tuples
host(hl), router(rl), router(r2), and CanAccess(hl,r2)
(the formula has no unquantified variables). Other so-
lutions could include more hosts and routers, with more
access connections between them. Solutions may map
multiple variables to the same universe element. This
is extremely useful for detecting corner cases in policy
analysis; while humans often assume that different vari-
ables refer to different objects, many policy errors lurk
in overlaps (such as a host being used a both web server
and mail server). Scenarios are simply solutions to the
formula formed of a query and the policies it references.

In general, checking whether a first-order formula has
a solution (much less computing them all) is undecid-
able. Intuitively, the problem lies in determining a suffi-
cient universe size that covers all possible solutions. This
problem is disconcerting for policy analysis: we would
like to show users an exhaustive set of scenarios to help
them ensure that their policies are behaving as intended
in all cases. Fortunately, Margrave can address this prob-
lem in most cases; Section 5 presents the details.

4 Mapping Firewalls to the Theory

There is a sizeable gap between the theory in Sec-
tion 3 and a policy in a real-world language, such as
the example in Figure 1. To represent policies in the
theory, we must describe the shapes of requests, the
available decisions, what relations can appear in formu-
las, and how policy rules translate into formulas. Sec-
tion 2 used several relations relevant to firewalls, such

2In logical terms, a solution combines a first-order model and an
environment binding free variables to universe elements.

46

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

(Policy InboundACL uses IOS-vocab
(Rules

(Router-fel0-1inel0 =

(Permit hostname, ...) :-
(hostname-Router hostname)
(fe0 entry-interface)
(IPAddress src-addr-in)
(prot-tcp protocol)
(Port src-port-in)
(192.168.5.10 dest-addr-in)
(port-80 dest-port-in))

..l)

(RComb FAC))

Figure 3: A Margrave policy specification

as passed-firewall. Margrave defines these relations
and other details automatically via several mechanisms.

Policies: Figure 3 shows part of the result of com-
piling the 10S configuration in Figure 1 to Margrave’s
intermediate policy language. The fragment captures
the 10S rule on line 10. (Permit hostname, ...)
specifies the decision and states a sequence of variable
names corresponding to a request. The : - symbol sepa-
rates the decision from the conditions of the rule. For-
mula (prot-tcp protocol), for example, captures
that TCP is the expected protocol for this rule. Margrave
represents constants (such as decisions, IP addresses, and
protocols) as elements of singleton unary relations. A
scenario that satisfies this rule will map the protocol vari-
able to some element of the universe that populates the
prot-tcp relation. The other conditions of the original
rule are captured similarly. The (RComb FAC) at the end
of the policy tells Margrave to check the policy rules in
order (FAC stands for “first applicable”). The first line of
the policy ascribes the name InboundACL.

Decomposing I0S into policies: Figure 4 shows our
high-level model of 10S configurations. Firewalls per-
form packet filtering, packet transformation, and internal
routing; the first two may occur at both entry to and exit
from the firewall. Specifically, packets pass through the
inbound ACL filter, inside NAT transformation, internal
routing, outside NAT transformation, and finally the out-
bound ACL filter on their way through the firewall. The
intermediate stages define additional information about
a packet (as shown under the stage names): inside NAT
may yield new address and port values; internal routing
determines the next-hop and exit interface; outside NAT
may yield further address and port values.

Internal routing involves five substages, as shown in
Figure 6. Margrave creates policies (a la Figure 3) for
each of the five substages. The -Switching policies
determine whether a destination is directly connected to

the firewall; the -Routing policies bind the next-hop
IP address for routing. In addition, Margrave generates
four policies called InboundACL, OutboundACL,
InsideNAT, and OutsideNat. The two -ACL poli-
cies contain filtering rules for all interfaces.

Requests and Decisions: Margrave automatically de-
fines a relation for each decision rendered by each of the
9 subpolicies (e.g., InboundACL:Permit in query 1).
Each relation is defined over requests, which contain
packet headers, packet attributes, and values generated
in the intermediate stages; the boxes in Figure 4 col-
lectively list the request contents. As Margrave is not
stateful, it cannot update packet headers with data from
intermediate stages. The contents of a request reflect
the intermediate stages’ actions: for example, if the val-
ues of src-addr_ and src-addr-out are equal, then
OutsideNAT did not transform the request’s packet.
Currently, Margrave shares the same request shape
across all 9 subpolicies (even though InboundACL, for
example, only examines the packet header portion).

Flows between subpolicies: Margrave encodes flows
among the 9 subpolicies through three relations (over re-
quests) that capture the subflows marked in Figure 4.

o Internal routing either assigns an exit interface and
anext-hop to a packet or drops the packet internally.
Margrave uses a special exit-interface value to mark
dropped packets; the int-dropped relation con-
tains requests with this special exit-interface value.
Any request that is not in int-dropped success-
fully passes through internal routing.

e Unlike internal routing, NAT never drops pack-
ets. At most, it transforms source and destina-
tion ports and addresses. Put differently, NAT is
a function on packets. internal-result cap-
tures this function: it contains all requests whose
next-hop, exit-interface, and OutsideNAT
components are consistent with the packet header
and InsideNAT components (as if the latter were
inputs to a NAT function).

e ACLs permit or deny packets. The relation
passes-firewall contains requests that the two
ACLs permit, are in internal-result (i.e., are
consistent with NAT), and are not in int-dropped
(i.e., are not dropped in internal routing).

Our 10S compiler automatically defines each of these
relations as a query in terms of the 9 10S subpolicies
(capturing topology as in query 6). Margrave provides a
RENAME command that saves query results under a user-
specific name for use in later queries. Users can name
any set of resulting scenarios in this manner.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 47

fi 1 PACKET HEADER
passes—firewa protocol
internal-result src—addr—lr}
dest—addr—in
NOT int—dropped src—port—in
InboundACL —= InsideNAT —w Internal Routing —s OutsideNAT — OutboundACL feS‘;lP(’“‘m
cp—flags
src—addr_ qex}—hop src—addr—out
dest—addr_| exit-interface dest—addr—ou ADD’L INFO
src—port_ src—port—out entry—interface
dest—port_ dest—port—out| hostname
length
message

Figure 4: Margrave’s decomposition of firewall configurations

(PolicyVocab IOS-vocab
(Types
(Interface : interf-drop
(interf-real vlanl fe0))
(IPAddress :
192.128.5.0/255.255.255.0
10.1.1.0/255.255.255.254
192.168.5.11
192.168.5.10
10.1.1.2)
(Protocol : prot-ICMP prot-TCP prot-UDP)
(Port: port-25 port-80)
(Decisions Permit Deny ...)

(disjoint-all Protocol)
(nonempty Port)

Figure 5: A Margrave vocabulary specification

Vocabularies: The 9 subpolicies share ontology about
ports and IP addresses. = Margrave puts domain-
knowledge common to multiple policies in a vocabulary
specification; the first line of a policy specification refer-
ences its vocabulary through the uses keyword. Figure 5
shows a fragment of the vocabulary for 10S policies: it
defines datatypes (such as Protocol) and their elements
(correspondingly, prot-ICMP, prot-TCP, prot-UDP).

Vocabularies also capture domain constraints such as
“all protocols are distinct” or “there must be at least one
port” (both shown in Figure 5). While these constraints
may seem odd, they support Margrave’s scenario-finding
model. Some potential “solutions” (as described in Sec-
tion 3) are nonsensical, such as one which assigns two
distinct numbers to the same physical port. Domain con-
straints rule out nonsensical scenarios.

Generalizing Beyond Firewalls

The policy- and vocabulary-specifications in Figures 3
and 5 show how to map specific domains into Mar-
grave. Datatypes, constraints, and rules capture many

other kinds of policies, including access-control poli-
cies, hypervisor configurations, and product-line specifi-
cations. Indeed, this general-purpose infrastructure is an-
other advantage of Margrave over other firewall-analysis
tools: Margrave can reason about interactions between
policies from multiple languages for different configura-
tion concerns. For example, if data security depends on
a particular interaction between a firewall and an access-
control policy, both policies and their interaction can be
explored using Margrave. We expect this feature to be-
come increasingly important as enterprise applications
move onto the cloud and are protected through the in-
terplay of multiple policies from different sources.

S Implementation

Margrave consists of a frontend read-eval-print loop
(REPL) written in Racket [13] and a backend written in
Java. The frontend handles parsing (of queries, com-
mands, policies, and vocabularies) and output presenta-
tion. The actual analysis and scenario generation occurs
in the backend.

5.1 The Scenario-Finding Engine

Margrave’s backend must produce sets of solutions to
first-order logic formulas. We currently use a tool called
Kodkod [32] that produces solutions to first-order for-
mulas using SAT solving.> SAT solvers handle propo-
sitional formulas. Kodkod bridges the gap from first-
order to propositional formulas by asking users for a fi-
nite universe-size; under a finite universe-size, first-order
formulas translate easily to propositional ones. Figure 7
shows an example of the rewriting process. Every so-
Iution produced using a bounded size is legitimate (in
logical terms, our analysis is sound). However, analysis
will miss solutions that require a universe larger than the
given size (in logical terms, it is not complete).

3Within Kodkod, we use a SAT-solver called SAT47 [8].

48

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

Pass

PolicyRouting |-« ..o,

Pass ~

-

LocalSwitching 7,

Fwd

Fwd Packet Departs
o Fwd ..-° 7

--------- N
NetworkSwitching
Pass Route —

DefaultPolicyRouting

Figure 6: Internal flow of packets within a router. Edges are labeled with decisions rendered by the policies at the
source of the edge. Routing policies determine the next-hop IP address, while switching policies send traffic to directly

to a connected device.

Fortunately, most firewall queries (including those
in this paper) correspond to formulas with no univer-
sal (V) quantifiers. For such formulas, the number
of existentially-quantified variables provides a sufficient
universe size to represent all solutions. Margrave auto-
matically supplies Kodkod with the universe bound for
such formulas. For queries that do not have this form,
such as “can every host reach some other machine on the
network”, either Margrave or the user must supply a uni-
verse size for the analysis. The query language has an
optional CEILING clause whose single argument is the
desired universe size. If CEILING is omitted, Margrave
uses a default of 6. Experience with Kodkod in other
domains suggests that small universe sizes can yield use-
ful scenarios [15]. If Margrave can compute a sufficient
bound but the user provides a lower CEILING, Margrave
will only check up to the CEILING value. Whenever
Margrave cannot guarantee that scenario analysis is com-
plete, it issues a warning to the user. The size=15 state-
ment in the first line of scenarios shown in Section 2 re-
port the universe-size under which Margrave generated
the scenario.

CEILING settings may impact the results of com-
mands. Margrave includes a SHOW UNREALIZED com-
mand that reports relations that are not used in any re-
sulting scenario. However, a relation 7" might be unpop-
ulated at one CEILING value yet populated at a higher
value. For example, in the formula 3z—T'(x), T is never
used at CEILING 1, but can be realized at CEILING 2.
Margrave users should only supply CEILING values if
they appreciate such consequences.

Overall, we believe sacrificing exhaustiveness for the
expressive power of first-order logic in policies and
queries is worthwhile, especially given the large number
of practical queries that can be checked exhaustively.

5.2 Rewriting Firewall Queries

Under large universe sizes, both the time to compute sce-
narios and the number of resulting scenarios increase.
The latter puts a particular burden on the end-user who
has to work through the scenarios. Query language con-
structs like SHOW REALIZED summarize details about
the scenarios in an attempt to prevent the exhaustive
from becoming exhausting. However, query optimiza-
tions that reduce universe sizes have more potential to
target the core problem.

Most firewall queries have the form 3 7eq «, where «
typically lacks quantifiers. Requests have 16 or 20 com-
ponents (as shown in Figure 4), depending on whether
they reference internal-result. Margrave therefore
analyzes all-existential queries under a universe size of
16 or 20. However, these queries effectively reference
a single request with attributes as detailed in «. This
suggests that we could rewrite this query with a single
quantified variable for a request and additional relations
that encode the attributes. For example:

A pt_in A pt_out : route(pt_in, pt_out)
becomes
Apkt : is_ptIn(pkt,i) A is_ptOut(pkt, o) A route(i, o)

Effectively, these new relations lift attributes from the in-
dividual packet fields to the packet as a whole.
Formulas rewritten in this way require a universe size
of only 1, for which scenario generation stands to be
much faster and to yield fewer solutions. The tradeoff,
however, lies in the extra relations that Margrave intro-
duces to lift attributes to the packet level. Additional re-
lations increase the time and yield of scenario computa-
tions, so the rewriting is not guaranteed to be a net win.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 49

The original sentence:

Vz host(z) = 3y (router(y) A CanAccess(z,y))

Assume a universe of size 2 with elements A and B. Expand
the V-formula with a conjunction over each of A and B for x:

host(A)
host(B)

= Ty (router(y) A CanAccess(A,y)) A

= 3y (router(y) A CanAccess(B,y))

Next, expand each 3-formula with a disjunction over each of A
and B for y:

host(A) = (router(A) A CanAccess(A, A))V
(router(B) A CanAccess(A, B)) A

host(B) = (router(A) A CanAccess(B,A))V
(router(B) A CanAccess(B, B))

Replace each remaining formula with a propositional variable
(e.g., router(A) becomes p2):

p1 = (p2Ap3)V
(P4 Aps) A
ps = (p2Apr)V
(pa A ps)

Figure 7: Converting a first-order formula to a proposi-
tional one at a bounded universe size

Table 2 presents experimental results on original ver-
sus rewritten queries. In practice, we find performance
improves when the query is unsatisfiable or the smallest
model is large. A user who expects either of these con-
ditions to hold can enable the rewriting through a query-
language flag called TUPLING. All performance figures
in this paper were computed using TUPLING.

