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Message from the Program Chair

Dear LISA Attendee,

Technology is advancing fast, and we all need to be on top of it. Our job is to design, build, and maintain it to serve 
business needs. Our job is a highly dynamic one, not only due to rapid changes in technology itself, but also be-
cause the way that technology is used or delivered changes as well. For example, new ways of computing mean that 
many of us are busily moving applications to the cloud or from machines that run multiple applications to virtual-
ized boxes or appliances just running one task.

These developments have a huge impact on the sysadmin profession, both in a technical and a nontechnical fashion. 
It is important for us to have a venue to continuously learn, share experiences, and develop ourselves and our skills. 
LISA is there for you and by you to serve these needs. In addition to attending presentations, please get completely 
immersed and experience the hallway track and the Birds-of-a-Feather sessions. This is the place to discuss tech in 
general, as well as to present your issues in the workplace (tech and nontech alike) and help others with theirs.

LISA has come a long way from the small workshops of the 1980s. It has always been the place for sysadmins, but 
it has matured into one of the flagship conferences USENIX organizes. The week is packed full: 3 days of tech ses-
sions, 6 days of training comprising 48 classes led by world experts, 7 workshops, 2 poster sessions, and numerous 
other sessions and events. Be proud that you are part of this event!

Organizing such a conference takes about a year and involves over 200 people. All have their own important parts 
to play in building the event. My job was just being one of those people. It happened to be labeled “Program Chair,” 
but the credit goes to all the others, who are just as important as “the chair.” Please give them a huge thank you.

This year we decided to add a second track, practice and experience reports, in addition to the regular refereed pa-
pers track. We did this because we want to encourage people to share experiences and best practices in a more for-
mal way. We wanted the reports to include a small write-up, so that there would be a record of what was presented. 
Looking at the submission numbers, we find that this idea worked out quite well. Of the total of 63 submissions, we 
had 45 regular papers and 18 experience reports. In a day-long meeting the program committee accepted 18 papers 
and 9 experience reports. I hope you like the selection and take home some good experiences and practical ideas. 
Also, please think about submitting something yourself for next year!

As a last word, I would thank you all for coming. Be sure to enjoy yourselves and have as much fun at the confer-
ence as I did in helping organizing it.

Rudi van Drunen, Competa IT and Xlexit Technology, The Netherlands 
Program Chair
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A survey of system configuration tools

Thomas Delaet Wouter Joosen

Bart Vanbrabant

DistriNet, Dept. of Computer Science

K.U.Leuven, Belgium
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Abstract

We believe that informed choices are better choices.

When you adopt a system configuration tool, it implies

a significant investment in time and/or money. Before

making such an investment, you want to pick the right

tool for your environment. Therefore, you want to com-

pare tools with each other before making a decision. To

help you make an informed choice, we develop a com-

parison framework for system configuration tools. We

evaluate 11 existing open-source and commercial system

configuration tools with this framework. If you use our

framework, you will make a better choice in less time.

1 Introduction

When you adopt a system configuration tool, it implies

a significant investment in time and/or money. Before

making such an investment, you want to know you have

picked the right tool for you environment. Therefore, you

want to compare tools with each other before making a

decision.

Since there exist a lot of tools with different goals,

characteristics and target users, it is a difficult and time-

intensive task to make an objective comparison of sys-

tem configuration tools. Moreover, people using a tool

already made a significant investment in that tool (and

not others) and as a consequence are involved in that

tool. But they themselves have difficulty comparing their

“own” tool to other tools.

To help you make an informed choice, we developed

a comparison framework for system configuration tools.

In addition to more subjective or political decision fac-

tors, this framework can help you with the more objective

factors when selecting a system configuration tool that is

right for you. The framework consists of four categories

of properties.

1. Properties related to the input specification

2. Properties related to deploying the input specifica-

tion

3. Process-oriented properties

4. Tool support properties

We evaluated 11 existing open-source and com-

mercial system configuration tools with our frame-

work. This paper contains a summary of these evalu-

ations. The full evaluations are available on our web-

site at http://distrinet.cs.kuleuven.be/

software/sysconfigtools. You can comment

on these evaluations, provide suggestions for modifica-

tions or add your own evaluations.

The remainder of this paper is structured as follows:

We start with the description of the framework in Section

2. Next, we summarize our findings for the 11 tools we

evaluated in Section 3. Section 4 answers the questions

on how to choose a tool and how to evaluate another tool

using the framework. In Section 5, we use our framework

and the evaluations to analyze the gaps in the state of the

art. Section 6 concludes the paper.

2 The comparison framework

Every system configuration tool provides an interface to

the system administrator. Within this interface, the sys-

tem administrator expresses the configuration of the de-

vices managed by the tool. The tool uses this specifica-

tion as input and enforces it on all machines it manages.

This conceptual architecture of a system configuration

tool is illustrated in Figure 1.

In Figure 1, the system administrators inputs the de-

sired configuration of the devices managed by the tool.

This input it stored in a repository. The tool uses this in-

put to generate device-specific profiles that are enforced

on every managed device. The translation agent is the

component of the tool that translates the system admin-

istrator input to device-specific profiles. The deployment
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agent is the component of the tool that runs on the man-

aged device and executes the generated profile.

Our comparison framework contains properties for

both the specification of the input and the enforcement

phase. The third type of properties that are present in

our comparison framework are meta-specification prop-

erties: how does a tool deal with managing the input

specification itself? The last type of properties deal with

tool support: How easy is it to adopt the tool?

2.1 Specification properties

2.1.1 Specification paradigm

We define the specification paradigm of a tool by answer-

ing two questions:

1. Is the input language declarative or imperative?

2. Does the tool use a GUI-based or command-line

user interface?

Tools that use a declarative input language enable to

express the desired state of the computer infrastructure.

The runtime of the tool compares this desired state with

the configuration on every managed device and derives

a plan to move to the desired state. In the system con-

figuration literature, this process is described as conver-

gence [1]. A system configuration tool that supports con-

vergence has the additional benefit that divergences from

the desired state are automatically corrected.

Tools that use an imperative input language distribute,

schedule and deploy scripts written in its imperative in-

put language on the managed devices. For an impera-

tive script to work reliable, all possible states of the man-

aged devices need to covered and checked in the script.

Moreover, the system configuration tool must also keep

track of what scripts are already executed on every de-

vice. An alternative is to make all the operations in the

script idempotent.

Let us contrast the practical differences between an

imperative and a declarative language. Suppose a system

administrator does not want file /etc/hosts deny to

be present on a device.

In a declarative language, the system administrator

must ensure that the file is not included in the model or

explicitly define that the file must not exist.

In an imperative language, the system administrator

must first write a test to verify if /etc/hosts deny

exists. If the file exists, another instruction is needed

to remove the file. If the system administrator does not

write the first test, the action fails if the file was already

removed.

Orthogonal on the choice of declarative or impera-

tive specification language is the choice of user interface:

does the tool use a command-line or graphical user inter-

face?

Command-line interfaces typically have a steeper

learning curve than graphical approaches but, once mas-

tered, can result in higher productivity. Command-line

interfaces also have the advantage that they can be in-

tegrated with other tools through scripting. In contrast,

system administrators are typically quicker up to speed

with graphical approaches [12].

2.1.2 Abstraction mechanisms

A successful configuration tool is able to make abstrac-

tion of the complexity and the heterogeneity that char-

acterises IT infrastructures where hardware and software

of several vendors and generations are used simultane-

ously [3]. Making abstraction of complexity and hetero-

geneity is very similar to what general purpose program-

ming languages have been doing for decades.

Abstraction from complexity is an important concept

in programming paradigms such as object orientation. In

object orientation, implementation details are encapsu-

lated behind a clearly defined API. Encapsulation is a

concept that is valuable for modeling configurations as

well. Responsibilities and expertise in a team of system

administrators are not defined on machine boundaries,

but based on subsystems or services within the infras-

tructure, for example: DNS or the network layer. Encap-

sulation enables experts to model an aspect of the con-

figuration and expose a well documented API to other

system administrators.

Modern IT infrastructures are very heterogeneous en-

vironments. Multiple generations of software and hard-

ware of several vendors are used in production at the

same time. These heterogeneous “items” need to be con-

figured to work together in one infrastructure.

Based on how a system configuration tool’s language

deals with complexity and heterogeneity, we define six

levels to classify the tool. These levels range from

high-level end-to-end requirements, to low-level bit-

configurations. [3] inspired us in the definition of these

levels.

1. End-to-end requirements: End-to-end require-

ments are typical non-functional requirements [23].

They describe service characteristics that the com-

puting infrastructure must achieve. Figure 2 shows

an example of a performance characteristic for a

mail service. Other types of end-to-end require-

ments deal with security, availability, reliability, us-

ability, . . . One example of an approach that deals

with end-to-end requirements is given in [17]. [17]

uses first-order logic for expressing end-to-end re-

quirements.

2
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Repository

sysadmin input Translation agent

Managed device

Deployment agent

Managed device

Deployment agent

Managed device

Deployment agent

profile profile profile

operator

Figure 1: A conceptual architecture of system configuration tool.

2. Instance distribution rules: Instance distribution

rules specify the distribution of instances in the net-

work. We define an instance as a unit of configura-

tion specification that can be decomposed in a set of

parameters. Examples of instances are mail servers,

DNS clients, firewalls and web servers. A web

server, for example, has parameters for expressing

its port, virtual hosts and supported scripting lan-

guages. In Figure 2, the instance distribution rule

prescribes the number of mail servers that need to

be activated in an infrastructure. The need for such

a language is explicited in [3] and [2].

3. Instance configurations: At the level of instance

configurations, each instance is an implementation

independent representation of a configuration. An

example of a tool at this level is Firmato [6]. Fir-

mato allows modeling firewall configurations inde-

pendent from the implementation software used.

4. Implementation dependent instances The level of

implementation dependent instances specifies the

required configuration in more detail. It describes

the configuration specification in terms of the con-

tents of software configuration files. In the example

in Figure 2 a sendmail.cf file is used to describe the

configuration of mail server instances.

5. Configuration files: At the level of configuration

files, complete configuration files are mapped on a

device or set of devices. In contrast with the pre-

vious level, this level has no knowledge of the con-

tents of a configuration file.

6. Bit-configurations: At the level of Bit-

configurations, disk images or diffs between

disk images are mapped to a device or set of

devices. This is the lowest level of configuration

specification. Bit-level specifications have no

knowledge of the contents of configuration files or

the files itself. Examples of tools that operate on

this level are imaging systems like Partimage [21],

g4u [9] and Norton Ghost [24].

Figure 2 shows the six abstraction levels for system

configuration, illustrated with an email setup. The illus-

tration in Figure 2 is derived from an example discussed

in [3]. The different abstraction levels are tied to the con-

text of system configuration. In the context of policy lan-

guages, the classification of policy languages at different

levels of abstraction is often done by distinguishing be-

tween high-level and low-level policies [16,25]. The dis-

tinction of what exactly is a high-level and low-level pol-

icy language is rather vague. In many cases, high-level

policies are associated with the level that we call end-to-

end requirements, while low-level policies are associated

with the implementation dependent instances level. We

believe that a classification tied to the context of system

configuration gives a better insight in the different ab-

straction levels used by system configuration tools.

In conclusion, a system configuration tool automates

the deployment of configuration specifications. At the

level of bit-configurations, deployment is simply copying

bit-sequences to disks, while deploying configurations

specified as end-to-end requirements is a much more

complex process.

2.1.3 Modularization mechanisms

One of the main reason system administrators want to

automate the configuration of their devices is to avoid

repetitive tasks. Repetitive tasks are not cost efficient.

Moreover, they raise the chances of introducing errors.

Repetitive tasks exist in a computer infrastructure be-

cause there are large parts of the configuration that are

shared between a subset (or multiple overlapping sub-

sets) of devices ( [3]). For example, devices need the

same DNS client configuration, authentication mecha-

nism, shared file systems, . . . A system configuration tool

3



4	 LISA ’10: 24th Large Installation System Administration Conference	 USENIX Association

1. End-to-end requirements

Configure enough mail servers to guarantee an SMTP response time of X seconds

⇓
2. Instance distribution rules

Configure N suitable machines as a mail server for this cluster

⇓
3. Instance configurations

Configure machines X, Y, Z as a mail server

⇓
4. Implementation dependent instances

Put these lines in sendmail.cf on machines X, Y, Z

⇓
5. Configuration files

Put configuration files on machines

⇓
6. Bit-configurations

Copy disk images onto machines

Figure 2: An example of different abstraction levels of configuration specification for an email setup.

that supports the modularization of configuration chunks

reduces repetition in the configuration specification.

In its most basic form, modularization is achieved

through a grouping mechanism: a device A is declared

to be a member of group X and as a consequence inherits

all system configuration chunks associated with X. More

advanced mechanisms include query based groups, auto-

matic definition of groups based on environmental data

of the target device and hierarchical groups.

An additional property of a modularization mecha-

nism is whether it enables third parties to contribute

partial configuration specifications. Third parties can

be hardware and software vendors or consultancy firms.

System administrators can then model their infrastruc-

ture in function of the abstractions provided by the third-

party modules and reuse the expertise or rely on support

that a third party provides on their configuration mod-

ules.

2.1.4 Modeling of relations

One of the largest contributors to errors and downtime in

infrastructures are wrong configurations [19, 20, 22] due

to human error. An error in a configuration is commonly

caused by an inconsistent configuration. For example, a

DNS service that has been moved to an other server or

moving an entire infrastructure to a new IP range. Ex-

plicitly modeling relations that exist in the network helps

keeping a configuration model consistent.

Modeling relations is, like the modularization prop-

erty of Section 2.1.3, a mechanism for minimizing re-

dundancy in the configuration specification. When rela-

tions are made explicit, a tool can automatically change

configurations that depend on each other. For example,

when the location of a DNS server changes and the re-

lation between the DNS server and clients is modeled

in the configuration specification, a system configuration

tool can automatically adapt the client configurations to

use the new server. Again, modeling relations reduces

the possibility of introducing errors in the configuration

specification.

To evaluate how well a tool supports modeling of rela-

tions, we describe two orthogonal properties of relations:

their granularity and their arity.

1. granularity: In Section 2.1.2, we defined an in-

stance as a unit of configuration specification that

can be decomposed in a set of parameters. Exam-

ples of instances are mail servers, DNS clients, fire-

walls and web servers. A web server, for example,

has parameters for expressing its port, virtual hosts

and supported scripting languages. Based on this

definition, we can classify relations in three cate-

gories: (1) relations between instances, (2) relations

between parameters and (3) relations between a pa-

rameter and an instance.

(a) Instance relations represent a coarse grained

dependency between instances. Instance de-

pendencies can exist between instances on the

same device, or between instances on different

devices. An example of the former is the de-

pendency between a DNS server instance and

the startup system instance on a device: if a

startup system instance is not present on a de-

vice (for example: /etc/init.d), the DNS server

instance will not work. An example of depen-

dencies between instances on different devices
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is the dependency between DNS servers and

their clients.

(b) Parameter relations represent a dependency

between parameters of instances. An example

of this is a CNAME record in the DNS system:

every CNAME record also needs an A record.

(c) Parameter - instance relations are used to

express a relation between an individual pa-

rameter and an instance. For example a mail

server depends on the existence of an MX

record in the DNS server.

Note that it depends on the abstraction level of a tool

which dependencies it can support. The two low-

est abstraction layers in Figure 2, configuration files

and bit-configurations, have no knowledge of pa-

rameters and as a consequence, they can only model

instance dependencies.

2. arity: Relations can range from one-to-one to

many-to-many relationships. A simple one-to-one

relationship is a middleware platform depending on

a language runtime. A many-to-many relationship

is for example the relation between all DNS clients

and DNS servers in a network. A system configura-

tion tool can also provide support facilities to query

and navigate relations in the system configuration

specification. An example that motivates such facil-

ities for navigating and querying relations involves

an Internet service. For example, a webservice runs

on a machine in the DMZ. This DMZ has a dedi-

cated firewall that connects to the Internet through

an edge router in the network. The webservice con-

figuration has a relation to the host it is running on

and a relation to the “Internet”. The model also con-

tains relations that represent all physical network

connections. Using these relations, a firewall spec-

ification should be able to derive firewall rules for

the webservice host, the DMZ router and the edge

router [6].

An extra feature is the tool’s ability to support the

modeling of constraints on relations. We distinguish two

types of constraints: validation constraints and genera-

tive constraints.

1. validation constraints are expressions that need to

hold true for your configuration. Because of policy

or technical factors, the set of allowable values for a

relation can be limited. Constraints allow to express

these limitations. Examples of such limitations are:

• A server can only serve 100 clients.

• Clients can only use the DNS server that is

available in their own subnet.

• Every server needs to be configured redun-

dantly with a master and a slave server.

2. generative constraints are expressions that leave

a degree of freedom between a chunk of config-

uration specification and the device on which this

chunk needs to be applied. Languages without sup-

port for generative constraints need a 1-1 link be-

tween a chunk of configuration specification and the

device on which is needs to be applied. Languages

with support for generative constraints leave more

degrees of freedom for the tool. An example of a

generative constraint is: “One of the machines in

this set of machines needs to be a mail server”.

2.2 Deployment properties

2.2.1 Scalability

Large infrastructures are subject to constant change in

their configuration. System configuration tools must deal

with these changes and be able to quickly enforce the

configuration specification, even for large infrastructures

with thousands of nodes, ten thousands of relations and

millions of parameters.

Large infrastructures typically get more benefit of us-

ing a higher level specification (see Figure 2). How-

ever, the higher-level the specification, the more process-

ing power is needed to translate this high level specifi-

cation to enforceable specifications on all managed de-

vices. System configuration tools must find efficient al-

gorithms to deal with this problem or restrict the expres-

siveness of the system configuration tool.

2.2.2 Workflow

Workflow management deals with planning and execu-

tion of (composite) changes in a configuration specifica-

tion. Changes can affect services distributed over mul-

tiple machines and with dependencies on other services

[3, 18].

One aspect of workflow management is state transfer.

The behavior of a service is not only driven by its config-

uration specification, but also by the data it uses. In the

case of a mail server, the data are the mail spool and mail-

boxes, while web pages serve as data for a web server.

When upgrading a service or transferring a service to an-

other device, one has to take care that the state (collection

of data) remains consistent in the face of changes.

Another aspect of workflow management is the coor-

dination of distributed changes. This has to be done very

carefully as not to disrupt operations of the computing in-

frastructure. A change affecting multiple machines and

services has to be executed as a single transaction. For

example, when moving a DNS server from one device to

5
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another, one has to first activate the new server and make

sure that all clients use the new server before deactivat-

ing the old server. For some services, characteristics of

the managed protocol can be taken into account to make

this process easier. For example, the SMTP protocol re-

tries for a finite span of time to deliver a mail when the

first attempt fails. A workflow management protocol can

take advantage of this characteristic by allowing the mail

server to be unreachable during the change.

A last aspect of workflow management is non-

technical: if the organizational policy is to use mainte-

nance windows for critical devices, the tool must under-

stand that changes to these critical devices can influence

the planning and execution of changes on other devices.

2.2.3 Deployment architecture

The typical setup of a system configuration tool is illus-

trated in Figure 1. A system configuration tool starts

from a central specification for all managed devices.

Next, it (optionally) processes this specification to device

profiles and distributes these profiles (or the full spec-

ification) to every managed device. An agent running

on the device then enforces the device’s profile. For the

rest of this section, we define the processing step from a

central specification to device profiles as the translation

agent. The agent running on every device is defined as

the deployment agent.

System configuration tools differentiate their deploy-

ment architecture along two axises: 1. the architecture of

the translation agent and 2. whether they use pull or push

technology to distribute specifications .

1. architecture of translation agent: Possible ap-

proaches for the architecture of the translation agent

can be classified in three categories, based on the

number of translation agents compared to the num-

ber of managed devices: centralized management,

weakly distributed management and strongly dis-

tributed management [15].

(a) centralized management is the central server

approach with only one translation agent.

When dealing with huge networks, the central

server quickly becomes a bottleneck. This is

certainly the case when a system configuration

tool uses a high-level abstraction, as the algo-

rithm for computing a device’s configuration

will become complex.

(b) weakly distributed management is an ap-

proach where multiple translation agents are

present in the network. This approach can

be realized for many centralized management

tools by replicating the server and providing a

shared policy repository for all servers. An-

other possible realization of this approach is

organizing translation agents hierarchically.

(c) strongly distributed management systems

use a separate translation agent for each man-

aged device. The difficulty with this ap-

proach is enforcing inter-device relations be-

cause each device is responsible for translat-

ing its own configuration specification. As a

consequence, devices need to cooperate with

each other to ensure consistency.

2. push or pull: In all approaches, each managed de-

vice contains a deployment agent that can be push

or pull based. In the case of a pull based mech-

anism, the deployment agent needs to contact the

translation agent to fetch the translated configura-

tions. In a push based mechanism, the translation

agent contacts the deployment agent. Deployment

agents also have to be authenticated and their capa-

bilities for fetching policies or configurations have

to be limited. Configurations often contain sensi-

tive information like passwords or keys and expos-

ing this information to all deployment agents intro-

duces a security risk.

2.2.4 Platform support

Modern infrastructures contain a variety of computing

platforms: Windows/Unix/Mac OS X servers, but also

desktop machines, laptops, handhelds, smartphones and

network equipment. Even in relatively homogeneous

environments, we can not assume that all devices run

the same operating system: operating systems running

on network equipment are fundamentally different than

those running on servers/desktops and smartphones are

yet another category of operating systems.

Good platform support or interaction with other tools

is essential for reducing duplication in the configuration

specification. Indeed, many relations exist between de-

vices running different operating systems. For example:

a server running Unix and a router/firewall running Cisco

IOS. If different tools are used to manage the server and

router, relations between the router and server need to

be duplicated in both tools which in turn introduces con-

sistency problems if one of the relations changes. An

example of such a relation is the the firewall rule on a

Cisco router that opens port 25 and the SMTP service on

a Unix server.
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2.3 Specification management properties

2.3.1 Usability

We identify three features concerning usability of a sys-

tem configuration tool: 1. ease of use of the language,

2. support for testing specifications and, 3. monitoring

the infrastructure.

1. ease of use of the language: The target audience

of a system configuration tool are system adminis-

trators. The language of the system configuration

tool should be powerful enough to replace their ex-

isting tools, which are mostly custom tools. But it

should also be easy enough to use, so the average

system administrator is able to use it. Good system

administrators with a good education [13] are al-

ready scarce, so a system configuration tool should

not require even higher education.

2. support for testing specifications: To understand

the impact of a change in the specification, the sys-

tem configuration tool can provide support for test-

ing specifications through something as trivial as a

dry-run mode or more complex mechanisms like the

possibility to replicate parts of the production in-

frastructure in a (virtualized) testing infrastructure

and testing the changes in that testing infrastructure

first [5].

3. monitoring the infrastructure: A system config-

uration tool can provide an integrated (graphical)

monitoring system and/or define a (language-based)

interface for other tools to check the state of an

infrastructure. A language-based interface has the

advantage that multiple monitoring systems can be

connected with the system configuration tool. A

monitoring system enables the user to check the cur-

rent state of the infrastructure and the delta with the

configuration specification.

2.3.2 Versioning support

Some system configuration tools store their specification

in text files. For those tools, a system configuration spec-

ification is essentially code. As a consequence, the same

reasoning to use a version control system for source code

applies. It enables developers and system administrators

to document their changes and track them through his-

tory. In a configuration model this configuration history

can also be used to rollback configuration changes and it

makes sure an audit trail of changes exists.

The system configuration tool can opt to implement

versioning of configuration specification using a custom

mechanism or, when the specification is in text files,

reuse an external version control system and make use

of the hooks most generic version control systems pro-

vide.

2.3.3 Specification documentation

Usability studies [4, 12] show that a lot of time of a sys-

tem administrator is spent on communication with other

system administrators. These studies also show that a

lot of time is lost because of miscommunication, where

discussions and solutions are based on wrong assump-

tions. A system configuration tool that supports struc-

tured documentation can generate documentation from

the system configuration specification itself and thus re-

move the need to keep the documentation in sync with

the real specification.

2.3.4 Integration with environment

The infrastructure that is managed by the system con-

figuration tool is not an island: it is connected to other

networks, is in constant use and requires data from

other sources than the system configuration specifica-

tion to operate correctly. As a consequence, a sys-

tem administrator may need information from external

databases in its configuration specification (think LDAP

for users/groups) or information about the run-time char-

acteristics of the managed nodes. A system configuration

tool that leverages on these existing sources of informa-

tion integrates better with the environment in which it is

operating because it does not require all existing infor-

mation to be duplicated in the tool.

2.3.5 Conflict management

A configuration specification can contain conflicting def-

initions, so a system configuration tool should have a

mechanism to deal with conflicts. Despite the presence

of modularization mechanisms and relations modeling,

a configuration specification can still contain errors, be-

cause it is written by a human. In case of such an error,

a conflict is generated. We distinguish two types of con-

flicts: application specific conflicts and contradictions in

the configuration specification, also called modality con-

flicts [14].

1. application specific conflicts: An example of an

application specific conflict is the specification of

two Internet services that use the same TCP port. In

general, application specific conflicts can not be de-

tected in the configuration specification. Examples

of research on application specific protocols can be

found in [10] and [7], where conflict management

for IPSec and QoS policies is described.

2. modality conflicts: An example of a modality con-

flict is the prohibition and obligation to enable an

7
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instance (for example a mail server) on a device. In

general, modality conflicts can be detected in the

configuration specifications.

When a configuration specification contains rules that

cause a conflict, this conflict should be detected and acted

upon.

2.3.6 Workflow enforcement

In most infrastructures a change to the configuration will

never be deployed directly on the infrastructure. A pol-

icy describes which steps each update need to go through

before it can be deployed on the production infrastruc-

ture. These steps can include testing on a development

infrastructure, going through Q&A, review by a security

specialist, testing on a exact copy of the infrastructure

and so on. Exceptions on such policies can exist because

not every update can go through all stages, updates can

be so urgent that they need to be allowed immediately,

but only with approval of two senior managers. A sys-

tem configuration tool that provides support for model-

ing these existing workflows can adapt itself to the habits

and processes of the system administrators and will thus

be easier to use than system configuration tools without

this support.

2.3.7 Access control

If an infrastructure is configured and managed based on

a system configuration specification, control of this spec-

ification implies control of the full infrastructure. So

it might be necessary to restrict access to the configu-

ration specification. This is a challenge, especially in

large infrastructures where a lot of system administrators

with different responsibilities need to make changes to

this specification. A lot of these large infrastructures are

also federated infrastructures, so one specification can be

managed from different administrative domains.

Authenticating and authorizing system administrators

before they are making changes to the system configu-

ration can prevent a junior system administrator who is

only responsible for the logging infrastructure to make

changes to other critical software running on the man-

aged devices.

Many version control systems can enforce access con-

trol but the level on which the authorisation rules are

expressed differs from the abstraction level of the spec-

ification itself. In most systems, this is based on the

path of the file that contains the code or specification.

But in most programming languages and system config-

uration tools, the relation between the name of the file

and the contents of the file is very limited or even non-

existing. For example an authorisation rule could express

that users of the logging group should only set parame-

ters of object from types in the logging namespace. With

path-based access control this becomes: users of group

logging should only access files in the /config/logging

directory. The latter assumes that every system admin-

istrator uses the correct files to store configuration speci-

fications.

2.4 Support

2.4.1 Available documentation

To quickly gain users, tools have to make their barriers

to entry as low as possible. A “ten minutes” tutorial is

often invaluable to achieve this. When users get more

comfortable with the tool, they need extensive reference

documentation that describes all aspects of the tool in

detail alongside documentation that uses a more process-

oriented approach covering the most frequent use cases.

Thus, documentation is an important factor in the

adoption process of a tool.

2.4.2 Commercial support

Studies [13] show that the need for commercial support

varies amongst users. Unix users don’t call support lines

as often as their Window-colleagues. The same holds

true for training opportunities. In all cases, the fact that

there is a company actively developing and supporting

a tool helps to gain trust amongst system administrators

and thus increases adoption.

2.4.3 Community

In our online society, community building is integral part

of every product or service. Forums, wiki’s and social

networks can provide an invaluable source of informa-

tion that complements the official documentation of a

tool and introduces system administrators to other users

of their preferred tool.

2.4.4 Maturity

Some organizations prefer new features above stability,

and others value stability higher than new features There-

fore, it is important to know what the maturity of the

tool is: Is it a new tool with some cutting edge features

and frequent syntax changes in its language or a well-

established tool with infrequent updates?

3 System configuration tools comparison

In this section we provide a summary of our evaluation

of eleven tools. These tools consist of commercial and

open-source tools. The set of commercial tools is based

8
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Tool Version

BCFG2 1.0.1

Cfengine 3 3.0.4

Opscode Chef 0.8.8

Puppet 0.25

LCFG 20100503

BMC Bladelogic Server Automation

Suite

8

CA Network and Systems Manage-

ment (NSM)

R11.x

IBM Tivoli System Automation for

Multiplatforms

4.3.1

Microsoft Server Center Configuration

Manager (SCCM)

2007 R2

HP Server Automation System 2010/08/12

Netomata Config Generator 0.9.1

Table 1: Version numbers of the set of evaluated tools.

on market research reports [8, 11] and consists of BMC

Bladelogic Server Automation Suite, Computer Asso-

ciates Network and Systems Management, IBM Tivoli

System Automation for Multiplatforms, Microsoft Sys-

tem Center Configuration Manager and HP Server Au-

tomation System. For the open-source tools we selected

a set of tools that were most prominently present in dis-

cussions at the previous LISA edition and referenced

in publications. This set of tools consists of BCFG2,

Cfengine3, Chef, Netomata, Puppet and LCFG.

Due to space constraints we limit the results of our

evaluation to a summary of our findings for each prop-

erty. The full evaluation of each tool is available on our

website at http://distrinet.cs.kuleuven.

be/software/sysconfigtools. We intend to

keep the evaluations on this website in sync with ma-

jor updates of each tool. For this paper we based our

evaluation on the versions of each tool listed in Table 1.

3.1 Specification properties

3.1.1 Specification paradigm

Language type Cfengine, Puppet, Tivoli, Netomata

and Bladelogic use a declarative DSL for their input

specification. BCFG2 uses a declarative XML specifi-

cation. Chef on the other hand uses an imperative ruby

DSL. LCFG uses a DSL that instantiates components and

set parameters on them. CA NSM, HP Server Automa-

tion and MS SCCM are like LCFG limited to setting pa-

rameters on their primitives.

User interface As with the language type, the tools

can be grouped in open-source and commercial tools.

The open-source tools focus on command-line interface

while the commercial tools also provide a graphical in-

terfaces. Tools such as Cfengine, Chef and Puppet pro-

vide a web-interface that allows to manage some aspects

with a graphical interface. In the commercial tools all

management is done through coommand-line and graph-

ical interfaces.

3.1.2 Abstraction mechanisms

3.1.3 Modularization mechanisms

Type of grouping All tools provide a grouping mech-

anism for managed devices or resources. HP Server Au-

tomation, Tivoli and Netomata only provide static group-

ing. CA NSM and BCFG allow static grouping and

hierarchies of groups. LCFG supports limited static,

hierarchical and query based grouping through the C-

preprocessor. Bladelogic supports static, hierarchical

and query based groups. Cfengine and Puppet use the

concept of classes to group configuration. Classes can

include other classes to create hierarchies. Cfengine can

assign classes statically or conditionally using expres-

sions. Puppet can assign classes dynamically using ex-

ternal tools. Chef and MS SCCM can define static groups

and groups based on queries.

Configuration modules BCFG, HP Server Automa-

tion, MS SCCM and Netomata have no support for

configuration modules. Bladelogic can parametrise re-

sources based on node characteristics to enable reuse.

Tivoli includes sets of predefined policies that can be

used to manage IBM products and SAP. LCFG can use

third party components that offer a key-value interface

to other policies, CA NSM provides a similar approach

for third party agents that manage a device or subsystem.

Cfengine uses bundles, Chef uses cookbooks and Puppet

uses modules to distribute a reusable configuration spec-

ification for managing certain subsystems or devices.

3.1.4 Modeling of relations

BCFG, CA NSM, HP Server Automation and MS SCCM

have no support for modeling relations in a configura-

tion specification. Bladelogic can model one-to-one de-

pendencies between scripts that need to be executed as a

prerequisite, these are instance relations. Cfengine sup-

ports one-to-one, one-to-many and many-to-many rela-

tions between instances, parameters and between param-

eters and instances. On these relations generative con-

straints can be expressed. Chef can express many-to-

many dependency relations between instances. Tivoli

can also express relations of all arities between instances

and parameters and just like Cfengine express generative

9
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constraints. LCFG can express one-to-one and many-to-

many relations using spanning maps and references be-

tween instances and parameters. Netomata can model

one-to-one network links and relations between devices.

Finally Puppet can define one-to-many dependency rela-

tions between instances. The virtual resource functional-

ity can also be used to define one-to-many relations be-

tween all instances.

3.2 Deployment properties

3.2.1 Scalability

The only method to evaluate how well a tool scales is to

test each tool in a deployment and scale the number of

managed nodes. In this evaluation we did not do this.