6 Evaluation

We have two main goals in evaluating Margrave. First,
we want to confirm that our query language and its
results support debugging real firewall configuration-
problems; in particular, the scenarios should accurately
point to root causes of problems. We assume a user who
knows enough firewall basics to ask the questions under-
lying a debugging process (Margrave does not, for ex-
ample, pre-emptively try queries to automatically isolate
a problem). Second, we want to check that Margrave
has reasonable performance on large policies, given that
we have traded efficient propositional models for richer
first-order ones.

We targeted the first goal by applying Margrave to
problems posted to network-configuration help-forums
(Sections 6.1 and 6.2). Specifically, we phrased the

Rules | # Vars | Min Size | Not Tupled | Tupled
100 3 3 694ms 244ms
1000 14 6 7633ms 1221ms
1000 14 10 17659ms | 1219ms
1000 14 14 32116ms | 1205ms

Table 2: Run-time impact of TUPLING on ACL queries.
The first column contains the number of rules in
each ACL. The second column lists the number of
existentially-quantified variables in the query; we in-
clude one 3-variable (non-firewall) query to illustrate the
smaller gains on smaller variable counts. The 14-variable
ACLs are older firewall examples with smaller request tu-
ples. The “Min Size” column indicates the universe size
for the smallest scenario that satisfied the query. Larger
minimum sizes have a larger search space.

poster’s reported problem through Margrave queries and
sought fixes based on the resulting scenarios. In addition,
we used Margrave to check whether solutions suggested
in follow-up posts actually fixed the problem without af-
fecting other traffic. The diversity of firewall features
that appear in forum posts demanded many compiler ex-
tensions, including reflexive access-lists and TCP flags.
That we could do this purely at the compiler level attests
to the flexibility of Margrave’s intermediate policy- and
vocabulary-languages (Section 4).

We targeted the second goal by applying Margrave
to an in-use enterprise firewall-configuration containing
several rule sets and over 1000 total rules (Section 6.3).
Margrave revealed some surprising facts about redun-
dancy in the configuration’s behavior. Individual queries
uniformly execute in seconds.

Notes on Benchmarking Our figures report Mar-
grave’s steady-state performance; they omit JVM
warmup time. Policy-load times are measured by loading
different copies of the policy to avoid caching bias. All
performance tests were run on an Intel Core Duo E7200
at 2.53 Ghz with 2 GB of RAM, running Windows XP
Home. Performance times are the mean over at least 100
individual runs; all reported times are +200ms at the 95-
percent confidence level. Memory figures report private
(i.e., not including shared) consumption.

6.1 Forum Help: NAT and ACLs

”My servers cannot get access into the internet, even
though I will be able to access the website, or even
FTP... I don’t really know what’s wrong. Can you please
help? Here is my current configuration...”

50

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

In our first forum example [4], the poster is having
trouble connecting to the Internet from his server. He
believes that NAT is responsible, and has identified the
router as the source of the problem. The configuration
included with the post appears in Figure 8 (with a slight
semantics-preserving modification®).

A query (not shown) confirms that the firewall is
blocking the connection. Our knowledge of firewalls in-
dicates that packets are rejected either enroute to, or on
return from, the webserver. Queries for these two cases
are similar; the one checking for response packets is:

EXPLORE
NOT src-addr-in

IN 192.168.2.0/255.255.255.0 AND
FastEthernet0 = entry-interface AND
prot-TCP = protocol AND
port-80 = src-port-in AND
internal-result(<reqfull>) AND
passes-firewall (<regpol>)

IS POSSIBLE?

Query 7

Margrave reports that packets to the webserver are per-
mitted, but responses are dropped. The resulting scenar-
ios all involve source ports 20, 21, 23, and 80 (easily con-
firmed by re-running the query with a SHOW REALIZED
command asking for only the port numbers). This is
meaningful to a sysadmin: an outgoing web request is
always made from an ephemeral port, which is never less
than 1024. This points to the problem: the router is re-
jecting all returning packets. ACL 102 (Figure 8, lines
25-29) ensures that the server sees only incoming HTTP,
FTP, and TELNET traffic, at the expense of rejecting the
return traffic for any connections that the server initiates.

Enabling the server to access other webservers in-
volves allowing packets coming from the proper desti-
nation ports. Methods for achieving this include:

1. Permit TCP traffic from port 80, via the edit:

28 | access-1list 102 permit tcp

29 any host 209.172.108.16 eq 23
3 | access-list 102 permit tcp any eq 80 any
31 |access-1list 102 deny tcp

32 any host 209.172.108.16

2. Allow packets whose ack flags are set via the es-
tablished keyword (or, in more recent versions, the
match-all +ack option). This suggestion guards
against spoofing a packet’s source port field and al-
lows servers to listen on unusual ports.

3. Use stateful monitoring of the TCP protocol via re-
flexive access-lists or the inspect command. This
guards against spoofing of the TCP ACK flag.

4We replaced named interface references in static NAT statements
with actual IP addresses; our compiler does not support the former.

Follow-up posts in the forum suggested options 1 and 3.
Margrave can capture the first two options and the re-
flexive access-list approach in the third (it does not cur-
rently support inspect commands). For each of these,
we can perform verification queries to establish that the
InboundACL no longer blocks return packets, and we
can determine the extent of the change through a change-
impact query.

Space precludes showing the reflexive ACL query in
detail. Reflexive ACLs allow return traffic from hosts to
which prior packets were permitted. Margrave encodes
prior traffic through a series of connection- relations
over requests. Intuitively, a request is in a connection-
relation only if the same request with the source- and
destination-details reversed would pass through the fire-
wall. Although the connection state is dynamic in prac-
tice, its stateless definition enables Margrave to handle it
naturally through first-order relations.

Performance: Loading each version of the configura-
tion took between 3 and 4 seconds. The final change-
impact query took under 1 second. After loading, run-
ning the full suite of queries (including those not shown)
required 2751ms. The memory footprint of the Java en-
gine (including all component subpolicies) was 50 MB
(19 MB JVM heap, 20 MB JVM non-heap).

6.2 Forum Help: Routing

“there should be a way to let the network
10.232.104.0/22 access the internet, kindly advise a
solution for this...”

In our second example [29], the poster is trying to
create two logical networks: one “primary” (consist-
ing of 10.232.0.0/22 and 10.232.100.0/22) and
one “secondary” (consisting of 10.232.4.0/22 and
10.232.104.0/22). These logical networks are con-
nected through a pair of routers (TAS and BAZ) which
share a serial interface (Figure 9). Neither logical net-
work should have access to the other, but both net-
works should have access to the Internet—the primary
via10.232.0.15 and the secondary via 10.232.4.10.

The poster reports two problems: first, the two com-
ponents of the primary network—10.232.0.0/22 and
10.232.100.0/22—cannot communicate with each
other; second, the network 10.232.104.0/22 cannot
access the Internet. The poster suspects errors in the TAS
router configuration (omitted for sake of space).

We start with the first problem. The following query
confirms that network 10.232.0.0/22 cannot reach
10.232.100.0/22 via the serial link. The hostname
formulas introduce names for each individual router

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 51

name-server 207.47.4.2
name-server 207.47.2.178

interface FastEthernetO

ip
ip
ip

speed auto
full-duplex

interface Vlanl

ip
ip
!

ip
!

ip
ip
ip
ip
ip
ip
!

access-list 1 permit 192.168.2.0 0.0.0.255

access-list 102 permit tcp any host 209.172.108.16 eq 80
access-list 102 permit tcp any host 209.172.108.16 eq 21
access-list 102 permit tcp any host 209.172.108.16 eq 20
access-list 102 permit tcp any host 209.172.108.16 eq 23
access-1list 102 deny tcp any host 209.172.108.16

address 209.172.108.16 255.255.255.224
access-group 102 in
nat outside

address 192.168.2.1 255.255.255.0
nat inside

route 0.0.0.0 0.0.0.0 209.172.108.1

nat pool localnet 209.172.108.16 prefix-length 24

nat inside source list 1 pool localnet overload

nat inside source list 1 interface FastEthernet0

nat inside source static tcp 192.168.2.6 80 209.172.108.16 80

nat inside source static tcp 192.168.2.6 21 209.172.108.16 21

nat inside source static tcp 192.168.2.6 3389 209.172.108.16 3389

Figure 8: The original configuration for the forum post for Section 6.1

10.232.4.10/22

GigabitEthernet0/1
10.232.8.1/22

Serial0/3:0 Serial0/3:0

GigabitEthernet0/0
szltser 10.254.1.129/30 10.254.1.130/30 @ 10.235.100.0/23 primary
10.232.104.0/22 secondary
GigabitEthernet0/0
10.232.0.0/22 primary

10.232.4.0/22 secondary

10.232.0.15/22

Figure 9: Structure of the network for the forum post for Section 6.2

52

LISA °10: 24th Large Installation System Administration Conference USENIX Association

based on the hostname specification in the 10S config-
uration; these names appear in the tasvector- and
bazvector- requests. (The -full- requests extend the
corresponding -pol- requests with additional variables
needed for internal-routing.

EXPLORE hostname-tas =
hostname-baz = baz AND

tas AND

internal-result(<tasvectorfull-fromtas>) AND
internal-result(<bazvectorfull-fromtas>) AND
passes-firewall (<tasvectorpol-fromtas>) AND
passes-firewall (<bazvectorpol-fromtas>) AND

GigabitEthernet0/0 =

tas-src-addr-in IN
10.232.0.0/255.255.252.0 AND

tas-dest-addr-in IN 10.232.100.0/255.255.252.0

tas-entry-interface AND

AND "Serial0/3/0:0" = tas-exit-interface AND
"Serial0/3/0:0" = baz-entry-interface AND
GigabitEthernet0/0 = baz-exit-interface

IS POSSIBLE?
Query 8

Margrave returns false, which means that no packets
from 10.232.0.0/22 reach 10.232.100.0/22 along
this network topology.

By the topology in Figure 9, packets reach the TAS
router first. We check whether packets pass through
TAS by manually restricting query 8 to TAS (by remov-
ing lines 2, 5, 7, 14, and 15); Margrave still returns
false. Firewall knowledge suggests three possible prob-
lems with the TAS configuration: (1) internal routing
could be sending the packets to an incorrect interface, (2)
internal routing could be dropping the packets, or (3) the
ACLs could be filtering out the packets. Margrave’s for-
mulas for reasoning about internal firewall behavior help
eliminate these cases: by negating passed-firewall
on line 6, we determine that the packet does pass through
the firewall, so the problem lies in the interface or next-
hop assigned during routing. This example highlights
the utility of not only having access to these formulas,
but also having the ability to negate (or otherwise manip-
ulate) them as any other subformula in a query.

To determine which interfaces the packets are sent on,
we relax the query once again to remove the remaining
reference to Serial0/3/0:0 (on line 12) and execute
the following SHOW REALIZED command

SHOW REALIZED
GigabitEthernet0/0 = exit-interface,
"Serial0/3/0:0" = exit-interface,
GigabitEthernet0/1 = exit-interface
Query 9
The output contains only one interface name:

{ GigabitEthernet0/0[exit-interface] }
Result

According to the topology diagram, packets from
10.232.0.0/22 t0 10.232.100.0/22 should be us-

© % N U B W N =

ing exit interface Serial0/3/0:0; the results, instead,
indicate exit interface GigabitEthernet0/0. Firewall
experience suggests that the router is either switching the
correct next-hop address (10.254.1.130) to the wrong
exit interface, or using the wrong next-hop address. The
next query produces the next-hop address:

EXPLORE hostname-tas = tas AND
internal-result(<tasvectorfull-fromtas>) AND
passes-firewall (<tasvectorpol-fromtas>) AND
GigabitEthernet0/0 = tas-entry-interface AND
tas-src-addr-in IN

10.232.0.0/255.255.252.0 AND
tas-dest-addr-in IN 10.232.100.0/255.255.252.0

INCLUDE
10.232.0.15 = tas-next-hop,
10.232.4.10 = tas-next-hop,

tas-next-hop IN 10.254.1.128/255.255.255.252,
tas-next-hop IN 10.232.8.0/255.255.252.0

SHOW REALIZED

10.232.0.15 = tas-next-hop,

10.232.4.10 = tas-next-hop,

tas-next-hop IN 10.232.8.0/255.255.252.0,

tas-next-hop IN 10.254.1.128/255.255.255.252
Query 10

I
{ 10.232.0.15[tas-next-hop] }
Result

The next-hop address is clearly wrong for the given
destination address. To determine the extent of the prob-
lem, we’d like to know whether all packets from the
given source address are similarly misdirected. That
question is too strong, however, as LocalSwitching
may (rightfully) handle some packets. To ask Mar-
grave for next-hops targeted by some source packet
that LocalSwitching ignores, we replace line 7 in
query 10 with:

NOT LocalSwitching:Forward(<routingpol-tas>)

Query 11

This once again highlights the value of exposing
LocalSwitching as a separate relation. The revised
query yields the same next-hop, indicating that all non-
local packets are routing to 10.232.0.15, despite the
local routing policies. A simple change fixes the prob-
lem: insert the keyword default into the routing policy:

route-map internet permit 10
match ip address 10
‘set ip default next-hop 10.232.0.15

This change ensures that packets are routed to the In-
ternet only as a last resort (i.e., when static destination-
based routing fails). Running the original queries against
the new specification confirms that the primary subnets
now have connectivity to each other. Another query
checks that this change does not suddenly enable the
primary sub-network 10.232.0.0/22 to reach the sec-
ondary sub-network 10.232.4.0/22.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference

53

39
40
41

Now we turn to the poster’s second problem: the sec-
ondary network 10.232.4.0/22 still cannot access the
Internet. As before, we confirm this then compute the
next-hop and exit interface that TAS assigns to traffic
from the secondary network with an outside destination.
The following query (with SHOW REALIZED over inter-
faces and potential next-hops) achieves this:

EXPLORE
tas = hostname-tas AND

internal-result2(<tasvectorfull-fromtas>) AND
firewall-passed2 (<tasvectorpol-fromtas>) AND

GigabitEthernet0/0 =
tas-src-addr-in IN
10.232.4.0/255.255.252.0 AND

tas-entry-interface AND

NOT tas-dest-addr-in IN
10.232.4.0/255.255.252.0 AND
NOT tas-dest-addr-in IN
10.232.104.0/255.255.252.0 AND
NOT tas-dest-addr-in IN
10.232.0.0/255.255.252.0 AND
NOT tas-dest-addr-in IN
10.232.100.0/255.255.252.0 AND
NOT tas-dest-addr-in IN
10.254.1.128/255.255.255.252 AND
NOT tas-dest-addr-in IN
192.168.1.0/255.255.255.0 AND
NOT tas-dest-addr-in IN
10.232.8.0/255.255.252.0

Query 12

{ gigabitethernet0/0[tas-exit-interface],
10.232.4.10[tas-next-hop] }
Result

The next-hop for the secondary network’s Inter-
net gateway is as expected, but the exit-interface
is unexpectedly GigabitEthernet0/0 (instead of
GigabitEthernet0/1). In light of this scenario, the
network diagram reveals a fundamental problem: the
gateway 10.232.4.10 should be “on” the same net-
work as the GigabitEthernet0/1 interface (address
10.232.8.1/22); otherwise LocalSwitching will
send the packet to the wrong exit interface.

This problem can be resolved by changing the ad-
dress of either the GigabitEthernet0/1 interface
or the next-hop router (10.232.4.10). We chose
the latter, selecting an arbitrary unused address in the
10.232.8.0/22 network:

route-map internet permit 20
match ip address 20
set ip default next-hop 10.232.8.10

Re-running the queries in this new configuration con-
firms that both goals are now satisfied.

Performance: Loading each version of the configura-
tion took between 3 and 4 seconds. Query 12 took 351

Query Time (ms)
Permit pkt from addr X on interface Y? 1587
Previous with rule responsibility 23317
Change-impact after 1 decision edit 3167
Previous with rule responsibility 24039
Detect all superfluous rules 22578
List overshadows per rule in previous 72178

Table 3: Run-time performance of various queries on
the enterprise ACLs. For the change-impact query, we
switched the decision from deny to permit on one non-
superfluous rule. The overshadowing-rules computation
asked only for overshadows with the opposite decision.

ms. After loading, running the full suite of queries (in-
cluding those not shown) finished in 8725ms. The mem-
ory footprint of the Java engine (including all component
subpolicies) was 74 MB (49 MB JVM heap, 21 MB JVM
non-heap).

6.3 Enterprise Firewall Configuration

Our largest test case to date is an in-use enterprise ipta-
bles configuration. In order to stress-test our 10S com-
piler, we manually converted this configuration to 10S.
The resulting configuration contains ACLs for 6 inter-
faces with a total of 1108 InboundACL rules (not
counting routing subpolicies). The routing component
of this firewall was fairly simple; we therefore focus our
performance evaluation on InboundACL.

From a performance perspective, this paper has il-
lustrated three fundamentally different types of queries:
(1) computing over a single policy or network with
just the default relations (which-packets and verification
queries), (2) computing over a single policy or network
while including additional relations (rule-responsibility
and rule-relationship queries), and (3) computing over
multiple, independent policies or networks (change-
impact queries). The third type introduces more vari-
ables than the first two (to represent requests through
multiple firewalls); it also introduces additional relations
to capture the policies of multiple firewalls. The second
type has the same number of variables, but more rela-
tions, than the first type. We therefore expect the best
performance on the first type, even under TUPLING.

Table 3 reports run-time performance on each type of
query over the enterprise firewall-configuration. Load-
ing the policy’s InboundACL component required
10694ms and consumed 51 MB of memory. Of that, 40
MB was JVM heap and 7 MB was JVM non-heap.

Section 2 described how we compute superfluous
rules through scripting. For this example, these queries

54

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

yielded surprising results: 900 of the 1108 rules in
InboundACL were superfluous. Even more, 270 of the
superfluous rules were (at least partially) overshadowed
by a rule with a different decision. The sysadmins who
provided the configuration found these figures shocking
and subsequently expressed interest in Margrave.

7 Related Work

Studies of firewall-configuration errors point to the
need for analysis tools. Oppenheimer, et al. [31] sur-
vey failures in three Internet services over a period
of several months. For two of these services, oper-
ator error—predominately during configuration edits—
was the leading cause of failure. Furthermore, conven-
tional testing fails to detect many configuration prob-
lems. Wool [35] studies the prevalence of 12 common
firewall-configuration errors. Larger rule-sets yield a
much higher ratio of errors to rules than smaller ones;
Wool concludes that complex rule sets are too difficult
for a human administrator to manage unaided.

Mayer, Wool and Ziskind [26, 27] and Wool [34] de-
scribe a tool called Fang that has evolved into a commer-
cial product called the AlgoSec Firewall Analyzer [3].
AlgoSec supports most of the same analyses as Mar-
grave, covering NAT and routing, but it does not sup-
port first-order queries or integration with a program-
ming language. AlgoSec captures packets that satisfy
queries through sub-queries, which are a form of abstract
scenarios.

Marmorstein and Kearns’ [23, 24] ITVal tool uses
Multi-way Decision Diagrams (MDDs) to execute SQL-
like queries on firewall policies. ITVal supports NAT,
routing, and chains of firewall policies. Later work [25]
supports a useful query-free analysis: it generates an
equivalence relation that relates two hosts if identical
packets (modulo source address) from both are treated
identically by the firewall. This can detect policy anoma-
lies and help administrators understand their policies.
Additional debugging aids in later work includes trac-
ing decisions to rules and showing examples similar to
scenarios. Margrave is richer in its support for change-
impact and first-order queries.

Al-Shaer et al.’s ConfigChecker [1, 2] is a BDD-based
tool that analyses networks of firewalls using CTL (tem-
poral logic) queries. Rules responsible for decisions can
be isolated manually through queries over sample pack-
ets. For performance reasons, the tool operates at the
level of policies, rather than individual rules (other of the
group’s papers do consider rule-level reasoning); Mar-
grave, in contrast, handles both levels.

Bhatt et al.’s Vantage tool [5, 9, 10] supports change-
impact on rule-sets and other user-defined queries over
combinations of ACLs and routing; it does not support

NAT. Some of their evaluations [9] exploit change-
impact to isolate configuration errors. This work also
supports generating ACLs from specifications, which is
not common in firewall-analysis tools.

Liu and Gouda [20, 21] introduce Firewall Decision
Diagrams (FDDs) to answer SQL-like queries about fire-
wall policies. FDDs are an efficient variant of BDDs for
the firewall packet-filtering domain. Extensions of this
work by Khakpour and Liu [17] present algorithms for
many firewall analysis discussed in this paper, includ-
ing user-defined queries, rule responsibility, and change-
impact, generally in light of NAT and routing. A down-
loadable tool is under development.

Yuan, et al.’s Fireman tool [36] analyzes large net-
works of firewall ACLs using Binary Decision Diagrams
(BDDs). Fireman supports a fixed set of analyses, in-
cluding whitelist and blacklist violations and computing
conflicting, redundant, or correlated rules between differ-
ent ACLs. Fireman examines all paths between firewalls
at once, but does not consider NAT or internal routing.
Margrave’s combination of user-defined queries and sup-
port for NAT and routing makes it much richer. Oliveira,
et al. [30] extend Fireman with NAT and routing tables.
Their tool, Prometheus, can also determine which ACL
rules are responsible for a misconfiguration. It does not
handle change-impact across firewalls, though it does de-
termine when different paths through the same firewall
render different decisions for the same packet. In certain
cases, Prometheus suggests corrections to rule sets that
guarantee desired behaviors. Margrave’s query language
is richer.

Verma and Prakash’s FACE tool [33] aids both con-
figuration of distributed firewalls and analyzing existing
distributed firewalls expressed in iptables. It supports
user-defined queries, as well as a form of change-impact
over multiple firewalls. Its depth-first-search approach to
propagating queries through a network resembles Mayer,
Ziskind, and Wool’s work. It does not handle routing or
NAT. The tool is no longer available.

Gupta, LeFevre and Prakash [14] give a framework
for the analysis of heterogeneous policies that is simi-
lar to ours. While both works provide a general policy-
analysis language inspired by SQL, there are distinct dif-
ferences. Their tool, SPAN, does not allow queries to
directly reference rule applicability and the work does
not discuss request-transformations such as NAT. How-
ever, SPAN provides tabular output that can potentially
be more concise than Margrave’s scenario-based output.
SPAN is currently under development.

Lee, Wong, and Kim’s NetPiler tool [18, 19] analyzes
the flow graph of routing policies. It can be used to both
simplify and detect potential errors in a network’s routing
configurations. The authors have primarily applied Net-
Piler to BGP configurations, which address the propaga-

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 55

tion of routes rather than the passage of packets. How-
ever, their methods could also be applied to firewall poli-
cies. Margrave does not currently support BGP, though
its core engine is general enough to support them.

Jeffrey and Samak [16] present a formal model and
algorithms for analyzing rule-reachability and cyclicity
in iptables firewalls. This work does not address NAT or
more general queries about firewall behavior.

Eronen and Zitting [11] perform policy analysis on
Cisco router ACLs using a Prolog-based Constraint Logic
Programming framework. Users are allowed to define
their own custom predicates (as in Prolog), which en-
ables analysis to incorporate expert knowledge. The Pro-
log queries are also first-order. This work is similar to
ours in spirit, but is limited to ACLs and does not support
NAT or routing information.

Youssef et al. [7] verify firewall configurations against
security goals, checking both for configurations that vio-
late goals and goals that configurations fail to cover. The
work does not handle NAT or routing.

Margrave as described in this paper extends an ear-
lier tool of the same name [12] developed by Tschantz,
Meyerovich, Fisler and Krishnamurthi. The original
Margrave targeted simple access-control policies, encod-
ing them as propositional formulas that we analyzed us-
ing BDDs. Attempts to model enterprise access-control
policies inspired the shift to first-order models embodied
in the present tool. Not surprisingly, there is an extensive
literature on logic-based tools for access-control policies;
our other papers [12, 28] survey this literature.

8 Perspective and Future Work

Margrave is a general-purpose policy analyzer. Its most
distinctive features lie in and arise from embracing sce-
nario finding over first-order models. First-order lan-
guages provide the expressive power of quantifiers and
relations for capturing both policies and queries. Expres-
sive power generally induces performance cost. By au-
tomatically computing universe bounds for key queries,
however, Margrave gets the best of both worlds: first-
order logic’s expressiveness with propositional logic’s
efficient analysis. Effectively, Margrave distinguishes
between propositional models and propositional imple-
mentations. Most logic-based firewall-analysis tools
conflate these choices.

First-order modeling lets Margrave uniformly capture
information about policies at various levels of granular-
ity. This paper has illustrated relations capturing pol-
icy decisions, individual rule behavior, and the effects
of NAT and internal routing. The real power of our
first-order modeling, however, lies in building new re-
lations from existing ones. Each of the relations captur-
ing behavior internal to a firewall (passes-firewall,

internal-routing, and int-dropped) is defined
within Margrave’s query language and exported to the
user through standard Margrave commands. While
our firewall compilers provide these three automatically,
users can add their own relations in a similar manner.
Technically, Margrave allows users to define their own
named views (in a database sense) on collections of poli-
cies. Thus, Margrave embraces policy-analysis in the se-
mantic spirit of databases, rather than just the syntactic
level of SQL-style queries.

Useful views build on fine-grained atomic informa-
tion about policies. Margrave’s unique decomposition of
10S configurations into subpolicies for nine distinct fire-
wall functions provides that foundation. Our pre-defined
firewall views would have been prohibitively hard to
write without a clean way to refer to components of fire-
wall functionality. Margrave’s intermediate languages
for policies and vocabularies, in turn, were instrumental
in developing the subpolicies. Both languages use gen-
eral relational terms, rather than domain-specific ones.
Vocabularies allow authors to specify decisions beyond
those typically associated with policies (such as Permit
and Deny). Our 10S compiler defines separate deci-
sions for the different types of flows out of internal rout-
ing, such as whether packets are forwarded internally or
translated to another interface. The routing views are de-
fined in terms of formulas capturing these decisions. The
policy language defines the formulas through rules that
yield each decision (our rule language is effectively strat-
ified Datalog). Had we defined Margrave as a firewall-
specific analyzer, rather than a general-purpose one, we
likely would have hardwired domain-specific concepts
that did not inherently support this decomposition.