To have an indication of the scalability we searched for

cases of real-life deployments and divided the tools in

three groups based on the number of managed devices

and a group of tools for which no deployment informa-

tion was available.

less than 1000 BCFG2

between 1000 and 10k LCFG and Puppet

more than 10k Bladelogic and Cfengine,

unknown CA NSM, Chef, HP Server Automation,

Tivoli, MS SCCM and Netomata,

3.2.2 Workflow

BMC Bladelogic and HP Server Automation integrate

with an orchestration tool to support coordination of dis-

tributed changes. Cfengine and Tivoli can coordinate

distributed changes as well. MS SCCM and CA NSM

support maintenance windows. Distributed changes in

Puppet can be sequenced by exporting and collecting re-

sources between managed devices. BCFG2, LCFG, Chef

and Netomata have no support for workflow.

3.2.3 Deployment architecture

Translation agent Cfengine uses a strongly distributed

architecture where the emphasis is on the agents that run

on each managed device. The central server is only used

for coordination and for policy distribution. Bladelogic,

CA NSM and MS SCCM use one or more central servers.

BCFG2, Chef, HP Server Automation, Tivoli, Netomata

and Puppet use a central server. Chef and Puppet can

also work in a standalone mode without central server to

deploy a local specification.

Tool Platform support

BCFG2 *BSD, AIX, Linux, Mac OS

X and Solaris

Cfengine 3 *BSD, AIX, HP-UX, Linux,

Mac OS X, Solaris and Win-

dows

Opscode Chef *BSD, Linux, Mac OS X, So-

laris and Windows

Puppet *BSD, AIX, Linux, Mac OS

X, Solaris

LCFG Linux (Scientific Linux)

BMC Bladelogic

Server Automation

Suite

AIX, HP-UX, Linux, Net-

work equipment, Solaris and

Windows

CA Network and

Systems Manage-

ment (NSM)

AIX, HP-UX, Linux, Mac

OS X, Network equipment,

Solaris and Windows

IBM Tivoli System

Automation for Mul-

tiplatforms

AIX, Linux, Solaris and Win-

dows

Microsoft Server

Center Configuration

Manager (SCCM)

Windows

HP Server Automa-

tion System

AIX, HP-UX, Linux, Net-

work equipment, Solaris and

Windows

Netomata Config

Generator

Network equipment

Table 2: Version information for the set of evaluated

tools.

Distribution mechanism The deployment agent of

BCFG2, Cfengine, Chef, LCFG, MS SCCM and Puppet

pull their specification from the central server. Bladel-

ogic, CA NSM, HP Server Automation and Tivoli push

the specification to the deployment agents. The central

servers of Chef, MS SCCM and Puppet can notify the de-

ployment agents that a new specification can be pulled.

Netomata relies on external tools for distribution.

3.2.4 Platform support

The platforms that each tool supports is listed in Table 2.

3.3 Specification management properties

3.3.1 Usability

Usability Usability is a very hard property to quantify.

We categorised the tools in easy, medium and hard. We

determined this be assessing how easy a new user would

be able to use and learn a tool. We tried to be as ob-

jective as possible to determine this but this part of the
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evaluation is subjective. We found Bladelogic, CA NSM,

HP Server Automation, Tivoli and MSCCM easy to start

using. The usability of Cfengine, LCFG and Puppet is

medium, partially because of the custom syntax. Pup-

pet also has a lot of confusing terminology but tools such

as puppetdoc and puppetca make up for it so we did not

classify it as hard to use. We found BCFG2 hard to use

because of the XML input and the specification is dis-

tributed in a lot of different directories because of their

plugin system. Chef is also hard to use because of its syn-

tax and the use of a lot of custom terminology. Netomata

is also hard to use because of its very concise syntax but

powerful language.

Support for testing specifications BCFG2, Cfengine,

LCFG and Puppet have a dry run mode. Netomata is in-

herently dry-run because it has no deployment part. Chef

and Puppet support multiple environments such as test-

ing, staging and production.

Monitoring the infrastructure BCFG2, Bladelogic,

HP Server Automation, CA NSM, Tivoli, LCFG, Pup-

pet and MS SCCM have various degrees of support for

reporting about the deployment and collecting metrics

from the managed devices. The commercial tools have

more extensive support for this. Chef, LCFG, Puppet

and Netomata can automatically generate the configura-

tion for monitoring systems such as Nagios.

3.3.2 Versioning support

BCFG2, Bladelogic, Cfengine, Chef, Tivoli, LCFG, Ne-

tomata and Puppet use a textual input to create their con-

figuration specification. This textual input can be man-

aged in an external repository such as subversion or git.

CA NSM and MS SCCM have internal support for policy

versions. The central Chef server also maintains cook-

book version information. For HP Server Automation it

is unclear what is supported.

3.3.3 Specification documentation

BCFG2, Bladelogic, Chef, HP Server Automation,

Tivoli, LCFG, Netomata and Puppet specifications can

include free form comments. Cfengine can include struc-

tured comments that are used to generate documentation.

Because Chef uses a Ruby DSL, Rdoc can also be used

to generated documentation from structured comments.

Puppet can generate reference documentation for built-

in types from the comments included in the source code.

No documentation support is available in CA NSM and

MS SCCM.

3.3.4 Integration with environment

BCFG2, Cfengine, Chef, Tivoli, LCFG, MS SCCM and

Puppet can discover runtime characteristics of managed

devices which can be used when the profiles of each de-

vice are generated. Bladelogic can interact with external

data sources like Active Directory.

3.3.5 Conflict management

BCFG and Puppet can detect modality conflict such as

a file managed twice in a specification. Cfengine3 also

detects modality conflicts such as an instable configura-

tion that does not converge. Bladelogic and CA NSM

have no conflict management support. Puppet also sup-

ports modality conflicts by allowing certain parameters

of resources to be unique within a device, for example

the filename of file resources.

3.3.6 Workflow enforcement

None of the evaluated tools have integrated support for

enforcing workflows on specification updates. Bladel-

ogic can tie in a change management system that defines

workflows.

3.3.7 Access control

The tool that support external version repositories can

reuse the path based access control of that repository.

BMC, CA NSM, HP Server Automation, Tivoli, MS

SCCM and the commercial version of Chef allow fine

grained access control on “resources” in the specifica-

tion.

3.4 Support

3.4.1 Available documentation

Bladelogic, CA NSM and HP Server Automation pro-

vide no public documentation. IBM Tivoli provides

extensive documentation in their evaluation download.

BCFG2, Cfengine, Chef, LCFG, MS SCCM and Puppet

all provide extensive reference documentation, tutorials

and examples on their websites. Netomata provides lim-

ited examples and documentation on their website and

Wiki.

3.4.2 Commercial support

Not very surprising the commercial tools all provide

commercial support. But most open-source tools also

have a company behind them that develops the tool and

provides commercial support. LCFG and BCFG2 have

both been developed in academic institutes and have no

commercial support.

11
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3.4.3 Community

Cfengine, Chef, Tivoli, MS SCCM and Puppet have large

and active communities. BCFG2 has a small but active

community. CA NSM has a community but it is very

scattered. BMC, Netomata and LCFG have small and

not very active communities. For HP Server Automation

we were unable to determine if a community exists.

3.4.4 Maturity

Some of the evaluated tools such as Tivoli and CA NSM

are based on tools that exist for more than ten years,

while other tools such as Chef and Netomata are as

young as two years. However no relation between the

feature set of a tool and their maturity seems to exist.

4 Putting the framework to use

4.1 How do I choose a tool for my environ-

ment?

Our framework and tool evaluations can help you to

quickly trim down the list of tools to the tools that match

your requirements. You list your required features, see

which tools support these features and you have a lim-

ited list of tools to continue evaluating. In fact, our

website at http://distrinet.cs.kuleuven.

be/software/sysconfigtools provides a handy

wizard to help you with this process.

The limitation of our framework is that it can not cap-

ture all factors that influence the process for choosing

a system configuration tool: 1. We limit our evaluation

to system configuration and do not include adjacent pro-

cesses like provisioning, 2. Politics often play an impor-

tant role when deciding on a tool, 3. your ideal solution

might be too pricey, or 4. other, more subjective, factors

come into play.

For all these reasons, we see our framework more as an

aid that can quickly give you a high-level overview of the

features of the most popular tools. Based on our frame-

work, you can decide which tools deserve more time in-

vestment in your selection process.

4.2 How do I evaluate another tool using

this framework?

We welcome clarifications to our existing evaluations

and are happy to add other tool evaluations on the web-

site. Internally, the website defines our framework as

a taxonomy and every property is a term in this taxon-

omy. We associated a description with every term which

should allow you to asses whether the property is sup-

ported by the tool you want to evaluate. Feel free to con-

tact us for an account on the website so that you can add

your evaluated tool.

5 Areas for improvement

Based on our evaluations in Section 3, we identify six

areas for improvement in the current generation of tools.

We believe that tools who address these areas will have

a significant competitive advantage over other tools. The

areas are:

1. Create better abstractions: Very few tools support

creating higher-level abstractions like those men-

tioned in Figure 2 on page 4. If they do, those

capabilities are hidden deep in the tool’s documen-

tation and not used often. We believe this is a

missed opportunity. Creating higher-level abstrac-

tions would enable reuse of configuration specifica-

tions and lower the TCO of a computer infrastruc-

ture. To realize this, the language needs to (a) sup-

port primitives that promote reuse of configuration

specifications like parametrization and modulariza-

tion primitives, (b) support constraints modeling

and enforcement, (c) deal with conflicts in the con-

figuration specification and (d) model and enforce

relations.

2. Adapt to the target audience’s processes: A tool

that adapts to the processes for system administra-

tion that exist in an organization is much more intu-

itive to work with than a tool that imposes its own

processes on a system administrators. A few ex-

amples of how tools could support the existing pro-

cesses better:

• structured documentation and knowledge

management: Cfengine3 is the only tool in our

study that supports structured documentation

in the input specification and has a knowledge

management system that uses this structured

documentation. Yet, almost all system admin-

istrators document their configurations. Some

do it in comments in the configuration specifi-

cation, some do it in separate files or in a fully-

fledged content management system. In all

cases, documentation needs to be kept in sync

with the specification. If you add structured

documentation to the configuration specifica-

tion, the tool can generate the documentation

automatically.

• integrate with version control systems: A lot

of system administrator teams use a version

control system to manage their input specifica-

tion. It allows them to quickly rollback a con-

figuration and to see who made what changes.

12
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Yet, very few tools provide real integration

with those version control systems. A tool

could quickly set up a virtualized test infras-

tructure for a branch that I created in my con-

figuration. I would be able to test my config-

uration changes before I merge them with the

main branch in the version control system that

gets deployed on my real infrastructure.

• semantic access controls: In a team of system

administrators, every admin has his own ex-

pertise: some are expert in managing network-

ing equipment, other know everything from

the desktop environment the company sup-

ports, others from the web application plat-

form, . . . . As a consequence, responsibilities

are assigned based on expertise and this ex-

pertise does not always aligns with machine

boundaries. The ability to specify and en-

force these domains of responsibility will pre-

vent that for example a system administrator

responsible for the web application platform

modifies the mail infrastructure setup.

• flexible workflow support: Web content man-

agement systems like Drupal have support for

customized workflows: If a junior editor sub-

mits an article, it needs to be reviewed by two

senior editors, all articles need to be reviewed

by one of the senior editors, . . . . The same

type of workflows exist in computer infras-

tructures: junior system administrators need

the approval from a senior to roll out a change,

all changes in the DMZ needs to be approved

by one of the managers and a senior system

administrator, . . . . Enforcing such workflows

would lower the number of accidental errors

that are introduced in the configuration and

aligns the tool’s operation with the existing

processes in the organization.

3. Support true integrated management: We would

like to see a tool that provides a uniform interface

to manage all types of devices that are present in a

computer infrastructure: desktops, laptops, servers,

smartphones and network equipment. Why would

this be useful? When you have one tool, with one

language that can specify the configuration of all de-

vices, every system administrator speaks the same

language and thinks in the same primitives: whether

they are responsible for the network equipment, the

data center or your desktops. The tool can then also

support the specification and enforcement of rela-

tionships that cross platform boundaries: the de-

pendencies between your web server farm and your

Cisco load balancer, dependencies between desk-

tops and servers, dependencies between your fire-

wall and your DMZ servers, . . . . The current gen-

eration of tools either focuses on a single platform

(Windows or Unix), focuses on one type of devices

(servers) or needs different products with different

interfaces for your devices (one product for network

equipment, one for servers and one for desktops).

4. Become more declarative: The commercial tools

in our study all start from scripting functional-

ity: the system administrator can create or reuse

a set of scripts and the tool provides a script-

management layer. Research and experience with

many open-source tools has shown that declarative

specifications are far more robust than the tradi-

tional paradigm of imperative scripting. Imperative

scripts have to deal with all possible states to be-

come robust which results in a lot of if-else state-

ments and spaghetti-code.

5. Take the CIO’s agenda into account: Most open-

source tools in our study have their origin in

academia. As a result, they lag behind on the fea-

tures that are on the CIO’s checklists when decid-

ing on a system configuration tool: (a) easy to use

(graphical) user interface, reporting, (b) auditing,

compliance, reporting capabilities in nice graphs

and (c) access control support.

6. Know that a system is software + configuration +

data: No tool has support for the data that is on the

managed machines. Take a web server as example:

the web server is software, that needs configuration

files and serves data. System configuration tools can

manage the software and configuration but have no

support for state transfer: if my tool moves the web

server to another node, I need to move the data man-

ually.

6 Conclusion

We believe that this paper and our website can help

system administrators make a more informed, and as

a consequence better, choice for a system configura-

tion tool. Our framework is not a mechanical tool:

you can not check off the things you need and it will

give you the perfect tool for you. We see it more as

one of the decision factors that will save you a lot of

time in the process of researching different tools: it

quickly gives you a high-level overview of the features

of each tool and enables you to trim down the list of

possibilities for your use case. We will keep the web-

site at http://distrinet.cs.kuleuven.be/

software/sysconfigtools up to date when new

13
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versions of tools are released and are open for adding

new tool evaluations to our website.
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Abstract
Mcp and msum are drop-in replacements for the stan-
dard cp and md5sum programs that utilize multiple types
of parallelism and other optimizations to achieve maxi-
mum copy and checksum performance on clustered file
systems. Multi-threading is used to ensure that nodes are
kept as busy as possible. Read/write parallelism allows
individual operations of a single copy to be overlapped
using asynchronous I/O. Multi-node cooperation allows
different nodes to take part in the same copy/checksum.
Split file processing allows multiple threads to operate
concurrently on the same file. Finally, hash trees allow
inherently serial checksums to be performed in parallel.
This paper presents the design of mcp and msum and de-
tailed performance numbers for each implemented opti-
mization. It will be shown how mcp improves cp perfor-
mance over 27x, msum improves md5sum performance
almost 19x, and the combination of mcp and msum im-
proves verified copies via cp and md5sum by almost
22x.

1 Introduction

Copies between local file systems are a daily activity.
Files are constantly being moved to locations accessible
by systems with different functions and/or storage lim-
its, being backed up and restored, or being moved due
to upgraded and/or replaced hardware. Hence, maximiz-
ing the performance of copies as well as checksums that
ensure the integrity of copies is desirable to minimize
the turnaround time of user and administrator activities.
Modern parallel file systems provide very high perfor-
mance for such operations using a variety of techniques
such as striping files across multiple disks to increase ag-
gregate I/O bandwidth and spreading disks across multi-
ple servers to increase aggregate interconnect bandwidth.

∗This work is supported by the NASA Advanced Supercomputing
Division under Task Number ARC-013 (Contract NNA07CA29C) with
Computer Sciences Corporation

To achieve peak performance from such systems, it is
typically necessary to utilize multiple concurrent read-
ers/writers from multiple systems to overcome various
single-system limitations such as number of processors
and network bandwidth. The standard cp and md5sum
tools of GNU coreutils [11] found on every modern
Unix/Linux system, however, utilize a single execution
thread on a single CPU core of a single system, hence
cannot take full advantage of the increased performance
of clustered file system.

This paper describes mcp and msum, which are drop-
in replacements for cp and md5sum that utilize multi-
ple types of parallelism to achieve maximum copy and
checksum performance on clustered file systems. Multi-
threading is used to ensure that nodes are kept as busy
as possible. Read/write parallelism allows individual op-
erations of a single copy to be overlapped using asyn-
chronous I/O. Multi-node cooperation allows different
nodes to take part in the same copy/checksum. Split
file processing allows multiple threads to operate con-
currently on the same file. Finally, hash trees allow in-
herently serial checksums to be performed in parallel.

This paper is organized as follows. Section 2 presents
related work. Section 3 describes the test environment
used to obtain performance numbers. Section 4 dis-
cusses the various optimization strategies employed for
file copies. Section 5 details the additional optimizations
employed for file checksums. Section 6 describes how
adding checksum capabilities to file copies decreases
the cost of integrity-verified copies. Finally, Section 7
presents conclusions and related work.

2 Related Work

There are a variety of efforts related to the problem ad-
dressed by this paper. SGI ships a multi-threaded copy
program called cxfscp [25] with their CXFS file system
[27] that supports direct I/O and achieves significant per-
formance gains over cp on shared-memory systems, but
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offers minimal benefit on cluster architectures. Stream-
ing parallel distributed cp (spdcp) [17] has similar goals
as mcp and achieves very high performance on clustered
file systems using MPI to parallelize transfers of files
across many nodes. Like mcp, spdcp can utilize multiple
nodes to transfer a single file. The spdcp designers made
the conscious decision to develop from scratch, however,
instead of using GNU coreutils as a base, whereas mcp
started with coreutils to support all available cp options
and to take advantage of known reliability characteris-
tics. Mcp can also use a TCP model as well as MPI to
support a larger class of systems.

Ong et al. [20] describe the parallelization of cp and
other utilities using MPI. The cp command described,
however, was designed to transfer the same file to many
nodes as opposed to mcp, which was designed to allow
many nodes to take part in the transfer of the same file.
Desai et al. [9] use a similar strategy to create a paral-
lel rsync utility that can synchronize files across many
nodes at once. Peer-to-peer file sharing protocols such as
BitTorrent [6] utilize multiple data streams for a single
file to maximize network utilization from low bandwidth
sources and support parallel hashing where the integrity
of each piece may be verified independently.

High performance remote file transfer protocols such
as bbFTP [3] and GridFTP [1] use multiple data streams
for portions of the same file to overcome single stream
TCP performance limitations. GridFTP additionally sup-
ports striped many-to-many transfers to aggregate net-
work and I/O bandwidth. HPN-SSH [22] is a high perfor-
mance version of SSH that achieves significant speedups
using dynamically adjusted TCP receive windows. In ad-
dition, HPN-SSH incorporates a multi-threaded version
of the AES counter mode cipher that increases perfor-
mance further by parallelizing MAC and cipher opera-
tions on both the sender and receiver.

There are several related multi-threaded programs for
the Windows operating systems. RichCopy [14] supports
multi-threading in addition to the ability to turn off the
system buffer, which is similar to mcp’s direct I/O op-
tion. MTCopy [15] operates in a similar manner as mcp
with a single file traversal thread and multiple worker
threads. MTCopy also has the ability like mcp to split
the processing of large files amongst multiple threads.
HP-UX MD5 Secure Checksum [13] is an md5sum util-
ity that uses multi-threading to compute the checksums
of multiple files at once. Unlike msum, however, it can-
not parallelize the checksum of a single file.

A variety of work uses custom hardware to increase
checksum performance. Deepakumara et al. [8] describe
a high speed FPGA implementation of MD5 using loop
unrolling. Campobello et al. [4] describe a technique to
generate high performance parallelized CRC checksums
in compact circuits. CRCs are fast but are unsuitable for

integrity checks of large files.
In general, checksums are not easily parallelizable

since individual operations are not commutative. A
general technique, used by mcp and msum, is based
on Merkle trees [18], which allow different subtrees of
hashes to be computed independently before being con-
solidated at the root. A similar approach is described
by Sarkar and Schellenberg [23] to parallelize any hash
function using a predetermined number of processors,
which was used to create a parallel version of SHA-256
call PARSHA-256 [21]. Fixing the number of proces-
sors limits achievable concurrency, however, so mcp and
msum instead use a predetermined leaf size in the hash
tree, which allows an arbitrary number of processors to
operate on the same file.

The underlying file system and hardware determine
the maximum speed achievable by file copies and check-
sums. High performance file systems such as Lustre
[26], CXFS [27], GPFS [24], and PVFS [5] utilize par-
allel striping across large numbers of disks to achieve
higher aggregate performance than can be achieved from
a single-disk file system.

3 Test Environment

All performance testing was carried out using dedicated
jobs on the Pleiades supercluster at NASA Ames Re-
search Center, which was recently ranked as the sixth
fastest computer system in the world [29] with peak per-
formance of 1.009 PFLOPs/s. Pleiades currently con-
sists of 84,992 cores spread over 9472 nodes, which are
connected by DDR and QDR Infiniband. There are three
types of nodes with different processor and memory con-
figurations. The nodes used for testing consist of a pair
of 3.0 GHz quad-core Xeon Harpertown processors with
6 MB cache per pair of cores and 1 GB DDR2 memory
per core for a total of 8 GB per node.

All file copies were performed between Lustre file sys-
tems, each with 1 Metadata Server (MDS) and 8 Object
Storage Servers (OSS) serving 60 Object Storage Targets
(OST). Based on the IOR benchmark [12], the source
file system has peak read performance of 6.6 GB/s while
the destination file system has peak write performance of
10.0 GB/s. Since copies can only progress at the mini-
mum of the read and write speeds, the peak copy per-
formance of this configuration is 6.6 GB/s. Checksums
were performed on the same source file system, hence
peak achievable checksum performance is also 6.6 GB/s.
Both file systems had zero to minimal load during test-
ing.

Two test cases are used throughout the paper. One case
consists of 64 1 GB files while the other consists of a sin-
gle 128 GB file. Both sets of files were generated from
an actual 650 GB user data set. Before any tests could
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be done, it was necessary to choose a Lustre stripe count
for the files that determines how many OSTs they are
striped across. Table 1 shows the performance of cp for
the two cases at the default (4 OSTs) and the maximum
(60 OSTs) stripe counts. As can be seen, the 64 file case
performs best at the default stripe count while the single
file case performs best at the maximum. In the 64 file
case, the maximum stripe count yields too much paral-
lelism as every OST has to be consulted for every file.
In the single file case, the default stripe count yields too
little parallelism as large chunks of the file will reside on
the same OST, which limits how much I/O bandwidth is
available for the copy.

All operations in the remainder of the paper will use
the default stripe count for the 64 file case and the max-
imum stripe count for the single file case. The corre-
sponding cp performance of 174 MB/s for the 64 file
case and 240 MB/s for the single file case represent the
baseline that the various optimizations throughout the re-
mainder should be compared against.

tool stripe count 64x1 GB 1x128 GB
cp default 174 102
cp maximum 132 240

Table 1: Copy performance (MB/s) vs. stripe count

4 File Copy Optimization

4.1 Multi-Threaded Parallelism
In general, copying regular files is an embarrassingly par-
allel task since files are completely independent from one
another. The processing of the hierarchy of directories
containing the files, however, must be handled with care.
In particular, a file’s parent directory must exist and must
be writable when the copy begins and must have its orig-
inal permissions and ACLs when the copy completes.

The multi-threaded modifications to the cp command
of GNU coreutils [11] utilize three thread types as shown
in Figure 1 implemented via OpenMP [7]. A single
traversal thread operates like the original cp program,
but when a regular file is encountered, a copy task is
pushed onto a shared task queue instead of performing
the copy. Mutual exclusivity of all queues discussed is
provided by semaphores based on OpenMP locks. Be-
fore setting properties of the file, such as permissions,
the traversal thread waits until an open notification is re-
ceived on a designated open queue, after which it will
continue traversing the source tree.

One or more worker threads wait for tasks on the
task queue. After it receives a task, each worker opens
the source and target files, pushes a notification onto

the open queue, then reads/writes the source/target un-
til done. When stats are enabled, the worker pushes the
task (with embedded stats) onto a designated stat queue
and then waits for another task. The stat queue is pro-
cessed by the stat thread, which prints the results of each
copy task.

Table 2 shows the performance of multi-threading for
varying numbers of threads. As can be seen, multi-
threading alone has some benefit in the many file case
up to 4 threads, after which the kernel buffer cache most
likely becomes a bottleneck. For the single file case,
multi-threading alone has no benefit since all but one
thread sit idle while the file is being transferred. This
case will be addressed in the next section.

tool threads 64x1 GB 1x128 GB
mcp 1 177 248
mcp 2 271 248
mcp 4 326 248
mcp 8 277 248

Table 2: Multi-threaded copy performance (MB/s)

4.2 Single File Parallelization

As seen in the previous section, a number of files less
than the number of threads results in imbalanced utiliza-
tion and correspondingly lower performance. To evenly
distribute workload across threads, mcp supports split
processing of a single file so that multiple threads can
operate on different portions of the same file. Figure 2
shows the processing by the traversal thread and worker
threads when split processing is added. The main dif-
ference is that the traversal thread may add a number of
tasks up to the size of the file divided by the split size and
worker threads will seek to the correct location first and
only process up to split size bytes.

Table 3 shows the performance of multi-threaded
copies of a single large file when different split sizes are
used. As can be seen, performance is increased from
the unsplit case, but only minimal speedup is seen as
the number of threads increases. In Section 4.5, how-
ever, significant benefits will be shown when splitting
over multiple nodes. In addition, the table shows very lit-
tle difference between the performance at different split
sizes indicating that overhead from splitting is minimal.
Since there is minimal difference, a split size of 1 GB
will be used throughout the remainder of the results in
the paper.
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Traversal Thread Stat Thread Worker Thread

file = traverse(source)

push(task_q, new_task(file))

regular(file) normal_cp_behavior

pop(open_q)

set_properties(file)

task = pop(send_q)

print(stats(task))

task = pop(task_q)

open(files(task))

push(open_q, done)

read(src_file(task), buffer)

write(dst_file(task), buffer)

push(send_q, task)

Figure 1: Multi-threaded copy processing

tool threads split size 1x128 GB
mcp 2 1 GB 286
mcp 2 16 GB 296
mcp 4 1 GB 324
mcp 4 16 GB 322
mcp 8 1 GB 336
mcp 8 16 GB 336

Table 3: Split file copy performance (MB/s)

4.3 Buffer Management

As witnessed in the Section 4.1, increasing the number of
threads yields minimal gains at a certain point. One is-
sue is that file copies generally exhibit poor buffer cache
utilization since file data is read once, but then never ac-
cessed again. This increases CPU workload by the kernel
and decreases performance of other I/O as it thrashes the
buffer cache. To address this problem, mcp supports two
buffer cache management approaches.

The first approach is to use file advisory informa-
tion via the posix_fadvise() function, which allows pro-
grams to inform the kernel about how it will access data
read/written from/to a file. Since mcp only uses data
once, it advises the kernel to release the data as soon as it
is read/written. The second approach is to skip the buffer
cache entirely using direct I/O. In this case, all reads and
writes go direct to disk without ever touching the buffer
cache.

Table 4 shows the performance of multi-threaded
copies when fadvise and direct I/O are utilized with dif-
ferent buffer sizes. As can be seen, performance in-
creases significantly for both cases. Direct I/O achieves

about double the performance of fadvise for a single
node, but as will be seen in Section 4.5, the performance
difference decreases as the number of nodes increases.
From this point forward, 128 MB buffers will be used
to maximize performance, although this size of buffer is
impractical on multi-user systems due to memory limi-
tations. More reasonable 4 MB buffers, however, have
been found in testing to achieve a significant fraction of
the performance of larger buffers.

4.4 Read/Write Parallelism
In the original cp implementation, a file is copied through
a sequence of blocking read and write operations across
each section of the file. Through the use of double buffer-
ing, it is possible to exploit additional parallelism be-
tween reads of one section and writes of another. Fig-
ure 3 shows how each worker thread operates in double
buffering mode. The main difference is with the write
of each file section. Instead of using a standard blocking
write, an asynchronous write is triggered via aio_write(),
which returns immediately. The read of the next section
of the file cannot use the same buffer as it is still being
used by the previous asynchronous write, so a second
buffer is used. During the read, a write is also being per-
formed, thereby theoretically reducing the original time
to read each section from time(read) + time(write) to
max(time(read), time(write)). After the read completes,
the worker thread blocks until the write is finished (if not
already done by that point) and the next cycle begins.

Table 5 shows the copy performance of double buffer-
ing for each buffer management scheme across a vary-
ing number of threads. As can be seen, double buffering
increases the performance of the 64 file case across all
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Traversal Thread Worker Thread

file = traverse(source)

push(task_q, new_task(file, offset))

regular(file) normal_cp_behavior

pop(open_q)

offset += split_size

set_properties(file)

task = pop(task_q)

open(files(task))

push(open_q, done)

seek(files(task), offset(task))

read(src_file(task), buffer)

write(dst_file(task), buffer)

bytes <= split_size

push(send_q, task)

Figure 2: Split file copy processing

numbers of threads. The single file case, however, yields
minimal benefit with the exception of the 1 thread case.
It is clear a bottleneck exists in the single file case from a
single node, but further investigation is needed to deter-
mine the exact cause. Double buffering is enabled in all
remaining copy results.

4.5 Multi-Node Parallelism

While the results in Table 5 show significant speedup
compared to the original cp implementation, it is still a
fraction of the peak performance of the file system, hence
it is unlikely that a single node can ever achieve the max-
imum. For this reason, mcp supports multi-node paral-
lelism using both TCP and MPI models. Only the TCP
model will be discussed as it is the more portable case
and many of the processing details are similar.

In the multi-node TCP model, one node is designated
as the manager node and parcels out copy tasks to worker
nodes. The manager node is the only node that runs a
traversal thread and stat thread. Both types of nodes have
some number of worker threads as in the multi-threaded
case. In addition, each node runs a TCP thread that is re-
sponsible for handling TCP-related activities, whose be-
havior is shown in Figure 4. The manager TCP thread
waits for connections from worker TCP threads. A con-
nection is initiated by a worker TCP thread whenever a
worker thread on the same node is idle. If the worker
previously completed a task, its stats are forwarded to
the manager stat thread via the manager TCP thread. In

all cases, the manager thread pops a task from the task
queue and sends it back to the worker TCP thread, where
it is pushed onto the local task queue for worker threads.

TCP communication introduces security concerns, es-
pecially for copies invoked by the root user. Integrity
concerns include lost or blocked tasks, where files may
not be updated that are supposed to be, replayed tasks
where files may have changed between legitimate copies,
and/or modified tasks with the source and destination
changed arbitrarily. The main confidentiality concern is
that contents of normally unreadable directories may be
revealed if tasks are intercepted on the network or falsely
requested from the manager. Finally, availability can be
disrupted by falsely requesting tasks and/or by normal
network denials of service.

To protect against TCP-based attacks, all communica-
tion is secured by Transport Layer Security (TLS) with
Secure Remote Password (SRP) authentication [28].
TLS [10] provides integrity and privacy using encryp-
tion so tasks cannot be intercepted, replayed, or modi-
fied over the network. SRP [30] provides strong mutual
authentication so worker nodes will only perform tasks
from legitimate manager nodes and manager nodes will
only reveal task details to legitimate worker nodes.

Table 6 shows the copy performance for different
numbers of total threads spread across a varying num-
ber of nodes. As can be seen, multi-node parallelism
achieves significant speedups over multi-threading alone,
especially for the single file case. For the same number
of total threads, performance increases as the number of
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tool threads buffer size 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(MB) (fadvise) (direct i/o) (fadvise) (direct i/o)

mcp 1 32 216 383 227 408
1 64 219 401 226 411
1 128 226 388 204 415

mcp 2 32 360 689 319 670
2 64 372 723 317 696
2 128 402 683 313 723

mcp 4 32 541 1065 330 679
4 64 575 1039 327 699
4 128 610 1055 331 721
8 32 653 1185 332 685
8 64 681 1223 328 718

mcp 8 128 692 1336 328 743

Table 4: Buffer cache managed copy performance (MB/s)

tool threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(fadvise) (direct i/o) (fadvise) (direct i/o)

mcp 1 303 645 329 645
mcp 2 503 1111 329 709
mcp 4 653 1557 327 725
mcp 8 663 1763 325 731

Table 5: Double buffered copy performance (MB/s)

nodes increases as there is greater aggregate bandwidth
and less resource contention. Direct I/O achieved the
highest performance using 16 nodes and a single thread,
while fadvise was best in the cases with the largest num-
ber of nodes and threads. While fadvise performed sig-
nificantly worse than direct I/O in earlier sections, it ac-
tually surpasses direct I/O in some of the larger 64 file
cases and achieved the fastest overall performance at 4.7
GB/s.

5 File Checksum Optimization

5.1 Multi-Threaded Parallelism
The greater the amount of data copied, the greater the
possibility for data corruption [2]. The traditional ap-
proach to verifying integrity is to checksum the file at
both the source and target and ensure that the values
match. Checksums are inherently serial, however, so
many of the techniques of the previous sections cannot be
applied to any but the most trivial checksum algorithms.

Instead of parallelizing the algorithms themselves, se-
rial algorithms are utilized in parallel through the use of
Merkle (hash) trees [18] as mentioned previously. This
functionality is implemented in a modification to the
md5sum command of GNU coreutils called msum. Note
that the use of hash trees makes multi-threaded msum

unsuitable for verifying standard hashes. Hence, the
main purpose of msum is to verify the integrity of copies
within the same organization or across organizations that
both use msum. This limitation is necessary for perfor-
mance, however, as most standard hashes cannot be par-
allelized.