User-defined decisions and views support extending
Margrave from within. Integrating Margrave into a
programming language supports external extension via
scripting over the results of commands. Margrave pro-
duces scenarios as structured (XML) objects that can
be traversed and used to build further queries. SHOW
REALIZED produces lists of results over which programs
(such as superfluous rule detection in Section 2) can it-
erate to generate additional queries. Extending our inte-
gration with iterators over scenarios would yield a more
policy-specific scripting environment.

In separate projects, we have applied Margrave to
other kinds of policies, including access-control, simple
hypervisors, and product-line configuration. Margrave’s
general-purpose flexibility supports reasoning about in-
teractions between firewalls and other types of policies
(increasingly relevant in cloud deployments). This is an-
other exciting avenue for future work.

Margrave’s performance is reasonable, but slower than
other firewall analyzers. This likely stems partly from
additional variables introduced during the encoding into

56

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

propositional logic. In particular, we expect Margrave
will scale poorly to large networks of firewalls, as our
formulas grow linearly with the number of firewalls. Our
use of SAT-solving instead of BDDs may be another fac-
tor, though Jeffrey and Samak’s comparisons between
these for firewall analysis [16] are inconclusive. Ex-
ploring alternative backends—whether based on BDDs
or other first-order logic solvers—is one area for future
work. However, we believe the more immediate ques-
tions lie at the modeling level. For example:

e Firewall languages include stateful constructs such
as inspect. Existing firewall analysis tools, includ-
ing Margrave, largely ignore state (we are limited to
reflexive ACLs). How do we effectively model and
reason about state without sacrificing performance?

e Modeling IP addresses efficiently is challenging.
Many tools use one propositional variable per bit;
Margrave instead uses one per IP address. This
makes it harder to model arithmetic relationships
on IP addresses (i.e., subranges), though it provides
finer-grained control over which IP addresses are
considered during analysis. Where is the sweet-spot
in IP-address handling?

Margrave is in active development. We are extend-
ing our firewall compilers to support VPN and BGP. We
would like to automatically generate queries for many
common problems (such as overshadowing rule detec-
tion and change-impact). Section 2 also hinted at a prob-
lem with reusing queries in the face of policy edits: the
compiler names rules by line-numbers, so edits may in-
validate existing queries. We need to provide better sup-
port for policy-management including regression testing.

Acknowledgments:

Support for this research came from several National Sci-
ence Foundation grants. Cisco supported an early phase
of this project. We thank John Basik, Jeff Coady, Mark
Dieterich, Jason Montville and Richard Silverman for
sysadmins’ perspectives on this project. Craig Wills ex-
plained how to report performance data. Our LISA shep-
herd, Matt Disney, provided useful suggestions. In com-
piling our related work, we contacted many authors with
questions about their projects. We thank them for their
prompt and cheerful responses and hope we have repre-
sented their work accurately; any errors are our own.

References

[1] Ehab S. Al-Shaer and Hazem H. Hamed. Firewall
Policy Advisor for Anomaly Discovery and Rule

[9]

[10]

[11]

[12]

Editing. In Integrated Network Management, pages
17-30, 2003.

Ehab S. Al-Shaer and Hazem H. Hamed. Discovery
of Policy Anomalies in Distributed Firewalls. In
IEEE Conference on Computer Communications,
2004.

The AlgoSec Firewall Analzyer. www.algosec.
com.

azsquall. “ACL and NAT conflict each other. router
stop working”. www.networking-forum.
com/viewtopic.php?f=33&t=7635, Au-
gust 2008. Access Date: July 20, 2010.

Sruthi Bandhakavi, Sandeep Bhatt, Cat Okita, and
Prasad Rao. End-to-end network access analysis.
Technical Report HPL-2008-28R1, HP Laborato-
ries, November 2008.

Rob Barrett, Eser Kandogan, Paul P. Maglio,
Eben M. Haber, Leila Takayama, and Madhu
Prabaker. Field Studies of Computer System
Administrators: Analysis of System Management
Tools and Practices. In ACM Conference on Com-
puter Supported Cooperative Work, pages 388—
395, 2004.

Nihel Ben Youssef, Adel Bouhoula, and Florent
Jacquemard. Automatic Verification of Confor-
mance of Firewall Configurations to Security Poli-
cies. In IEEE Symposium on Computers and Com-
munications, pages 526 — 531, July 2009.

Daniel Le Berre and Anne Parrain. The Sat4j li-
brary, release 2.2. Journal on Satisfiability, Boolean
Modeling and Computation, 2010. To appear.

Sandeep Bhatt, Cat Okita, and Prasad Rao. Fast,
Cheap, and in Control: A Step Towards Pain-Free

Security! In Large Installation System Administra-
tion Conference, pages 75-90, 2008.

Sandeep Bhatt and Prasad Rao. Enhancements to
the Vantage Firewall Analyzer. Technical Report
HPL-2007-154R1, HP Laboratories, June 2008.

Pasi Eronen and Jukka Zitting. An expert system
for analyzing firewall rules. In Proceedings of the
Nordic Workshop on Secure IT Systems, pages 100—
107, 2001.

Kathi Fisler, Shriram Krishnamurthi, Leo
Meyerovich, and Michael Tschantz. Verifica-
tion and change impact analysis of access-control
policies. In International Conference on Software
Engineering, pages 196-205, 2005.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 57

[13] Matthew Flatt and PLT. Reference: Racket. Techni-
cal Report PLT-TR2010-1, PLT Inc., June 7, 2010.
racket-lang.org/trl/.

[14] Swati Gutpa, Kristen LeFevre, and Atul Prakash.
SPAN: A unified framework and toolkit for query-
ing heterogeneous access policies. In USENIX
Workshop on Hot Topics in Security, 2009.

[15] Daniel Jackson. Software Abstractions. MIT Press,
2006.

[16] Alan Jeffrey and Taghrid Samak. Model Checking
Firewall Policy Configurations. In IEEE Interna-
tional Symposium on Policies for Distributed Sys-
tems and Networks, 2009.

[17] Amir R. Khakpour and Alex X. Liu. Quantify-
ing and querying network reachability. In Proceed-
ings of the International Conference on Distributed
Computing Systems, June 2010.

[18] Sihyung Lee, Tina Wong, and Hyong S. Kim.
Improving Dependability of Network Configura-
tion through Policy Classification. In IEEE/IFIP
Conference on Dependable Systems and Networks,
2008.

[19] Sihyung Lee, Tina Wong, and Hyong S. Kim. Net-
Piler: Detection of Ineffective Router Configura-

tions. IEEE Journal on Selected Areas in Commu-
nications, 27(3):291-301, 2009.

[20] Alex X. Liu and Mohamed G. Gouda. Diverse fire-
wall design. [EEE Transactions on Parallel and
Distributed Systems, 19(8), August 2008.

[21] Alex X. Liu and Mohamed G. Gouda. Firewall
policy queries. IEEE Transactions on Parallel and
Distributed Systems, 20(6):766—777, June 2009.

[22] The Margrave Policy Analzyer. wWwWwW .

margrave-tool.org/v3/.

[23] Robert Marmorstein and Phil Kearns. A Tool for
Automated iptables Firewall Analysis. In USENIX
Annual Technical Conference, 2005.

[24] Robert Marmorstein and Phil Kearns. An Open
Source Solution for Testing NAT’d and Nested ipt-
ables Firewalls. In Large Installation System Ad-
ministration Conference, 2005.

[25] Robert Marmorstein and Phil Kearns. Firewall
Analysis with Policy-Based Host Classification. In

Large Installation System Administration Confer-
ence, 2006.

[26] Alain Mayer, Avishai Wool, and Elisha Ziskind.
Fang: A Firewall Analysis Engine. In IEEE Sym-
posium on Security and Privacy, pages 177-187,
2000.

[27] Alain Mayer, Avishai Wool, and Elisha Ziskind.
Offline firewall analysis. International Journal of
Information Security, 2005.

[28] Timothy Nelson. Margrave: An Improved Ana-
lyzer for Access-Control and Configuration Poli-
cies. Master’s thesis, Worcester Polytechnic Insti-
tute, April 2010.

[29] oelolemy. “problem with policy based routing-
urgent please !”. www.experts-exchange.
com/Networking/Network Management/
0 24113014.html, February 2009. Access
Date: July 20, 2010.

[30] Ricardo M. Oliveira, Sihyung Lee, and Hyong S.
Kim. Automatic detection of firewall misconfigu-
rations using firewall and network routing policies.
In DSN Workshop on Proactive Failure Avoidance,
Recovery and Maintenance, 2009.

[31] David Oppenheimer, Archana Ganapathi, and
David A. Patterson. Why do Internet services fail,
and what can be done about it? In USENIX Sympo-
sium on Internet Technologies and Systems, 2003.

[32] Emina Torlak and Daniel Jackson. Kodkod: A
Relational Model Finder. In Conference on Tools
and Algorithms for the Construction and Analysis
of Systems, pages 632—-647,2007.

[33] Pavan Verma and Atul Prakash. FACE: A Firewall
Analysis and Configuration Engine. In Proceedings
of the Symposium on Applications and the Internet,
2005.

[34] Avishai Wool. Architecting the Lumeta Firewall
Analyzer. In Proceedings of the USENIX Security
Symposium, 2001.

[35] Avishai Wool. A Quantitative Study of Fire-
wall Configuration Errors. Computer, 37(6):62-67,
2004.

[36] L. Yuan, J. Mai, Z. Su, H. Chen, C-N. Chuah, and
P. Mohapatra. FIREMAN: A Toolkit for FIREwall
Modeling and ANalysis. In IEEE Symposium on
Security and Privacy, 2006.

58

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

Towards Automatic Update of Access Control Policy

Jinwei Hu't, Yan ZhangT, and Ruixuan Li**
fIntelligent Systems Laboratory, School of Computing and Mathematics
University of Western Sydney, Sydney 1797, Australia
tntelligent and Distributed Computing Laboratory, School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan 430074, China

Jwhu@ hust.edu.cn

rxli@hust.edu.cn yan@scm.uws.edu.au

* Corresponding author

Abstract

Role-based access control (RBAC) has significantly
simplified the management of users and permissions in
computing systems. In dynamic environments, systems
are subject to changes, so that the associated configura-
tions need to be updated accordingly in order to reflect
the systems’ evolution. Access control update is com-
plex, especially for large-scale systems; because the up-
dated system is expected to meet necessary constraints.

This paper presents a tool, RoleUpdater, which an-
swers administrators’ high-level update request for role-
based access control systems. RoleUpdater is able to au-
tomatically check whether a required update is achiev-
able and, if so, to construct a reference model. In light
of this model, administrators could fulfill the changes to
RBAC systems. RoleUpdater is able to cope with prac-
tical update requests, e.g., that include role hierarchies
and administrative rules in effect. Moreover, RoleUp-
dater can also provide minimal update in the sense that
no redundant changes are implemented.

1 Introduction

Role-based access control (RBAC) [11, 35] simplifies ac-
cess control management. In an RBAC system, users are
assigned to roles such as manager and employee, and a
role in turn is defined as a set of permissions. The key to
RBAC is that users are assigned to roles and thus ob-
tain roles’ permissions, instead of being assigned per-
missions directly. Essentially, an RBAC configuration
manages three kinds of relations: a user-role relation, a
role-role relation, and a role-permission relation. The
user-role relation assigns users to roles. The role-role
relation describes how roles’ permissions are inherited
by other roles. The role-permission relation describes
which permissions are accorded to each role. An RBAC
system consists of two components, the RBAC config-
uration and the administration configuration. A running

example RBAC system, which is used throughout the pa-
per, is comprised of the RBAC configuration in Figure 1
and the administration configuration in Figure 2.

The role-role relation needs to be a partial order over
roles; usually we refer to the role-role relation as a role
hierarchy. The role hierarchy embodies two inheritance
relationships among roles. Take the RBAC configuration
in Figure 1 for example. (71, 77) belongs to the hierarchy
and we say 77 is senior to 77; it means that 1 inherits all
permissions of r7 (i.e., ps and p4) and that all members
of 1 are also members of 77 or in other words, r7 inherits
all users of ry.

RBAC is able to model a wide range of access con-
trol requirements, including discretionary and mandatory
access control policies [30]. Hence, RBAC is widely
supported in commodity operating systems and database
systems [15, 17, 25], and is deployed inside many orga-
nizations [37].

We call a snapshot of an RBAC system an RBAC
state. We denote the current state of the running exam-
ple RBAC system as 7. Administrators can perform ad-
ministrative actions to take an RBAC system from one
RBAC state to another. Usually, the administration con-
figuration is supposed to be static; that is, only the RBAC
configuration may be changed. The actions available to
administrators we consider are two types:

e admin assignptor,and
e admin revoke p from r.