Msum uses a processing model that is similar to the
mcp model shown in Figure 1. The msum traversal
thread, however, is based on md5sum functionality with
correspondingly less complexity. Figure 5 shows the pro-
cessing by the msum stat thread (which has become the
stat/hash thread) and worker threads. After copying their
portion of the file, worker threads also create a hash tree
of that portion, which is embedded in the task sent back
to the stat/hash thread through the TCP threads. The
stat/hash thread computes the root of the hash tree when
all portions have been received.

Table 7 shows the performance of msum across vary-
ing numbers of threads and buffer management schemes.
Note that msum utilizes libgcrypt [16] to enable support
for many different hash types besides MD5, hence per-
formance is not strictly comparable between the md5sum
implementation and msum. As can be seen, significant
performance gains are achieved by multi-threading even
without buffer management. Direct I/O yields sizable
gains while the gains by fadvise are more minimal.
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Manager Node TCP Thread Worker Node TCP Thread

worker = accept

read(worker, data)

push(stat_q, data)

task = pop(task_q)

empty(data)

write(worker, task)

n_threads * push(send_q, empty)

data = pop(send_q)

main = connect(main_host)

write(main, data)

read(main, task)

push(task_q, task)

Figure 4: Multi-node copy processing

Worker Thread

task = pop(task_q)

open(files(task))

push(open_q, done)

seek(files(task), offset(task))

read(src_file(task), buffer[i])

aio_suspend(write)

aio_write(dst_file(task), buffer[i])

i = !i

bytes <= split_size

push(send_q, task)

Figure 3: Double buffered copy processing

5.2 Read/Hash Parallelism

Like the original cp implementation, the original
md5sum implementation uses blocking I/O during reads
of each section of the file. Double buffering can again
be used to exploit additional parallelism between reads
of one section and the hash computation of another. Fig-
ure 6 shows how each worker thread operates in double
buffered mode within msum. In this mode, an initial read

Stat/Hash Thread Worker Thread

task = pop(send_q)

print(stats(task))

hash_final(task)

last_split(task)

print(hash(task))

task = pop(task_q)

open(files(task))

push(open_q, done)

seek(files(task), offset(task))

read(src_file(task), buffer)

hash_tree(task, buffer)

bytes <= split_size

push(send_q, task)

Figure 5: Multi-threaded checksum processing

is used to seed one buffer. When that read completes,
an asynchronous read is triggered via aio_read() into the
second buffer. During this read, the hash of the first
buffer is computed, after which the buffers are swapped
and execution proceeds to the next section of the file after
blocking until the previous read completes.

Double buffering theoretically reduces the original
time to process each section of the file from time(read)
+ time(hash) to max(time(read), time(hash)) with best
performance achieved when the time to read each sec-
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tool threads nodes threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(total) (per node) (fadvise) (direct i/o) (fadvise) (direct i/o)

mcp 2 2 1 578 1161 273 1080
mcp 4 2 2 969 1673 379 1248
mcp 4 4 1 1119 2074 689 2001
mcp 8 2 4 1256 1857 426 1239
mcp 8 4 2 1818 2996 1068 2316
mcp 8 8 1 2058 3213 1289 3196
mcp 16 2 8 1276 2807 451 1226
mcp 16 4 4 2398 3446 1187 2208
mcp 16 8 2 3187 3599 1787 3723
mcp 16 16 1 3474 4098 2786 4501
mcp 32 4 8 2411 2957 1189 2142
mcp 32 8 4 3430 3459 2257 3706
mcp 32 16 2 4510 4011 3110 3930
mcp 64 8 8 3216 3346 2253 3626
mcp 64 16 4 4735 4011 3620 3914
mcp 128 16 8 – – 3824 4400

Table 6: Multi-node copy performance (MB/s)

tool threads 64x1 GB 64x1 GB 64x1 GB 1x128 GB 1x128 GB 1x128 GB
(fadvise) (direct i/o) (fadvise) (direct i/o)

md5sum 1 309 – – 286 – –
msum 1 278 284 330 263 265 349
msum 2 541 536 625 378 385 483
msum 4 906 903 1092 570 626 698
msum 8 886 908 1355 508 692 711

Table 7: Multi-threaded checksum performance (MB/s)

tion is the same as the time to hash each section. Ta-
ble 8 shows the performance achieved by double buffer-
ing within msum for each buffer management scheme
across a varying number of threads. As can be seen, dou-
ble buffering increases the performance of all the 64 file
cases except the 8 thread direct I/O case and all the sin-
gle file cases except the 8 thread fadvise case. Double
buffering is enabled in all remaining checksum results.

5.3 Multi-Node Parallelism

Msum supports the same TCP and MPI models as mcp
for multi-node parallelism. TCP threads behave identi-
cally to those shown for mcp in Figure 4. Table 9 shows
the checksum performance for different numbers of to-
tal threads spread across a varying number of nodes. As
can be seen, multi-node parallelism achieves significant
speedups over multi-threading alone. As was the case
with mcp, performance generally increases for the same
number of total threads as the number of nodes increases
as there is greater aggregate bandwidth and less resource

contention.
Both fadvise and direct I/O achieved the highest per-

formance with 16 nodes and 2 threads in the 64 file case
and with 16 nodes and 8 threads in the single file case.
Once again, fadvise began to yield higher performance
than direct I/O in some of the larger cases and once again
had the highest overall performance at 5.8 GB/s. Note
that this is 88% of peak of the file system and includes
hashes as well as reads.

6 Verified File Copy Optimization

6.1 Buffer Reuse
In a typical integrity-verified copy, a file is checksummed
at the source, copied, and then checksummed again at the
destination to gain assurance that the bits at the source
were copied accurately to the destination. This pro-
cess normally requires two reads at the source since the
checksum and copy programs are traditionally separate
so each must access the data independently. Adding
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tool threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(fadvise) (direct i/o) (fadvise) (direct i/o)

msum 1 428 489 461 520
msum 2 811 973 462 522
msum 4 926 1647 662 766
msum 8 936 1315 613 776

Table 8: Double buffered checksum performance (MB/s)

tool threads nodes threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(total) (per node) (fadvise) (direct i/o) (fadvise) (direct i/o)

msum 2 2 1 821 928 471 603
msum 4 2 2 1522 1834 832 939
msum 4 4 1 1487 1744 820 1027
msum 8 2 4 1819 2845 1298 1330
msum 8 4 2 2837 3122 1454 1798
msum 8 8 1 2844 3130 1808 2225
msum 16 2 8 1649 2979 1165 1076
msum 16 4 4 3218 3689 1891 1944
msum 16 8 2 4820 5292 3148 3654
msum 16 16 1 4770 4957 3248 3397
msum 32 4 8 3248 3719 1759 1936
msum 32 8 4 4664 4183 4640 4256
msum 32 16 2 5812 5613 4533 4856
msum 64 8 8 4114 3680 4256 3579
msum 64 16 4 5543 5131 4595 5114
msum 128 16 8 – – 5192 5227

Table 9: Multi-node checksum performance (MB/s)

checksum functionality into the copy portion eliminates
one of the reads to increase performance. Mcp incorpo-
rates checksums for this reason. This processing is sim-
ilar to Figure 5 except the buffer is written between the
read and the hash computation.

Table 10 shows the performance of copying with
checksums for varying numbers of threads and different
buffer management schemes. As was the case with the
standard copy results in Table 4, direct I/O outperforms
fadvise on a single node with the 64 file case achieving
better results than the single file case.

6.2 Read/Hash Parallelism

The double buffering improvements of Section 5.2 were
incorporated into mcp’s checksum functionality with
processing similar to Figure 6 with an additional write af-
ter the hash. Ideally, both the read of the next section and
the write of the current section could be performed while
the hash of the current section was being computed. This
approach was implemented, but did not behave as ex-
pected, possibly due to concurrency controls within the

file system. Further investigation is warranted as this
would provide an additional increase in performance. Ta-
ble 11 shows the performance increases achieved with
double buffering during copies with checksums. As can
be seen, performance increases in all but the 64 file fad-
vise case.

6.3 Multi-Node Parallelism

Table 12 shows the multi-node performance of copies in-
corporating checksum functionality. Peak performance
of just under 4.0 GB/s was achieved with 8 nodes and 4
threads in the 64 file direct I/O case.

Table 13 is a composite view of Tables 5, 6, 8, 9, 11,
and 12 that shows the performance of integrity-verified
copies using the traditional checksum + copy + check-
sum versus a copy with embedded checksum + check-
sum. As can be seen, performance is better in almost ev-
ery case with only a few scattered exceptions. Both fad-
vise and direct I/O achieve verified copies over 2 GB/s
with 16 nodes and 2 threads in the 64 file case.
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tool threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(fadvise) (direct i/o) (fadvise) (direct i/o)

mcp (w/ sum) 1 156 224 92 201
mcp (w/ sum) 2 294 428 152 376
mcp (w/ sum) 4 503 770 216 510
mcp (w/ sum) 8 629 1102 266 602

Table 10: Copy with checksum performance (MB/s)

tool threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(fadvise) (direct i/o) (fadvise) (direct i/o)

mcp (w/ sum) 1 190 290 104 222
mcp (w/ sum) 2 356 558 171 400
mcp (w/ sum) 4 561 966 235 560
mcp (w/ sum) 8 626 1498 275 671

Table 11: Double buffered copy with checksum performance (MB/s)

7 Conclusions and Future Work

Mcp and msum provide significant performance im-
provements over standard cp and md5sum using multi-
ple types of parallelism and other optimizations. Tables
14, 15, and 16 show the maximum speedups obtained at
each stage of optimization for copies, checksums, and
integrity-verified copies, respectively. The relative ef-
fectiveness of each optimization is difficult to discern
as they build upon each other and would have different
peak speedups if applied in a different order. The total
speedups from all improvements, however, is significant.
Mcp improves cp performance over 27x, msum improves
md5sum performance almost 19x, and the combination
of mcp and msum improves verified copies via cp and
md5sum by almost 22x. These improvements come in
the form of drop-in replacements for cp and md5sum so
are easily used and are available for download as open
source software [19].

There are a variety of directions for future work. Cur-
rently, only optimized versions of cp and md5sum have
been implemented from GNU coreutils. Optimized ver-
sions of the coreutils install and mv utilities should also
be implemented as they would immediately benefit from
the same techniques. In general, other common single-
threaded utilities should be investigated to see if similar
optimizations can be made.

Another area of study is to determine if mcp can be
made into a remote transfer utility. While it currently
can only be used for copies between local file systems,
mcp already contains network authentication process-
ing in the multi-node parallelization. In addition, most
of the other techniques would be directly applicable to
a high performance multi-node striping transfer utility.
The missing component is a network bridge between the

local read buffer and remote write buffer. The buffer
reuse optimizations to checksums can be used directly
to support integrity-verified remote transfers.

Although not discussed, mcp and msum both have
the ability to store intermediate hash tree values within
file system extended attributes. The purpose of this fea-
ture is to allow file corruption to be detected and pre-
cisely located over time in persistent files. The use of ex-
tended attributes has been found to be impractical, how-
ever, when the hash leaf size is small since only some
file systems such as XFS support large extended attribute
sizes and read/write performance of extended attributes
is suboptimal. Further investigation is required to deter-
mine if greater generality and higher performance can be
achieved using a mirrored hierarchy of regular files that
contain the intermediate hash tree values.
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i = !i

bytes <= split_size

push(send_q, task)

Figure 6: Double buffered checksum processing
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tool threads nodes threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(total) (per node) (fadvise) (direct i/o) (fadvise) (direct i/o)

md5sum + cp + md5sum 1 1 1 100 90
msum + mcp + msum 1 1 1 125 177 135 185
mcp (w/ sum) + msum 1 1 1 131 182 84 155
msum + mcp + msum 2 1 2 224 338 135 190
mcp (w/ sum) + msum 2 1 2 247 354 124 226
msum + mcp + msum 2 2 1 240 331 126 235
mcp (w/ sum) + msum 2 2 1 257 346 138 254
msum + mcp + msum 4 1 4 270 538 164 250
mcp (w/ sum) + msum 4 1 4 349 608 173 323
msum + mcp + msum 4 2 2 426 592 198 341
mcp (w/ sum) + msum 4 2 2 470 658 196 425
msum + mcp + msum 4 4 1 446 613 257 408
mcp (w/ sum) + msum 4 4 1 482 646 259 459
msum + mcp + msum 8 1 8 274 478 157 253
mcp (w/ sum) + msum 8 1 8 375 700 189 359
msum + mcp + msum 8 2 4 527 805 257 432
mcp (w/ sum) + msum 8 2 4 675 1085 304 603
msum + mcp + msum 8 4 2 796 1026 432 647
mcp (w/ sum) + msum 8 4 2 893 1147 430 785
msum + mcp + msum 8 8 1 840 1052 531 825
mcp (w/ sum) + msum 8 8 1 932 1165 515 911
msum + mcp + msum 16 2 8 500 973 254 373
mcp (w/ sum) + msum 16 2 8 689 1361 403 638
msum + mcp + msum 16 4 4 962 1201 526 674
mcp (w/ sum) + msum 16 4 4 1233 1564 574 962
msum + mcp + msum 16 8 2 1372 1524 836 1225
mcp (w/ sum) + msum 16 8 2 1585 1927 842 1386
msum + mcp + msum 16 16 1 1414 1544 1025 1233
mcp (w/ sum) + msum 16 16 1 1613 1812 938 1362
msum + mcp + msum 32 4 8 970 1141 505 666
mcp (w/ sum) + msum 32 4 8 1299 1600 598 1033
msum + mcp + msum 32 8 4 1388 1303 1144 1351
mcp (w/ sum) + msum 32 8 4 1870 2032 1130 1500
msum + mcp + msum 32 16 2 1767 1651 1311 1500
mcp (w/ sum) + msum 32 16 2 2075 2191 1374 1887
msum + mcp + msum 64 8 8 1254 1187 1094 1198
mcp (w/ sum) + msum 64 8 8 1407 1696 1122 1536
msum + mcp + msum 64 16 4 1748 1564 1405 1546
mcp (w/ sum) + msum 64 16 4 2058 2162 1556 1997
msum + mcp + msum 128 16 8 – – 1546 1639
mcp (w/ sum) + msum 128 16 8 – – 1678 1978

Table 13: Multi-node verified copy performance (MB/s)
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origin optimization peak speedup
cp multi-threading 1.9

multi-threading split files 1.4
split files posix_fadvise 2.5
spit files direct I/O 4.8

posix_fadvise double buffering 1.3
direct I/O double buffering 1.6

double buffering multiple nodes 7.1
cp all 27.2

Table 14: Summary of copy optimizations

origin optimization peak speedup
md5sum multi-threading 2.9

multi-threading split files 2.2
split files posix_fadvise 1.4
split files direct I/O 1.5

posix_fadvise double buffering 1.7
direct I/O double buffering 1.6

double buffering multiple nodes 6.2
md5sum all 18.8

Table 15: Summary of checksum optimizations

origin optimization peak speedup
md5sum + cp + md5sum multi-threaded + split files +

buffer management + buffer reuse 6.1
multi-threaded + split files + double buffering 1.2

buffer management + buffer reuse
double buffering multiple nodes 10.7

md5sum + cp + md5sum all 21.9

Table 16: Summary of verified copy optimizations
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Abstract

Many people now store large quantities of personal and
corporate data on laptops or home computers. These of-
ten have poor or intermittent connectivity, and are vulner-
able to theft or hardware failure. Conventional backup
solutions are not well suited to this environment, and
backup regimes are frequently inadequate. This paper
describes an algorithm which takes advantage of the data
which is common between users to increase the speed of
backups, and reduce the storage requirements. This al-
gorithm supports client-end per-user encryption which is
necessary for confidential personal data. It also supports
a unique feature which allows immediate detection of
common subtrees, avoiding the need to query the backup
system for every file. We describe a prototype implemen-
tation of this algorithm for Apple OS X, and present an
analysis of the potential effectiveness, using real data ob-
tained from a set of typical users. Finally, we discuss the
use of this prototype in conjunction with remote cloud
storage, and present an analysis of the typical cost sav-
ings.

1 Introduction

Data backup has been an important issue ever since com-
puters have been used to store valuable information.
There has been a considerable amount of research on
this topic, and a plethora of solutions are available which
largely satisfy traditional requirements. However, new
modes of working, such as the extensive use of personal
laptops, present new challenges. Existing techniques do
not meet these challenges well, and many individuals and
organisations have partial, ad-hoc backup schemes which
present real risks. For example:

• Backups are often made to a local disk and copies
are not stored offsite.

• Backups are not encrypted and vulnerable to theft.

• Personal (rather than corporate) information is ac-
cidentally stored in plaintext on a corporate service
where it can be read by other employees.

• Backups often just include “user files” in the as-
sumption that “system files” can be easily recovered
from elsewhere1.

• The inconvenience of making backups leads to in-
frequent and irregular scheduling.

Even recent attempts to make backups largely transpar-
ent, such as Apple’s Time Machine [10] suffer from the
first two of the above problems, and may even lead users
into a false sense of data security.

There has recently been a proliferation of ”Cloud”
backup solutions [3, 7, 12, 4, 1, 8, 6, 2]. In theory,
these are capable of addressing some of the above prob-
lems. But, in practice, complete backups are unreason-
ably slow2:

”I have a home Internet backup service and
about 1TB of data at home. It took me about
three months to get all of the data copied off
site via my cable connection, which was the
bottleneck. If I had a crash before the off-site
copy was created, I would have lost data” 3

And many organisations may prefer to hold copies of the
backup data themselves.

1In practice, we found a small but significant number of unique files
outside of the ”user space” (figure 3) which means that this may not be
such a reasonable assumption.

2Home broadband connections usually have upload speeds which
are very significantly less than the download speed

3Henry Newman, October 9th 2009 - http://www.
enterprisestorageforum.com/technology/features/
article.php/3843151
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1.1 De-duplication & Encryption

We observed that there is a good deal of sharing between
the data on typical laptops (figure 3). For example, most
(but not all) of the “system files” are likely to be shared
with at least one other user. And it is common for users in
the same environment to share copies of the same papers,
or software packages, or even music files. Exploiting this
duplication would clearly enable us to save space on the
backup system. But equally importantly, it would signifi-
cantly reduce the time required for backups in most cases
– upgrading an operating system, or downloading a new
music file should not require any additional backup time
at all if someone else has already backed-up those same
files.

There has been a lot of interest recently in de-
duplication techniques, using content-addressable stor-
age (CAS). This is designed to address exactly the above
problem. However, most of these solutions are intended
for use in a local filesystem [18, 9, 11] or SAN [20].
This has two major drawbacks: (i) clients must send the
data to the remote filesystem before the duplication is
detected – this forfeits the potential saving in network
traffic and time. And (ii) any encryption occurs on the
server, hence exposing sensitive information to the owner
of the service – this is usually not appropriate for many
of the files on a typical laptop which are essentially ”per-
sonal”, rather than ”corporate”4.

1.2 A Solution

This paper presents an algorithm and prototype software
which overcome these two limitations. The algorithm
allows data to be encrypted independently without inval-
idating the de-duplication. In addition, it is capable of
identifying shared sub-trees of a directory hierarchy, so
that a single access to the backup store can detect when
an entire subtree is already present and need not be re-
copied. Clearly, this algorithm works for any type of sys-
tem, but it is particularly appropriate for laptops where
the connection speed and network availability are bigger
issues than the processing time.

Initial versions of the prototype were intended to make
direct use of cloud services such as Amazon S3 for re-
mote storage. However, this has proven to be unwork-
able, and we discuss the reasons for this, presenting a
practical extension to enable the use of such services.

Section 2 describes the algorithm. Section 3 describes
the prototype implementation and gives some prelimi-
nary performance results. Section 4 presents the data
collected from a typical user community to determine

4Of course, performing local encryption with personal keys would
produce different cipher-text copies of the same file and invalidate any
benefits of the de-duplication.

the practical extent and nature of shared files. This data is
used to predict the performance in a typical environment,
and to suggest further optimisations. Section 5 discusses
the problems with direct backup to the cloud and presents
a practical solution, including an analysis of the cost sav-
ings. Section 6 presents some conclusions.

2 The Backup Algorithm

The backup algorithm builds on existing de-duplication
and convergent encryption technology:

2.1 De-duplication
A hashing function (e.g. [14]) can be used to return a
unique key for a block of data, based only on the con-
tents of the data; if two people have the same data, the
hashing function will return the same key5. If this key
is used as the index for storing the data block, then any
attempt to store multiple copies of the same block will be
detected immediately. In some circumstances, it may be
necessary store additional metadata, or a reference count
to keep track of the multiple “owners”, but it is not nec-
essary to store multiple copies of the data itself.

2.2 Convergent Encryption
Encrypting data invalidates the de-duplication; two iden-
tical data blocks, encrypted with different keys, will yield
different encrypted data blocks which can no longer be
shared. A technique known as convergent encryption
[16, 21, 19, 23] is designed to overcome this – the en-
cryption key for the data block is derived from the con-
tents of the data using a function which is similar to
(but independent of ) the hash function. Two identical
data blocks will thus yield identical encrypted blocks
which can be de-duplicated in the normal way. Of course
each block now has a separate encryption key, and some
mechanism is needed for each owner to record and re-
trieve the keys associated with “their” data blocks.

Typical implementations (such as [25]) involve com-
plex schemes for storing and managing these keys as part
of the block meta-data. This can be a reasonable ap-
proach when the de-duplication is part of a local filesys-
tem. But there is considerable overhead in interrogat-
ing and maintaining this meta-data, which can be sig-
nificant when the de-duplication and encryption is being
performed remotely – and this is necessary in our case,
to preserve the privacy of the data.

5Technically, it is possible for two different data blocks to return the
same key. However, with a good hash function, the chances of this are
sufficiently small to be insignificant - ”if you have something less than
95 EB of data, then your odds don’t appear in 50 decimal places”[5]
- i.e. many orders of magnitude less than the chances of failure in any
other part of the system.



USENIX Association 	 LISA ’10: 24th Large Installation System Administration Conference	 31

2.3 The Algorithm
We have developed an algorithm which takes advantage
of the hierarchical structure of the filesystem:

• Files are copied into the backup store as file objects
using the convergent encryption process described
above.

• Directories are stored as directory objects – these
are simply files which contain the normal directory
meta-data for the children, and the encryption/hash
keys for each child.

To recover a complete directory hierarchy, we need
only know the keys for the root node – locating this di-
rectory object and decrypting it yields the encryption and
hash keys for all of the children and we can recursively
recover the entire tree. This has some significant advan-
tages:

• Each user only needs to record the keys for the root
node. Typically, these would be stored indepen-
dently on the backup system (one set for each stored
hierarchy), and encrypted with the user’s personal
key.

• The hash value of a directory object acts as a unique
identifier for the whole subtree; if the object repre-
senting a directory is present in the backup store,
then we know that the entire subtree below it is also
present. This means that we do not need to query
the store for any of the descendants. It not uncom-
mon to see fairly large shared subtrees6, so this is a
significant saving for remote access where the cost
of queries is likely to be high. Section 4.3 presents
some concrete experimental results.

• No querying or updating of additional metadata is
required7. This means that updates to the backup
store are atomic.

This algorithm does have some disadvantages. In par-
ticular, a change to any node implies a change to all of the
ancestor nodes up to the root. It is extremely difficult to
estimate the impact of this in a production environment,
but preliminary testing seems to indicate that this is not
a significant problem. There is also some disclosure of
information; if a user has a copy of a file, it it possible
to tell whether or not some other user also has a copy of
the same file. This is an inevitable consequence of any
system which supports storage sharing – if a user stores a
file, and the size of the stored data does not increase, then
there must have been a copy of this file already present.

6For example, between successive backups of the same system, or
as the same application downloaded to different systems.

7If it is necessary to support deletion of shared blocks, then some
kind of reference counting or garbage-collection mechanism is neces-
sary, and this may be require additional metadata.

2.4 Implementation
An efficient implementation of this algorithm requires
some care. The hash key for a directory object depends
on its contents. This in turn depends on the keys for all
of the children. Hence the computation of keys must
proceed bottom-up. However, we want to prevent the
backup from descending into any subtree whose root is
already present. And this requires the backup itself to
proceed top-down. For example:

BackupNode(N) {
If N is a directory, then let O = DirectoryObjectFor(N)
Otherwise, let O = contents of N
Let H = Hash(O)
if there is no item with index H in the backup store, then {

Store O in the backup store with index H
If N is a directory {

For each entry E in the directory, BackupNode(E)
}

}
}

DirectoryObjectFor(D) {
Create an empty directory object N
For each entry E in the directory D {

If E is a directory, then let O = DirectoryObjectFor(E)
Otherwise, let O = contents of E
Let H = Hash(O)
Add the metadata for E, and the hash H to N

}
Return N

}

Of course, this is still a rather naive implementation
– the hash for a particular object will be recomputed
once for every directory in its path. This would be
unacceptably expensive in practice and the hash func-
tion would probably be memoized. A production im-
plementation presents many other opportunities for opti-
misation; caching of directory objects, parallelisation of
compute-intensive tasks (encryption,hashing), and care-
ful detection of files which have been (un-)modified
since a previous run.

3 Prototype System

We developed a prototype backup system for Apple OS
X as a proof of concept of the proposed algorithm8. The
purpose is to be able to backup all files on a user’s lap-
top to a central remote storage. The prototype was im-
plemented as a set of command line utilities each per-
forms a single task in the backup process such as scan-

8An earlier, simpler proof-of-concept was implemented under Win-
dows as a student project [22].
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ning file system changes, uploading files, restoring file
system from backup etc. When wrapped in a GUI front-
end, our application can be used as a drop-in replacement
for the built-in Time Machine backup application [10].

3.1 Architecture

The underlying storage model we adopt is a write once,
read many model. This model assumes that once a file is
stored on the storage, it will never be deleted or rewrit-
ten. This is the common practice employed in enterprise
environment where key business data such as electronic
business records and financial data are required by law
to be kept for at least five and seven years respectively
[13]. This kind of storage model, commonly found in
DVD-R or tape backup storage, is usually optimised for
throughput rather than random access speed. The alter-
native storage model is write many, read many model that
permits deleting older backups to reclaim some space.
To achieve that some kind of reference counting mech-
anism is needed to safely delete un-referred files on the
storage. To keep the prototype simple we opt to use the
write once, read many storage model.

Our system is architected as a client/server applica-
tion, where a backup client running on a user’s laptop
uploads encrypted data blocks to a central server which
includes dedicated server side processing. This is in
contrast to the thin-cloud approach where only mini-
mal cloud-like storage interface is required on the server
end as proposed in the Cumulus system [24]. Cumulus
demonstrated that with careful client side data aggrega-
tion, backing up to the thin-cloud can be as efficient as
integrated client/server approaches. This thin-cloud ap-
proach is appealing in a single user environment, how-
ever it raises three problems in a multi-user setting with
data de-duplication technology:

1. The cloud storage model used by the thin-cloud
backup solution does not have a straightforward
way of sharing data between different user accounts
without posing serious security threat.

2. There is no way to validate the content address of an
uploaded object on the server. A malicious user can
start an attack by uploading random data with a dif-
ferent content address to corrupt the whole backup.

3. The client side data aggregation used in the thin-
cloud approach for performance reason will make
data de-duplication very difficult, if not impossible.

In our prototype system we argue for a thin-server ap-
proach that addresses all these issues. The majority of
computation will happen on the client side (hashing, en-
cryption, data aggregation). A dedicated backup server

will handle per-user security required in a multi-user en-
vironment. Instead of going for a full-blown client/server
backup architecture with custom data transfer protocol,
user authentication mechanism and hefty server end soft-
ware we want to re-use the existing services provided
by operating system itself as much as possible. To this
end, we used standard services that come with many
POSIX systems (Access control list (ACL) mechanism,
user account management, Common Internet File Sys-
tem/Server Message Block (CIFS/SMB) server) and de-
ployed a small server application written in Python on
the server side to handle data validation. In addition, the
whole server, once properly configured with ACL per-
missions, server application scripts, storage devices, can
be packed as a virtual machine image and deployed into
an enterprise’s existing visualised storage architecture.
This means the number of supported clients can be easily
scaled to meet the backup demands.

Figure 1 depicts the architecture employed in our pro-
totype. The system consists of several modules described
below.

3.1.1 FSEvents Module

FSEvents was introduced as a system service in the OS
X Leopard release (version 10.5). It logs file changes at
the file system level and can report file system changes
since a given time stamp in the past. This service is part
of the foundational technologies used by Apple’s built-
in backup solution Time Machine. Our prototype system
utilises the FSEvents service to get a list of changed files
for incremental backup.

For efficiency reason, the event reported by the FSEv-
ents API is at directory level only, i.e. it only tells which
directory has changes in it but not exactly what was
changed. To identify which files are changed we use a lo-
cal meta database to maintain and compare current files’
meta information with their historical values.

3.1.2 Local Meta DB

The local meta DB is used to implement incremental
backup. The content of the DB includes: pathname, file
size, last modification time, block-level checksums, and
a flag indicates if the file has been backed up or not. For
each backup session, the local meta DB will produce a
list of files to backup which is sorted by directory-depth
from bottom up. This is to ensure that a directory will be
backed up only after all its children have been backed-up.

3.1.3 Backup Module

The backup module encapsulates the backup logic and
interfaces with other modules. For each backup session,
it first retrieves a list of files to backup from the local
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Figure 1: Architecture of the proposed backup system.
Optionally data on the backup server can be replicated to
multiple cloud storages in background.

meta DB, then it fetches those files from the local disk,
calculates file hashs at block level, and encrypts each
data block with an encryption key generated from the
block’s hash value. The final sequence of encrypted data
blocks, together with their unique content addresses, are
put in an upload queue to be dispatched to the remote
storage. Optionally, data compression can be applied
prior to the data encryption step to further reduce the size
of the data to upload. We use a 256-bit cryptographically
strong hash function (SHA2 [14]) for the content address
and a 256-bit symmetric-key encryption (Salsa20 [17])
for data encryption.

3.1.4 Upload Queue

The system maintains an upload queue in memory for
those data blocks to be uploaded to the backup server
via CIFS protocol. First the content address of each data
block is checked to see if the same data block is already
on the server. If not the block will be scheduled to one of
the uploading threads. A typical user machine contains
many small files, which are less efficient to transfer over
a standard network file system like CIFS compared to
a custom upload protocol. We therefore perform data
aggregation in the upload queue to pack small blocks into
bigger packets of 2 MB before sending them over the
network.

3.1.5 Server Application

A Python script on the server periodically checks any
new files in a user’s upload directory. ACL permission
was set up so that the server application can read/write
files in both public data pool and users’ own upload di-
rectories. For each incoming packet, the server will dis-
assemble the packet into original encrypted data blocks.
If the block checksum matches its content address, the
block will be moved to the public data pool. If a block
has incorrect checksum due to network transmission er-
ror, it will be discarded and a new copy will be requested
from the client.

Optionally, the server can choose to replicate its data
to multiple public cloud storage vaults in the background.
The use of cloud storage will be discussed in section 5.

4 Laptop Filesystem Statistics

The characteristics of the data, and the way in which it
is typically organised and evolved, can have a significant
effect on the performance of the algorithm and the im-
plementation. We are aware of several relevant studies
of filesystem statistics (e.g. [15]), however these have
significant differences from our environment, such as the
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operating system, or the type of user. We therefore de-
cided to conduct our own small study of laptop users
within our typical target environment. We are reasonably
confident that this represents “typical usage”.

A data collection utility was distributed to voluntary
participants in the university to compute a 160-bit cryp-
tographically strong hash for each file on their Mac lap-
top, along with other meta information such as file size,
directory depth etc. Each file was scanned multiple times
to get hash values of the following block sizes:128KB,
256KB, 512KB and 1024KB as well as single file hash
value. Filenames were not collected to maintain pri-
vacy. We grouped the stats gathered from each ma-
chine into three categories: USR, APP and SYS. All data
within a user’s home folder is labelled as USR, data in
/Applications is classified as APP, and all the rest
are labelled as SYS. This is to help us identify where
the data duplication occurs. We would expect a high de-
gree of inter-machine data redundancy among Applica-
tion and System files, but not so much between users’
own data. In a real backup system, the amount of data
transfer for subsequent incremental backups is typically
much smaller than that of the initial uploads. To help
estimate the storage request of incremental backup we
collected the statistics twice over a two-month period.

4.1 Key Statistics
We gathered filesystem statistics from 24 Mac machines
within the university, all of them are running either OS X
10.5 or 10.6. Although this is a small sample, we believe
that this is a good representation of a typical target envi-
ronment. Key statistics of the data are given in table 1.
The histogram of file sizes is given in figure 2. The file
size distribution follows normal distribution. A further
breakdown reveals that the majority (up to 95%) of the
files are relatively small (less than 100 KB).

The presence of huge number of small files will likely
impose a speed issue when backing up due to I/O over-
head and network latency. In addition, a cloud service
provider is likely to charge for each upload/download
operation. Therefore direct uploading to a cloud stor-
age may not be an economically viable option, as will be
seen in section 5.1.

4.2 Backup Simulation
We simulated a backup process by backing up one ma-
chine a time to the backup server. After each simulated
backup, the projected and actual storage was recorded
and the data duplication rate calculated. This was re-
peated until all machines were added to the backup stor-
age, and this clearly demonstrates the increasing sav-
ings (in space per machine) as more machines partici-

Machines 24
Files 20,332,615
Directories 4,607,966
Entries (File + Dir) 24,940,581

File Sizes
Median 2.4 K
Average 77.9 K
Maximum 32.2 GB
Total 1.94 TB

File Category
USR 1.22 TB (62.94%)
APP 149.32 GB (7.68%)
SYS 570.8 GB (29.38%)

Harddisk Size
Average HD Size 290 GB
Average Used HD 115 GB

Table 1: Filesystem statistics from Mac laptops.
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Figure 2: Histogram of file size distribution, the X-Axis
is log10(file size).
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pate. Figure 3 shows the projected and actual storage
for different numbers of machines. As expected, there is
greater data sharing among System and Application files,
but less so between users’ own files.

4.3 Data Duplication
To measure data duplication (or redundancy) we define
the data duplication rate as:

Projected Storage Size-Actual Storage Size
Projected Storage Size

× 100%

where the projected storage size is the sum of all data to
backup, actual storage size is the actual amount of stor-
age required due to data de-duplication. For instance, if
we need to store a total amount of 100 GB data from two
machines A and B, and only 70 GB is needed for ac-
tual storage, then the data duplication rate for A and B is
30%.

Backup Block Size

File backup can be performed at whole file level or sub-
file level where a file is split into a series of fixed-
size blocks. There are two main benefits of perform-
ing backup at sub-file block level. First is the increased
level of data de-duplication as a result of inter-file block
sharing, which will use less storage space. Second, it is
more efficient to backup certain type of files where only
a small portion of the file content is constantly chang-
ing. For instance, database files and virtual machine disk
images are usually a few GB in size and are known to
subject to frequent updating. Modifications to those files
are usually made in-place at various small portions of the
file for performance reason. Block-level backup enables
us to only backup those changed blocks. Finally, there
is also a practical benefit: it is more reliable to upload a
small block of data over remote network than a big file.
Even the transfer fails due to network glitch, only the last
block needs to be resent.

Despite the listed advantages, backup at block-level
will incur some overhead that can be significant. De-
pending on the size of the block, the number of to-
tal stored objects could be much higher than whole file
backup, which would be an concern when backing up
to a cloud storage where the network I/O requests are
charged (see section 5.1). Also extra storage is needed to
record the block relationship which could offset some of
the benefit of data de-duplication.

We tested different block sizes as well as whole file,
single block backup in the simulation experiment. The
result is plotted in figure 4.

As expected, all the sub-file blocks achieve a higher
data duplication rate than single block, shown in figure

Overall USR SYS APP
29.31% 8.91% 63.34% 63.06%

Table 2: Overall data duplication rate by category.

4a. The bigger the block size is, the lower data duplica-
tion rate due to less inter-file block sharing. For block
size of 128KB, we the data duplication rate of 32.08%,
which is 9.5% higher than the 29.31% of single block.
This transfers into less storage used for all sub-file blocks
(Figure 4b). However, the increased number of block ob-
jects could be quite substantial: for block size of 128KB,
the total number of objects is 38m (million), 64.4% more
than that of single block objects which is 24.94m (Figure
4c).

Directory Tree Duplication

As mentioned in section 2, the directory meta data is
stored in directory objects. The size of all directory ob-
jects is 16.24 GB. With data de-duplication, the actual re-
quired storage is 6.4 GB, or 0.47% of total used storage.
The collected stats also reveals that, among all 4,607,966
directory objects, only 1,052,338 unique ones are stored
on the server. This suggests that up to 77% directory
objects are shared. This strongly supports the value of
sub-tree de-duplication.

Finally, we report overall data duplication rate in table
2.

Changes Over Time

Once an initial, full backup of a user machine is made,
subsequent backups can be much faster as only changed
data needs to be uploaded. To get an estimate of the
file change rate, we collected and analysed the data for
a second time towards the end of the two-month pi-
lot experiment. We are mainly interested in the sizes
of newly added files and changed files that will be in-
cluded in the incremental backup. Files deleted since last
scan were not included. The average daily and monthly
per-machine data change rates calculated using a block
size of 128KB are presented in table 3. In addition, we
observed that the estimated monthly per-machine data
change rate would raise from 17.17 GB to 20.61 GB if
the backup is performed at file level. This confirms our
earlier assumption that backing up at sub-file level can
be more efficient in dealing with partial changes in large
files. In our scenario it would reduce the amount of data
to backup by 3.44 GB for each machine on a monthly
basis.
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Figure 3: Projected and actual storage by number of machines added during simulated backup.
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Overall USR SYS APP
Daily 0.57 GB 0.31 GB 0.10 GB 0.03 GB

Monthly 17.17 GB 9.20 GB 2.90 GB 0.86 GB

Table 3: Estimated daily and monthly (30 days) per-
machine data change rates by category.

5 Using Cloud Storage

Backing up to cloud-based storage becomes increasing
popular in recent years. The main benefits of using a
cloud storage are lower server maintenance cost, cheaper
long term operational cost, and sometimes enhanced data
safety via a vendor’s own geographically diverse data
replication. However, there are still some obstacles to
integrating cloud storage into a full-system backup solu-
tion:

1. Network bandwidth can be a bottle-neck: uploading
data directly to a cloud storage can be very slow
while requiring a reliable network connection.

2. The cloud interface has yet be standardised with
each vendor offering its own security and data trans-
fer models. In addition, many organisations pre-
fer to have a backup policy that can utilise multiple
cloud services to avoid vendor lock-in.

3. A cloud service provider is likely to impose a
charge on individual data upload/download opera-
tions, which means backing up directly to a cloud
can be very costly.

Despite these disadvantages, in the next section we will
show that the proposed de-duplicated backup algorithm
can effectively reduce the cost of backing up to a cloud
storage by a large margin. Furthermore, in our backup ar-
chitecture it is possible to adopt cloud storage as the sec-
ondary storage of the backup server (Figure 1), thereby
largely ameliorating the above issues. In particular, the
benefits of employing a cloud-based secondary storage
are:

1. Backing up to local backup server can still be very
fast with all the security features enabled, while the
data replication to cloud storage can be performed
in the background.

2. New cloud services can be added easily on the
backup server to provide enhanced data safety and
to reduce the risk of vendor lock-in.

3. Upload cost to cloud storage can be reduced via data
aggregation techniques such as employed in [24].

5.1 Cost Saving: Data De-Duplication
In this section we measure the estimated cost of backup
to a cloud storage in terms of the bill charged by a typical
storage provider: Amazon S39. Its data transfer model is
based on standard HTTP protocol requests like GET and
PUT.

For de-duplication backup, the client first needs to
check if an object exists on the cloud via an HEAD opera-
tion. If not, the object is then uploaded via a PUT opera-
tion. Fortunately, if a file already exists on the server due
to data de-duplication, we do not need to use the more
expensive PUT operation, and no data will be uploaded.

Using the Amazon S3 price model10 we plot the esti-
mated cost of backing up 1.94 TB data from 24 machines
to S3 in terms of US dollars in figure 5. The data de-
duplication technology, coupled with data aggregation
(see next section), is able to achieve 60% cost reduction
for the initial data upload.

5.2 Cost Saving: Data Aggregation
Backing up directly to Amazon S3 can be very slow and
costly due to large number of I/O operations and the way
Amazon S3 charges for the uploads. Client side data
aggregation packs small files into bigger packets before
sending them to the cloud. We packed individual files
into packets with a size of 2 MB each and compared the
estimated cost against that of direct upload (see figure
6). The result shows that an overall of 25% of cost sav-
ing can be achieved via data aggregation alone. More-
over, even when cost is not an issue, as is the case when
backing up to a departmental server, data aggregation can
still speed up the process significantly. In our experi-
ment we observed that the underlying file system (CIFS
in this case) did not handle large amount of small I/O re-
quests efficiently between the client and the server, even
on a high-speed network. This resulted in a much slower
backup speed. Uploading aggregated data to the server
and unpacking the data there overcomes this problem.

5.3 Case Study: Six-Month Bill Using S3
Using the gathered information so far, we are able to es-
timate the cost of backing up all the machines we have
to Amazon S3 over a six-month period. The initial up-
load of 1.94 TB data (25m objects) will cost $434 with-
out data de-duplication, together with storage cost ($291)
that is $725. With data de-duplication, only a total of

9https://s3.amazonaws.com/
10As of writing this paper, data upload to Amazon S3 is charged

at $0.1 per GB. Data storage rate is $0.15 per GB for the first 50
TB/Month of storage. Operating cost is $0.01 per 1,000 requests for
PUT operation and $0.01 per 10,000 requests for HEAD operation, re-
spectively. All prices quoted are from US Standard tier.



38	 LISA ’10: 24th Large Installation System Administration Conference	 USENIX Association

0 5 10 15 20 25
0

$100

$200

$300

$400

Number of machines added

A
m

a
z
o
n
 S

3
 P

ri
c
e

Overall Cost Saving

 

 

Actual S3 Cost

Saved S3 Cost

0 5 10 15 20 25
0

$50

$100

$150

$200

Number of machines added

A
m

a
z
o
n
 S

3
 P

ri
c
e

SYS Cost Saving

 

 

Actual S3 Cost

Saved S3 Cost

0 5 10 15 20 25
0

$20

$40

$60

$80

Number of machines added

A
m

a
z
o
n
 S

3
 P

ri
c
e

APP Cost Saving

 

 

Actual S3 Cost

Saved S3 Cost

0 5 10 15 20 25
0

$50

$100

$150

Number of machines added

A
m

a
z
o
n
 S

3
 P

ri
c
e

USR Cost Saving

 

 

Actual S3 Cost

Saved S3 Cost

Figure 5: Estimated cost when backing up 24 machines to Amazon S3 (total cost for the initial backup of all machines)
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Figure 6: Estimated cost comparison of client side data aggregation (packet) and normal upload (file).



USENIX Association 	 LISA ’10: 24th Large Installation System Administration Conference	 39

Conventional De-Duplicated
Months Storage Cost Storage Cost

1 1.94 TB $725 1.37 TB $370
2 2.35 TB $445 1.66 TB $284
3 2.76 TB $507 1.95 TB $328
4 3.18 TB $569 2.25 TB $372
5 3.59 TB $630 2.54 TB $415
6 4.00 TB $692 2.83 TB $459

Total $3,568 $2,228

Table 4: Estimated monthly and accumulated bills for
backing up to Amazon S3 over a six-month period with-
out and with the De-Duplicated backup. The monthly
data change rate is estimated to be 0.49 TB for 24 ma-
chines using figures in table 3 with an estimated duplica-
tion rate of 29.31%. The monthly cost is the sum of S3
storage bill (currently $150 per TB) plus the estimated
data upload cost from the pilot experiment.

$370 ($164 for upload and $206 for storage) is needed,
saving $355 or 49.0% of the initial upload cost. More-
over, as only 1.37 TB of data needs to be uploaded, it is
estimated to save 29.4% uploading time. The saving can
be even greater over time as less cloud storage is used
and billed. The accumulated costs of using Amazon S3
over the course of six months are $3,568 using conven-
tional backup method, and $2,228 using de-deuplicated
backup. Monthly estimated bills are presented in table 4.

6 Conclusions

We have shown that a typical community of laptop users
share a considerable amount of data in common. This
provides the potential to significantly decrease backup
times, and storage requirements. However, we have
shown that manual selection of the relevant data - for
example, backing up only home directories - is a poor
strategy; this fails to backup some important files, at the
same time as unnecessarily duplicating other files.

We have presented a prototype backup program which
achieves an optimal degree of sharing at the same time
as maintaining confidentiality. This exploits a novel al-
gorithm to reduce the number of files which need to be
scanned and hence decreases backup times.

We have shown that typical cloud interfaces, such as
Amazon S3 are not well suited to this type of applica-
tion, due to the time and cost of typical transfers, and the
lack of multi-user authentication to shared data. We have
described a implementation using a local server which
can avoid these problems by caching and pre-processing

data before transmitting to the cloud. This is shown to
achieve significant cost savings.
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Abstract
Writing and maintaining firewall configurations can be
challenging, even for experienced system administrators.
Tools that uncover the consequences of configurations
and edits to them can help sysadmins prevent subtle yet
serious errors. Our tool, Margrave, offers powerful fea-
tures for firewall analysis, including enumerating con-
sequences of configuration edits, detecting overlaps and
conflicts among rules, tracing firewall behavior to spe-
cific rules, and verification against security goals. Mar-
grave differs from other firewall-analysis tools in sup-
porting queries at multiple levels (rules, filters, firewalls,
and networks of firewalls), comparing separate firewalls
in a single query, supporting reflexive ACLs, and pre-
senting exhaustive sets of concrete scenarios that em-
body queries. Margrave supports real-world firewall-
configuration languages, decomposing them into multi-
ple policies that capture different aspects of firewall func-
tionality. We present evaluation on networking-forum
posts and on an in-use enterprise firewall-configuration.

1 Introduction

Writing a sensible firewall policy from scratch can be
difficult; maintaining existing policies can be terrifying.
Oppenheimer, Ganapathi, and Patterson [31] have shown
that operator errors, specifically configuration errors, are
a major cause of online-service failure. Configuration
errors can result in lost revenue, breached security, and
even physical danger to co-workers or customers. The
pressure on system administrators is increased by the fre-
netic nature of their work environment [6], the occasional
need for urgent changes to network configurations, and
the limited window in which maintenance can be per-
formed on live systems.

Many questions arise in checking a firewall’s behav-
ior: Does it permit or block certain traffic? Does a col-
lection of policies enforce security boundaries and goals?

Does a specific rule control decisions on certain traf-
fic? What prevents a particular rule from applying to a
packet? Will a policy edit permit or block more traffic
than intended? These questions demand flexibility from
firewall-analysis tools: they cover various levels of gran-
ularity (from individual rules to networks of policies), as
well as reasoning about multiple versions of policies (to
check the impact of edits). Margrave handles all these
and more, offering more functionality than other pub-
lished firewall tools.

Margrave’s flexibility comes from thinking about pol-
icy analysis from an end-user’s perspective. The ques-
tions that users wish to ask about policies obviously af-
fect modeling decisions, but so does our form of answer.
Margrave’s core paradigm is scenario finding: when a
user poses a query, Margrave produces a (usually exhaus-
tive) set of scenarios that witness the queried behavior.
Whether a user is interested in the impact of changes or
how one rule can override another, scenarios concretize
a policy’s behavior. Margrave also allows queries to be
built incrementally, with new queries refining the results
from previous ones.

Margrave’s power comes from choosing an appropri-
ate model. Embracing both scenario-finding and multi-
level policy-reasoning leads us to model policies in first-
order logic. While many firewall-analysis tools are
grounded in logic, most use propositional models for
which analysis questions are decidable and efficient. In
general, one cannot compute an exhaustive and finite
set of scenarios witnessing first-order logic formulas.
Fortunately, the formulas corresponding to many com-
mon firewall-analysis problems do yield such sets. Mar-
grave identifies such cases automatically, thus providing
exhaustive analysis for richer policies and queries than
other tools. Demonstrating that firewall analyzers can
benefit from first-order logic without undue cost is a key
contribution of this paper.

Our other key contribution lies in how we decompose
IOS configurations into policies for analysis. Single fire-
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wall configurations cover many functions, such as access
filtering, routing, and switching. Margrave’s IOS com-
piler generates separate policies for each task, thus en-
abling analysis of either specific functionality or whole-
firewall behavior. Task-specific policies aid in isolating
causes of problematic behaviors. Our firewall models
support standard and most extended ACLs, static NAT,
ACL-based and map-based dynamic NAT, static routing,
and policy-based routing. Our support for state is limited
to reflexive access-lists; it does not include general dy-
namic NAT, deep packet inspection, routing via OSFP, or
adaptive policies. Margrave has an iptables compiler in
development; other types of firewalls, such as Juniper’s
JunOS, fit our model as well.

A reader primarily interested in a tool description can
read Sections 2, 6, and 7 for a sense of Margrave and how
it differs from other firewall-analysis tools. Section 2 il-
lustrates Margrave’s query language and scenario-based
output using a multi-step example. Section 3 describes
the underlying theory (based on first-order logic), includ-
ing our notion of policies. Section 4 shows how fire-
wall questions map into Margrave. Section 5 describes
the implementation, including the compiler for firewall-
configurations and a query-rewriting technique that often
improves performance. Section 6 presents experimen-
tal evaluation on both network-forum posts and an in-
use enterprise firewall. Section 7 describes related work.
Section 8 concludes with perspective and future work.

2 Margrave in Action on Firewalls

Margrave presents scenarios that satisfy user-specified
queries about firewall behavior. Queries state a behavior
of interest and optional controls on which data to con-
sider when computing scenarios. Scenarios contain at-
tributes of packet contents that make the query hold. A
separate command language controls how scenarios are
displayed. The extended example in this section high-
lights Margrave’s features; Table 1 summarizes which
of these features are supported by other available (either
free or commercial) firewall analyzers. The Margrave
website [22] contains sources for all examples.

In this paper, a firewall encompasses filtering (via
access-lists), NAT transformation, and routing; we re-
serve the term router for the latter component. The IOS
configuration in Figure 1 defines a simple firewall with
only filtering. This firewall controls two interfaces (fe0
and vlan1). Each has an IP address and an access-list
to filter traffic as it enters the interface; in lines 3 and
7, the number (101 or 102) is a label that associates ac-
cess rules (lines 9-16) with each interface, while the in
keyword specifies that the rules should apply on entry.
Rules are checked in order from top to bottom; the first
rule whose conditions apply determines the decision on a

1 interface fe0
2 ip address 10.150.1.1 255.255.255.254
3 ip access-group 101 in
4 !
5 interface vlan1
6 ip address 192.128.5.1 255.255.255.0
7 ip access-group 102 in
8 !
9 access-list 101 deny ip host 10.1.1.2 any

10 access-list 101 permit tcp
11 any host 192.168.5.10 eq 80
12 access-list 101 permit tcp
13 any host 192.168.5.11 eq 25
14 access-list 101 deny any
15 !
16 access-list 102 permit any

Figure 1: Sample IOS configuration

packet. This firewall allows inbound web and mail traffic
to the corresponding servers (the .10 and .11 hosts), but
denies a certain blacklisted IP address (the 10.1.1.2
host). All traffic arriving at the inside-facing interface
vlan1 is allowed. As this filter is only concerned with
packets as they arrive at the firewall, our queries refer to
the filter as InboundACL.

Basic Queries: All firewall analyzers support basic
queries about which packets traverse the firewall. The
following Margrave query asks for an inbound packet
that InboundACL permits:
EXPLORE InboundACL:Permit(<req>)

SHOW ONE
Query 1

EXPLORE clauses describe firewall behavior; here, the
behavior is simply to permit packets. <req> is shorthand
for a sequence of variables denoting the components of a
request (detailed in Section 4):

〈ahostname, src-addr-in, src-port-in, protocol, ...〉.

Users can manually define this shorthand within Mar-
grave; details and instructions for passing queries into
Margrave are in the tool distribution [22]. SHOW ONE
is an output-configuration command that instructs Mar-
grave to display only a single scenario. The resulting
output indicates the packet contents:

1 ********* SOLUTION FOUND at size = 15
2 src-addr-in: IPAddress
3 protocol: prot-tcp
4 dest-addr-in: 192.168.5.10
5 src-port-in: port
6 exit-interface: interface
7 entry-interface: fe0
8 dest-port-in: port-80
9 length: length

10 ahostname: hostname-router
11 src-addr-out: IPAddress
12 message: icmpmessage

Result

2
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ITVal Fireman Prometheus ConfigChecker Fang/AlgoSec Vantage
Which packets � � � � � �

User-defined queries � ? � � �
nip

Rule Responsibility � ? �
− ∼ � �

Rule Relationships ∼ �
−

� �
−

�
nip

�

Change-impact ? � �
nip

�
−

First-order queries ? ? ?
Support NAT � � � �

Support Routing � � � � �
nip

Firewall Networks � � � � � �
nip

Language integration �

Commercial Tool? no no yes no yes yes

Table 1: Feature comparison between Margrave and other available firewall-analysis tools. In each cell, � denotes
included features; �

nip denotes features reported by the authors in private communication but not described in pub-
lished papers; �

− denotes included features with more limited scope than in Margrave; ∼ denotes features that can be
simulated, but aren’t directly supported; ? denotes cases for which we aren’t sure about support. Section 7 describes
nuances across shared features and discusses additional research for which tools are not currently available.

This scenario shows a TCP packet (line 3) arriving on the
fast-ethernet interface (line 7), bound for the web server
(line 4, with line 11 of Figure 1) on port 80 (line 8). The
generic IPaddress in lines 2 and 11 should be read as
“any IP address not mentioned explicitly in the policy”;
lines 5 and 6 are similarly generic. Section 5 explains the
size=15 report on line 1.

A user can ask for additional scenarios that illustrate
the previous query via the command SHOW NEXT: Once
Margrave has displayed all unique scenarios, it responds
to SHOW NEXT queries with no results.

To check whether the filter accepts packets from the
blacklisted server, we constrain src-addr-in to match
the blacklisted IP address and examine only packets that
arrive on the external interface. Both src-addr-in and
entry-interface are variable names in <req>. The
IS POSSIBLE? command instructs Margrave to display
false or true, rather than detailed scenarios.

EXPLORE
InboundACL:Permit(<req>) AND
10.1.1.2 = src-addr-in AND
fe0 = entry-interface

IS POSSIBLE?
Query 2

In this case, Margrave returns false. Had it returned true,
the user could have inspected the scenarios by issuing a
SHOW ONE or SHOW ALL command.

Rule-level Reasoning: Tracing behavior back to the
responsible rules in a firewall aids in both debugging and
confirming that rules are fulfilling their intent. To support
reasoning about rule effects, Margrave automatically de-

fines two formulas for every rule in a policy (where R is
a unique name for the rule):
• R matches(<req>) is true when <req> satisfies the

rule’s conditions, and
• R applies(<req>) is true when the rule both

matches <req> and determines the decision on <req>
(as the first matching rule within the policy).

Distinguishing these supports fine-grained queries about
rule behavior. Margrave’s IOS compiler constructs the
R labels to uniquely reference rules across policies. For
instance, ACL rules that govern an interface have labels
of the form hostname-interface-line#, where hostname
and interface specify the names of the host and interface
to which the rule is attached and # is the line number at
which the rule appears in the firewall configuration file.

The following query refines query 2 to ask for deci-
sion justification: the EXPLORE clause now asks for Deny
packets, while the INCLUDE clause instructs Margrave to
compute scenarios over the two Deny rules as well as the
formulas in the EXPLORE clause:
EXPLORE
InboundACL:Deny(<req>) AND
10.1.1.2 = src-addr-in AND
fe0 = entry-interface
INCLUDE
InboundACL1:Router-fe0-line9_applies(<req>),
InboundACL1:Router-fe0-line14_applies(<req>)

SHOW REALIZED
InboundACL1:Router-fe0-line9_applies(<req>),
InboundACL1:Router-fe0-line14_applies(<req>)

Query 3

The SHOW REALIZED command asks Margrave to dis-
play the subset of listed facts that appear in some result-

3



44	 LISA ’10: 24th Large Installation System Administration Conference	 USENIX Association

ing scenario. The following results indicate that the rule
at line 9 does (at least sometimes) apply. More telling,
however, the absence of the rule at line 14 (the catch-all
deny) indicates that that rule never applies to any packet
from the blacklisted address. Accordingly, we conclude
that line 9 processes all blacklisted packets.

< InboundACL:line9_applies(<req>) >
Result

The INCLUDE clause helps control Margrave’s perfor-
mance. Large policies induce many rule-matching for-
mulas; enabling these formulas only as needed trims the
scenario space. SHOW REALIZED (and its dual, SHOW
UNREALIZED) controls the level of detail at which users
view scenarios. The lists of facts that do (or do not) ap-
pear in scenarios often raise red flags about firewall be-
havior (such as an unexpected port being involved in pro-
cessing a packet). Unlike many verification tools, Mar-
grave does not expect users to have behavioral require-
ments or formal security goals on hand. Lightweight
summaries such as SHOW REALIZED try to provide in-
formation that suggests further queries.

Computing Overshadowed Rules through Scripting:
Query 3 checks the relationship between two rules on
particular packets. A more general question asks which
rules never apply to any packet; we call such rules super-
fluous. The following query computes superfluous rules:

EXPLORE true
UNDER InboundACL
INCLUDE
InboundACL:router-fe0-line9_applies(<req>),
InboundACL:router-fe0-line10_applies(<req>),
InboundACL:router-fe0-line12_applies(<req>),
InboundACL:router-fe0-line14_applies(<req>),
InboundACL:router-vlan1-line16_applies(<req>)

SHOW UNREALIZED
InboundACL:router-fe0-line9_applies(<req>),
InboundACL:router-fe0-line10_applies(<req>),
InboundACL:router-fe0-line12_applies(<req>),
InboundACL:router-fe0-line14_applies(<req>),
InboundACL:router-vlan1-line16_applies(<req>)

Query 4

As this computation doesn’t care about request con-
tents, the EXPLORE clause is simply true. The heart
of this query lies in the INCLUDE clause and the SHOW
UNREALIZED command: the first asks Margrave to con-
sider all rules; the second asks for listed facts that are
never true in any scenario. UNDER clauses load policies
referenced in INCLUDE but not EXPLORE clauses.

While the results tell us which rules never apply, they
don’t indicate which rules overshadow each unused rule.
Such information is useful, especially if an overshadow-
ing rule ascribes the opposite decision. Writing queries
to determine justification for each superfluous rule, how-
ever, is tedious. Margrave’s query language is embedded

in a host language (Racket [13], a descendent of Scheme)
through which we can write scripts over query results. In
this case, our script uses a Margrave command to obtain
lists of rules that yield each of Permit and Deny, then is-
sues queries to isolate overshadowing rules for each su-
perfluous rule. These are similar to other queries in this
section. Scripts could also compute hotspot rules that
overshadow a large percentage of other rules.

Change-Impact: Sysadmins edit firewall configura-
tions to provide new services and correct emergent prob-
lems. Edits are risky because they can have unexpected
consequences such as allowing or restricting traffic that
the edit should not have affected. Expecting sysadmins
to have formal security requirements against which to
test policy edits is unrealistic. In the spirit of lightweight
analyses that demand less of users, Margrave computes
scenarios illustrating packets whose decision or applica-
ble rule changes in the face of edits.

For example, suppose we add the new boldface rule
below to access-list 101 (the line numbers start with 14 to
indicate that lines 1–13 are identical to those in Figure 1):

14 access-list 101 deny tcp
15 host 10.1.1.2 host 192.168.5.10 eq 80

If we call the modified filter InboundACL new, the
following query asks whether the original and new
InboundACLs ever disagree on Permit decisions:

EXPLORE
(InboundACL:Permit(<req>) AND
NOT InboundACL_new:Permit(<req>)) OR
(InboundACL_new:Permit(<req>) AND
NOT InboundACL:Permit(<req>)))

IS POSSIBLE?
Query 5

Margrave returns false, since the rule at line 9 always
overrides the new rule. If instead the new rule were:

14 access-list 101 deny tcp
15 host 10.1.1.3 host 192.168.5.10 eq 80

Margrave would return true on query 5. The correspond-
ing scenarios show packet headers that the two firewalls
treat differently, such as the following:

********* SOLUTION FOUND at size = 15
src-addr-in: 10.1.1.3
protocol: prot-tcp
dest-addr-in: 192.168.5.10
src-port-in: port
exit-interface: interface
entry-interface: fe0
dest-port-in: port-80

Result

As we might expect, this scenario involves packets from
10.1.1.3. A subsequent query could confirm that no
other hosts are affected.
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Corporate LAN

Contractors
(192.168.4.*)
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(192.168.1.2)
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External
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Figure 2: A small-business network-topology

Networks of Firewalls: So far, our examples have
considered only single firewalls. Margrave also han-
dles networks with multiple firewalls and NAT. Figure
2 shows a small network with web server, mail server,
and two firewalls to establish a DMZ. The internal fire-
wall performs both NAT and packet-filtering, while the
external firewall only filters. The firewall distinguishes
machines for employees (192.168.3.*), contractors
(192.168.4.*), and a manager (192.168.1.2). This
example captures the essence of a real problem posted to
a networking help-forum.

1 hostname int
2 !
3 interface in_dmz
4 ip address 10.1.1.1 255.255.255.0
5 ip nat outside
6 !
7 interface in_lan
8 ip access-group 102 in
9 ip address 192.168.1.1 255.255.0.0

10 ip nat inside
11 !
12 access-list 102 permit tcp any any eq 80
13 access-list 102 deny any
14 !
15 ip nat inside source list 1 interface
16 in_dmz overload
17 access-list 1 permit 192.168.1.1 0.0.255.255
18 !
19 ip route 0.0.0.0 0.0.0.0 in_dmz
20

Internal Firewall

Lines 15–17 in the internal firewall apply NAT to traffic
from the corporate LAN.1 Line 11 in the external firewall
blacklists a specific external host (10.200.200.200).

1In this example, we use the 10.200.* private address space to rep-
resent the public IP addresses.

Despite the explicit rule on lines 19–20 in the external
firewall, the manager cannot access the web. We have
edited the configurations to show only those lines rele-
vant to the manager and web traffic.

1 hostname ext
2 !
3 interface out_dmz
4 ip access-group 103 in
5 ip address 10.1.1.2 255.255.255.0
6 !
7 interface out_inet
8 ip access-group 104 in
9 ip address 10.200.1.1 255.255.0.0

10 !
11 access-list 104 deny 10.200.200.200
12 access-list 104 permit tcp any host 10.1.1.4
13 eq 80
14 access-list 104 deny any
15 !
16 access-list 103 deny ip any
17 host 10.200.200.200
18 access-list 103 deny tcp any any eq 23
19 access-list 103 permit tcp host 192.168.1.2
20 any eq 80
21 access-list 103 deny any
22

External Firewall

The following query asks “What rules deny a connec-
tion from the manager’s PC (line 2) to port 80 (line 10)
somewhere outside our network (line 8) other than the
blacklisted host (line 9)?”

1 EXPLORE prot-TCP = protocol AND
2 192.168.1.2 = fw1-src-addr-in AND
3 in_lan = fw1-entry-interface AND
4 out_dmz = fw2-entry-interface AND
5 hostname-int = fw1 AND
6 hostname-ext = fw2 AND
7

8 fw1-dest-addr-in IN 10.200.0.0/255.255.0.0
9 NOT 10.200.200.200 = fw1-dest-addr-in AND

10 port-80 = fw1-dest-port-in AND
11

12 internal-result(<reqfull-1>) AND
13

14 (NOT passes-firewall(<reqpol-1>) OR
15 internal-result(<reqfull-2>) AND
16 NOT passes-firewall(<reqpol-2>))
17

18 UNDER InboundACL
19 INCLUDE
20 InboundACL:int-in_lan-line-12_applies
21 (<reqpol-1>),
22 InboundACL:int-in_lan-line-17_applies
23 (<reqpol-1>),
24 InboundACL:ext-out_dmz-line-19_applies
25 (<reqpol-2>),
26 InboundACL:ext-out_dmz-line-21_applies
27 (<reqpol-2>),
28 InboundACL:ext-out_dmz-line-24_applies
29 (<reqpol-2>)

Query 6

Lines 12–16 capture both network topology and
the effects of NAT. The internal-result and
passes-firewall formulas capture routing in the face
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of NAT and passing through the complete firewall (in-
cluding routing, NAT and ACLs) whose hostname appears
in the request, respectively; Section 4 describes them in
detail. The variables sent to the two passes-firewall
formulas through <reqpol-1> and <reqpol-2> en-
code the topology: for example, these shorthands use
the same variable name for dest-addr-out in the inter-
nal firewall and src-addr-in in the external firewall. The
fw1-entry-interface and fw2-entry-interface
variables (bound to specific interfaces in lines 3–4)
appear as the entry interfaces in <reqpol-1> and
<reqpol-2>, respectively.

A SHOW REALIZED command over the INCLUDE
terms (as in query 3) indicates that line 21 of the exter-
nal firewall configuration is denying the manager’s con-
nection. Asking Margrave for a scenario for the query
(using the SHOW ONE command) reveals that the internal
firewall’s NAT is changing the packet’s source address:

1 ...
2 fw1-src-addr-out=fw2-src-addr_=
3 fw2-src-addr-out: 10.1.1.1
4 fw1-src-addr_=fw1-src-addr-in: 192.168.1.2

Result

The external firewall rule (supposedly) allowing the
manager to access the Internet (line 19) uses the internal
pre-NAT source address; it never matches the post-NAT
packet. Naı̈vely editing the NAT policy, however, can
leak privileges to contractors and employees. Change-
impact queries are extremely useful for confirming that
the manager, and only the manager, gain new privileges
from an edit. An extended version of this example with
multiple fixes and the change-impact queries, is provided
in the Margrave distribution.

Summary: These examples illustrate Margrave’s abil-
ity to reason about both combinations of policies and
policies at multiple granularities. The supported query
types include asking which packets satisfy a condi-
tion (query 1), verification (query 2), rule responsibility
(query 3), rule relationships (query 4) and change-impact
(query 5). A formal summary of the query language and
its semantics is provided with the Margrave distribution.

3 Defining Scenarios

Margrave views a policy as a mapping from requests to
decisions. In a firewall, requests contain packet data
and some routing data, while decisions include Per-
mit and Deny (for ACLs), Drop (for routing), and a
few others. Policies often refer to relationships be-
tween objects, such as “permit access by machines
on the same subnet”. Queries over policies often re-
quire quantification: “Every host on the local subnet

can access some gateway router”. First-order logic ex-
tends propositional logic with relational formulas (such
as SameSubnet(121.34.42.133,121.34.42.166))
and quantifiers (∀ and ∃). For firewall policies, the avail-
able relations include the decisions, R matches and
R applies (as shown in Section 2) and unary relations
capturing sets of IP addresses, ports, and protocols.