Administrators’ powers are regulated by the administra-
tion configuration. We support variants of the PRA97
component of the ARBAC97 administrative model for
RBAC [34]. The administrative model is instantiated by
a set of assignment rules and a set of revocation rules.
Figure 2 presents the administration configuration of ~.
An assignment rule is of the form “ar can assign p to r
if p assigned to ¢”, which means an administrator in role
ar can assign a permission p to r, if p is also assigned to

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 59

U1l U9
1 T2 3
: b Sl
________________ i
I
b1 P2 ps3 yZ Ps

us Uy
Y
T4 s 7”9
- i
TP AT
s
A4
Pe b7 ps P9

Figure 1: An example RBAC configuration. Users are represented as ellipses, roles as circles, and permissions as
rectangles. Arrows between users and roles denote user-role assignments, arrows between roles and permissions
denote role-permission assignments, and dashed arrows between roles denote role-role relationships (role hierarchy).

c. The expression c is constructed by roles and the con-
nector A. For example, consider the rule “ary can assign
p to rq if p assigned to r2 A r3”; then the administrator
adming can assign a permission p to r; if p is assigned
to 7o and r3.! A revocation rule is of the form “ar can
revoke p from 77, expressing that an administrator in role
ar can revoke a permission p from r.

Update of RBAC systems is complex and challeng-
ing, especially for large-scale RBAC deployments. Ex-
isting tools mainly help administrators analyze and man-
age the RBAC system; they put little emphasis on sug-
gesting to administrators how to configure the system.
As shown in Figure 3a, with existing tools, administra-
tors may have to update the system in a manual way. Fig-
ure 3b shows a typical process of manual update when
one administrator is present. The administrator first de-
termines and specifies, in some language, the update ob-
jective and the constraints that the final resulting system
should satisfy. Usually, an update objective is initially
formulated as high-level objectives (e.g., being able to
assign {ps, ps, g } to a user) . Arbitrary update may hin-
der the security and availability of the RBAC system. For
example, revocation of a doctor’s permission to write to
a patient’s medical record as a result of updating is not

IConsider, for example, the following situation: an administrator
wants to enable an engineer to release the source code of a piece of
software; however, the administrator can not do so unless the product
manager and the quality manager are authorized to release the source
code.

assignment rules:

ari can assign p to 7

if p assigned to 71 Ar2;
can assign p to 71

if p assigned to 712 AT3;
can assign p to 71

if p assigned to 712 Ary;

anra

arg

arop can assign p to 7y;

aro can assign p to 7¢;

revocation rules:
ary can revoke
ar1 can revoke
are can revoke
are can revoke
arz can revoke
ars can revoke

ars can revoke

from
from
from
from
from
from
from

Ta;
T67
T17
27
37

Ts7

SRS RS ER S TR S B~ B~ |

T67

arp can revoke p from 7y;

arp can revoke p from 7¢;

administrative role assignments:
adming in arp; admin; in ar;;
admine in are; adming in ars;

Figure 2: An example administration configuration.

60

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

acceptable.

To modify system configurations, an administrator
needs to observe the system and the constraints, and de-
vises an update plan, which consists of a sequence of ad-
ministrative actions. The administrator implements those
actions, which take the system to a new state. There is
no guarantee that all constraints are met and that this new
state is the desired one. Hence, the administrator pro-
ceeds to check if these two conditions hold. When either
one does not hold, the administrator may need to undo
some previous actions and repeat the process. Roughly
speaking, this is a trial-and-error approach. For large
and complex systems, one can fail to achieve update af-
ter several trials; in this case, the question is whether to
give up or not. Thus there arises a question: is the up-
date achievable at all? An answer to this question helps
the administrator make proper decisions. A positive an-
swer implies that the update can be achieved and that the
administrator should persevere in trying, whereas a neg-
ative one saves the administrator from continuing with
pointless attempts.

On the other hand, suppose that the administrator fi-
nally manages to update the system without violating
constraints. In this case, how different is the updated
system from the original one? The less different it is, the
more easier for one to understand and maintain the sys-
tem, and thus the more preferable the update is. In other
words, we may pursue an update that incurs minimal dif-
ferences.

When multiple administrators are involved, the prob-
lem become more complicated. The actions an admin-
istrator can take might depend on others’ actions. That
is, administrators have mutual influence on each other
in terms of administrative power. Cooperation among
administrators is required in this case, which increases
the complexity and cost of manual update. In summary,
manual administration for update is work-intensive, in-
efficient and, when the objective is not achievable at all,
very frustrating.

Access control update is demanded when security re-
quirements are changed. In addition, RBAC systems
may need updating in response to the following devel-
oping situations:

Misconfiguration Repair Misconfigurations in access
control systems can result in severe consequences
[4]. In a health-care situation, for instance, lack of
legal authorization could lead to the delay of treat-
ment. Modern access control systems include hun-
dreds of rules, which are managed by different ad-
ministrators in a distributed manner. The increas-
ing complexity of access control systems gives rise
to more likelihood of misconfigurations [2, 3]. As
such, correcting misconfigurations is essential to
systems’ usability and security. Updating is neces-

administrator administration tools RBAC system
P S S & g)
£)- [N

(a)

information that
administrators view

il

specify update
constraints

2

observe the system
and update

! update constraints

plans of how to

>
constraints 1§ update the system

perform some L systemina
operations %tlf’ new state

v

check system and
constraints

v

yes .
undo ¢ constraints
operations violated?

N nol

update E
achieved?

-]

give up?

yest l

end €

report about the
system and
constraints

no

TQuestion: are all changes necessary?

tQuestion: is update achievable?

(b) Workflow of manual update.

Figure 3: Illustration of updating without RoleUpdater.

sary when misconfigurations in RBAC systems are
detected.

Task Assignments To accomplish a task, a set of per-
missions should be assigned to a set of users to em-
power them to perform task operations [13]. For
a new task, it is likely that the present RBAC con-
figuration fails to enable exactly the needed user-
permission assignments. In this case, administrators
may resort to adjusting role configurations.

Property satisfaction An RBAC system should ex-

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 61

hibit various properties, including simple availabil-
ity/safety and containment availability/safety [14,
22, 23, 24]. A simple availability/safety prop-
erty asks whether a user Alice has a permission,
e.g., access to a confidential file. Containment
safety properties encode queries such as whether
any user who can access printers are members of
staff, whereas containment availability properties
may ask whether all students have permission to use
a library.

If an RBAC system was not designed with these
properties in mind, it is unlikely that all properties
would happen to hold. Particularly, for legacy sys-
tems, there is no guarantee of automatic establish-
ment of security properties when they are migrated
to RBAC management. On the other hand, even
if all desired security properties hold currently, re-
quirements are not static. For example, it may be
desired that now only managers, instead of employ-
ees, have access to an internal document. To assure
these properties, one may have to update the RBAC
system.

Updating is a key component of maintenance in the
RBAC life-cycle [18], and accounts for a great propor-
tion of the total cost of maintenance [29]. RoleUpdater
assists administrators with update tasks. As shown in
Figure 4a, prior to updating the system, the administra-
tor first interacts with RoleUpdater, and then manipulates
the system using suggestions from RoleUpdater. Figure
4b shows the workflow of updating with RoleUpdater.
The administrator still needs to specify the update con-
straints, and invoke RoleUpdater with the request. Role-
Updater checks, in an automatic way, whether the request
achievable or not; and if so, a sequence of actions, which
take the system to the expected state, is reported. Role-
Updater can also deal with the case where multiple ad-
ministrators are involved.

RoleUpdater makes novel use of model checking tech-
niques [6]. Figure 5a illustrates the basic idea of model
checking. A model checker takes a description of a sys-
tem and a property as inputs, and examines the system
for the property. If the system exhibits the property, the
checker reports that the property is true. If the system is
found to lack the property, the model checker produces
one counter-example. The counter-example, usually a
sequence of system state transitions, explains how the
system transits to a state where the property fails. Figure
5b illustrates how to use model checking as the basis for
update. We check the property that the requested state is
never reached; when the property does not hold, one is
not only informed of the existence of an update but also
a counter-example that corresponds to the update. Role-
Updater transforms update problems into model check-

administrator administration tools

a— :
e q |

RoleUpdater

RBAC system

5_ /

> R € >

(2)

information that
administrators view

il

specify update constraints

|

run RoleUpdater with the report of update being
system and constraints un-achievable or of a

ll “ sequence of operations

b

update constraints

perform operations

v

end
(b) Workflow of update with RoleUpdater.

Figure 4: Illustration of updating with RoleUpdater.

ing problems, where the failure of the model is synony-
mous with existence of a solution:

o if the property is determined to be true, the update
objective is not achievable;

e otherwise, the model checker returns a counter-
example, from which an update is constructed.

RoleUpdater employs NuSMV [5] to perform model
checking. NuMSV is a open-source symbolic model
checker. For better performance, a collection of reduc-
tions and optimization techniques are implemented in
RoleUpdater.

The rest of this paper is structured as follows. Re-
lated works are given in Section 2. We demonstrate the
use of RoleUpdater by showing how it handles a high-
level update request specification in Section 3. Section 4
presents the design and implementation of RoleUpdater.
We show some experimental results of running RoleUp-
dater in Section 35, illustrating its effectiveness and effi-
ciency. Section 6 concludes the paper.

62

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

System Property
% N\

|

Model Checking

v
O ©

Property fails;

-~

Property holds.
A counter-example

is generated.

(a) The basic illustration of model checking.

Property:
RBAC Requested state is
System never reachable.
1 N
- .

Model Checking

’
© ©

Property fails;

-~

Property holds.
A counter-example

is generated.

T et sehiewble? ||

No. Yes.
Requested state is Requested state is
never reachable. not never reachable,

and can be
constructed from the

counter-example.

(b) Update via model checking.

Figure 5: Illustration of model checking and its usage for
updating.

2 Related Work

RBAC administration and analysis Many convenient
RBAC administration models (e.g., [8, 21, 34]) are at

our disposition. They provide significant advantages in
access control management. They define administrative
rules, e.g., specifying which administrator can perform
what operations. However, high-level update is rarely
supported. It is generally difficult and error-prone, be-
cause usually the resulting state is expected to meet var-
ious constraints.

To help administrators understand RBAC policies,
various RBAC policy analysis tools (RPATs) have been
invented [4, 14, 23, 38, 39, 44]. RPATs usually answer
if an RBAC system satisfies a property. However, little
effort has been devoted to answering the question: what
if the RBAC system fails to meet the property? When
administrators find abnormalities with RPATs, RoleUp-
dater can assist in correcting them.

Most security analysis problems in literature basically
can be stated as: given the current state v, a query q (e.g.,
whether accesses to internal documents are only avail-
able to employees), and a state-change rule ¢, can ~ be
taken to a state v/ where g evaluates to true? If this is
the case, the steps taking -y to 4’ may also be reported
to administrators so that they can follow them to make
~'. However, as the objectives are different, we believe
this kind of reporting could hardly be considered suffi-
cient for the role updating problem. RPATSs’ objective is
to analyze the system. So, their input is just the property
to be examined. By contrast, RoleUpdater aims to up-
date the system; the input is the update request. RPATs
explore every possible sequence of actions, as long as
they are allowed by ¢, to test if there is such a v’ where
q is true. In this case, administrators do not have any
control of the resulting state. By contrast, RoleUpdater
seeks a resulting state that complies with administrators’
request. In addition, most RPATs focus on user-role as-
signments. Although it is argued that the role-permission
relation might be treated similarly to the user-role rela-
tion, the role-permission relation also deserves its own
attention [29], especially in terms of role updating.

Various access control properties are proposed and
verification schemes are devised to check the satisfia-
bility of properties. In [23], authors propose a tool to
answer a set of interesting properties, including sim-
ple availability/safety, bounded safety and containment
availability/safety. The tool provides a means to guaran-
tee that security requirements are always met as long as
trusted users abide by certain behavior patterns [22, 23].
However, an assumption is needed for the usage of se-
curity analysis: the properties hold in the current RBAC
state [22, 23]. As mentioned above, this is not always
the case. Role updating can be used to adjust the cur-
rent RBAC state so as to exhibit desired properties, while
keeping the changes to the customized extent.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 63

0NN R W~

— = e
S Lo = O v

update

make P:{p5,p87p9} available via 7 = {7'1,7‘2,7‘3,7‘4,7'5,7"6}

with
administrators admini, admins;
user-permission constraints

(u1, no-less—than {p:}, no-more—than {pi,ps,ps}),

(u2, no-less-than {pi,ps,ps,ps}, no—more—than {pi,ps,ps,ps}),
(us, no—less-than {ps3,ps,ps}, no-more-than {ps,ps,ps, e, Ps}),
(u4, no-less—than {pr,ps,ps}, no—more—than {ps,ps,ps,p7,Ps,Po});

restricted-role constraints

(rs, no-less-than {ps,pr}, no-more-than {ps,p7,ps,Po}),
(rs, no—less—-than {ps,ps}, no—-more-than {ps,ps});

role-hierarchy = {(r2,7s),(rs,77)};
minimal;

Figure 6: An example high-level update request specification.