Margrave maps both policies and queries into first-
order logic formulas. To answer a query, Margrave first
conjoins the query formula with the formulas for all poli-
cies referenced in the query, then computes solutions to
the combined formula. A solution to a first-order formula
contains a set of elements to quantify over (the universe)
and two mappings under which the formula is true: one
maps each relation to a set of tuples over the universe,
and another maps each unquantified variable in the query
to an element of the universe.2 For example, the formula

∀x host(x) =⇒ ∃y (router(y) ∧ CanAccess(x, y))

says that “every host can access some router”. One so-
lution has a universe of {h1, r1, r2} and relation tuples
host(h1), router(r1), router(r2), and CanAccess(h1,r2)
(the formula has no unquantified variables). Other so-
lutions could include more hosts and routers, with more
access connections between them. Solutions may map
multiple variables to the same universe element. This
is extremely useful for detecting corner cases in policy
analysis; while humans often assume that different vari-
ables refer to different objects, many policy errors lurk
in overlaps (such as a host being used a both web server
and mail server). Scenarios are simply solutions to the
formula formed of a query and the policies it references.

In general, checking whether a first-order formula has
a solution (much less computing them all) is undecid-
able. Intuitively, the problem lies in determining a suffi-
cient universe size that covers all possible solutions. This
problem is disconcerting for policy analysis: we would
like to show users an exhaustive set of scenarios to help
them ensure that their policies are behaving as intended
in all cases. Fortunately, Margrave can address this prob-
lem in most cases; Section 5 presents the details.

4 Mapping Firewalls to the Theory

There is a sizeable gap between the theory in Sec-
tion 3 and a policy in a real-world language, such as
the example in Figure 1. To represent policies in the
theory, we must describe the shapes of requests, the
available decisions, what relations can appear in formu-
las, and how policy rules translate into formulas. Sec-
tion 2 used several relations relevant to firewalls, such

2In logical terms, a solution combines a first-order model and an
environment binding free variables to universe elements.
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(Policy InboundACL uses IOS-vocab
(Rules
...
(Router-fe0-line10 =
(Permit hostname, ...) :-
(hostname-Router hostname)
(fe0 entry-interface)
(IPAddress src-addr-in)
(prot-tcp protocol)
(Port src-port-in)
(192.168.5.10 dest-addr-in)
(port-80 dest-port-in))

...)
(RComb FAC))

Figure 3: A Margrave policy specification

as passed-firewall. Margrave defines these relations
and other details automatically via several mechanisms.

Policies: Figure 3 shows part of the result of com-
piling the IOS configuration in Figure 1 to Margrave’s
intermediate policy language. The fragment captures
the IOS rule on line 10. (Permit hostname, ...)
specifies the decision and states a sequence of variable
names corresponding to a request. The :- symbol sepa-
rates the decision from the conditions of the rule. For-
mula (prot-tcp protocol), for example, captures
that TCP is the expected protocol for this rule. Margrave
represents constants (such as decisions, IP addresses, and
protocols) as elements of singleton unary relations. A
scenario that satisfies this rule will map the protocol vari-
able to some element of the universe that populates the
prot-tcp relation. The other conditions of the original
rule are captured similarly. The (RComb FAC) at the end
of the policy tells Margrave to check the policy rules in
order (FAC stands for “first applicable”). The first line of
the policy ascribes the name InboundACL.

Decomposing IOS into policies: Figure 4 shows our
high-level model of IOS configurations. Firewalls per-
form packet filtering, packet transformation, and internal
routing; the first two may occur at both entry to and exit
from the firewall. Specifically, packets pass through the
inbound ACL filter, inside NAT transformation, internal
routing, outside NAT transformation, and finally the out-
bound ACL filter on their way through the firewall. The
intermediate stages define additional information about
a packet (as shown under the stage names): inside NAT
may yield new address and port values; internal routing
determines the next-hop and exit interface; outside NAT
may yield further address and port values.

Internal routing involves five substages, as shown in
Figure 6. Margrave creates policies (à la Figure 3) for
each of the five substages. The -Switching policies
determine whether a destination is directly connected to

the firewall; the -Routing policies bind the next-hop
IP address for routing. In addition, Margrave generates
four policies called InboundACL, OutboundACL,
InsideNAT, and OutsideNat. The two -ACL poli-
cies contain filtering rules for all interfaces.

Requests and Decisions: Margrave automatically de-
fines a relation for each decision rendered by each of the
9 subpolicies (e.g., InboundACL:Permit in query 1).
Each relation is defined over requests, which contain
packet headers, packet attributes, and values generated
in the intermediate stages; the boxes in Figure 4 col-
lectively list the request contents. As Margrave is not
stateful, it cannot update packet headers with data from
intermediate stages. The contents of a request reflect
the intermediate stages’ actions: for example, if the val-
ues of src-addr and src-addr-out are equal, then
OutsideNAT did not transform the request’s packet.
Currently, Margrave shares the same request shape
across all 9 subpolicies (even though InboundACL, for
example, only examines the packet header portion).

Flows between subpolicies: Margrave encodes flows
among the 9 subpolicies through three relations (over re-
quests) that capture the subflows marked in Figure 4.

• Internal routing either assigns an exit interface and
a next-hop to a packet or drops the packet internally.
Margrave uses a special exit-interface value to mark
dropped packets; the int-dropped relation con-
tains requests with this special exit-interface value.
Any request that is not in int-dropped success-
fully passes through internal routing.

• Unlike internal routing, NAT never drops pack-
ets. At most, it transforms source and destina-
tion ports and addresses. Put differently, NAT is
a function on packets. internal-result cap-
tures this function: it contains all requests whose
next-hop, exit-interface, and OutsideNAT
components are consistent with the packet header
and InsideNAT components (as if the latter were
inputs to a NAT function).

• ACLs permit or deny packets. The relation
passes-firewall contains requests that the two
ACLs permit, are in internal-result (i.e., are
consistent with NAT), and are not in int-dropped
(i.e., are not dropped in internal routing).

Our IOS compiler automatically defines each of these
relations as a query in terms of the 9 IOS subpolicies
(capturing topology as in query 6). Margrave provides a
RENAME command that saves query results under a user-
specific name for use in later queries. Users can name
any set of resulting scenarios in this manner.
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exit−interface
next−hop src−addr−out

dest−addr−out
src−port−out
dest−port−out

protocol
src−addr−in
dest−addr−in
src−port−in
dest−port−in
tcp−flags

PACKET HEADER

InsideNAT Internal Routing OutsideNAT OutboundACL

NOT int−dropped

internal−result

passes−firewall

entry−interface
hostname
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ADD’L INFO
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src−addr_
dest−addr_
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Figure 4: Margrave’s decomposition of firewall configurations

(PolicyVocab IOS-vocab
(Types
(Interface : interf-drop

(interf-real vlan1 fe0))
(IPAddress :
192.128.5.0/255.255.255.0
10.1.1.0/255.255.255.254
192.168.5.11
192.168.5.10
10.1.1.2)

(Protocol : prot-ICMP prot-TCP prot-UDP)
(Port: port-25 port-80)
(Decisions Permit Deny ...)
...
(disjoint-all Protocol)
(nonempty Port)
...

)

Figure 5: A Margrave vocabulary specification

Vocabularies: The 9 subpolicies share ontology about
ports and IP addresses. Margrave puts domain-
knowledge common to multiple policies in a vocabulary
specification; the first line of a policy specification refer-
ences its vocabulary through the uses keyword. Figure 5
shows a fragment of the vocabulary for IOS policies: it
defines datatypes (such as Protocol) and their elements
(correspondingly, prot-ICMP, prot-TCP, prot-UDP).

Vocabularies also capture domain constraints such as
“all protocols are distinct” or “there must be at least one
port” (both shown in Figure 5). While these constraints
may seem odd, they support Margrave’s scenario-finding
model. Some potential “solutions” (as described in Sec-
tion 3) are nonsensical, such as one which assigns two
distinct numbers to the same physical port. Domain con-
straints rule out nonsensical scenarios.

Generalizing Beyond Firewalls

The policy- and vocabulary-specifications in Figures 3
and 5 show how to map specific domains into Mar-
grave. Datatypes, constraints, and rules capture many

other kinds of policies, including access-control poli-
cies, hypervisor configurations, and product-line specifi-
cations. Indeed, this general-purpose infrastructure is an-
other advantage of Margrave over other firewall-analysis
tools: Margrave can reason about interactions between
policies from multiple languages for different configura-
tion concerns. For example, if data security depends on
a particular interaction between a firewall and an access-
control policy, both policies and their interaction can be
explored using Margrave. We expect this feature to be-
come increasingly important as enterprise applications
move onto the cloud and are protected through the in-
terplay of multiple policies from different sources.

5 Implementation

Margrave consists of a frontend read-eval-print loop
(REPL) written in Racket [13] and a backend written in
Java. The frontend handles parsing (of queries, com-
mands, policies, and vocabularies) and output presenta-
tion. The actual analysis and scenario generation occurs
in the backend.

5.1 The Scenario-Finding Engine
Margrave’s backend must produce sets of solutions to
first-order logic formulas. We currently use a tool called
Kodkod [32] that produces solutions to first-order for-
mulas using SAT solving.3 SAT solvers handle propo-
sitional formulas. Kodkod bridges the gap from first-
order to propositional formulas by asking users for a fi-
nite universe-size; under a finite universe-size, first-order
formulas translate easily to propositional ones. Figure 7
shows an example of the rewriting process. Every so-
lution produced using a bounded size is legitimate (in
logical terms, our analysis is sound). However, analysis
will miss solutions that require a universe larger than the
given size (in logical terms, it is not complete).

3Within Kodkod, we use a SAT-solver called SAT4J [8].
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Figure 6: Internal flow of packets within a router. Edges are labeled with decisions rendered by the policies at the
source of the edge. Routing policies determine the next-hop IP address, while switching policies send traffic to directly
to a connected device.

Fortunately, most firewall queries (including those
in this paper) correspond to formulas with no univer-
sal (∀) quantifiers. For such formulas, the number
of existentially-quantified variables provides a sufficient
universe size to represent all solutions. Margrave auto-
matically supplies Kodkod with the universe bound for
such formulas. For queries that do not have this form,
such as “can every host reach some other machine on the
network”, either Margrave or the user must supply a uni-
verse size for the analysis. The query language has an
optional CEILING clause whose single argument is the
desired universe size. If CEILING is omitted, Margrave
uses a default of 6. Experience with Kodkod in other
domains suggests that small universe sizes can yield use-
ful scenarios [15]. If Margrave can compute a sufficient
bound but the user provides a lower CEILING, Margrave
will only check up to the CEILING value. Whenever
Margrave cannot guarantee that scenario analysis is com-
plete, it issues a warning to the user. The size=15 state-
ment in the first line of scenarios shown in Section 2 re-
port the universe-size under which Margrave generated
the scenario.
CEILING settings may impact the results of com-

mands. Margrave includes a SHOW UNREALIZED com-
mand that reports relations that are not used in any re-
sulting scenario. However, a relation T might be unpop-
ulated at one CEILING value yet populated at a higher
value. For example, in the formula ∃x¬T (x), T is never
used at CEILING 1, but can be realized at CEILING 2.
Margrave users should only supply CEILING values if
they appreciate such consequences.

Overall, we believe sacrificing exhaustiveness for the
expressive power of first-order logic in policies and
queries is worthwhile, especially given the large number
of practical queries that can be checked exhaustively.

5.2 Rewriting Firewall Queries
Under large universe sizes, both the time to compute sce-
narios and the number of resulting scenarios increase.
The latter puts a particular burden on the end-user who
has to work through the scenarios. Query language con-
structs like SHOW REALIZED summarize details about
the scenarios in an attempt to prevent the exhaustive
from becoming exhausting. However, query optimiza-
tions that reduce universe sizes have more potential to
target the core problem.

Most firewall queries have the form ∃ req α, where α

typically lacks quantifiers. Requests have 16 or 20 com-
ponents (as shown in Figure 4), depending on whether
they reference internal-result. Margrave therefore
analyzes all-existential queries under a universe size of
16 or 20. However, these queries effectively reference
a single request with attributes as detailed in α. This
suggests that we could rewrite this query with a single
quantified variable for a request and additional relations
that encode the attributes. For example:

∃ pt in ∃ pt out : route(pt in, pt out)

becomes

∃ pkt : is ptIn(pkt, i)∧ is ptOut(pkt, o)∧ route(i, o)

Effectively, these new relations lift attributes from the in-
dividual packet fields to the packet as a whole.

Formulas rewritten in this way require a universe size
of only 1, for which scenario generation stands to be
much faster and to yield fewer solutions. The tradeoff,
however, lies in the extra relations that Margrave intro-
duces to lift attributes to the packet level. Additional re-
lations increase the time and yield of scenario computa-
tions, so the rewriting is not guaranteed to be a net win.

9
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The original sentence:

∀x host(x) =⇒ ∃y (router(y)∧ CanAccess(x, y))

Assume a universe of size 2 with elements A and B. Expand
the ∀-formula with a conjunction over each of A and B for x:

host(A) =⇒ ∃y (router(y)∧ CanAccess(A, y)) ∧

host(B) =⇒ ∃y (router(y)∧ CanAccess(B, y))

Next, expand each ∃-formula with a disjunction over each of A

and B for y:

host(A) =⇒ (router(A) ∧ CanAccess(A,A)) ∨

(router(B) ∧ CanAccess(A,B)) ∧

host(B) =⇒ (router(A) ∧ CanAccess(B,A)) ∨

(router(B) ∧ CanAccess(B,B))

Replace each remaining formula with a propositional variable
(e.g., router(A) becomes p2):

p1 =⇒ (p2 ∧ p3) ∨

(p4 ∧ p5) ∧

p6 =⇒ (p2 ∧ p7) ∨

(p4 ∧ p8)

Figure 7: Converting a first-order formula to a proposi-
tional one at a bounded universe size

Table 2 presents experimental results on original ver-
sus rewritten queries. In practice, we find performance
improves when the query is unsatisfiable or the smallest
model is large. A user who expects either of these con-
ditions to hold can enable the rewriting through a query-
language flag called TUPLING. All performance figures
in this paper were computed using TUPLING.

6 Evaluation

We have two main goals in evaluating Margrave. First,
we want to confirm that our query language and its
results support debugging real firewall configuration-
problems; in particular, the scenarios should accurately
point to root causes of problems. We assume a user who
knows enough firewall basics to ask the questions under-
lying a debugging process (Margrave does not, for ex-
ample, pre-emptively try queries to automatically isolate
a problem). Second, we want to check that Margrave
has reasonable performance on large policies, given that
we have traded efficient propositional models for richer
first-order ones.

We targeted the first goal by applying Margrave to
problems posted to network-configuration help-forums
(Sections 6.1 and 6.2). Specifically, we phrased the

Rules # Vars Min Size Not Tupled Tupled
100 3 3 694ms 244ms

1000 14 6 7633ms 1221ms
1000 14 10 17659ms 1219ms
1000 14 14 32116ms 1205ms

Table 2: Run-time impact of TUPLING on ACL queries.
The first column contains the number of rules in
each ACL. The second column lists the number of
existentially-quantified variables in the query; we in-
clude one 3-variable (non-firewall) query to illustrate the
smaller gains on smaller variable counts. The 14-variable
ACLs are older firewall examples with smaller request tu-
ples. The “Min Size” column indicates the universe size
for the smallest scenario that satisfied the query. Larger
minimum sizes have a larger search space.

poster’s reported problem through Margrave queries and
sought fixes based on the resulting scenarios. In addition,
we used Margrave to check whether solutions suggested
in follow-up posts actually fixed the problem without af-
fecting other traffic. The diversity of firewall features
that appear in forum posts demanded many compiler ex-
tensions, including reflexive access-lists and TCP flags.
That we could do this purely at the compiler level attests
to the flexibility of Margrave’s intermediate policy- and
vocabulary-languages (Section 4).

We targeted the second goal by applying Margrave
to an in-use enterprise firewall-configuration containing
several rule sets and over 1000 total rules (Section 6.3).
Margrave revealed some surprising facts about redun-
dancy in the configuration’s behavior. Individual queries
uniformly execute in seconds.

Notes on Benchmarking Our figures report Mar-
grave’s steady-state performance; they omit JVM
warmup time. Policy-load times are measured by loading
different copies of the policy to avoid caching bias. All
performance tests were run on an Intel Core Duo E7200
at 2.53 Ghz with 2 GB of RAM, running Windows XP
Home. Performance times are the mean over at least 100
individual runs; all reported times are ±200ms at the 95-
percent confidence level. Memory figures report private
(i.e., not including shared) consumption.

6.1 Forum Help: NAT and ACLs

”My servers cannot get access into the internet, even
though I will be able to access the website, or even

FTP... I don’t really know what’s wrong. Can you please
help? Here is my current configuration...”

10
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In our first forum example [4], the poster is having
trouble connecting to the Internet from his server. He
believes that NAT is responsible, and has identified the
router as the source of the problem. The configuration
included with the post appears in Figure 8 (with a slight
semantics-preserving modification4).

A query (not shown) confirms that the firewall is
blocking the connection. Our knowledge of firewalls in-
dicates that packets are rejected either enroute to, or on
return from, the webserver. Queries for these two cases
are similar; the one checking for response packets is:

EXPLORE
NOT src-addr-in
IN 192.168.2.0/255.255.255.0 AND

FastEthernet0 = entry-interface AND
prot-TCP = protocol AND
port-80 = src-port-in AND
internal-result(<reqfull>) AND
passes-firewall(<reqpol>)

IS POSSIBLE?
Query 7

Margrave reports that packets to the webserver are per-
mitted, but responses are dropped. The resulting scenar-
ios all involve source ports 20, 21, 23, and 80 (easily con-
firmed by re-running the query with a SHOW REALIZED
command asking for only the port numbers). This is
meaningful to a sysadmin: an outgoing web request is
always made from an ephemeral port, which is never less
than 1024. This points to the problem: the router is re-
jecting all returning packets. ACL 102 (Figure 8, lines
25–29) ensures that the server sees only incoming HTTP,
FTP, and TELNET traffic, at the expense of rejecting the
return traffic for any connections that the server initiates.

Enabling the server to access other webservers in-
volves allowing packets coming from the proper desti-
nation ports. Methods for achieving this include:

1. Permit TCP traffic from port 80, via the edit:

28 access-list 102 permit tcp
29 any host 209.172.108.16 eq 23
30 access-list 102 permit tcp any eq 80 any
31 access-list 102 deny tcp
32 any host 209.172.108.16

2. Allow packets whose ack flags are set via the es-
tablished keyword (or, in more recent versions, the
match-all +ack option). This suggestion guards
against spoofing a packet’s source port field and al-
lows servers to listen on unusual ports.

3. Use stateful monitoring of the TCP protocol via re-
flexive access-lists or the inspect command. This
guards against spoofing of the TCP ACK flag.

4We replaced named interface references in static NAT statements
with actual IP addresses; our compiler does not support the former.

Follow-up posts in the forum suggested options 1 and 3.
Margrave can capture the first two options and the re-
flexive access-list approach in the third (it does not cur-
rently support inspect commands). For each of these,
we can perform verification queries to establish that the
InboundACL no longer blocks return packets, and we
can determine the extent of the change through a change-
impact query.

Space precludes showing the reflexive ACL query in
detail. Reflexive ACLs allow return traffic from hosts to
which prior packets were permitted. Margrave encodes
prior traffic through a series of connection- relations
over requests. Intuitively, a request is in a connection-
relation only if the same request with the source- and
destination-details reversed would pass through the fire-
wall. Although the connection state is dynamic in prac-
tice, its stateless definition enables Margrave to handle it
naturally through first-order relations.

Performance: Loading each version of the configura-
tion took between 3 and 4 seconds. The final change-
impact query took under 1 second. After loading, run-
ning the full suite of queries (including those not shown)
required 2751ms. The memory footprint of the Java en-
gine (including all component subpolicies) was 50 MB
(19 MB JVM heap, 20 MB JVM non-heap).

6.2 Forum Help: Routing

“there should be a way to let the network
10.232.104.0/22 access the internet, kindly advise a

solution for this...”

In our second example [29], the poster is trying to
create two logical networks: one “primary” (consist-
ing of 10.232.0.0/22 and 10.232.100.0/22) and
one “secondary” (consisting of 10.232.4.0/22 and
10.232.104.0/22). These logical networks are con-
nected through a pair of routers (TAS and BAZ) which
share a serial interface (Figure 9). Neither logical net-
work should have access to the other, but both net-
works should have access to the Internet—the primary
via 10.232.0.15 and the secondary via 10.232.4.10.

The poster reports two problems: first, the two com-
ponents of the primary network—10.232.0.0/22 and
10.232.100.0/22—cannot communicate with each
other; second, the network 10.232.104.0/22 cannot
access the Internet. The poster suspects errors in the TAS
router configuration (omitted for sake of space).

We start with the first problem. The following query
confirms that network 10.232.0.0/22 cannot reach
10.232.100.0/22 via the serial link. The hostname
formulas introduce names for each individual router

11
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1 name-server 207.47.4.2
2 name-server 207.47.2.178
3 !
4 interface FastEthernet0
5 ip address 209.172.108.16 255.255.255.224
6 ip access-group 102 in
7 ip nat outside
8 speed auto
9 full-duplex

10 !
11 interface Vlan1
12 ip address 192.168.2.1 255.255.255.0
13 ip nat inside
14 !
15 ip route 0.0.0.0 0.0.0.0 209.172.108.1
16 !
17 ip nat pool localnet 209.172.108.16 prefix-length 24
18 ip nat inside source list 1 pool localnet overload
19 ip nat inside source list 1 interface FastEthernet0
20 ip nat inside source static tcp 192.168.2.6 80 209.172.108.16 80
21 ip nat inside source static tcp 192.168.2.6 21 209.172.108.16 21
22 ip nat inside source static tcp 192.168.2.6 3389 209.172.108.16 3389
23 !
24 access-list 1 permit 192.168.2.0 0.0.0.255
25 access-list 102 permit tcp any host 209.172.108.16 eq 80
26 access-list 102 permit tcp any host 209.172.108.16 eq 21
27 access-list 102 permit tcp any host 209.172.108.16 eq 20
28 access-list 102 permit tcp any host 209.172.108.16 eq 23
29 access-list 102 deny tcp any host 209.172.108.16

Figure 8: The original configuration for the forum post for Section 6.1

TAS
Router

 GigabitEthernet0/0
10.232.0.0/22 primary

10.232.4.0/22 secondary

Serial0/3:0
10.254.1.129/30

10.232.4.10/22

 GigabitEthernet0/1
10.232.8.1/22

10.232.0.15/22

BAZ Router
GigabitEthernet0/0

10.232.100.0/22 primary
10.232.104.0/22 secondary

Serial0/3:0
10.254.1.130/30

Figure 9: Structure of the network for the forum post for Section 6.2
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based on the hostname specification in the IOS config-
uration; these names appear in the tasvector- and
bazvector- requests. (The -full- requests extend the
corresponding -pol- requests with additional variables
needed for internal-routing.

1 EXPLORE hostname-tas = tas AND
2 hostname-baz = baz AND
3

4 internal-result(<tasvectorfull-fromtas>) AND
5 internal-result(<bazvectorfull-fromtas>) AND
6 passes-firewall(<tasvectorpol-fromtas>) AND
7 passes-firewall(<bazvectorpol-fromtas>) AND
8

9 GigabitEthernet0/0 = tas-entry-interface AND
10 tas-src-addr-in IN
11 10.232.0.0/255.255.252.0 AND
12 tas-dest-addr-in IN 10.232.100.0/255.255.252.0
13 AND "Serial0/3/0:0" = tas-exit-interface AND
14

15 "Serial0/3/0:0" = baz-entry-interface AND
16 GigabitEthernet0/0 = baz-exit-interface
17

18 IS POSSIBLE?
Query 8

Margrave returns false, which means that no packets
from 10.232.0.0/22 reach 10.232.100.0/22 along
this network topology.

By the topology in Figure 9, packets reach the TAS
router first. We check whether packets pass through
TAS by manually restricting query 8 to TAS (by remov-
ing lines 2, 5, 7, 14, and 15); Margrave still returns
false. Firewall knowledge suggests three possible prob-
lems with the TAS configuration: (1) internal routing
could be sending the packets to an incorrect interface, (2)
internal routing could be dropping the packets, or (3) the
ACLs could be filtering out the packets. Margrave’s for-
mulas for reasoning about internal firewall behavior help
eliminate these cases: by negating passed-firewall
on line 6, we determine that the packet does pass through
the firewall, so the problem lies in the interface or next-
hop assigned during routing. This example highlights
the utility of not only having access to these formulas,
but also having the ability to negate (or otherwise manip-
ulate) them as any other subformula in a query.

To determine which interfaces the packets are sent on,
we relax the query once again to remove the remaining
reference to Serial0/3/0:0 (on line 12) and execute
the following SHOW REALIZED command:
SHOW REALIZED

GigabitEthernet0/0 = exit-interface,
"Serial0/3/0:0" = exit-interface,
GigabitEthernet0/1 = exit-interface

Query 9

The output contains only one interface name:
{ GigabitEthernet0/0[exit-interface] }

Result

According to the topology diagram, packets from
10.232.0.0/22 to 10.232.100.0/22 should be us-

ing exit interface Serial0/3/0:0; the results, instead,
indicate exit interface GigabitEthernet0/0. Firewall
experience suggests that the router is either switching the
correct next-hop address (10.254.1.130) to the wrong
exit interface, or using the wrong next-hop address. The
next query produces the next-hop address:

1 EXPLORE hostname-tas = tas AND
2 internal-result(<tasvectorfull-fromtas>) AND
3 passes-firewall(<tasvectorpol-fromtas>) AND
4 GigabitEthernet0/0 = tas-entry-interface AND
5 tas-src-addr-in IN
6 10.232.0.0/255.255.252.0 AND
7 tas-dest-addr-in IN 10.232.100.0/255.255.252.0
8

9 INCLUDE
10 10.232.0.15 = tas-next-hop,
11 10.232.4.10 = tas-next-hop,
12 tas-next-hop IN 10.254.1.128/255.255.255.252,
13 tas-next-hop IN 10.232.8.0/255.255.252.0
14

15 SHOW REALIZED
16 10.232.0.15 = tas-next-hop,
17 10.232.4.10 = tas-next-hop,
18 tas-next-hop IN 10.232.8.0/255.255.252.0,
19 tas-next-hop IN 10.254.1.128/255.255.255.252

Query 10

{ 10.232.0.15[tas-next-hop] }
Result

The next-hop address is clearly wrong for the given
destination address. To determine the extent of the prob-
lem, we’d like to know whether all packets from the
given source address are similarly misdirected. That
question is too strong, however, as LocalSwitching
may (rightfully) handle some packets. To ask Mar-
grave for next-hops targeted by some source packet
that LocalSwitching ignores, we replace line 7 in
query 10 with:

NOT LocalSwitching:Forward(<routingpol-tas>)
Query 11

This once again highlights the value of exposing
LocalSwitching as a separate relation. The revised
query yields the same next-hop, indicating that all non-
local packets are routing to 10.232.0.15, despite the
local routing policies. A simple change fixes the prob-
lem: insert the keyword default into the routing policy:

route-map internet permit 10
match ip address 10
set ip default next-hop 10.232.0.15

This change ensures that packets are routed to the In-
ternet only as a last resort (i.e., when static destination-
based routing fails). Running the original queries against
the new specification confirms that the primary subnets
now have connectivity to each other. Another query
checks that this change does not suddenly enable the
primary sub-network 10.232.0.0/22 to reach the sec-
ondary sub-network 10.232.4.0/22.

13
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Now we turn to the poster’s second problem: the sec-
ondary network 10.232.4.0/22 still cannot access the
Internet. As before, we confirm this then compute the
next-hop and exit interface that TAS assigns to traffic
from the secondary network with an outside destination.
The following query (with SHOW REALIZED over inter-
faces and potential next-hops) achieves this:

EXPLORE
tas = hostname-tas AND

internal-result2(<tasvectorfull-fromtas>) AND
firewall-passed2(<tasvectorpol-fromtas>) AND

GigabitEthernet0/0 = tas-entry-interface AND
tas-src-addr-in IN
10.232.4.0/255.255.252.0 AND

NOT tas-dest-addr-in IN
10.232.4.0/255.255.252.0 AND

NOT tas-dest-addr-in IN
10.232.104.0/255.255.252.0 AND

NOT tas-dest-addr-in IN
10.232.0.0/255.255.252.0 AND

NOT tas-dest-addr-in IN
10.232.100.0/255.255.252.0 AND

NOT tas-dest-addr-in IN
10.254.1.128/255.255.255.252 AND

NOT tas-dest-addr-in IN
192.168.1.0/255.255.255.0 AND

NOT tas-dest-addr-in IN
10.232.8.0/255.255.252.0

Query 12

{ gigabitethernet0/0[tas-exit-interface],
10.232.4.10[tas-next-hop] }

Result

The next-hop for the secondary network’s Inter-
net gateway is as expected, but the exit-interface
is unexpectedly GigabitEthernet0/0 (instead of
GigabitEthernet0/1). In light of this scenario, the
network diagram reveals a fundamental problem: the
gateway 10.232.4.10 should be “on” the same net-
work as the GigabitEthernet0/1 interface (address
10.232.8.1/22); otherwise LocalSwitching will
send the packet to the wrong exit interface.

This problem can be resolved by changing the ad-
dress of either the GigabitEthernet0/1 interface
or the next-hop router (10.232.4.10). We chose
the latter, selecting an arbitrary unused address in the
10.232.8.0/22 network:

39 route-map internet permit 20
40 match ip address 20
41 set ip default next-hop 10.232.8.10

Re-running the queries in this new configuration con-
firms that both goals are now satisfied.

Performance: Loading each version of the configura-
tion took between 3 and 4 seconds. Query 12 took 351

Query Time (ms)
Permit pkt from addr X on interface Y? 1587
Previous with rule responsibility 23317
Change-impact after 1 decision edit 3167
Previous with rule responsibility 24039
Detect all superfluous rules 22578
List overshadows per rule in previous 72178

Table 3: Run-time performance of various queries on
the enterprise ACLs. For the change-impact query, we
switched the decision from deny to permit on one non-
superfluous rule. The overshadowing-rules computation
asked only for overshadows with the opposite decision.

ms. After loading, running the full suite of queries (in-
cluding those not shown) finished in 8725ms. The mem-
ory footprint of the Java engine (including all component
subpolicies) was 74 MB (49 MB JVM heap, 21 MB JVM
non-heap).

6.3 Enterprise Firewall Configuration
Our largest test case to date is an in-use enterprise ipta-
bles configuration. In order to stress-test our IOS com-
piler, we manually converted this configuration to IOS.
The resulting configuration contains ACLs for 6 inter-
faces with a total of 1108 InboundACL rules (not
counting routing subpolicies). The routing component
of this firewall was fairly simple; we therefore focus our
performance evaluation on InboundACL.

From a performance perspective, this paper has il-
lustrated three fundamentally different types of queries:
(1) computing over a single policy or network with
just the default relations (which-packets and verification
queries), (2) computing over a single policy or network
while including additional relations (rule-responsibility
and rule-relationship queries), and (3) computing over
multiple, independent policies or networks (change-
impact queries). The third type introduces more vari-
ables than the first two (to represent requests through
multiple firewalls); it also introduces additional relations
to capture the policies of multiple firewalls. The second
type has the same number of variables, but more rela-
tions, than the first type. We therefore expect the best
performance on the first type, even under TUPLING.

Table 3 reports run-time performance on each type of
query over the enterprise firewall-configuration. Load-
ing the policy’s InboundACL component required
10694ms and consumed 51 MB of memory. Of that, 40
MB was JVM heap and 7 MB was JVM non-heap.

Section 2 described how we compute superfluous
rules through scripting. For this example, these queries
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yielded surprising results: 900 of the 1108 rules in
InboundACL were superfluous. Even more, 270 of the
superfluous rules were (at least partially) overshadowed
by a rule with a different decision. The sysadmins who
provided the configuration found these figures shocking
and subsequently expressed interest in Margrave.

7 Related Work

Studies of firewall-configuration errors point to the
need for analysis tools. Oppenheimer, et al. [31] sur-
vey failures in three Internet services over a period
of several months. For two of these services, oper-
ator error—predominately during configuration edits—
was the leading cause of failure. Furthermore, conven-
tional testing fails to detect many configuration prob-
lems. Wool [35] studies the prevalence of 12 common
firewall-configuration errors. Larger rule-sets yield a
much higher ratio of errors to rules than smaller ones;
Wool concludes that complex rule sets are too difficult
for a human administrator to manage unaided.

Mayer, Wool and Ziskind [26, 27] and Wool [34] de-
scribe a tool called Fang that has evolved into a commer-
cial product called the AlgoSec Firewall Analyzer [3].
AlgoSec supports most of the same analyses as Mar-
grave, covering NAT and routing, but it does not sup-
port first-order queries or integration with a program-
ming language. AlgoSec captures packets that satisfy
queries through sub-queries, which are a form of abstract
scenarios.

Marmorstein and Kearns’ [23, 24] ITVal tool uses
Multi-way Decision Diagrams (MDDs) to execute SQL-
like queries on firewall policies. ITVal supports NAT,
routing, and chains of firewall policies. Later work [25]
supports a useful query-free analysis: it generates an
equivalence relation that relates two hosts if identical
packets (modulo source address) from both are treated
identically by the firewall. This can detect policy anoma-
lies and help administrators understand their policies.
Additional debugging aids in later work includes trac-
ing decisions to rules and showing examples similar to
scenarios. Margrave is richer in its support for change-
impact and first-order queries.

Al-Shaer et al.’s ConfigChecker [1, 2] is a BDD-based
tool that analyses networks of firewalls using CTL (tem-
poral logic) queries. Rules responsible for decisions can
be isolated manually through queries over sample pack-
ets. For performance reasons, the tool operates at the
level of policies, rather than individual rules (other of the
group’s papers do consider rule-level reasoning); Mar-
grave, in contrast, handles both levels.

Bhatt et al.’s Vantage tool [5, 9, 10] supports change-
impact on rule-sets and other user-defined queries over
combinations of ACLs and routing; it does not support

NAT. Some of their evaluations [9] exploit change-
impact to isolate configuration errors. This work also
supports generating ACLs from specifications, which is
not common in firewall-analysis tools.

Liu and Gouda [20, 21] introduce Firewall Decision
Diagrams (FDDs) to answer SQL-like queries about fire-
wall policies. FDDs are an efficient variant of BDDs for
the firewall packet-filtering domain. Extensions of this
work by Khakpour and Liu [17] present algorithms for
many firewall analysis discussed in this paper, includ-
ing user-defined queries, rule responsibility, and change-
impact, generally in light of NAT and routing. A down-
loadable tool is under development.

Yuan, et al.’s Fireman tool [36] analyzes large net-
works of firewall ACLs using Binary Decision Diagrams
(BDDs). Fireman supports a fixed set of analyses, in-
cluding whitelist and blacklist violations and computing
conflicting, redundant, or correlated rules between differ-
ent ACLs. Fireman examines all paths between firewalls
at once, but does not consider NAT or internal routing.
Margrave’s combination of user-defined queries and sup-
port for NAT and routing makes it much richer. Oliveira,
et al. [30] extend Fireman with NAT and routing tables.
Their tool, Prometheus, can also determine which ACL
rules are responsible for a misconfiguration. It does not
handle change-impact across firewalls, though it does de-
termine when different paths through the same firewall
render different decisions for the same packet. In certain
cases, Prometheus suggests corrections to rule sets that
guarantee desired behaviors. Margrave’s query language
is richer.

Verma and Prakash’s FACE tool [33] aids both con-
figuration of distributed firewalls and analyzing existing
distributed firewalls expressed in iptables. It supports
user-defined queries, as well as a form of change-impact
over multiple firewalls. Its depth-first-search approach to
propagating queries through a network resembles Mayer,
Ziskind, and Wool’s work. It does not handle routing or
NAT. The tool is no longer available.

Gupta, LeFevre and Prakash [14] give a framework
for the analysis of heterogeneous policies that is simi-
lar to ours. While both works provide a general policy-
analysis language inspired by SQL, there are distinct dif-
ferences. Their tool, SPAN, does not allow queries to
directly reference rule applicability and the work does
not discuss request-transformations such as NAT. How-
ever, SPAN provides tabular output that can potentially
be more concise than Margrave’s scenario-based output.
SPAN is currently under development.

Lee, Wong, and Kim’s NetPiler tool [18, 19] analyzes
the flow graph of routing policies. It can be used to both
simplify and detect potential errors in a network’s routing
configurations. The authors have primarily applied Net-
Piler to BGP configurations, which address the propaga-
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tion of routes rather than the passage of packets. How-
ever, their methods could also be applied to firewall poli-
cies. Margrave does not currently support BGP, though
its core engine is general enough to support them.

Jeffrey and Samak [16] present a formal model and
algorithms for analyzing rule-reachability and cyclicity
in iptables firewalls. This work does not address NAT or
more general queries about firewall behavior.

Eronen and Zitting [11] perform policy analysis on
Cisco router ACLs using a Prolog-based Constraint Logic
Programming framework. Users are allowed to define
their own custom predicates (as in Prolog), which en-
ables analysis to incorporate expert knowledge. The Pro-
log queries are also first-order. This work is similar to
ours in spirit, but is limited to ACLs and does not support
NAT or routing information.

Youssef et al. [7] verify firewall configurations against
security goals, checking both for configurations that vio-
late goals and goals that configurations fail to cover. The
work does not handle NAT or routing.

Margrave as described in this paper extends an ear-
lier tool of the same name [12] developed by Tschantz,
Meyerovich, Fisler and Krishnamurthi. The original
Margrave targeted simple access-control policies, encod-
ing them as propositional formulas that we analyzed us-
ing BDDs. Attempts to model enterprise access-control
policies inspired the shift to first-order models embodied
in the present tool. Not surprisingly, there is an extensive
literature on logic-based tools for access-control policies;
our other papers [12, 28] survey this literature.

8 Perspective and Future Work

Margrave is a general-purpose policy analyzer. Its most
distinctive features lie in and arise from embracing sce-
nario finding over first-order models. First-order lan-
guages provide the expressive power of quantifiers and
relations for capturing both policies and queries. Expres-
sive power generally induces performance cost. By au-
tomatically computing universe bounds for key queries,
however, Margrave gets the best of both worlds: first-
order logic’s expressiveness with propositional logic’s
efficient analysis. Effectively, Margrave distinguishes
between propositional models and propositional imple-
mentations. Most logic-based firewall-analysis tools
conflate these choices.

First-order modeling lets Margrave uniformly capture
information about policies at various levels of granular-
ity. This paper has illustrated relations capturing pol-
icy decisions, individual rule behavior, and the effects
of NAT and internal routing. The real power of our
first-order modeling, however, lies in building new re-
lations from existing ones. Each of the relations captur-
ing behavior internal to a firewall (passes-firewall,

internal-routing, and int-dropped) is defined
within Margrave’s query language and exported to the
user through standard Margrave commands. While
our firewall compilers provide these three automatically,
users can add their own relations in a similar manner.
Technically, Margrave allows users to define their own
named views (in a database sense) on collections of poli-
cies. Thus, Margrave embraces policy-analysis in the se-
mantic spirit of databases, rather than just the syntactic
level of SQL-style queries.

Useful views build on fine-grained atomic informa-
tion about policies. Margrave’s unique decomposition of
IOS configurations into subpolicies for nine distinct fire-
wall functions provides that foundation. Our pre-defined
firewall views would have been prohibitively hard to
write without a clean way to refer to components of fire-
wall functionality. Margrave’s intermediate languages
for policies and vocabularies, in turn, were instrumental
in developing the subpolicies. Both languages use gen-
eral relational terms, rather than domain-specific ones.
Vocabularies allow authors to specify decisions beyond
those typically associated with policies (such as Permit
and Deny). Our IOS compiler defines separate deci-
sions for the different types of flows out of internal rout-
ing, such as whether packets are forwarded internally or
translated to another interface. The routing views are de-
fined in terms of formulas capturing these decisions. The
policy language defines the formulas through rules that
yield each decision (our rule language is effectively strat-
ified Datalog). Had we defined Margrave as a firewall-
specific analyzer, rather than a general-purpose one, we
likely would have hardwired domain-specific concepts
that did not inherently support this decomposition.

User-defined decisions and views support extending
Margrave from within. Integrating Margrave into a
programming language supports external extension via
scripting over the results of commands. Margrave pro-
duces scenarios as structured (XML) objects that can
be traversed and used to build further queries. SHOW
REALIZED produces lists of results over which programs
(such as superfluous rule detection in Section 2) can it-
erate to generate additional queries. Extending our inte-
gration with iterators over scenarios would yield a more
policy-specific scripting environment.

In separate projects, we have applied Margrave to
other kinds of policies, including access-control, simple
hypervisors, and product-line configuration. Margrave’s
general-purpose flexibility supports reasoning about in-
teractions between firewalls and other types of policies
(increasingly relevant in cloud deployments). This is an-
other exciting avenue for future work.

Margrave’s performance is reasonable, but slower than
other firewall analyzers. This likely stems partly from
additional variables introduced during the encoding into
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propositional logic. In particular, we expect Margrave
will scale poorly to large networks of firewalls, as our
formulas grow linearly with the number of firewalls. Our
use of SAT-solving instead of BDDs may be another fac-
tor, though Jeffrey and Samak’s comparisons between
these for firewall analysis [16] are inconclusive. Ex-
ploring alternative backends—whether based on BDDs
or other first-order logic solvers—is one area for future
work. However, we believe the more immediate ques-
tions lie at the modeling level. For example:

• Firewall languages include stateful constructs such
as inspect. Existing firewall analysis tools, includ-
ing Margrave, largely ignore state (we are limited to
reflexive ACLs). How do we effectively model and
reason about state without sacrificing performance?

• Modeling IP addresses efficiently is challenging.
Many tools use one propositional variable per bit;
Margrave instead uses one per IP address. This
makes it harder to model arithmetic relationships
on IP addresses (i.e., subranges), though it provides
finer-grained control over which IP addresses are
considered during analysis. Where is the sweet-spot
in IP-address handling?

Margrave is in active development. We are extend-
ing our firewall compilers to support VPN and BGP. We
would like to automatically generate queries for many
common problems (such as overshadowing rule detec-
tion and change-impact). Section 2 also hinted at a prob-
lem with reusing queries in the face of policy edits: the
compiler names rules by line-numbers, so edits may in-
validate existing queries. We need to provide better sup-
port for policy-management including regression testing.
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Abstract
Role-based access control (RBAC) has significantly

simplified the management of users and permissions in
computing systems. In dynamic environments, systems
are subject to changes, so that the associated configura-
tions need to be updated accordingly in order to reflect
the systems’ evolution. Access control update is com-
plex, especially for large-scale systems; because the up-
dated system is expected to meet necessary constraints.

This paper presents a tool, RoleUpdater, which an-
swers administrators’ high-level update request for role-
based access control systems. RoleUpdater is able to au-
tomatically check whether a required update is achiev-
able and, if so, to construct a reference model. In light
of this model, administrators could fulfill the changes to
RBAC systems. RoleUpdater is able to cope with prac-
tical update requests, e.g., that include role hierarchies
and administrative rules in effect. Moreover, RoleUp-
dater can also provide minimal update in the sense that
no redundant changes are implemented.

1 Introduction

Role-based access control (RBAC) [11, 35] simplifies ac-
cess control management. In an RBAC system, users are
assigned to roles such as manager and employee, and a
role in turn is defined as a set of permissions. The key to
RBAC is that users are assigned to roles and thus ob-
tain roles’ permissions, instead of being assigned per-
missions directly. Essentially, an RBAC configuration
manages three kinds of relations: a user-role relation, a
role-role relation, and a role-permission relation. The
user-role relation assigns users to roles. The role-role
relation describes how roles’ permissions are inherited
by other roles. The role-permission relation describes
which permissions are accorded to each role. An RBAC
system consists of two components, the RBAC config-
uration and the administration configuration. A running

example RBAC system, which is used throughout the pa-
per, is comprised of the RBAC configuration in Figure 1
and the administration configuration in Figure 2.

The role-role relation needs to be a partial order over
roles; usually we refer to the role-role relation as a role
hierarchy. The role hierarchy embodies two inheritance
relationships among roles. Take the RBAC configuration
in Figure 1 for example. (r1, r7) belongs to the hierarchy
and we say r1 is senior to r7; it means that r1 inherits all
permissions of r7 (i.e., p3 and p4) and that all members
of r1 are also members of r7 or in other words, r7 inherits
all users of r1.

RBAC is able to model a wide range of access con-
trol requirements, including discretionary and mandatory
access control policies [30]. Hence, RBAC is widely
supported in commodity operating systems and database
systems [15, 17, 25], and is deployed inside many orga-
nizations [37].

We call a snapshot of an RBAC system an RBAC
state. We denote the current state of the running exam-
ple RBAC system as γ. Administrators can perform ad-
ministrative actions to take an RBAC system from one
RBAC state to another. Usually, the administration con-
figuration is supposed to be static; that is, only the RBAC
configuration may be changed. The actions available to
administrators we consider are two types:

• admin assign p to r, and

• admin revoke p from r.

Administrators’ powers are regulated by the administra-
tion configuration. We support variants of the PRA97
component of the ARBAC97 administrative model for
RBAC [34]. The administrative model is instantiated by
a set of assignment rules and a set of revocation rules.
Figure 2 presents the administration configuration of γ.
An assignment rule is of the form “ar can assign p to r
if p assigned to c”, which means an administrator in role
ar can assign a permission p to r, if p is also assigned to
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r1  r2  r3 r4 r5 r6 

p1  p2  p3  p4  p5 p6 p7 p8 p9 

r8r7 

u1  u2  u3 u4 

Figure 1: An example RBAC configuration. Users are represented as ellipses, roles as circles, and permissions as
rectangles. Arrows between users and roles denote user-role assignments, arrows between roles and permissions
denote role-permission assignments, and dashed arrows between roles denote role-role relationships (role hierarchy).

c. The expression c is constructed by roles and the con-
nector ∧. For example, consider the rule “ar2 can assign
p to r1 if p assigned to r2 ∧ r3”; then the administrator
admin2 can assign a permission p to r1 if p is assigned
to r2 and r3.1 A revocation rule is of the form “ar can
revoke p from r”, expressing that an administrator in role
ar can revoke a permission p from r.

Update of RBAC systems is complex and challeng-
ing, especially for large-scale RBAC deployments. Ex-
isting tools mainly help administrators analyze and man-
age the RBAC system; they put little emphasis on sug-
gesting to administrators how to configure the system.
As shown in Figure 3a, with existing tools, administra-
tors may have to update the system in a manual way. Fig-
ure 3b shows a typical process of manual update when
one administrator is present. The administrator first de-
termines and specifies, in some language, the update ob-
jective and the constraints that the final resulting system
should satisfy. Usually, an update objective is initially
formulated as high-level objectives (e.g., being able to
assign {p5, p8, p9} to a user) . Arbitrary update may hin-
der the security and availability of the RBAC system. For
example, revocation of a doctor’s permission to write to
a patient’s medical record as a result of updating is not

1Consider, for example, the following situation: an administrator
wants to enable an engineer to release the source code of a piece of
software; however, the administrator can not do so unless the product
manager and the quality manager are authorized to release the source
code.

assignment rules:
ar1 can assign p to r6

if p assigned to r1 ∧ r2;
ar2 can assign p to r1

if p assigned to r2 ∧ r3;
ar2 can assign p to r1

if p assigned to r2 ∧ r4;

ar0 can assign p to r1;
· · ·

ar0 can assign p to r6;

revocation rules:
ar1 can revoke p from r4;
ar1 can revoke p from r6;
ar2 can revoke p from r1;
ar2 can revoke p from r2;
ar2 can revoke p from r3;
ar3 can revoke p from r5;
ar3 can revoke p from r6;

ar0 can revoke p from r1;
· · ·

ar0 can revoke p from r6;

administrative role assignments:
admin0 in ar0; admin1 in ar1;
admin2 in ar2; admin3 in ar3;

Figure 2: An example administration configuration.

2
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acceptable.
To modify system configurations, an administrator

needs to observe the system and the constraints, and de-
vises an update plan, which consists of a sequence of ad-
ministrative actions. The administrator implements those
actions, which take the system to a new state. There is
no guarantee that all constraints are met and that this new
state is the desired one. Hence, the administrator pro-
ceeds to check if these two conditions hold. When either
one does not hold, the administrator may need to undo
some previous actions and repeat the process. Roughly
speaking, this is a trial-and-error approach. For large
and complex systems, one can fail to achieve update af-
ter several trials; in this case, the question is whether to
give up or not. Thus there arises a question: is the up-
date achievable at all? An answer to this question helps
the administrator make proper decisions. A positive an-
swer implies that the update can be achieved and that the
administrator should persevere in trying, whereas a neg-
ative one saves the administrator from continuing with
pointless attempts.

On the other hand, suppose that the administrator fi-
nally manages to update the system without violating
constraints. In this case, how different is the updated
system from the original one? The less different it is, the
more easier for one to understand and maintain the sys-
tem, and thus the more preferable the update is. In other
words, we may pursue an update that incurs minimal dif-
ferences.

When multiple administrators are involved, the prob-
lem become more complicated. The actions an admin-
istrator can take might depend on others’ actions. That
is, administrators have mutual influence on each other
in terms of administrative power. Cooperation among
administrators is required in this case, which increases
the complexity and cost of manual update. In summary,
manual administration for update is work-intensive, in-
efficient and, when the objective is not achievable at all,
very frustrating.

Access control update is demanded when security re-
quirements are changed. In addition, RBAC systems
may need updating in response to the following devel-
oping situations:

Misconfiguration Repair Misconfigurations in access
control systems can result in severe consequences
[4]. In a health-care situation, for instance, lack of
legal authorization could lead to the delay of treat-
ment. Modern access control systems include hun-
dreds of rules, which are managed by different ad-
ministrators in a distributed manner. The increas-
ing complexity of access control systems gives rise
to more likelihood of misconfigurations [2, 3]. As
such, correcting misconfigurations is essential to
systems’ usability and security. Updating is neces-
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(b) Workflow of manual update.

Figure 3: Illustration of updating without RoleUpdater.

sary when misconfigurations in RBAC systems are
detected.

Task Assignments To accomplish a task, a set of per-
missions should be assigned to a set of users to em-
power them to perform task operations [13]. For
a new task, it is likely that the present RBAC con-
figuration fails to enable exactly the needed user-
permission assignments. In this case, administrators
may resort to adjusting role configurations.

Property satisfaction An RBAC system should ex-

3
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hibit various properties, including simple availabil-
ity/safety and containment availability/safety [14,
22, 23, 24]. A simple availability/safety prop-
erty asks whether a user Alice has a permission,
e.g., access to a confidential file. Containment
safety properties encode queries such as whether
any user who can access printers are members of
staff, whereas containment availability properties
may ask whether all students have permission to use
a library.

If an RBAC system was not designed with these
properties in mind, it is unlikely that all properties
would happen to hold. Particularly, for legacy sys-
tems, there is no guarantee of automatic establish-
ment of security properties when they are migrated
to RBAC management. On the other hand, even
if all desired security properties hold currently, re-
quirements are not static. For example, it may be
desired that now only managers, instead of employ-
ees, have access to an internal document. To assure
these properties, one may have to update the RBAC
system.

Updating is a key component of maintenance in the
RBAC life-cycle [18], and accounts for a great propor-
tion of the total cost of maintenance [29]. RoleUpdater
assists administrators with update tasks. As shown in
Figure 4a, prior to updating the system, the administra-
tor first interacts with RoleUpdater, and then manipulates
the system using suggestions from RoleUpdater. Figure
4b shows the workflow of updating with RoleUpdater.
The administrator still needs to specify the update con-
straints, and invoke RoleUpdater with the request. Role-
Updater checks, in an automatic way, whether the request
achievable or not; and if so, a sequence of actions, which
take the system to the expected state, is reported. Role-
Updater can also deal with the case where multiple ad-
ministrators are involved.

RoleUpdater makes novel use of model checking tech-
niques [6]. Figure 5a illustrates the basic idea of model
checking. A model checker takes a description of a sys-
tem and a property as inputs, and examines the system
for the property. If the system exhibits the property, the
checker reports that the property is true. If the system is
found to lack the property, the model checker produces
one counter-example. The counter-example, usually a
sequence of system state transitions, explains how the
system transits to a state where the property fails. Figure
5b illustrates how to use model checking as the basis for
update. We check the property that the requested state is
never reached; when the property does not hold, one is
not only informed of the existence of an update but also
a counter-example that corresponds to the update. Role-
Updater transforms update problems into model check-
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Figure 4: Illustration of updating with RoleUpdater.

ing problems, where the failure of the model is synony-
mous with existence of a solution:

• if the property is determined to be true, the update
objective is not achievable;

• otherwise, the model checker returns a counter-
example, from which an update is constructed.

RoleUpdater employs NuSMV [5] to perform model
checking. NuMSV is a open-source symbolic model
checker. For better performance, a collection of reduc-
tions and optimization techniques are implemented in
RoleUpdater.

The rest of this paper is structured as follows. Re-
lated works are given in Section 2. We demonstrate the
use of RoleUpdater by showing how it handles a high-
level update request specification in Section 3. Section 4
presents the design and implementation of RoleUpdater.
We show some experimental results of running RoleUp-
dater in Section 5, illustrating its effectiveness and effi-
ciency. Section 6 concludes the paper.
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(a) The basic illustration of model checking.
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Figure 5: Illustration of model checking and its usage for
updating.

2 Related Work

RBAC administration and analysis Many convenient
RBAC administration models (e.g., [8, 21, 34]) are at

our disposition. They provide significant advantages in
access control management. They define administrative
rules, e.g., specifying which administrator can perform
what operations. However, high-level update is rarely
supported. It is generally difficult and error-prone, be-
cause usually the resulting state is expected to meet var-
ious constraints.

To help administrators understand RBAC policies,
various RBAC policy analysis tools (RPATs) have been
invented [4, 14, 23, 38, 39, 44]. RPATs usually answer
if an RBAC system satisfies a property. However, little
effort has been devoted to answering the question: what
if the RBAC system fails to meet the property? When
administrators find abnormalities with RPATs, RoleUp-
dater can assist in correcting them.

Most security analysis problems in literature basically
can be stated as: given the current state γ, a query q (e.g.,
whether accesses to internal documents are only avail-
able to employees), and a state-change rule ϕ, can γ be
taken to a state γ′ where q evaluates to true? If this is
the case, the steps taking γ to γ′ may also be reported
to administrators so that they can follow them to make
γ′. However, as the objectives are different, we believe
this kind of reporting could hardly be considered suffi-
cient for the role updating problem. RPATs’ objective is
to analyze the system. So, their input is just the property
to be examined. By contrast, RoleUpdater aims to up-
date the system; the input is the update request. RPATs
explore every possible sequence of actions, as long as
they are allowed by ϕ, to test if there is such a γ′ where
q is true. In this case, administrators do not have any
control of the resulting state. By contrast, RoleUpdater
seeks a resulting state that complies with administrators’
request. In addition, most RPATs focus on user-role as-
signments. Although it is argued that the role-permission
relation might be treated similarly to the user-role rela-
tion, the role-permission relation also deserves its own
attention [29], especially in terms of role updating.

Various access control properties are proposed and
verification schemes are devised to check the satisfia-
bility of properties. In [23], authors propose a tool to
answer a set of interesting properties, including sim-
ple availability/safety, bounded safety and containment
availability/safety. The tool provides a means to guaran-
tee that security requirements are always met as long as
trusted users abide by certain behavior patterns [22, 23].
However, an assumption is needed for the usage of se-
curity analysis: the properties hold in the current RBAC
state [22, 23]. As mentioned above, this is not always
the case. Role updating can be used to adjust the cur-
rent RBAC state so as to exhibit desired properties, while
keeping the changes to the customized extent.
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1 update
2 make P = {p5, p8, p9} available via T = {r1, r2, r3, r4, r5, r6}
3 with
4 administrators admin1, admin2;
5 user-permission constraints
6 (u1, no-less-than {p1}, no-more-than {p1, p3, p4}),
7 (u2, no-less-than {p1, p3, p4, p5}, no-more-than {p1, p3, p4, p5}),
8 (u3, no-less-than {p3, p4, p5}, no-more-than {p3, p4, p5, p6, p8}),
9 (u4, no-less-than {p7, p8, p9}, no-more-than {p3, p5, p6, p7, p8, p9});

10 restricted-role constraints
11 (r4, no-less-than {p6, p7}, no-more-than {p6, p7, p8, p9}),
12 (r8, no-less-than {p5, p6}, no-more-than {p5, p6});
13 role-hierarchy = {(r2, r8), (r3, r7)};
14 minimal;

Figure 6: An example high-level update request specification.

Role engineering Role engineering attracts much re-
search effort [7, 10, 26, 40, 41, 45]. Existing role
engineering tools (eRETs) take user-permission assign-
ments as input and output user-role assignments and role-
permission assignments. eRETs may take into account
some other information such as business meanings, se-
mantics, and users’ attributes. Taxonomically, RoleUp-
dater can be viewed as a role engineering tool. How-
ever, role updating works when RBAC states have been
defined and possibly deployed, whereas eRETs usually
define roles from scratch. The focuses are also different.
Role updating aims to answer administrators’ question
whether an update is achievable with respect to update
constraints and how to generate one, if any. By contrast,
eRETs put more emphasis on how to define an appro-
priate set of roles. In the context of a role life cycle,
RoleUpdater is for role maintenance, while eRETs help
with role design. Thus, one may consider RoleUpdater
as a complement to eRETs; RoleUpdater can be used to
fine-tune the ideal state generated by eRETs.

RBAC udpate Ni et al. [29] studied the role adjust-
ment problem (RAP) in the context of role-based provi-
sioning via machine-learning algorithms. Though sim-
ilar, the role updating problem differs from the RAP
in several aspects. First, customized constraints on up-
dates are enforced in RoleUpdater, whereas it is unclear
if these constraints could be supported in RAP. Second,
our role updating is request-driven, whereas RAP is a
learning process. RAP and RoleUpdater are both assis-
tant tools for administrators but with different usage and
orientation.

Fisler et al. [16] investigated the semantic difference
of two XACML policies and the related properties. How-
ever, they do not consider how to make a different de-
sired state from the current one. Ray [32] studied the

admin2 assign p8 to r1;
admin2 assign p8 to r2;
admin1 assign p8 to r6;
admin2 revoke p8 from r1;
admin2 revoke p8 from r2;
admin1 revoke p6 from r6;
admin2 assign p5 to r1;
admin1 assign p5 to r6;
admin2 revoke p5 from r1;

Figure 7: The update returned by RoleUpdater when run-
ning with the request in Figure 6.

real-time update of access control policies, in the context
of database systems. They focused on transaction prop-
erties, instead of RBAC policies.

3 High-Level Update Request Specifica-
tions

We do not consider the update of user-role assignments,
because users’ role memberships are determined by their
attributes, jobs, titles, etc. When this information is re-
newed, administrators can accomplish user-role assign-
ments straightforwardly.

Suppose the administrators want to update the RBAC
configuration in Figure 1. Suppose further that the ad-
ministrators specify the update request as in Figure 6.
This specification expresses the customized conditions
on the potential updated system. In the rest of this sec-
tion, we illustrate the use of RoleUpdater through this ex-
ample. Running with this example, RoleUpdater returns
the steps, as shown in Figure 7, that the administrators
can follow to make the changes; in the updated state, the
administrators can assign {p5, p8, p9} to users via r6.

6
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Administrative power Line 4 specifies which admin-
istrators are going to update the system. As mentioned
before, it is common for administrative rules to regulate
administrators’ operations; that is, administrators have
limited administrative power. A proposed update does
not make sense unless the needed changes lie within ad-
ministrators’ capabilities.

RoleUpdater appears more useful when multiple ad-
ministrators are involved. Observe the five actions by
admin1 and admin2: admin2 assigns p8 to r1 and r2,
admin1 assigns p8 to r6, and admin2 revokes p8 from
r1 and r2. These interleaving operations require close
cooperation between admin1 and admin2 and careful
examination. By contrast, RoleUpdater takes the cooper-
ation among administrators into account automatically.

Suppose that we replace Line 4 with the following.

administrators admin3;

That is, the administrator admin3, instead of admin1

and admin2, wants to update the system. Then RoleUp-
dater suggests an alternative: first revoke p6 from r5 and
then revoke p6 from r6. However, admin1 and admin2

are not authorized to perform this alternative. Note that
administrators’ powers are configured in Figure 2.

Controllable effects Administrators should be able to
confine the effects of an update. With RoleUpdater, ad-
ministrators can specify a certain set of users U and de-
fine what changes could happen to users’ permissions.
For example, Alice at least has access to files under
“/foo/bar1” but at most “/foo/bar1” and “/foo/bar2”. Line
5 to Line 9 are constraints on users’ permissions after up-
date. For example, by Line 6, administrators requires that
u1 have at least permission p1, but at most p1, p3, and p4

in the potential new state. Note that users still obtain per-
missions via roles and even that users’ role assignments
remain the same.

For another example, Line 7 prescribes that u2’s per-
missions are exactly {p1, p3, p4, p5}. Consider the solu-
tion in Figure 7; administrators have to revoke p8 from
r1, for u2 is assigned to r1 and cannot have permission
p8, as required by Line 7.

By properly specifying constraints, administrators
guarantee the tasks associated with users in U progress
smoothly. Suppose that u2 and u4 cooperate to finish
a task t, which requires that u2 and u4 are entitled to
privileges {p1, p3, p4, p5} and {p7, p8, p9}, respectively.
Then Line 7 and Line 9 guarantee that the updated state,
if any, would not disable t.

When administrators are specifying U, U often con-
tains those users for whom the administrators are not
responsible so that they have to ensure that the poten-
tial update does not affect such users, and/or those users

whose permissions are designated by the administrators
and vary within a range. For users outside the set U,
their current role assignments and permissions in γ are
neglected by RoleUpdater; that is, updates may change
their role-assignments and permission-assignments.

Restricted update The principle of least privilege is
important in computer security and well supported by
RBAC. Users activate only the roles necessary to finish
the underlying work, but not all assigned roles. For ex-
ample, a user Alice may activate the role manager when
she wants to evaluate an employee under her department,
and activates the employee role for routine works. As a
result, upper bounds should be put on roles’ permission
sets in compliance with the least privilege principle. On
the other hand, some roles are designed with expected
functions; users should be able to perform a particular
job with such a role. If associating with the role a set
of permissions less than necessary, administrators may
make the role useless. Hence, it would be handy if ad-
ministrators are able to set the permission sets of certain
roles within a range.

Line 10 to Line 12 shows constraints on roles’ per-
missions after update. For each selected role (e.g., r4),
administrators can impose a lower bound (e.g., {p6, p7})
and an upper bound (e.g., {p6, p7, p8, p9}) on the role’s
permissions. RoleUpdater assures that the role is as-
signed to permissions no less than those in the lower
bound and also no more than those in the upper bound.

A requirement is that, the upper bound (or the lower
bound) of the range should be a superset (or subset) of
the set of all permissions that r is currently assigned in
γ. This is reasonable, because the permissions r has cur-
rently in γ are enough to make it useful. We also find
that, without this requirement, RoleUpdater’s efficiency
degrades.

Line 12 indicates that r8’s permissions must still be
{p5, p6} after update, because the lower bound equals
the upper bound. We call roles like r8 invariant roles.
Despite the importance of update, it is likely that admin-
istrators demand some roles be invariants in order to, for
example, preserve roles’ intuitions, business meanings or
definitions. In this case, by letting the lower bound of r
be its upper bound, administrators request RoleUpdater
to find an update which does not change r’s permission
assignments. In other words, RoleUpdater may change
those non-invariant roles’ permission assignments in the
hope to find an update. In practice, non-invariant roles
are usually the ones under administrators’ control; oth-
erwise, even though an update is found, administrators
would not be able to implement it and thus the update is
of little value.

If the administrators impose another restricted-role

7



66	 LISA ’10: 24th Large Installation System Administration Conference	 USENIX Association

admin2 assign p8 to r1;
admin2 assign p8 to r2;
admin1 assign p8 to r6;
admin2 revoke p8 from r1;
admin2 revoke p8 from r2;
admin1 revoke p6 from r6;
admin2 revoke p3 from r3;
admin2 revoke p4 from r3;

Figure 8: An alternative when the role hierarchy (r3, r7)
is not required.

constraint besides those in Figure 6.

(r6,no-less-than {p6, p9},
no-more-than {p6, p9})

Then RoleUpdater reports that the requested update does
not exist, which is indeed the case.

Role hierarchy Role hierarchy is recognized by the
proposed NIST standard for RBAC as one of the fun-
damental criteria [11]. It further mitigates the burden of
security administration and maintenance. Usually, there
could be a natural mapping between role hierarchy and
organization’s structure. It is imprudent to alter a role hi-
erarchy arbitrarily. Administrators can ask RoleUpdater
to preserve the whole or part of the original role hierar-
chy. Line 13 tells that r2 and r3 are still senior to r8 and
r7, respectively, in the updated system.

The requirement that r3 be senior to r7 stops RoleUp-
dater from suggesting another solution, as shown in Fig-
ure 8. If following this approach, administrators can as-
sign {p5, p8, p9} via r3 and r6; however, r3 is no longer
a senior role of r7.

Minimal update As long as an update is implemented,
some changes are made to the system. When two update
solutions are available, which one is more preferable?
One perspective is to compare the changes they recom-
mend. The fewer changes are needed, the closer the re-
sulting state to the original state. Ideally, we may find an
update such that none of its changes is redundant; that is,
failure to implement any change thereof gives rise to a
disqualified state. We say the update is minimal.

Minimal update is valuable in several ways. First of
all, minimal update causes few difficulties for admin-
istrators to understand the new RBAC state. The ad-
ministrators are responsible for the maintenance of the
RBAC system. It is essential for them to comprehend
the system’s behavior. We can assume that administra-
tors understand the system well before updating. How-
ever, changes to the system configuration have the po-

admin2 assign p8 to r1;
admin2 assign p8 to r2;
admin1 assign p8 to r6;
admin2 revoke p8 from r1;

admin1 revoke p6 from r6;
admin2 assign p5 to r1;
admin1 assign p5 to r6;
admin2 revoke p5 from r1;

Figure 9: Update in response to the request in Figure 6
but without the minimality requirement.

tential to obfuscate the system. Obviously, a smaller gap
between the updated state and the original one usually
means a smaller degree to which administrators have to
re-examine and re-learn the system.