Role engineering Role engineering attracts much re-
search effort [7, 10, 26, 40, 41, 45]. Existing role
engineering tools (eRETSs) take user-permission assign-
ments as input and output user-role assignments and role-
permission assignments. eRETs may take into account
some other information such as business meanings, se-
mantics, and users’ attributes. Taxonomically, RoleUp-
dater can be viewed as a role engineering tool. How-
ever, role updating works when RBAC states have been
defined and possibly deployed, whereas eRETSs usually
define roles from scratch. The focuses are also different.
Role updating aims to answer administrators’ question
whether an update is achievable with respect to update
constraints and how to generate one, if any. By contrast,
eRETs put more emphasis on how to define an appro-
priate set of roles. In the context of a role life cycle,
RoleUpdater is for role maintenance, while eRETs help
with role design. Thus, one may consider RoleUpdater
as a complement to eRETs; RoleUpdater can be used to
fine-tune the ideal state generated by eRETs.

RBAC udpate Ni et al. [29] studied the role adjust-
ment problem (RAP) in the context of role-based provi-
sioning via machine-learning algorithms. Though sim-
ilar, the role updating problem differs from the RAP
in several aspects. First, customized constraints on up-
dates are enforced in RoleUpdater, whereas it is unclear
if these constraints could be supported in RAP. Second,
our role updating is request-driven, whereas RAP is a
learning process. RAP and RoleUpdater are both assis-
tant tools for administrators but with different usage and
orientation.

Fisler et al. [16] investigated the semantic difference
of two XACML policies and the related properties. How-
ever, they do not consider how to make a different de-
sired state from the current one. Ray [32] studied the

admins assign ps to 71;
admins assign pg to r2;
admin; assign ps to 76;
admins revoke ps from ri;
adminy revoke pg from ry;
admin; revoke ps from r1g;
admins assign ps to 71;
admin; assign ps to r¢;
adminy revoke ps from ri;

Figure 7: The update returned by RoleUpdater when run-
ning with the request in Figure 6.

real-time update of access control policies, in the context
of database systems. They focused on transaction prop-
erties, instead of RBAC policies.

3 High-Level Update Request Specifica-
tions

We do not consider the update of user-role assignments,
because users’ role memberships are determined by their
attributes, jobs, titles, etc. When this information is re-
newed, administrators can accomplish user-role assign-
ments straightforwardly.

Suppose the administrators want to update the RBAC
configuration in Figure 1. Suppose further that the ad-
ministrators specify the update request as in Figure 6.
This specification expresses the customized conditions
on the potential updated system. In the rest of this sec-
tion, we illustrate the use of RoleUpdater through this ex-
ample. Running with this example, RoleUpdater returns
the steps, as shown in Figure 7, that the administrators
can follow to make the changes; in the updated state, the
administrators can assign {ps, ps, pg } to users via rg.

64

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

Administrative power Line 4 specifies which admin-
istrators are going to update the system. As mentioned
before, it is common for administrative rules to regulate
administrators’ operations; that is, administrators have
limited administrative power. A proposed update does
not make sense unless the needed changes lie within ad-
ministrators’ capabilities.

RoleUpdater appears more useful when multiple ad-
ministrators are involved. Observe the five actions by
adminj and adminsg: adminsg assigns pg to 1 and 7o,
adminj assigns pg to rg, and adming revokes pg from
r1 and ro. These interleaving operations require close
cooperation between admin; and adminy and careful
examination. By contrast, RoleUpdater takes the cooper-
ation among administrators into account automatically.

Suppose that we replace Line 4 with the following.

administrators adming;

That is, the administrator adming, instead of admin;
and adming, wants to update the system. Then RoleUp-
dater suggests an alternative: first revoke pg from 75 and
then revoke pg from rg. However, admin; and admins
are not authorized to perform this alternative. Note that
administrators’ powers are configured in Figure 2.

Controllable effects Administrators should be able to
confine the effects of an update. With RoleUpdater, ad-
ministrators can specify a certain set of users U and de-
fine what changes could happen to users’ permissions.
For example, Alice at least has access to files under
“/foo/barl” but at most “/foo/bar1” and “/foo/bar2”. Line
5to Line 9 are constraints on users’ permissions after up-
date. For example, by Line 6, administrators requires that
u1 have at least permission p1, but at most p1, ps, and py
in the potential new state. Note that users still obtain per-
missions via roles and even that users’ role assignments
remain the same.

For another example, Line 7 prescribes that us’s per-
missions are exactly {p1, p3, p4, p5 }. Consider the solu-
tion in Figure 7; administrators have to revoke pg from
r1, for ug is assigned to r; and cannot have permission
ps, as required by Line 7.

By properly specifying constraints, administrators
guarantee the tasks associated with users in U progress
smoothly. Suppose that us and u4 cooperate to finish
a task t, which requires that us and u,4 are entitled to
privileges {p1, p3, pa, ps} and {pr, ps, o}, respectively.
Then Line 7 and Line 9 guarantee that the updated state,
if any, would not disable t.

When administrators are specifying U, U often con-
tains those users for whom the administrators are not
responsible so that they have to ensure that the poten-
tial update does not affect such users, and/or those users

whose permissions are designated by the administrators
and vary within a range. For users outside the set U,
their current role assignments and permissions in ~y are
neglected by RoleUpdater; that is, updates may change
their role-assignments and permission-assignments.

Restricted update The principle of least privilege is
important in computer security and well supported by
RBAC. Users activate only the roles necessary to finish
the underlying work, but not all assigned roles. For ex-
ample, a user Alice may activate the role manager when
she wants to evaluate an employee under her department,
and activates the employee role for routine works. As a
result, upper bounds should be put on roles’ permission
sets in compliance with the least privilege principle. On
the other hand, some roles are designed with expected
functions; users should be able to perform a particular
job with such a role. If associating with the role a set
of permissions less than necessary, administrators may
make the role useless. Hence, it would be handy if ad-
ministrators are able to set the permission sets of certain
roles within a range.

Line 10 to Line 12 shows constraints on roles’ per-
missions after update. For each selected role (e.g., r4),
administrators can impose a lower bound (e.g., {ps, p7})
and an upper bound (e.g., {ps, p7, Ps, P9 }) on the role’s
permissions. RoleUpdater assures that the role is as-
signed to permissions no less than those in the lower
bound and also no more than those in the upper bound.

A requirement is that, the upper bound (or the lower
bound) of the range should be a superset (or subset) of
the set of all permissions that 7 is currently assigned in
~. This is reasonable, because the permissions r has cur-
rently in v are enough to make it useful. We also find
that, without this requirement, RoleUpdater’s efficiency
degrades.

Line 12 indicates that rg’s permissions must still be
{ps,ps} after update, because the lower bound equals
the upper bound. We call roles like rg invariant roles.
Despite the importance of update, it is likely that admin-
istrators demand some roles be invariants in order to, for
example, preserve roles’ intuitions, business meanings or
definitions. In this case, by letting the lower bound of r
be its upper bound, administrators request RoleUpdater
to find an update which does not change r’s permission
assignments. In other words, RoleUpdater may change
those non-invariant roles’ permission assignments in the
hope to find an update. In practice, non-invariant roles
are usually the ones under administrators’ control; oth-
erwise, even though an update is found, administrators
would not be able to implement it and thus the update is
of little value.

If the administrators impose another restricted-role

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 65

adminsg
adming
adming
adminsg
adming
adming
adminsg
adming

assign ps
assign ps
assign ps
revoke psg
revoke psg
revoke pg
revoke p3
revoke p4

to ri;
to ro;
to 716;
from ry;
from ro;
from rg;
from rj3;
from r3;

Figure 8: An alternative when the role hierarchy (rs, 77)
is not required.

constraint besides those in Figure 6.

(r¢,no—less—than {ps, o},
no-more—than {pg, po})

Then RoleUpdater reports that the requested update does
not exist, which is indeed the case.

Role hierarchy Role hierarchy is recognized by the
proposed NIST standard for RBAC as one of the fun-
damental criteria [11]. It further mitigates the burden of
security administration and maintenance. Usually, there
could be a natural mapping between role hierarchy and
organization’s structure. It is imprudent to alter a role hi-
erarchy arbitrarily. Administrators can ask RoleUpdater
to preserve the whole or part of the original role hierar-
chy. Line 13 tells that 75 and r3 are still senior to rg and
r7, respectively, in the updated system.

The requirement that 73 be senior to r7 stops RoleUp-
dater from suggesting another solution, as shown in Fig-
ure 8. If following this approach, administrators can as-
sign {ps, ps, P9} via r3 and rg; however, r3 is no longer
a senior role of 7.

Minimal update As long as an update is implemented,
some changes are made to the system. When two update
solutions are available, which one is more preferable?
One perspective is to compare the changes they recom-
mend. The fewer changes are needed, the closer the re-
sulting state to the original state. Ideally, we may find an
update such that none of its changes is redundant; that is,
failure to implement any change thereof gives rise to a
disqualified state. We say the update is minimal.
Minimal update is valuable in several ways. First of
all, minimal update causes few difficulties for admin-
istrators to understand the new RBAC state. The ad-
ministrators are responsible for the maintenance of the
RBAC system. It is essential for them to comprehend
the system’s behavior. We can assume that administra-
tors understand the system well before updating. How-
ever, changes to the system configuration have the po-

adminsg
adming
adming
adminsg

assign ps to ri;
assign ps to r2;
assign pg to 7¢;
revoke pg from r;;

adming
adminsg
adming
adming

revoke ps from 76;
assign ps to 7ri;
assign ps to 165
revoke ps from 7i;

Figure 9: Update in response to the request in Figure 6
but without the minimality requirement.

tential to obfuscate the system. Obviously, a smaller gap
between the updated state and the original one usually
means a smaller degree to which administrators have to
re-examine and re-learn the system.

Secondly, minimal update possibly preserves more
previously computed analysis results. It is reasonable to
assume that the current RBAC state satisfies necessary
properties (otherwise, it should have been adjusted). It is
likely that more properties might be preserved with min-
imal update. Finally, minimal update is also desirable
when authorization recycling is deployed in access con-
trol implementation [42, 43].2

In RoleUpdater, administrators can choose to require
each returned update to be minimal in the sense that no
change is redundant. However, there is a tradeoff be-
tween doing this and incurring extra computing over-
head. In Figure 6, Line 14 indicates administrators’ will-
ingness to find a minimal update. If turning the minimal
requirement off, RoleUpdater would possibly not insist
on the revocation of pg from o, for pg being assigned
to ro does not contradict with the constraints. That is,
RoleUpdater returns the update in Figure 9.

4 Design and Implementation

Figure 11 shows the architecture of RoleUpdater. Its in-
terface accepts administrators’ input and parses the re-
quest. We say a request is canonical if (1) all administra-
tive operations are available, (2) users’ permissions are
required to remain unchanged, and (3) no role hierarchy
is required to be preserved. Figure 10 shows an example
canonical request, where P, is the set of permissions that
user u; has prior to updating.

2 Authorization decision-making is time-consuming and costly. Au-
thorization recycling caches the authorization decisions that are made
previously and infer decisions for forthcoming authorization requests.
As an important mechanism for access control implementation, autho-
rization recycling makes use of “cache” to enhance performance; there,
policy update is a major concern. For details, readers are referred to
[9, 42, 43].

66

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

update
make P available via 7
with
administrators all-administrators
user-permission constraints
(u1, no-less-than P,
no-more-than P;),
(u2, no-less—than P,
no-more-than P,),
e
restricted-role constraints {;
role-hierarchy = 0;

Figure 10: An example canonical request.

non-canonical requests Update

“|Transformer

canonical
requests

A

NuSMV
| Translator

canonical requests

Interface

A

NuSMV

update programs

A

NuSMV
Controller

I

NuSMV

Update counter-example

Constructor[*

Figure 11: The architecture of RoleUpdater.

If canonical, the request is forwarded to the NuSMV
Translator; otherwise, it is first processed by the Update
Transformer, where non-canonical requests are trans-
formed into canonical ones. Afterwards, the NuSMV
Translator converts requests into NuSMV programs.
The NuSMV Controller invokes NuSMV to execute
those programs. According to the results returned from
NuSMYV, the Update Constructor generates an update
report, either a sequence of administrative operations
which lead to desired RBAC system state or a message
that the request is unachievable.

Algorithm 1 presents RoleUpdater’s pseudo-code.
Line 2 belongs to the Interface module. Line 3 repre-
sents the Update Transformer. Line 4 and Line 5 are
the main components of the NuSMV Translator module.
Normally, the NuSMV Translator would create a set G of
NuSMYV programs for each canonical request. However,
since the execution of the NuMSV programs translated

directly from the request easily result in state explosions
and memory crashes, some reductions are performed in
advance [12]. The set G has the property: an update is
found, if and only if, the run of NuSMV with at least one
program in G reports a counter-example. As indicated by
Line 6, on receiving the NuSMV programs, the NuSMV
Controller schedules NuSMYV programs in increasing or-
der by the number of variables, because NuSMV’s per-
formance highly depends on the number of variables in
the input program. The NuSMV Controller proceeds to
execute each program with NuSMYV; if any execution re-
turns a counter-example, it informs the Update Construc-
tor of the counter-example. The Update Constructor gen-
erates the needed update and administrative operations
necessary to institute the changes (Line 10 to Line 12).
If minimal update is required, further processing (Sec-
tion 4.3) will be done. In the rest of this section, we give
details of each component.

4.1 Handling non-canonical requests

We tried to use the model checking approach directly to
evaluate non-canonical update requests. Our experience
is that, an extensive number of variables are needed to
model complex requests, which often gives rise to state
explosions and memory crashes. The reasons are two-
fold. First, non-canonical requests enable much more po-
tential combinations of role-permission assignments than
canonical requests do. Second, some reductions in [12]
are not applicable to non-canonical ones. It is not clear
how to reduce non-canonical requests effectively.