Secondly, minimal update possibly preserves more
previously computed analysis results. It is reasonable to
assume that the current RBAC state satisfies necessary
properties (otherwise, it should have been adjusted). It is
likely that more properties might be preserved with min-
imal update. Finally, minimal update is also desirable
when authorization recycling is deployed in access con-
trol implementation [42, 43].2

In RoleUpdater, administrators can choose to require
each returned update to be minimal in the sense that no
change is redundant. However, there is a tradeoff be-
tween doing this and incurring extra computing over-
head. In Figure 6, Line 14 indicates administrators’ will-
ingness to find a minimal update. If turning the minimal
requirement off, RoleUpdater would possibly not insist
on the revocation of p8 from r2, for p8 being assigned
to r2 does not contradict with the constraints. That is,
RoleUpdater returns the update in Figure 9.

4 Design and Implementation

Figure 11 shows the architecture of RoleUpdater. Its in-
terface accepts administrators’ input and parses the re-
quest. We say a request is canonical if (1) all administra-
tive operations are available, (2) users’ permissions are
required to remain unchanged, and (3) no role hierarchy
is required to be preserved. Figure 10 shows an example
canonical request, where Pi is the set of permissions that
user ui has prior to updating.

2Authorization decision-making is time-consuming and costly. Au-
thorization recycling caches the authorization decisions that are made
previously and infer decisions for forthcoming authorization requests.
As an important mechanism for access control implementation, autho-
rization recycling makes use of “cache” to enhance performance; there,
policy update is a major concern. For details, readers are referred to
[9, 42, 43].
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update
make P available via T
with
administrators all-administrators
user-permission constraints

(u1, no-less-than P1,
no-more-than P1),

(u2, no-less-than P2,
no-more-than P2),

· · ·;
restricted-role constraints ∅;
role-hierarchy = ∅;

Figure 10: An example canonical request.
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Figure 11: The architecture of RoleUpdater.

If canonical, the request is forwarded to the NuSMV
Translator; otherwise, it is first processed by the Update
Transformer, where non-canonical requests are trans-
formed into canonical ones. Afterwards, the NuSMV
Translator converts requests into NuSMV programs.
The NuSMV Controller invokes NuSMV to execute
those programs. According to the results returned from
NuSMV, the Update Constructor generates an update
report, either a sequence of administrative operations
which lead to desired RBAC system state or a message
that the request is unachievable.

Algorithm 1 presents RoleUpdater’s pseudo-code.
Line 2 belongs to the Interface module. Line 3 repre-
sents the Update Transformer. Line 4 and Line 5 are
the main components of the NuSMV Translator module.
Normally, the NuSMV Translator would create a set G of
NuSMV programs for each canonical request. However,
since the execution of the NuMSV programs translated

directly from the request easily result in state explosions
and memory crashes, some reductions are performed in
advance [12]. The set G has the property: an update is
found, if and only if, the run of NuSMV with at least one
program in G reports a counter-example. As indicated by
Line 6, on receiving the NuSMV programs, the NuSMV
Controller schedules NuSMV programs in increasing or-
der by the number of variables, because NuSMV’s per-
formance highly depends on the number of variables in
the input program. The NuSMV Controller proceeds to
execute each program with NuSMV; if any execution re-
turns a counter-example, it informs the Update Construc-
tor of the counter-example. The Update Constructor gen-
erates the needed update and administrative operations
necessary to institute the changes (Line 10 to Line 12).
If minimal update is required, further processing (Sec-
tion 4.3) will be done. In the rest of this section, we give
details of each component.

4.1 Handling non-canonical requests
We tried to use the model checking approach directly to
evaluate non-canonical update requests. Our experience
is that, an extensive number of variables are needed to
model complex requests, which often gives rise to state
explosions and memory crashes. The reasons are two-
fold. First, non-canonical requests enable much more po-
tential combinations of role-permission assignments than
canonical requests do. Second, some reductions in [12]
are not applicable to non-canonical ones. It is not clear
how to reduce non-canonical requests effectively.

Consider a non-canonical update request issued
against γ in Figure 12. Non-canonical requests are
transformed into canonical ones by adding dummy ele-
ments (e.g., users, roles, user-role assignments, and role-
permission assignments) to γ; these dummy elements
simulate those non-canonical conditions on the update.
Usually, the obtained RBAC state, against which the
canonical request is checked, is more complicated than
γ. Fortunately, the construction is polynomial. We trade
off the simplicity of RBAC states for the ability to cope
with complex updates. By this modeling, we need only
to focus on one unified problem: evaluating canonical
requests.

4.2 NuSMV program generation
NuMSV is the symbolic model checker that RoleUp-
dater employs to perform model checking. The NuSMV
Translator converts update requests into NuSMV pro-
grams. A set of boolean variables are defined to model
the RBAC system. To use NuSMV, let φ denote the state-
ment that a user could acquire exactly the permissions in
P via roles in T ; we ask if ¬φ is always true in all reach-

9
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Algorithm 1: Algorithm of RoleUpdater.
Input: High-level update request H , γ, and NuSMV property type: “AG” or “AX AG”
Output: update report
begin1

/* Parse(H ,Q) parses H and reads information into Q; it returns a boolean value
showing if any error happened. */

if !Parse(H , Q) then show error message;2
if Q is non-canonical then Q ←TransCanonical(Q);3
/* perform reductions on Q */
Reduce(Q);4
G ←TransNuSMV(Q, type);5
/* NuSMV’s performance highly depends on the number of variables in the input

program; so schedule NuSMV programs in increasing order by the number of
variables. */

S G ←Schedule(G);6
foreach g ∈ S G do7

Invoke g with NuSMV;8
if a counterexample is returned then9

construct an update γ′ from the counter-example;10
if Minimal update is required then γ′ ←Minimize(Q, γ, γ′);11
/* compute the needed administrative operations that take the RBAC system

from γ to γ′
*/

AdminOp ←computeAdminOperation(γ, γ′);12
show AdminOp and γ′;13
return γ′;14

show “update unachievable” report;15
return ε;16

end17
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Figure 12: An illustration of the transformation from
non-canonical update requests to canonical ones.

able (NuSMV) states;3 If it evaluates as true, the user
can never obtain exactly all permissions in P via roles
in T , indicating that one cannot fulfill the request with-
out violating the update constraints. Otherwise, NuSMV
will generate a counter-example, from which RoleUp-
dater constructs an update.

In the current implementation of RoleUpdater, only
boolean variables and TRANS declarations are used. An
RBAC state is represented by a valuation of boolean vari-
ables, whereas TRANS declarations capture transitions
among RBAC states. Further explorations of NuSMV
features and other model checking techniques could im-
prove RoleUpdater’s efficiency.

4.3 Minimal Update

Interestingly, the minimal update can be obtained in the
same way we seek an update. Once an update is found,
denote the RBAC state after update as γ′. As illustrated
in Figure 13, if a role-permission assignment appears
in exactly one of γ and γ′, this assignment is changed

3φ is defined over the boolean variables. The checked property is
AG¬φ, where A means always and G means globally; AG¬φ is a
CTL (Computational Tree Logic) formula, which is used to specify
properties in NuSMV.

10
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(either removed or added); denote the set of all such
changed assignments as CA. Then the minimal update
requirement is to determine if all changes in CA are nec-
essary. The basic idea is to ask if the same goal could
be achieved with a proper subset of CA. To answer
this, we define variables to simulate CA and treat assign-
ments outside CA as constants. This is done by adding
dummy elements and imposing new update constraints.
A new update request is issued against RoleUpdater; this
request is the same as the original one except that new
restricted-role constraints are added.

However, the checked property is whether, starting
from the next state of γ′, all reachable states satisfy ¬φ.4

If so, then γ′ itself is minimal. Otherwise, from the re-
turned counter-example, we could obtain γ′′. This γ′′

is closer to the minimal update than γ′, because only a
proper subset of CA is implemented. Note that this is
a recursive process; and thus a minimal update could be
reached.

Take the request in Figure 6 for example. Figure 14
shows an example calling stack of RoleUpdater. Re-
ceiving a request with the minimality requirement, Role-
Updater first removes this requirement and searches for
an update. Suppose that RoleUpdater finds the up-
date shown in Figure 9; it proceeds to compute CA,
which is CA = {(r6, p8), (r2, p8), (r6, p5), (r6, p6)}.
By composing a new update request, RoleUpdater goes
on checking if there exists such an update that the result-
ing changes are a proper subset of CA. This starts a re-
cursive call. Then the same processes are applied. This
time, an update shown in Figure 7 is found and CA is
computed to be {(r6, p8), (r6, p5), (r6, p6)}. Again, an-
other round commences. This time, RoleUpdater could
not find any update, which implies that the update in Fig-
ure 7 is minimal; RoleUpdater returns this update in re-
sponse to the original request.

5 Experiments

We implemented a prototype of RoleUpdater in
Java. Experiments were performed with randomly-
generated RBAC systems on a machine with an Intel(R)
Core(TM)2 CPU T5500 @ 1.66GHz, and with 2GB of
RAM running Microsoft Windows XP Home Edition
Service Pack 3.

Data generation
To generate each RBAC system, we adapted algorithms
from [41, 45]5; γ is parameterized by noU (the number
of users), noR (the number of roles), noP (the number

4In NuSMV, this is expressed by AXAG¬φ in CTL.
5The latter is accessible via http://ww2.cs.mu.oz.au/

˜zhangd/roledata/.
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1 update
2 make P = input available via T = γ.R
3 with
4 administrators all-administrators
5 user-permission constraints
6 (u1, no-less-than P1,
7 no-more-than P1),
8 (u2, no-less-than P2,
9 no-more-than P2),

10 · · ·
11 restricted-role constraints ∅;
12 role-hierarchy = γ.RH;

Figure 15: Experimental update request specification.

of permissions), noUR (the maximum number of roles
that a user may be assigned to), and noRP (the maxi-
mum number of permissions that a role may be assigned
to). γ’s user-role relation (resp. γ’s role-permission re-
lation) is generated by associating a number k of roles
(resp. permissions) with each user (resp. role), where
k is randomly from [1, noUR] (resp. [1, noRP ]). With-
out otherwise stated, the parameters used for tests are
“noU = 2000, noR = 500, noP = 2000, noUR = 5,
noRP = 150, noReqps = 200” and the role hierarchy
is empty. One or more parameters are made variable in
each group of tests.

Update requests are parameterized by noReqps (the
number of requested permissions) and is generated by
randomly choosing a number noReqps of permissions
from γ’s permission set. We let T be γ’s role set. Figure
15 shows the experimental update request, lines of which
may be replaced in each group of tests and where Pi is
the set of permissions that user ui has prior to updating.

Results
Figure 16 shows the computing time required for each
test. Since the data set is randomly created, for each con-
figuration of parameters, we ran the test 5 times. The
times in Figure 16 are averaged over the 5 runs.

Administrative rules Figure 16a shows performance
with respect to varying number of administrative rules
(noRules). We let an administrator admin be a mem-
ber of role ar and replace Line 4 of Figure 15 with the
following.

administrators admin

Each assignment rule “ar can assign p with r if p as-
signed to c” is constructed as follows: (1) denote the
number of roles in c as |c| and we let |c| ∈ [1, 4], and
(2) randomly choose roles in c. For revocation rules “ar

 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000

 20  40  60  80  100 120 140 160 180 200

Ti
m

e 
(s

ec
)

number of rules

administrative rules

(a)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 100  200  300  400  500  600  700  800  900 1000
Ti

m
e 

(m
in

)

noR

varying percentage of extra permissions

 10%
 20%
 30%

(b)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 100  200  300  400  500  600  700  800  900 1000

Ti
m

e 
(m

in
)

noR

varying role hierarchies

1:2:3
1:1:1
3:2:1

(c)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 100  200  300  400  500  600

Ti
m

e 
(m

in
)

noR

minimal update

(d)

Figure 16: The computing time for evaluating update re-
quests.
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can revoke p from r”, r is also randomly chosen. Note
that we guarantee that rules have effects on the roles that
might be changed. The speed of RoleUpdater is quite
good as far as administrative rules are concerned. The
reasons are two-fold: (1) The transformation into canon-
ical requests is fast. (2) During the transformation, Role-
Updater only increases noU and noR but not noUR; for-
tunately, RoleUpdater is scalable to noU and noR [12].

Controllable effects To test RoleUpdater’s perfor-
mance with respect to controllable effects, we generated
a ratio α of extra permissions. For each user ui, we de-
fine the following constraint and substitute it for the cor-
responding line

(ui,no-less-than Pl,i, no-more-than Pm,i)

where Pl,i ⊂ Pi and |Pl,i| = (1 − α) ∗ |Pi|, and
Pm,i ⊃ Pi and |Pm,i| = (1+α)∗|Pi|. Extra permissions
were randomly chosen. Recall that Pi is the set of per-
missions that ui has prior to updating. Figure 16b shows
the results when α takes 10%, 20%, and 30%, respec-
tively. It seems from this experiment that RoleUpdater is
not sensitive to α, especially when noR ≤ 800.

Role hierarchy Figure 16c gives the test results when
the RBAC state involves role hierarchies. Role hierar-
chies were created in the following way. We created
three sets of roles R1, R2, and R3 such that Ri ∩Rj = ∅
for i, j ∈ [1, 3] and i �= j; we randomly created γ.RH ⊂
(R1×R2)∪(R2×R3) (where γ.RH denotes γ’s role hi-
erarchy) such that each role may have only a number h of
junior roles where h ∈ [1, 3]. This two-level layered role
hierarchy is common in practical systems [19, 27, 31].
The x-axis is |R1| + |R2| + |R3|. We tested three con-
figurations by varying |R1| : |R2| : |R3|. As the RBAC
configuration needs to be flattened, noUR is increased
by 2 on average. This results in notable overhead. How-
ever, the time taken was sensitive to the structures of role
hierarchies: almost all runs with 1 : 2 : 3 were much
faster than 3 : 2 : 1. That is, the less senior roles there
were, the faster RoleUpdater dealt with role hierarchies.

Minimal update To evaluate how well RoleUpdater
treats minimal update, the minimality requirement is in-
serted into the specification in Figure 15. Figure 16d re-
ports the computing time when minimal update is pur-
sued. Note that the time was averaged over 5 achievable
requests. When noR = 600, the computing time could
be almost 18 times greater than the case without the min-
imal update requirement. This is because RoleUpdater
has to compute a number of intermediate updates, with
the number depending on |CA|. It would be interesting

and useful to investigate how to reduce the number of
intermediate steps.

In real-world large-scale RBAC systems, we expect
that only a small portion of users have a number noUR
of roles and that the number of roles that are under spec-
ified administrators’ control will be small. Hence, we
conjecture RoleUpdater will be able to handle update re-
quests in these RBAC systems, especially with the ad-
vances in model checking.

6 Conclusion

To update an access control system, we have presented
a tool RoleUpdater, which accepts and answers high-
level update requests. Experiments confirm the effective-
ness and efficiency of RoleUpdater. We have reported
the theoretical results of RoleUpdater in [12], including
the computational complexity, the formal transformation
into model checking problem, and the reductions. How-
ever, the full-fledged RoleUpdater is first reported here.
RoleUpdater is still experimental and we regret that it is
not yet available to the public.

There are several avenues for future work. RoleUp-
dater becomes awkward when dealing with administra-
tive rules with negations, e.g., “ar can assign p if p as-
signed to r1 but not r2”. The problem with more so-
phisticated administrative models, where negative con-
ditions are allowed, deserves further investigation. In ad-
dition, separation-of-duty (SoD) policies are important
in RBAC systems; however, enforcing SoD policies is
difficult by itself [20]. The interaction between updat-
ing and SoD policies poses new challenges. On the other
hand, if a series of update requests are issued, the final
updated RBAC state may depend on the order of the re-
quests. These composite requests may take place in dis-
tributed RBAC systems. We plan to investigate proper-
ties of composite update requests and extend RoleUp-
dater to address this problem.
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Abstract

Firewalls are critical components of network security and

have been widely deployed for protecting private net-

works. A firewall determines whether to accept or dis-

card a packet that passes through it based on its pol-

icy. However, most real-life firewalls have been plagued

with policy faults, which either allow malicious traffic or

block legitimate traffic. Due to the complexity of fire-

wall policies, manually locating the faults of a firewall

policy and further correcting them are difficult. Auto-

matically correcting the faults of a firewall policy is an

important and challenging problem. In this paper, we

make three major contributions. First, we propose the

first comprehensive fault model for firewall policies in-

cluding five types of faults. For each type of fault, we

present an automatic correction technique. Second, we

propose the first systematic approach that employs these

five techniques to automatically correct all or part of the

misclassified packets of a faulty firewall policy. Third,

we conducted extensive experiments to evaluate the ef-

fectiveness of our approach. Experimental results show

that our approach is effective to correct a faulty firewall

policy with three of these types of faults.

1 Introduction

1.1 Motivation

Firewalls serve as critical components for securing the

private networks of business, institutions, and home net-

works. A firewall is often placed at the entrance be-

tween a private network and the outside Internet so that it

can check all incoming and outgoing packets and decide

whether to accept or discard a packet based on its policy.

A firewall policy is usually specified as a sequence of

rules that follow the first-match semantics where the de-

cision for a packet is the decision of the first rule that the

packet matches. However, most real-life firewall policies

are poorly configured and contain faults (i.e., miscon-

figurations) [21]. A policy fault either creates security

holes that allow malicious traffic to sneak into a private

network or blocks legitimate traffic and disrupts normal

business processes. In other words, a faulty firewall pol-

icy evaluates some packets to unexpected decisions. We

call such packets misclassified packets of a faulty fire-

wall policy. Therefore, it is important to develop an ap-

proach that can assist firewall administrators to automat-

ically correct firewall faults.

1.2 Technical Challenges

There are three key challenges for automatic correction

of firewall policy faults. First, it is difficult to determine

the number of policy faults and the type of each fault in

a faulty firewall. The reason is that a set of misclassified

packets can be caused by different types of faults and dif-

ferent number of faults. Second, it is difficult to correct

a firewall fault. A firewall policy may consist of a large

number of rules (e.g., thousands of rules) and each rule

has a predicate over multi-dimensional fields. Locating

a fault in a large number of rules and further correcting

it by checking the field of each dimension are two diffi-

cult tasks. Third, it is difficult to correct a fault without

introducing other faults Due to the first-match semantics

of firewall policies, correcting a fault in a firewall rule

affects the functionality of all the subsequent rules, and

hence may introduce other faults into the firewall policy.

1.3 Limitations of Prior Art

To the best of our knowledge, no approach has been pro-

posed for automatic correction of firewall policy faults.

The closest work to us is the technique of firewall fault

localization proposed by Marmorstein et al. [17]. Their

technique first finds failed tests that violate some security

requirements and further uses the failed tests to locate

two or three faulty rules in a firewall policy. However,

many types of faults cannot be located by their technique,

e.g., wrong order of firewall rules, which is a common

type of fault in firewall policies [21]. Furthermore, even
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if a faulty rule is located, it may not be corrected by just

changing the faulty rule. For example, if a firewall policy

misses one rule, we cannot single out a faulty rule in the

policy to correct.

Another piece of related work is fault localiza-

tion/fixing, which has been studied in software engineer-

ing for years (e.g., [1, 10, 19, 23]). The state-of-the-art

techniques in that field focus on locating/fixing a single

fault in a program. While the proposed approach in this

paper can effectively correct multiple faults in a faulty

firewall policy for three types of faults. Our work serves

as a good starting point towards policy-fault fixing.

1.4 Our Approach

To correct a faulty firewall policy, essentially we need to

correct all misclassified packets of the policy such that

all these packets will be evaluated to expected decisions.

However, it is not practical to manually find every mis-

classified packet and then correct it due to the large num-

ber of misclassified packets of the faulty policy.

The idea of our approach is that we first find some

samples of all the misclassified packets and then use

these samples to correct all or part of the misclassified

packets of the faulty policy. We propose the first compre-

hensive fault model for firewall policies. The proposed

fault model includes five types of faults, wrong order,

missing rules, wrong decisions, wrong predicates, and

wrong extra rules. For each type of fault, we propose

a correction technique based on the passed and failed

tests of a firewall policy. Passed tests are packets that are

evaluated to expected decisions. Failed tests are packets

that are evaluated to unexpected decisions. Note that the

failed tests are samples of all misclassified packets.

To generate passed and failed tests, we first employ

automated packet generation techniques [8] to generate

test packets for a faulty firewall policy. The generated

packets can achieve high structural coverage, i.e., cov-

ering all or most rules [8]. Second, administrators clas-

sify these packets into passed and failed tests by checking

whether their evaluated decisions are correct. Identifying

passed/failed tests can be automated in some situations,

e.g., when policy properties are written, or multiple im-

plementations of the policy are available. Even if this op-

eration cannot be done automatically, manual inspection

of passed/failed tests is also common practice for ensur-

ing network security in industry. For example, applying

some existing vulnerability testing tools, such as Nessus

[18] and Satan [20], does need manual inspection. In this

paper, our goal is to automatically correct policies after

we have passed/failed packets. Identifying passed/failed

tests is out of scope of this paper.

Given passed and failed tests, correcting a faulty fire-

wall policy is still difficult because it is hard to identify

the number of faults and the type and the location of each

fault in the firewall policy. To address this problem, we

propose a greedy algorithm. In each step of the greedy

algorithm, we try every correction technique and choose

one technique that can maximize the number of passed

tests (or minimize the number of failed tests). We then

repeat this step until there are no failed tests.

Our proposed approach cannot guarantee to correct all

faults in a firewall policy because it is practically im-

possible unless the formal representation of the policy

is available. However, in practice, most administrators

do not have such formal representations of their firewall

policies. To correct a faulty firewall policy without its

formal representation, administrators need to examine

the decisions of all 2104 packets1 and manually correct

each of misclassified packets; doing so is practically im-

possible. This paper represents the first step towards au-

tomatic correction of firewall policy faults. We hope to

attract more attention from the research community on

this important and challenging problem.

1.5 Key Contributions

Our major contributions can be summarized as below:

1. We propose the first comprehensive fault model

for firewall polices, including five types of faults,

wrong order, missing rules, wrong decisions, wrong

predicates, and wrong extra rules.

2. We propose the first systematic approach that can

automatically correct all or part of the misclassified

packets of a faulty firewall policy.

3. We conduct extensive experiments on real-life fire-

wall policies to evaluate the effectiveness of our ap-

proach.

1.6 Summary of Experimental Results

We generated a large number of faulty firewall policies

from 40 real-life firewalls, and then applied our approach

over each faulty policy and produced the fixed policy.

Faulty policies with k faults (1≤k≤5) were tested. These

faults in a faulty policy were of the same type. The

experimental results show that for three types of faults,

wrong order, wrong decisions, and wrong extra rules,

our approach can effectively correct misclassified pack-

ets. When k≤4, our approach can correct all misclassi-

fied packets for over 53.2% faulty policies. This result is

certainly encouraging and we hope that this paper will at-

tract more attention from the research community to this

1A packet typically includes five fields, source IP (32 bits), des-

tination IP (32 bits), source port (16 bits), destination port (16 bits),

and protocol type (8 bits). Thus, the number of possible packets is

2
32+32+16+16+8

= 2
104 .

2
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important problem. For two other types of faults, miss-

ing rules and wrong predicates, our approach does not

achieve satisfactory results, deserving further study.

2 Related Work

2.1 Firewall Policy Fault Localization

Fault localization for firewall policies has drawn atten-

tion recently [9, 17]. Marmorstein et al. proposed a tech-

nique to find failed tests that violate the security require-

ment of a firewall policy and further use the failed tests to

locate two or three faulty rules in a firewall policy [17].

However, they did not provide a systematic methodol-

ogy to identify faulty rules according to different types

of firewall faults, e.g., wrong order of firewall rules.

Furthermore, they applied their approach only to a sim-

ple firewall policy (with 5 rules), which cannot strongly

demonstrate the effectiveness of their approach.

Our previous work proposed a technique to locate a

fault in a firewall policy [9]. The approach first ana-

lyzes a faulty firewall policy and its failed tests and then

finds the potential faulty rules based on structural cover-

age metrics2. However, this work has three limitations:

(1) it considers only two types of faults, which are wrong

decisions and wrong predicates, while a firewall policy

may contain other types of faults; (2) it considers only a

firewall policy with a single fault, while a firewall pol-

icy may contain multiple faults; (3) it does not propose a

technique to correct the faults in a firewall policy.

2.2 Firewall Policy Analysis and Testing

Firewall policy analysis tools have been proposed in

prior work (e.g., [2, 3, 7, 12, 22]). Tools for detecting

potential firewall policy faults by conflict detection were

proposed in [3, 7]. Similar to conflict detection, some

other tools were proposed for detecting anomalies in a

firewall policy [2, 22]. Detecting conflicts or anomalies

is helpful for finding faults in a firewall policy. However,

the number of conflicts or anomalies could be too large

to be manually inspected. Therefore, correcting a faulty

policy is difficult by using these firewall policy analy-

sis tools. Change impact analysis of firewall policies has

also been studied [12]. Such tools are helpful to analyze

the impact after changing a firewall policy, but no algo-

rithm has been presented for correcting a faulty firewall

policy.

Firewall policy testing tools have also been explored

in prior work (e.g., [4, 11, 14, 16]). Such tools focus on

injecting packets as tests into a firewall to detect faults in

the firewall policy. If the evaluated decision of a packet

2Firewall policy coverage is measured based on which entities (e.g.,

rules or fields) are involved (called “covered”) during packet evalua-

tion.

is not as expected, faults in the firewall policy are ex-

posed. However, because a firewall policy may have a

large number of rules and the rules often conflict, it is

difficult to manually locate faults and correct them based

on the passed and failed tests.

2.3 Software Fault Localization and Fixing

Fault localization and fixing have been studied for years

in the software engineering and programming language

communities (e.g., [1, 10, 19, 23]). Such research fo-

cuses on locating and fixing a fault in a software pro-

gram. Four main techniques have been proposed for lo-

cating/fixing faults in software programs: dynamic pro-

gram slicing [1], delta debugging [23], nearest neighbor

[19], and statistical techniques [10]. These techniques

typically analyze likely fault locations based on dynamic

information collected from running the faulty program.

Firewall polices and general programs are fundamentally

different in terms of structure, semantics, and function-

ality, etc. Therefore, fault localization and fixing tech-

niques of software programs are not suitable for locating

faults in firewall policies.

3 Background

3.1 Firewall Policies

A firewall policy is a sequence of rules �r1, · · · , rn� and

each rule is composed of a predicate over d fields,

F1, · · · , Fd and a decision for the packets that match the

predicate. Figure 1 shows a firewall policy, whose format

follows Cisco Access Control Lists [5].

A field Fi is a variable of finite length (i.e., of a fi-

nite number of bits). The domain of field Fi of w bits,

denoted as D(Fi), is [0, 2w−1]. Firewalls usually check

five fields, source IP (32 bits), destination IP (32 bits),

source port (16 bits), destination port (16 bits), and pro-

tocol type (8 bits). For example, the domain of the source

IP is [0, 232 − 1].
A packet p over the d fields F1, · · · , Fd is a d-tuple

(x1, · · · , xd) where each xi (1 ≤ i ≤ d) is an element

of D(Fi). An example packet over these five fields is

(1.2.3.5, 192.168.1.1, 78, 25, TCP).

A predicate defines a set of packets over the fields

F1, · · · , Fd, and is specified as F1 ∈ S1 ∧ · · · ∧
Fd ∈ Sd. Each Si is a subset of D(Fi) and is

specified as either a prefix or a range. A prefix

{0, 1}k{∗}w−k (with k leading 0s or 1s) denotes the

range [{0, 1}k{0}w−k, {0, 1}k{1}w−k]. For example,

prefix 01** denotes the range [0100, 0111].
A decision is an action for the packets that match the

predicate of the rule. For firewalls, the typical decisions

include accept and discard.

A packet (x1, · · · , xd) matches a rule F1 ∈ S1 ∧ · · · ∧
Fd ∈ Sd → �decision� if and only if the condition

3
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x1 ∈ S1 ∧ · · · ∧ xd ∈ Sd holds. For example, the packet

(1.2.3.5, 192.168.1.1, 78, 25, TCP) matches the rule r1
in Figure 1.

A rule F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → �decision� is

called a singleton rule if and only if each Si has only one

element.

Rule Src. IP Dest. IP Src. Port Dest. Port Prot. Dec.

r1 1.2.3.* 192.168.1.1 * 25 TCP accept

r2 * * * * * discard

Figure 1: An example firewall

A firewall policy �r1, · · · , rn� is complete if and only if

for any packet p, there is at least one rule that p matches.

To ensure that a firewall policy is complete, the predicate

of the last rule is usually specified as F1 ∈ D(F1)∧· · ·∧
Fd ∈ D(Fd), i.e., the last rule r2 in Figure 1.

Two rules in a firewall policy may overlap; that is,

there exists at least one packet that matches both rules.

Two rules may conflict; that is, the two rules not only

overlap but also have different decisions. For example,

in Figure 1, two rules r1, r2 overlap and conflict because

the packet (1.2.3.5, 192.168.1.1, 78, 25, TCP) matches

r1 and r2, and the decisions of r1 and r2 are different.

Firewalls typically resolve conflicts by employing the

first-match semantics where the decision for a packet p
is the decision of the first (i.e., highest priority) rule that

p matches in the firewall policy. Thus, for the packet

(1.2.3.5, 192.168.1.1, 78, 25, TCP), the decision of the

firewall policy in Figure 1 is accept.

3.2 Packet Generation

To check the correctness or detect faults in a firewall pol-

icy, administrators need to generate test packets to eval-

uate that each entity (e.g., each rule) is correct. In our

previous work [8], we developed automated packet gen-

eration techniques to achieve high structural coverage.

One cost-effective technique is packet generation based

on local constraint solving. In this paper, we use this

technique to generate packets for firewall policies. This

technique statically analyzes rules to generate test pack-

ets. Given a policy, the packet generator analyzes the

predicate in an individual rule and generates packets to

evaluate the constraints (i.e., rule fields) to be true or

false. The generator first constructs constraints to evalu-

ate each field in a rule to be either false or true, and then

it generates a packet based on the concrete values derived

by constraint solving. For example, given rule r1 in Fig-

ure 1, the generator analyzes r1 and generates a packet

(e.g., packet (1.2.3.5, 192.168.1.1, 23447, 25, TCP)) to

cover r1; this packet evaluates each of r1’s fields to be

true during evaluation. Then, the generator analyzes r2
and generates a packet (e.g., packet (2.2.3.5, 192.168.1.1,

23447, 26, UDP)) to cover r2; this packet evaluates each

of r2’s fields to be true during evaluation. When fire-

wall policies do not include many conflicts, this tech-

nique can effectively generate packets to achieve high

structural coverage.

4 A Fault Model of Firewall Polices

A fault model of firewall policies is an explicit hypoth-

esis about potential faults in firewall policies. Our pro-

posed fault model includes five types of faults.

1. Wrong order. This type of fault indicates that the or-

der of rules is wrong. Recall that the rules in a fire-

wall policy follow the first-match semantics due to

conflicts between rules. Misordering firewall rules

can misconfigure a firewall policy. Wrong order of

rules is a common fault caused by adding a new rule

at the beginning of a firewall policy without care-

fully considering the order between the new rule

and the original rules. For example, if we misorder

r1 and r2 in Figure 1, all packets will be discarded.

2. Missing rules. This type of fault indicates that ad-

ministrators need to add new rules to the original

policy. Usually, administrators add a new rule re-

garding a new security concern. However, some-

times they may forget to add the rule to the original

firewall policy.

3. Wrong predicates. This type of fault indicates that

predicates of some rules are wrong. When configur-

ing a firewall policy, administrators define the predi-

cates of rules based on security requirements. How-

ever, some special cases may be overlooked.

4. Wrong decisions. This type of fault indicates that

the decisions of some rules are wrong.

5. Wrong extra rules. This type of fault indicates that

administrators need to delete some rules from the

original policy. When administrators make some

changes to a firewall policy, they may add a new

rule but sometimes forget to delete old rules that fil-

ter a similar set of packets as the new rule does.

In this paper, we consider faults in a firewall policy

that can be represented as a set of misclassified pack-

ets. Under this assumption, given a set of misclassified

packets, we can always find one or multiple faults in our

fault model that can generate the same set of misclas-

sified packets. One simple way to find such faults is

that for each misclassified packet, we consider that the

faulty policy misses a singleton rule for this misclassified

packet. Therefore, we can always find multiple missing

rules faults that can generate the same set of misclassi-

fied packets.

4
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The correction techniques for these five types of faults

are called order fixing, rule addition, predicate fixing, de-

cision fixing, and rule deletion, respectively. Each oper-

ation in these five techniques is called a modification.

5 Automatic Correction of Firewall Policy

Faults

Normally, a faulty firewall policy is detected when ad-

ministrators find that the policy allows some malicious

packets or blocks some legitimate packets. Because the

number of these observed malicious packets or legitimate

packets is typically small, these packets cannot provide

enough information about the faults in the firewall policy,

and hence correcting the policy with these packets is dif-

ficult. Therefore, after finding a faulty firewall policy, we

first employ the automated packet generation techniques

[9], which can achieve high structural coverage, to gen-

erate test packets for the faulty policy. Second, adminis-

trators identify passed/failed tests automatically or man-

ually. According to security requirements for the firewall

policy, if the decision of a packet is correct, administra-

tors classify it as a passed test; otherwise, administrators

classify it as a failed test. In some situations, e.g., when

policy properties are written, or multiple implementa-

tions of the policy are available, this operation can be

automated. Manual inspection is also a common practice

for ensuring network security in industry. For example,

applying some existing vulnerability testing tools, such

as Nessus [18] and Satan [20], does need manual inspec-

tion. Our goal is to automatically correct policies after

we have passed/failed packets. Identifying passed/failed

tests is out of the scope of this paper.