Consider a non-canonical update request issued
against v in Figure 12. Non-canonical requests are
transformed into canonical ones by adding dummy ele-
ments (e.g., users, roles, user-role assignments, and role-
permission assignments) to y; these dummy elements
simulate those non-canonical conditions on the update.
Usually, the obtained RBAC state, against which the
canonical request is checked, is more complicated than
~. Fortunately, the construction is polynomial. We trade
off the simplicity of RBAC states for the ability to cope
with complex updates. By this modeling, we need only
to focus on one unified problem: evaluating canonical
requests.

4.2 NuSMYV program generation

NuMSV is the symbolic model checker that RoleUp-
dater employs to perform model checking. The NuSMV
Translator converts update requests into NuSMV pro-
grams. A set of boolean variables are defined to model
the RBAC system. To use NuSMYV, let ¢ denote the state-
ment that a user could acquire exactly the permissions in
P viaroles in 7; we ask if —¢ is always true in all reach-

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 67

Algorithm 1: Algorithm of RoleUpdater.

Input: High-level update request H, -y, and NuSMV property type: “AG” or “AX AG”

Output: update report
1 begin
/* Parse (H,Q)

parses H and reads information into @;

it returns a boolean value

showing if any error happened. */
2 if lParse (H, Q) then show error message;
if Q is non-canonical then () <—TransCanonical (Q)
/* perform reductions on Q */
Reduce (Q);
5 G «—TransNuSMV (Q, type) ;
/* NuSMV’s performance highly depends on the number of variables in the input
program; so schedule NuSMV programs in increasing order by the number of
variables. */

6 S_G «+Schedule (G);

7 foreach g € S_G do

8 Invoke g with NuSMV;

9 if a counterexample is returned then

10 construct an update 4" from the counter-example;

11 if Minimal update is required then ' «—Minimize (Q, 7, ¥');

from v to ’y'

/* compute the needed administrative operations that

take the RBAC system
*/

12 AdminOp < computeAdminOperation (v, ') ;
13 show AdminOp and v';

14 return ';

15 show “update unachievable” report;

16 return e;

17 end

non-

canonical
update
request

canonical
update
request

Figure 12: An illustration of the transformation from
non-canonical update requests to canonical ones.

able (NuSMV) states;> If it evaluates as true, the user
can never obtain exactly all permissions in P via roles
in 7, indicating that one cannot fulfill the request with-
out violating the update constraints. Otherwise, NuSMV
will generate a counter-example, from which RoleUp-
dater constructs an update.

In the current implementation of RoleUpdater, only
boolean variables and TRANS declarations are used. An
RBAC state is represented by a valuation of boolean vari-
ables, whereas TRANS declarations capture transitions
among RBAC states. Further explorations of NuSMV
features and other model checking techniques could im-
prove RoleUpdater’s efficiency.

4.3 Minimal Update

Interestingly, the minimal update can be obtained in the
same way we seek an update. Once an update is found,
denote the RBAC state after update as +'. As illustrated
in Figure 13, if a role-permission assignment appears
in exactly one of v and 7/, this assignment is changed

3¢ is defined over the boolean variables. The checked property is
AG—¢, where A means always and G means globally; AG—¢ is a
CTL (Computational Tree Logic) formula, which is used to specify
properties in NuSMV.

68

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

(either removed or added); denote the set of all such
changed assignments as C'A. Then the minimal update
requirement is to determine if all changes in C'A are nec-
essary. The basic idea is to ask if the same goal could
be achieved with a proper subset of CA. To answer
this, we define variables to simulate C'A and treat assign-
ments outside C'A as constants. This is done by adding
dummy elements and imposing new update constraints.
A new update request is issued against RoleUpdater; this
request is the same as the original one except that new
restricted-role constraints are added.

However, the checked property is whether, starting
from the next state of +/, all reachable states satisfy —¢.*
If so, then 7/ itself is minimal. Otherwise, from the re-
turned counter-example, we could obtain +”. This "
is closer to the minimal update than +/, because only a
proper subset of C'A is implemented. Note that this is
a recursive process; and thus a minimal update could be
reached.

Take the request in Figure 6 for example. Figure 14
shows an example calling stack of RoleUpdater. Re-
ceiving a request with the minimality requirement, Role-
Updater first removes this requirement and searches for
an update. Suppose that RoleUpdater finds the up-
date shown in Figure 9; it proceeds to compute C'A,
which is CA = {(T6ap8)7(T27p8)7(T67p5)7(T67p6)}~
By composing a new update request, RoleUpdater goes
on checking if there exists such an update that the result-
ing changes are a proper subset of C'A. This starts a re-
cursive call. Then the same processes are applied. This
time, an update shown in Figure 7 is found and C' A is
computed to be {(r¢,ps), (6, P5), (16, P6) }. Again, an-
other round commences. This time, RoleUpdater could
not find any update, which implies that the update in Fig-
ure 7 is minimal; RoleUpdater returns this update in re-
sponse to the original request.

5 Experiments

We implemented a prototype of RoleUpdater in
Java. Experiments were performed with randomly-
generated RBAC systems on a machine with an Intel(R)
Core(TM)2 CPU T5500 @ 1.66GHz, and with 2GB of
RAM running Microsoft Windows XP Home Edition
Service Pack 3.

Data generation

To generate each RBAC system, we adapted algorithms
from [41, 45]%; is parameterized by nolU (the number
of users), noR (the number of roles), noP (the number

4In NuSMYV, this is expressed by AX AG—¢ in CTL.
SThe latter is accessible via http://ww2.cs.mu.oz.au/
~zhangd/roledata/.

(© (r,p1) ¢ CA

@ (r,p1) gCA

Figure 13: Examples of assignments in C'A.

input update
request w/
minimality

requirement
(Figure 6)

handle the

request w/t
minimality
requirement

generate
update
(Figure 9)

compute CA,Jr
construct new
update request

return the
latest update

input update
request w/
minimality

requirement

handle the

request w/t
minimality
requirement

generate
update
(Figure 7)

compute CA,’:
construct new
update request

return the
latest update

input update
request w/
minimality

requirement

handle the
request w/t
minimality
requirement

generate
update

(un-achievable)

return the
latest update

fCA = {(r6,ps), (r2,p8), (T6, p5), (T6, P6) }
YCA = {(ré,ps), (r6,ps), (r6,6)}

Figure 14: The recursive calling procedure.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference

69

update
make P =input available via 7 =7.R

administrative rules

1
2 6000
3 with 5500
4 administrators all-administrators 5000
5 user-permission constraints g 4500
6 (u1, no-less-than P, S 4000
7 no-more-than P;), g 3500
8 (u2, no-less-than P, = 3000
9 no-more-than P,),
10 2500
11 restricted-role constraints 0); 200020 4;0 E;O 8.0 1;)0 1I20 1210 1I60 1;30 200
12 role-hierarchy = v.RH; number of rules
()
Figure 15: Experimental update request specification.
varying percentage of extra permissions
400 I I I T T T T T
of permissions), noU R (the maximum number of roles 350 ;8:;0 S S ——
that a user may be assigned to), and noRP (the maxi- 300 H30% ---o---
mum number of permissions that a role may be assigned ’g 250
to). ~’s user-role relation (resp. ~y’s role-permission re- 3 200
lation) is generated by associating a number & of roles E 150
(resp. permissions) with each user (resp. role), where 100
k is randomly from [1, noU R] (resp. [1,noRP]). With-
out otherwise stated, the parameters used for tests are 0 ke
“nol = 2000, noR = 500, noP = 2000, noUR = 5, 100 200 300 400 500 600 700 800 9001000
noRP = 150, noRegps = 200” and the role hierarchy noR
is empty. One or more parameters are made variable in ®
each group of tests.

Update requests are parameterized by noRegps (the varying role hierarchies
number of requested permissions) and is generated by 400 e e B e
randomly choosing a number noRegps of permissions 350 M 411 e
from +’s permission set. We let 7 be +’s role set. Figure _ 800 F el
15 shows the experimental update request, lines of which é 250 [
may be replaced in each group of tests and where P; is e fgg : ;
the set of permissions that user u; has prior to updating. = 100 b e

50
Results 0
100 200 300 400 500 600 700 800 9001000
Figure 16 shows the computing time required for each noR
test. Since the data set is randomly created, for each con- ©
figuration of parameters, we ran the test 5 times. The
times in Figure 16 are averaged over the 5 runs. minimal update
900 T T T T
Administrative rules Figure 16a shows performance st
with respect to varying number of administrative rules = 600 |
(noRules). We let an administrator admin be a mem- E 500 f B
ber of role ar and replace Line 4 of Figure 15 with the 2 400 [
following. B 800 o
200 [M
. , 100 [g
administrators admin 0 1 1 1
100 200 300 400 500 600
Each assignment rule “ar can assign p with r if p as- noR
signed to ¢” is constructed as follows: (1) denote the)
number of roles in ¢ as |c| and we let |¢| € [1,4], and
(2) randomly choose roles in c. For revocation rules “ar Figure 16: The computing time for evaluating update re-
quests.
70 LISA °10: 24th Large Installation System Administration Conference USENIX Association

can revoke p from r”, r is also randomly chosen. Note
that we guarantee that rules have effects on the roles that
might be changed. The speed of RoleUpdater is quite
good as far as administrative rules are concerned. The
reasons are two-fold: (1) The transformation into canon-
ical requests is fast. (2) During the transformation, Role-
Updater only increases noU and noR but not noU R; for-
tunately, RoleUpdater is scalable to noU and noR [12].

Controllable effects To test RoleUpdater’s perfor-
mance with respect to controllable effects, we generated
a ratio o of extra permissions. For each user u;, we de-
fine the following constraint and substitute it for the cor-
responding line

(u;,no-less—than P, ;, no-more-than P,, ;)

where P,; C P, and |P;| = (1 — «) * |P;], and
P,,; D P;and | P, ;| = (1+a)*|P;|. Extra permissions
were randomly chosen. Recall that P; is the set of per-
missions that u; has prior to updating. Figure 16b shows
the results when « takes 10%, 20%, and 30%, respec-
tively. It seems from this experiment that RoleUpdater is
not sensitive to «, especially when noR < 800.

Role hierarchy Figure 16c gives the test results when
the RBAC state involves role hierarchies. Role hierar-
chies were created in the following way. We created
three sets of roles 1?1, Ry, and R3 such that R; N R; = 0
fori,j € [1,3] and @ # j; we randomly created v.RH C
(R1 X R2)U(R2 X R3) (where 7. RH denotes 7’s role hi-
erarchy) such that each role may have only a number A of
junior roles where h € [1, 3]. This two-level layered role
hierarchy is common in practical systems [19, 27, 31].
The x-axis is |R1| + |Rz2| + |R3|. We tested three con-
figurations by varying |R;| : |Rz| : |R3|. As the RBAC
configuration needs to be flattened, noU R is increased
by 2 on average. This results in notable overhead. How-
ever, the time taken was sensitive to the structures of role
hierarchies: almost all runs with 1 : 2 : 3 were much
faster than 3 : 2 : 1. That is, the less senior roles there
were, the faster RoleUpdater dealt with role hierarchies.

Minimal update To evaluate how well RoleUpdater
treats minimal update, the minimality requirement is in-
serted into the specification in Figure 15. Figure 16d re-
ports the computing time when minimal update is pur-
sued. Note that the time was averaged over 5 achievable
requests. When noR = 600, the computing time could
be almost 18 times greater than the case without the min-
imal update requirement. This is because RoleUpdater
has to compute a number of intermediate updates, with
the number depending on |C'A|. It would be interesting

and useful to investigate how to reduce the number of
intermediate steps.

In real-world large-scale RBAC systems, we expect
that only a small portion of users have a number noU R
of roles and that the number of roles that are under spec-
ified administrators’ control will be small. Hence, we
conjecture RoleUpdater will be able to handle update re-
quests in these RBAC systems, especially with the ad-
vances in model checking.

6 Conclusion

To update an access control system, we have presented
a tool RoleUpdater, which accepts and answers high-
level update requests. Experiments confirm the effective-
ness and efficiency of RoleUpdater. We have reported
the theoretical results of RoleUpdater in [12], including
the computational complexity, the formal transformation
into model checking problem, and the reductions. How-
ever, the full-fledged RoleUpdater is first reported here.
RoleUpdater is still experimental and we regret that it is
not yet available to the public.

There are several avenues for future work. RoleUp-
dater becomes awkward when dealing with administra-
tive rules with negations, e.g., “ar can assign p if p as-
signed to r; but not r3”. The problem with more so-
phisticated administrative models, where negative con-
ditions are allowed, deserves further investigation. In ad-
dition, separation-of-duty (SoD) policies are important
in RBAC systems; however, enforcing SoD policies is
difficult by itself [20]. The interaction between updat-
ing and SoD policies poses new challenges. On the other
hand, if a series of update requests are issued, the final
updated RBAC state may depend on the order of the re-
quests. These composite requests may take place in dis-
tributed RBAC systems. We plan to investigate proper-
ties of composite update requests and extend RoleUp-
dater to address this problem.

7 Acknowledgment

We would like to thank Dr. Alva L. Couch for shep-
herding this paper and the anonymous reviewers for
their helpful comments. This work is supported by Na-
tional Natural Science Foundation of China under Grant
60873225, 60773191, 70771043, National High Tech-
nology Research and Development Program of China un-
der Grant 2007AA01Z403, and Natural Science Founda-
tion of Hubei Province under Grant 2009CDB298. This
research is supported in part by an Australian Research
Council Discovery Grant (DP0988396). This publication
was made possible by a grant from the Qatar National
Research Fund under its NPRP Grant No. 09-079-1-013.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 71

Its contents are solely the responsibility of the authors
and do not necessarily represent the official views of the
Qatar National Research Fund.

Author Biographies

Jinwei Hu is a PhD student in School of Computer Sci-
ence and Technology at Huazhong University of Science
and Technology, when submitting this paper. His cur-
rent interests are the specification and analysis of access
control policies.

Yan Zhang is a professor of School of Computing and
Mathematics at University of Western Sydney. His re-
search interests are in the areas of knowledge represen-
tation, logic, and model checking.

Ruixuan Li is an associate professor of School of
Computer Science and Technology at Huazhong Univer-
sity of Science and Technology. His research interests
are in the areas of distributed computing and distributed
system security.

References

[1] AHMED, T., AND TRIPATHI, A. R. Static verification
of security requirements in role based cscw systems. In
SACMAT’03, pp. 196-203.

[2

—

AL-SHAER, E., MARRERO, W., EL-ATAWY, A., AND
ELBADAWI, K. Network configuration in a box: Towards
end-to-end verification of network reachability and secu-
rity. In ICNP (2009), pp. 123-132.

ALIMI, R., WANG, Y., AND YANG, Y. R. Shadow con-
figuration as a network management primitive. In SIG-
COMM (2008), pp. 111-122.

BAUER, L., GARRISS, S., AND REITER, M. K. De-
tecting and resolving policy misconfigurations in access-
control systems. In SACMAT 08, pp. 185-194.

[5] CIMATTI, A., CLARKE, E., GIUNCHIGLIA, E.,
GIUNCHIGLIA, F., PISTORE, M., ROVERI, M., SEBAS-
TIANI, R., AND TACCHELLA, A. NuSMV Version 2:
An OpenSource Tool for Symbolic Model Checking. In
Proc. International Conference on Computer-Aided Veri-
fication (CAV 2002) (2002), LNCS, pp. 359-364.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. A.
Model Checking. MIT Press, 1999.

[7] COLANTONIO, A., PIETRO, R. D., OCELLO, A., AND
VERDE, N. V. A formal framework to elicit roles
with business meaning in rbac systems. In SACMAT 09,
pp- 85-94.

CRAMPTON, J. Understanding and developing role-
based administrative models. In CCS (Alexandria, VA,
USA, Nov. 2005), pp. 158 — 167. CCS’05.

3

—

[4

—_

[6

—

[8

—

[9

—

CRAMPTON, J., LEUNG, W., AND BEZNOSOV, K. The
secondary and approximate authorization model and its

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

(19]

[20]

(21]

(22]

(23]

application to bell-lapadula policies. In ACM Sympo-
sium on Access Control Models and Technologies (2006),
pp- 111-120.

ENE, A., HORNE, W. G., MILOSAVLJEVIC, N., RAO,
P., SCHREIBER, R., AND TARJAN, R. E. Fast exact
and heuristic methods for role minimization problems. In
SACMAT’08, pp. 1-10.

FERRAIOLO, D. F., SANDHU, R. S., GAVRILA, S. 1.,
KUHN, D. R., AND CHANDRAMOULI, R. Proposed
NIST standard for role-based access control. ACM Trans.
Inf. Syst. Secur: 4, 3 (2001), 224-274.

Hu, J., ZHANG, Y., L1, R., AND LU, Z. Role updat-
ing for assignments. In Proceedings of 15th ACM sym-
posium on access control models and technologies (SAC-
MAT 2010) (Pittsburgh, USA, June 9-11 2010), pp. 89—
98.

IRWIN, K., YU, T., AND WINSBOROUGH, W. H. En-
forcing security properties in task-based systems. In SAC-
MAT 08, pp. 41-50.

JHA, S., L1, N., TRIPUNITARA, M., WANG, Q., AND
WINSBOROUGH, W. Towards formal verification of role-
based access control policies. [EEE Trans. Dependable
Secur. Comput. 5, 4 (2008), 242-255.

KARJOTH, G. The authorization service of tivoli pol-
icy director. In ACSAC ’01: Proceedings of the 17th An-
nual Computer Security Applications Conference (Wash-
ington, DC, USA, 2001), IEEE Computer Society, p. 319.

KATHI FISLER, SHRIRAM KRISHNAMURTHI, L. M.,
AND TSCHANTZ, M. Verification and change impact
analysis of access-control policies. In ICSE (May 2005).

KERN, A. Advanced features for enterprise-wide role-
based access control. In ACSAC "02: Proceedings of the
18th Annual Computer Security Applications Conference
(Washington, DC, USA, 2002), IEEE Computer Society,
p- 333.

KERN, A., KUHLMANN, M., SCHAAD, A., AND MOF-
FETT, J. D. Observations on the role life-cycle in the
context of enterprise security management. In SACMAT
(2002), pp. 43-51.

KERN, A., SCHAAD, A., AND MOFFETT, J. D. An ad-
ministration concept for the enterprise role-based access
control model. In SACMAT (2003), pp. 3-11.

Li, N., BizrI, Z., AND TRIPUNITARA, M. V. On
mutually-exclusive roles and separation of duty. In CCS
(2004), pp. 42-51.

L1, N., AND MAO, Z. Administration in role-based ac-
cess control. In ASIACCS (2007), pp. 127-138.

L1, N., MITCHELL, J. C., AND WINSBOROUGH, W. H.
Beyond proof-of-compliance: security analysis in trust
management. J. ACM 52, 3 (2005), 474-514.

L1, N., AND TRIPUNITARA, M. V. Security analysis in
role-based access control. In SACMAT (2004), pp. 126—
135.

72

LISA °10: 24th Large Installation System Administration Conference

USENIX Association

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

(391

[40]

L1, N., TRIPUNITARA, M. V., AND WANG, Q. Re-
siliency policies in access control. In CCS (2006),
pp. 113-123.

MCPHERSON, D. Role-based access
trol for multi-tier applications using authoriza-
tion manager: http://technet.microsoft.com/en-

us/library/cc780256(WS.10).aspx.

MoLLoy, 1., CHEN, H., LI, T., WANG, Q., LI, N.,
BERTINO, E., CALO, S. B., AND LOBO, J. Mining roles
with semantic meanings. In SACMAT (2008), pp. 21-30.

MoLLoY, I., L1, N., L1, T., MAO, Z., WANG, Q., AND
LoBO, J. Evaluating role mining algorithms. In SACMAT
(2009), pp. 95-104.

MONDAL, S., SURAL, S., AND ATLURI, V. Towards
formal security analysis of gtrbac using timed automata.
In SACMAT 09, pp. 33-42.

N1, Q., LoBo, J., CALO, S. B., ROHATGI, P., AND
BERTINO, E. Automating role-based provisioning by
learning from examples. In SACMAT (2009), pp. 75-84.

OSBORN, S. L., SANDHU, R. S., AND MUNAWER, Q.
Configuring role-based access control to enforce manda-
tory and discretionary access control policies. ACM
Trans. Inf. Syst. Secur. 3,2 (2000), 85-106.

PARK, J. S., COSTELLO, K. P., NEVEN, T. M., AND
DiosoMIToO, J. A. A composite rbac approach for large,
complex organizations. In SACMAT (2004), pp. 163-172.

RAY, I. Applying semantic knowledge to real-time up-
date of access control policies. /IEEE Trans. Knowl. Data
Eng. 17, 6 (2005), 844-858.

REITH, M., N1U, J., AND WINSBOROUGH, W. H. To-
ward practical analysis for trust management policy. In
ASIACCS °09, ACM, pp. 310-321.

SANDHU, R. S., BHAMIDIPATI, V., AND MUNAWER,
Q. The ARBAC97 model for role-based administration
of roles. TISSEC 2, 1 (1999), 105-135.

SANDHU, R. S., CoYNE, E. J., FEINSTEIN, H. L.,
AND YOUMAN, C. E. Role-based access control mod-
els. IEEE Computer 29, 2 (February 1996), 38-47.

SCHAAD, A., LOTZ, V., AND SOHR, K. A model-
checking approach to analysing organisational controls in
a loan origination process. In SACMAT’ 06, pp. 139-149.

con-

SCHAAD, A., MOFFETT, J. D., AND JACOB, J. The
role-based access control system of a european bank: a
case study and discussion. In SACMAT (2001), pp. 3-9.

SOHR, K., DROUINEAUD, M., AHN, G.-J., AND
GOGOLLA, M. Analyzing and managing role-based ac-
cess control policies. Knowledge and Data Engineering,
IEEE Transactions on 20, 7 (July 2008), 924-939.

STOLLER, S. D., YANG, P., RAMAKRISHNAN, C., AND
GOFMAN, M. 1. Efficient policy analysis for administra-
tive role based access control. In CCS’07.

VAIDYA, J., ATLURI, V., AND GUO, Q. The role mining
problem: Finding a minimal descriptive set of roles. In
SACMAT (2007), pp. 175-184.

[41]

[42]

[43]

[44]

[45]

VAIDYA, J., ATLURI, V., AND WARNER, J. Roleminer:
mining roles using subset enumeration. In CCS (2006),
pp- 144-153.

WEI, Q., CRAMPTON, J., BEzNosoOv, K., AND RI-
PEANU, M. Authorization recycling in rbac systems. In
SACMAT (2008).

WEI, Q., RIPEANU, M., AND BEZNOSOV, K. Coopera-
tive secondary authorization recycling. In HPDC (2007).

XU, W., SHEHAB, M., AND AHN, G.-J. Visualization
based policy analysis: case study in selinux. In SAC-
MAT’08, pp. 165-174.

ZHANG, D., RAMAMOHANARAO, K., EBRINGER, T.,

AND YANN, T. Permission set mining: Discovering prac-
tical and useful roles. In ACSAC (2008), pp. 247-256.

USENIX Association

LISA ’10: 24th Large Installation System Administration Conference 73

First Step Towards Automatic Correction of Firewall Policy Faults

Fei Chen Alex X. Liu

Dept. of Computer Science and Engineering

Michigan State University

East Lansing, Michigan 48824-1266, U.S.A.

Email: {feichen, alexliu} @cse.msu.edu

Abstract

Firewalls are critical components of network security and
have been widely deployed for protecting private net-
works. A firewall determines whether to accept or dis-
card a packet that passes through it based on its pol-
icy. However, most real-life firewalls have been plagued
with policy faults, which either allow malicious traffic or
block legitimate traffic. Due to the complexity of fire-
wall policies, manually locating the faults of a firewall
policy and further correcting them are difficult. Auto-
matically correcting the faults of a firewall policy is an
important and challenging problem. In this paper, we
make three major contributions. First, we propose the
first comprehensive fault model for firewall policies in-
cluding five types of faults. For each type of fault, we
present an automatic correction technique. Second, we
propose the first systematic approach that employs these
five techniques to automatically correct all or part of the
misclassified packets of a faulty firewall policy. Third,
we conducted extensive experiments to evaluate the ef-
fectiveness of our approach. Experimental results show
that our approach is effective to correct a faulty firewall
policy with three of these types of faults.

1 Introduction

1.1 Motivation

Firewalls serve as critical components for securing the
private networks of business, institutions, and home net-
works. A firewall is often placed at the entrance be-
tween a private network and the outside Internet so that it
can check all incoming and outgoing packets and decide
whether to accept or discard a packet based on its policy.
A firewall policy is usually specified as a sequence of
rules that follow the first-match semantics where the de-
cision for a packet is the decision of the first rule that the
packet matches. However, most real-life firewall policies
are poorly configured and contain faults (i.e., miscon-
figurations) [21]. A policy fault either creates security

JeeHyun Hwang Tao Xie
Dept. of Computer Science
North Carolina State University
Raleigh, North Carolina 27695, U.S.A.
Email: {jhwang4, txie} @ncsu.edu

holes that allow malicious traffic to sneak into a private
network or blocks legitimate traffic and disrupts normal
business processes. In other words, a faulty firewall pol-
icy evaluates some packets to unexpected decisions. We
call such packets misclassified packets of a faulty fire-
wall policy. Therefore, it is important to develop an ap-
proach that can assist firewall administrators to automat-
ically correct firewall faults.

1.2 Technical Challenges

There are three key challenges for automatic correction
of firewall policy faults. First, it is difficult to determine
the number of policy faults and the type of each fault in
a faulty firewall. The reason is that a set of misclassified
packets can be caused by different types of faults and dif-
ferent number of faults. Second, it is difficult to correct
a firewall fault. A firewall policy may consist of a large
number of rules (e.g., thousands of rules) and each rule
has a predicate over multi-dimensional fields. Locating
a fault in a large number of rules and further correcting
it by checking the field of each dimension are two diffi-
cult tasks. Third, it is difficult to correct a fault without
introducing other faults Due to the first-match semantics
of firewall policies, correcting a fault in a firewall rule
affects the functionality of all the subsequent rules, and
hence may introduce other faults into the firewall policy.

1.3 Limitations o