Figure 2 shows a faulty firewall policy and its passed

and failed tests. This policy includes 5 rules over two

fields F1 and F2, where the domain of each field is

[1,10]. The rule r1 means that accept packets whose

value of the first field is in the range [1, 5] and whose

value of the second field is in the range [1, 10]. We use a
as a shorthand for “accept” and d as a shorthand for “dis-

card”. For the passed and failed tests, we use a and d to

denote expected decisions. We assign each test a distinct

ID pi (1≤i≤8).

Given passed and failed tests, it is difficult to automat-

ically correct a faulty firewall policy for three reasons.

First, it is difficult to locate the faults because a firewall

policy may consist of a large number of rules, and the

rules often conflict. Second, before correcting a fault, we

need to first determine the type of the fault and then use

the corresponding correction technique to fix this fault.

However, it is difficult to determine the type of a fault

because the same misbehavior of a firewall policy, i.e.,

the same set of misclassified packets, can be caused by

different types of faults. Third, it is difficult to correct a

r1 : F1 ∈ [1, 5] ∧ F2 ∈ [1, 10] → a
r2 : F1 ∈ [1, 6] ∧ F2 ∈ [3, 10] → a
r3 : F1 ∈ [6, 10] ∧ F2 ∈ [1, 3] → d
r4 : F1 ∈ [7, 10] ∧ F2 ∈ [4, 8] → a
r5 : F1 ∈ [1, 10] ∧ F2 ∈ [1, 10] → d
(a) An example faulty firewall policy

p1 : (3, 2) → a
p2 : (5, 7) → a
p3 : (6, 7) → a
p4 : (7, 2) → d
p5 : (8, 10) → d

(b) A set of passed tests

p6 : (6, 3) → d
p7 : (7, 9) → a
p8 : (8, 5) → d

(c) A set of failed tests

Figure 2: An example faulty firewall policy with its

failed and passed tests

fault. Due to the first-match semantics, changing a rule

can affect the functionality of all the subsequent rules.

Without thorough consideration, correcting a fault may

introduce a new fault into the firewall policy.

In this paper, we formalize the problem of correcting

a faulty firewall policy as follows:

Given a faulty firewall policy FW , a set of passed

tests PT , and a set of failed tests FT , where

|PT |≥0 and |FT |>0, find a sequence of modifications

�M1, · · · ,Mm�, where Mj (1≤j≤m) denotes one mod-

ification, such that the following two conditions hold:

1. After applying �M1, · · · ,Mm� to FW , all tests in

PT ∪ FT become passed tests.

2. No other sequence that satisfies the first condition

has a smaller number of modifications than m.

Correcting a faulty firewall policy with the minimum

number of modifications is a global optimization prob-

lem and hard to solve because the policy may consist of

a large number of rules, and different combinations of

modifications can be made. We propose a greedy algo-

rithm to address this problem. For each step, we correct

one fault in the policy such that the number of passed

tests increases (or the number of failed tests decreases).

To determine which correction technique should be used

at each step, we try the five correction techniques. Then,

we calculate the number of passed tests for each type of

modifications and choose the correction technique that

corresponds to the maximum number of passed tests. We

then repeat the preceding step until there are no failed

tests. Figure 3 illustrates our approach for automatic cor-

rection of firewall policy faults.

Our greedy algorithm can guarantee to find a sequence

of modifications that satisfies the first condition. For

each step, the greedy algorithm can increase at least one

passed test because of the rule addition technique. Us-

ing this technique, we can at least convert each failed test

5
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Figure 3: Overview of automatically correcting a faulty firewall policy

to a singleton rule and then add these singleton rules at

the beginning of the faulty firewall policy. For example,

convert the failed test (6, 3) → d in Figure 2(c) to a sin-

gleton rule F1 ∈ [6, 6] ∧ F2 ∈ [3, 3] → d. However,

the greedy algorithm cannot guarantee to find the global

optimization solution that satisfies the second condition.

Note that administrators can supervise this process.

For each step, administrators can choose their preferred

technique for correcting a fault in the policy. If adminis-

trators do not want to supervise the process, our greedy

algorithm can automatically produce the fixed policy.

Further note that without any restriction, our automatic

approach for correcting firewall policy faults could in-

troduce potential faults in the firewall policy. However,

an administrator typically has some critical requirements

when he/she designs the firewall policy. These critical re-

quirements define that some packets should be accepted

or discarded. The administrator can restrict the proposed

approach not to violate the critical requirements. Con-

sider a critical requirement that a data server in an organi-

zation should not be accessed by any outside connection.

For each step of our greedy algorithm, if the modifica-

tion generated in this step violates the requirement, the

approach can simply choose the next modification that

does not violate the requirement.

In the next five sections, we discuss our scheme for

each correction technique, respectively. Recall that the

last rule of a firewall policy is usually specified as

F1∈D(F1) ∧ · · · ∧ Fd∈D(Fd) → �decision�. Check-

ing whether the last rule is correct is trivial. Therefore,

we assume that the last rule of a firewall policy is correct

in our discussion.

6 Order Fixing

Due to the first-match semantics, changing the order of

two rules in a firewall policy (i.e., swapping two rules)

affects its functionality. Therefore, after swapping two

rules of a firewall policy, we need to test and reclassify

all passed tests and failed tests. It is computationally ex-

pensive to directly swap every two rules in a faulty fire-

wall policy and then find the two rules such that swap-

ping them can maximize the increased number of passed

tests. Given a firewall policy with n rules, without con-

sidering the last rule, there are (n− 1)(n− 2)/2 pairs of

rules that can be swapped. Furthermore, for each swap-

ping, we need to reclassify all passed and failed tests.

Assume that the number of passed tests is m1 and the

number of failed tests is m2. The computational cost of

this brute-force way is (n− 1)(n− 2)(m1 +m2)/2.

To address this challenge, we use all-match firewall

decision diagrams (all-match FDDs) [15] as the core data

structure. An all-match FDD is a canonical representa-

tion of a firewall policy such that any firewall policy can

be converted to an equivalent all-match FDD. Figure 4

shows the all-match FDD converted from the faulty fire-

wall policy in Figure 2. An all-match FDD for a fire-

wall policy FW :�r1, · · · , rn� over attributes F1, · · · , Fd

is an acyclic and directed graph that has the following

five properties:

1. There is exactly one node that has no incoming

edges. This node is called the root. The nodes that

have no outgoing edges are called terminal nodes.

2. Each node v has a label, denoted as F (v). If v is

a nonterminal node, then F (v) ∈ {F1, · · · , Fd}. If

6
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v is a terminal node, then F (v) is a list of integer

values �i1, · · · , ik� where 1≤i1<· · ·<ik≤ n.

3. Each edge e:u→v is labeled with a nonempty set

of integers, denoted as I(e), where I(e) is a subset

of the domain of u’s label (i.e., I(e)⊆D(F (u))).
The set of all outgoing edges of a node v, denoted

as E(v), satisfies two conditions: (1) consistency:

I(e)∩I(e′)=∅ for any two distinct edges e and e′ in

E(v); (2) completeness:
⋃

e∈E(v) I(e)=D(F (v)).

4. A directed path from the root to a terminal node

is called a decision path. No two nodes on a de-

cision path have the same label. Given a deci-

sion path P :(v1e1 · · · vdedvd+1), the matching set

of P is defined as the set of all packets that satisfy

F (v1)∈I(e1)∧· · ·∧F (vd)∈I(ed). We use C(P) to

denote the matching set of P .

5. For any decision path P : (v1e1 · · · vdedvd+1)
where F (vd+1) = �i1, · · · , ik�, if C(P) ∩ C(rj) �=
∅, C(P) ⊆ C(rj) and j ∈ {i1, · · · , ik}.

For ease of presentation, we use {P1, · · · ,Ph} to denote

the all-match FDD of the firewall policy FW . Based on

this definition, we can draw the following theorem, the

proof of which is in Appendix A.

Theorem 6.1 Given two firewall policies

FW1:�r11 ,· · ·,r1n� and FW2:�r21 ,· · ·,r2n�, and their

all-match FDDs {P1
1 ,· · ·, P1

h1
} and {P2

1 ,· · ·,P2
h2
}, if

{r11 ,· · ·,r1n} = {r21,· · ·,r2n}, without considering terminal

nodes, {P1
1 , · · · ,P

1
h1
} = {P2

1 , · · · ,P
2
h2
}.

According to Theorem 6.1, for swapping two rules,

we only need to swap the sequence numbers of the two

rules in the terminal nodes of the all-match FDD. For

finding two rules such that swapping them maximizes the

number of passed tests, our correction technique includes

five steps:

(1) Convert the policy to an equivalent all-match FDD.

(2) For each failed test p, we find the decision path P :
(v1e1 · · · vdedvd+1) that matches p (i.e., p ∈ C(P)).
Let �i1, · · · , ik� (1≤i1<· · ·<ik≤n) denote F (vd+1).
Note that the decision of ri1 is not the expected de-

cision for the failed test p; otherwise, p should be a

passed test.

(3) Find the rules in {ri2 , · · · , rik} whose decisions are

the expected decision of p. Suppose {rj1 , · · · , rjg} are

those rules that we find for p, where {rj1 , · · · , rjg}
⊆ {ri2 , · · · , rik}. Because the decision of rules in

{rj1 , · · · , rjg} is the expected decision for p, swap-

ping ri1 with any rule in {rj1 , · · · , rjg} changes p to a

passed test. Note that because the last rule of a firewall

is a default rule, we cannot swap it with any preceding

rule. If rjg is the last rule of the faulty firewall (i.e.,

jg = n), we delete rjg from {rj1 , · · · , rjg}.

(4) For all failed tests, we find out all rule pairs such that

swapping two rules in a rule pair may increase the

number of passed tests. Then we swap two rules in

each rule pair. Note that swapping two rules in a rule

pair changes the corresponding failed test to a passed

test. However, this modification may change some

passed tests to failed tests. Therefore, after swapping

two rules in each rule pair, we reclassify all tests and

calculate the number of passed tests.

(5) Find a rule pair such that swapping the two rules in

this pair can maximize the number of passed tests.

Note that if there are more than one rule pair such that

swapping two rules in each pair can maximize the in-

creased number of passed tests, we choose the rule pair

that affects the functionality of the minimum number of

original firewall rules. Let (ri1 , rj1 ), · · · , (rig , rjg ) de-

note these rule pairs, where ik≤jk (1≤k≤g). Due to

the first-match semantics, we choose the rule pair (ri, rj)
where i is the maximum integer in {i1, · · · , ig}.

 



 







 






       

Figure 4: All-match FDD converted from the faulty fire-

wall policy in Figure 2

For the faulty firewall policy in Figure 2, we first con-

vert the faulty firewall policy to an all-match FDD, which

is shown in Figure 4. Second, for each failed test, we find

the corresponding rule pairs. In the example, we find

only one rule pair (r2, r3) for the failed test (6, 3) → d.

Third, after swapping r2 and r3, (6, 2) → d becomes

a passed test and no passed test changes to a failed test.

Therefore, swapping r2 and r3 increases the number of

passed tests by 1.

7 Rule Addition

There are two challenges for adding a rule to a faulty

firewall policy. First, given a faulty firewall policy with

n rules, there are n positions where we can add a rule.

Determining which position is the best for adding a rule

is a challenge. Second, because the predicate of a fire-

wall rule is composed of multiple fields and the number

7
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of possible values in each field is typically large, brute-

force addition of every possible rule for each position is

computationally expensive. Considering a firewall rule

with five fields (i.e., 32-bit source IP, 32-bit destination

IP, 16-bit source port, 16-bit destination port, and 8-bit

protocol type) and two possible decisions (i.e., accept

and discard), the number of possible firewall rules that

we can add for each position is O(2204), because for each

field with d-bit length, the number of possible ranges is

(22d)=O(22d−1). Furthermore, after adding a rule, we

still need to reclassify all passed and failed tests.

The basic idea of our solution is that for each posi-

tion, we first find all possible failed tests that can be cor-

rected by adding a rule at this position, and then compute

a rule that matches the maximum number of failed tests.

To avoid changing a passed test to a failed test, the rule

that we compute does not match any possible passed test.

More formally, given a faulty firewall policy with n rules

�r1, · · · , rn�, let position i (1≤i≤n) denote the position

between ri−1 and ri. Note that we cannot add a rule

after rn because rn is the default rule. Our correction

technique for adding a rule includes five steps:

(1) For each position i, find a set of passed tests PT (i)
and a set of failed tests FT (i) such that any test p in

PT (i) ∪ FT (i) does not match any rule rj (1 ≤ j ≤
i − 1). Note that when i = 1, rj does not exist. In

such case, PT (1) = PT and FT (1) = FT . Due to

the first-match semantics, if a failed test p matches a

rule ri, adding a rule after rule ri cannot change the

decision of p and hence cannot correct p. Therefore,

the set FT (i) includes all possible failed tests that we

can correct by adding a rule at position i.

(2) Based on the expected decisions of tests, divide PT (i)
into two sets PT (i)a and PT (i)d where PT (i)a con-

sists of all passed tests with expected decision accept

and PT (i)d consists of all passed tests with discard.

Similarly, we divide FT (i) into two sets FT (i)a and

FT (i)d. The purpose is that adding a rule cannot cor-

rect two failed tests with different expected decisions.

(3) For set FT (i)a, compute a rule with decision accept,

denoted as r′i,a, that satisfies two conditions:

(a) No passed test in PT (i)d matches r′i,a.

(b) Under Condition (a), r′i,a matches the maximum

number of failed tests in FT (i)a.

The algorithm for computing rule r′i,a based on

FT (i)a and PT (i)d is discussed in Section 7.1.

(4) Similar to Step 3, for set FT (i)d, compute a rule with

decision discard, denoted as r′i,d, that satisfies two

conditions:

(a) No passed test in PT (i)a matches r′i,d.

(b) Under Condition (a), r′i,d matches the maximum

number of failed tests in FT (i)d.

(5) Find a rule r′j, decision (1≤j≤n) that corrects the max-

imum number of failed tests and then add r′j, decision
to position j.

Note that if there is more than one rule that can cor-

rect the maximum number of failed tests, we choose rule

r′j, decision where j is the maximum integer among these

rules such that adding this rule affects the functionality of

the smallest number of original rules in a firewall policy.

For the faulty policy in Figure 2, Figure 5 shows the

four sets PT (i)a, PT (i)d, FT (i)a, and FT (i)d for each

rule of the policy.

PT (i)a PT (i)d FT (i)a FT (i)d
r1 p1, p2, p3 p4, p5 p7 p6, p8
r2 p3 p4, p5 p7 p6, p8
r3 – p4, p5 p7 p8
r4 – p5 p7 p8
r5 – p5 p7 –

Figure 5: PT (i)a, PT (i)d, FT (i)a, and FT (i)d for

each rule in Figure 2

7.1 Computing Rules r′i,a and r
′

i,d

Without loss of generality, in this section, we discuss the

algorithm for computing r′i,a based on a set of failed

tests FT (i)a and a set of passed tests PT (i)d. First,

we generate a rule that can match all failed tests in

FT (i)a. Suppose that the predicate of a firewall rule

is composed of d fields. For each field j (1≤j≤d), as-

sume that xj is the minimum value of all failed tests

in FT (i)a and yj is the maximum value. Therefore,

the rule r:F1∈[x1, y1]∧· · ·∧Fd∈[xd, yd]→a matches all

failed tests in FT (i)a. Second, we use the passed tests in

PT (i)d to split the rule to multiple rules, each of which

does not match any passed test. Let (z1, · · · , zd)→d de-

note the first passed test p in PT (i)d. If rule r matches

p, for each field j, we generate two rules by using zj to

split [xj , yj ] into two ranges [xj , zj − 1] and [zj +1, yj].
The resulting two rules for field j are as follows.

F1∈[x1, y1]∧· · ·∧Fj−1∈[xj−1, yj−1]∧Fj∈[xj, zj − 1]
∧Fj+1∈[xj+1, yj+1]∧· · ·∧Fd∈[xd, yd]→a

F1∈[x1, y1]∧· · ·∧Fj−1∈[xj−1, yj−1]∧Fj∈[zj + 1, yj]
∧Fj+1∈[xj+1, yj+1]∧· · ·∧Fd∈[xd, yd]→a

Note that if xj>zj−1 (or zj+1>yj), the rule that in-

cludes [xj , zj − 1] (or [zj + 1, yj]) is meaningless and it

should be deleted from the resulting rules. If rule r does

not match p, p cannot split r. Then, we use the second

8



USENIX Association 	 LISA ’10: 24th Large Installation System Administration Conference	 83

test in PT (i)d to split the resulting rules generated from

p. Repeat this step until we check all the passed tests in

PT (i)d. Finally, we choose one rule that matches the

maximum number of failed tests.

Take two sets PT (2)a and FT (2)d in Figure 5 as an

example, rule r′2,d can be computed as F1 ∈ [6, 8]∧F2 ∈
[3, 5] → d, which can correct two failed tests p6 and p8.

8 Predicate Fixing

There are two challenges for fixing a predicate in a faulty

firewall policy. First, for a faulty firewall policy with n
rules, there are n−1 possible predicates that we can cor-

rect. Note that the last rule rn is the default rule. Second,

similar to adding rules, brute-force fixing of the predicate

for each rule is computationally expensive. The number

of possible predicates for each rule is O(2203).
The basic idea for predicate fixing is similar to adding

rules. We first find all possible failed tests that can be

corrected by fixing a predicate, and then compute a rule

that matches the maximum number of failed tests. How-

ever, there are two major differences. First, for fix-

ing the predicate of ri, we compute only a rule with

the same decision of ri. Second, after fixing the pred-

icate of rule ri, the original rule ri does not exist in

the firewall policy. Therefore, the passed tests whose

first-matching rule is ri may become failed tests. The

set of these passed tests for ri can be computed as

PT (i)−PT (i+1) (shown in Figure 7). The passed tests

whose first-matching rule is not ri should be prevented

from changing to failed tests. Therefore, the set of all

possible failed tests that we can correct by fixing ri’s
predicate is FT (i)∪(PT (i)−PT (i + 1)). Our correc-

tion technique for predicate fixing includes five steps:

(1) For each position i (1≤i≤n), find a set of passed tests

PT (i) and a set of failed tests FT (i) such that any

test p in PT (i)∪FT (i) does not match any rule rj
(1≤j≤i− 1).

(2) For each rule ri (1≤i≤n−1), compute the set of all

possible failed tests FT (i)∪(PT (i)−PT (i+ 1)) that

we can correct by fixing ri’s predicate. Let ̂FT (i) de-

note FT (i)∪(PT (i)−PT (i + 1)). The complemen-

tary set of FT (i)∪(PT (i)−PT (i+1)) is PT (i+1),
which is the set of passed tests that we cannot change

to failed tests by fixing ri’s predicate.

(3) Based on the expected decisions of tests, divide

PT (i+ 1) into two sets PT (i+ 1)a and PT (i+ 1)d,

and divide ̂FT (i) into two sets ̂FT (i)a and ̂FT (i)d.

(4) Without loss of generality, assume that ri’s decision is

accept. For set ̂FT (i)a, we compute r′′i,a that satisfies

two conditions:

(a) No passed test in PT (i+ 1)d matches r′′i,a.

(b) Under condition (a), r′′i,a matches the maximum

number of failed tests in ̂FT (i)a.

The algorithm for computing rule r′′i,a based on

̂FT (i)a and PT (i + 1)d is the same as that in Sec-

tion 7.1. Let r′′i denote the resulting rule.

(5) Find a rule r′′j (1≤j≤n−1) that can correct the maxi-

mum number of failed tests and then replace rule rj .

Note that if there is more than one rule that can correct

the maximum number of failed tests, we choose rule r′′j
where j is the maximum integer among these rules.

For the faulty policy in Figure 2, Figure 6 shows the

four sets PT (i+ 1)a, PT (i+ 1)d, ̂FT (i)a, and ̂FT (i)d
for each rule. Rule r′′2,a can be computed as F1 ∈ [6, 7]∧
F2 ∈ [7, 9] → a, which can correct one failed test p7.

PT (i+ 1)a PT (i+ 1)d ̂FT (i)a ̂FT (i)d
r1 p3 p4, p5 p1, p2, p7 p6, p8
r2 – p4, p5 p3, p7 p6, p8
r3 – p5 p7 p4, p8
r4 – p5 p7 p8

Figure 6: PT (i+1)a, PT (i+1)d, ̂FT (i)a, and ̂FT (i)d
for each rule in Figure 2

9 Decision Fixing

The idea of fixing a decision is that for each rule ri, we

first find the passed tests and failed tests whose first-

matching rule is ri. The set of the passed tests for ri
can be computed as PT (i)−PT (i+1) and the set of the

failed tests for ri can be computed as FT (i)−FT (i+1).
If we change the decision of ri, the passed tests in

PT (i)−PT (i+1) become failed tests and the failed tests

in FT (i)−FT (i+1) become passed tests. Then, we can

calculate the increased number of passed tests by fixing

ri’s decision. Finally, we fix the decision of the rule that

corresponds to the maximum increased number of passed

tests. Our correction technique for fixing a decision in-

cludes three steps:

(1) For each rule ri (1 ≤ i ≤ n − 1), compute two sets

PT (i)− PT (i+ 1) and FT (i)− FT (i+ 1).

(2) Calculate the increased number of passed

tests by fixing ri’s decision, which is

|FT (i)−FT (i+1)|−|PT (i)−PT (i+ 1)|.

(3) Fix the decision of a rule that can maximize the in-

creased number of passed tests.

9
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Note that if there is more than one rule such that fixing

the decision of each of them can maximize the increased

number of passed tests, we choose the rule with the max-

imum sequence number.

For the faulty policy in Figure 2, Figure 7 shows the

two sets PT (i)−PT (i+1) and FT (i)−FT (i+1) for

each rule. Clearly, fixing the decision of r4 can change

the failed test p8 to a passed test.

PT (i)− PT (i+ 1) FT (i)− FT (i+ 1)
r1 p1, p2 –

r2 p3 p6
r3 p4 –

r4 – p8

Figure 7: PT (i)−PT (i+1) and FT (i)−FT (i+1) for

each rule in Figure 2

10 Rule Deletion

The idea of deleting a firewall rule is that we use the all-

match FDD to calculate the increased number of passed

packets by deleting each rule, and then delete the rule

that can maximize the increased number of passed pack-

ets. Given a faulty policy with n rules and its all-match

FDD, our correction technique for deleting a rule in-

cludes three steps:

(1) For each rule ri (1≤i≤n−1), find every decision path

P :(v1e1 · · · vdedvd+1) such that C(P)⊆C(ri) and i is

the first rule id in F (vd+1). Let {P i
1, · · · ,P

i
h} denote

the set of such decision paths.

(2) For each decision path P i
g:(v1e1 · · · vdedvd+1) (1 ≤

g ≤ h), find the set of passed tests PT (P i
g) and

the set of failed tests FT (P i
g), where any test in

PT (P i
g) or FT (P i

g) matches P i
g. Let �i1, · · · , ik�

(1≤i1<· · ·<ik≤n) denote F (vd+1). Note that i1 = i
because of the first-match semantics. Let lg denote

the increased number of passed tests that match P i
g

after deleting rule ri. To calculate lg, we need to

check whether ri and ri2 have the same decision. If

ri and ri2 have the same decision, deleting ri does not

change two sets PT (P i
g) and FT (P i

g). In this case,

lg=0. Otherwise, the passed tests in PT (P i
g) become

failed tests and the failed tests in FT (P i
g) become

passed tests. In this case, lg = |FT (P i
g)|− |PT (P i

g)|.
Therefore, the increased number of passed packets af-

ter deleting rule ri can be computed as
∑h

g=1 lg.

(3) Delete the rule that can maximize the number of

passed packets.

Note that if rule ri is not the first-matching rule for any

failed test, |FT (P i
g)|=0 (1≤g≤h) and hence

∑h

g=1 lg ≤

0. In this case, deleting ri cannot increase the number of

passed packets. We can easily find such rules by comput-

ing the set FT (i)−FT (i + 1) for each rule ri. Further

note that if there is more than one rule such that delet-

ing each of them can maximize the increased number of

passed tests, we choose the rule with the maximum se-

quence number.

For the faulty firewall policy in Figure 2, by checking

FT (i)−FT (i+1) in Figure 7, we find that deleting rule

r1 or r3 cannot increase the number of passed packets. In

the all-match FDD of the faulty policy (shown in Figure

4), for rule r2, there are two paths, F1∈[6, 6]∧F2∈[3, 3]
and F1∈[6, 6]∧F2∈[4, 10], where 2 is the first integer in

their terminal nodes. Because the failed test p6 matches

the first path, and r2 and r3 have different decisions,

deleting r2 changes p6 to a passed test. Because the

passed test p3 matches the second path, and r2 and r5
have different decisions, deleting r2 changes p3 to a

failed test. Therefore, deleting r2 does not increase the

number of passed tests. Similarly, deleting r4 changes

p8 to a passed test, and hence increases the number of

passed tests by 1.

11 Experimental Results

11.1 Evaluation Setup

In our experiments, faulty firewall policies were gener-

ated from 40 real-life firewall policies that we collected

from universities, ISPs, and network device manufactur-

ers. The 40 real-life policies were considered as correct

policies with respect to these faulty policies. Each fire-

wall examines five fields, source IP, destination IP, source

port, destination port, and protocol type. The number of

rules for each policy ranges from dozens to thousands.

To evaluate the effectiveness and efficiency of our ap-

proach, we first employed the technique of mutation test-

ing [6] to create faulty firewall policies. The technique

for injecting synthetic faults with mutation testing is a

well-accepted mechanism for carrying out testing exper-

iments in both testing academia and industry. Particu-

larly, each faulty policy contains one type of fault, and

the number of faults in a faulty firewall policy ranges

from 1 to 5. Given a real-life firewall with n rules, for

each type of fault and each number of faults, we created

n−1 faulty policies. Note that we did not change the

last rule of a real-life policy. For example, to create a

faulty firewall policy with k wrong decisions faults, we

randomly chose k rules in a real-life firewall policy and

then changed the decisions of the k rules. For each type

of fault and each number of faults, we generated 35618

faulty firewall policies. Second, for each faulty policy,

we employed a firewall testing tool [8] to generate test

packets. Note that we generated test packets based on

the faulty policy rather than its corresponding real-life

10
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policy. For each faulty policy, on average, the total num-

ber of passed and failed tests is about 3n, where n is

the number of rules in the policy. Third, we classified

them into passed and failed tests. For each test packet,

we compared two decisions evaluated by the faulty pol-

icy and its corresponding real-life policy. If the two de-

cisions were the same, we classified the test packet as

a passed test; otherwise, we classified it as a failed test.

Note that in practice this step should be done by adminis-

trators. Finally, we implemented and applied our greedy

algorithm over the faulty firewall policy and produced

the fixed policy. For each step of the greedy algorithm, if

different techniques increase the same number of passed

tests, we randomly choose one technique.

11.2 Methodology

In this section, we define the metrics to measure the ef-

fectiveness of our approach. First, we define the dif-

ference between two firewall policies. Given two poli-

cies FW1 and FW2, the difference between FW1 and

FW2, denoted as ∆(FW1, FW2), is the total number

of packets each of which has different decisions evalu-

ated by FW1 and FW2. To compute ∆(FW1, FW2),
we first use a firewall comparison algorithm [13] to find

the functional discrepancies between FW1 and FW2,

where each discrepancy denotes a set of packets and each

packet has different decisions evaluated by the two poli-

cies. Then, we compute the number of packets included

by all discrepancies. Let FWreal denote a real-life fire-

wall policy and FWfaulty denote a faulty policy created

from FWreal. Let FWfixed denote the fixed policy by

correctingFWfaulty andm(FWfaulty) denote the num-

ber of modifications. Let S(t, k) denote a set of faulty

policies, where t denotes the type of fault and k denotes

the number of faults in each faulty policy. We define two

metrics for evaluating the effectiveness of our approach:

1. The difference ratio over FWreal, FWfaulty , and

FWfixed:

∆(FWreal, FWfixed)

∆(FWreal, FWfaulty)

2. The average number of modifications over S(t, k):

∑
FWfaulty∈S(t,k) m(FWfaulty)

|S(t, k)|

Note that ∆(FWreal, FWfaulty) is the total number

of misclassified packets in the faulty firewall policy. For

the example policy in Figure 1, if we generate a faulty

firewall policy by changing r1’s decision to discard, the

difference between these two policies is 28×216=224.

Hence, the total number of packets that are misclassi-

fied by the faulty firewall policy is 224. In fact, for a

faulty policy, one failed test is a misclassified packet. But

the number of failed tests is typically much smaller than

the number of misclassified packets. For example, we

may generate only one failed test (1.2.3.5, 192.168.1.1,

23447, 25, TCP)→accept for the preceding faulty pol-

icy. After applying our approach over a faulty policy, the

fixed policy FWfixed not only corrects all failed tests,

but also may correct other misclassified packets. The dif-

ference ratio
∆(FWreal,FWfixed)
∆(FWreal,FWfaulty)

measures the percent-

age of misclassified packets after correcting FWfaulty .

If
∆(FWreal,FWfixed)
∆(FWreal,FWfaulty)

= 0, FWfixed corrects all mis-

classified packets, which means that FWfixed is equiva-

lent to FWreal in terms of functionality.

11.3 Effectiveness of Our Approach

Figures 8(a)-8(e) show the cumulative distribution of dif-

ference ratios overFWreal, FWfaulty , andFWfixed for

each type of fault. In Figures 8(a)-8(e), we use “One

Fault”, · · ·, “Five Faults” to denote the number of faults

in faulty firewall policies. We observe that for three types

of faults, wrong order, wrong decisions, and wrong ex-

tra rules, fixed policies can significantly reduce the num-

ber of misclassified packets. For faulty policies with

k faults, where k faults are one of these three types

and k ≤ 4, over 53.2% fixed policies are equivalent to

their corresponding real-life policies. For faulty poli-

cies with 1 to 5 wrong decisions faults, the percentages

of fixed policies that are equivalent to their correspond-

ing real-life policies are 73.5%, 68.8%, 63.7%, 59.3%,

and 53.8%, respectively. For faulty policies with 1 to 5

wrong order faults, the percentages of fixed policies that

are equivalent to their corresponding real-life policies are

69.7%, 64.2%, 59.7%, 54.3%, and 48.9%, respectively.

For faulty policies with 1 to 5 wrong extra rules faults,

the percentages of fixed policies that are equivalent to

their corresponding real-life policies are 68.3%, 63.5%,

59.3%, 53.2%, and 47.3%, respectively.

We also observe that fixed policies can reduce only a

small number of misclassified packets for two types of

faults, missing rules and wrong predicates. For faulty

policies with 1 to 2 missing rules faults, the percentages

of fixed policies that have 50% difference ratio with their

corresponding real-life policies are 15.7% and 8.32%, re-

spectively. For faulty policies with 1 to 2 wrong predi-

cates faults, the percentages of fixed policies that have

50% difference ratio with their corresponding real-life

policies are 17.3% and 9.1%, respectively. The reason

is that in most cases, the information provided by failed

tests is not enough to recover the missing rule (or correct

predicate). A firewall rule (or predicate) with 5 fields

can be denoted as a hyperrectangle over a 5-dimensional

space, and failed tests are only some points in the hy-

perrectangle. To recover the missing rule (or correct the

11
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Figure 8: Cumulative distribution of difference ratio and average number of modifications for each type of firewall

policy faults
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wrong predicate), for each surface of the hyperrectangle,

there should be at least one point on it. However, the

chance of such a case is very small.

Figure 8(f) shows the average number of modifications

for each type of firewall faults. We observe that for faulty

firewall policies with k faults, where k ≤ 5, the ratio be-

tween the average number of modifications and the num-

ber of faults is less than 2. Note that to correct a faulty

firewall policy with k faults, k is the minimum number

of modifications. Therefore, the number of modifications

of our approach is close to the minimum number.

11.4 Efficiency of Our Approach

We implemented our approach using Java 1.6.0. In our

experiments, for a faulty firewall policy, we measure the

total processing time of generating test packets, classi-

fying packets into passed and failed tests, and fixing the

policy to evaluate the efficiency of our approach. Note

that classifying test packets is automatically done in our

experiments by comparing two decisions evaluated by

the faulty firewall and its corresponding real-life firewall

for test packets. In practice, this step should be done by

administrators. Our experiments were carried out on a

desktop PC running Linux with 2 quad-core Intel Xeon

at 2.3GHz and 16GB of memory. Our experimental re-

sults show that for the faulty firewall policy with 7652

rules, the total processing time for fixing this faulty pol-

icy is less than 10 minutes.

12 Case Study

In this section, we applied our automatic correction tool

for firewall policy faults to a real-life faulty firewall pol-

icy with 87 rules and demonstrated that our tool can help

the administrator to correct the misconfiguration in the

firewall policy. The real-life firewall policy is shown in

the Appendix B where the policy is anonymized due to

the privacy and security concern.

We first employed the automated packet generation

techniques [9] to generate test packets for the fire-

wall policy and then asked the administrator to identify

passed/failed tests. Among these test packets, we ob-

tained seven failed tests, which are shown in Table 1.

Second, we applied our proposed solution to this fire-

wall policy and generated a sequence of modifications to

correct the seven failed tests in Table 1. The resulting

sequence includes four modifications: swapping rule 6

and rule 38, deleting rules 48, 49, and 50, which sug-

gest that the firewall policy has one wrong-order fault

and three wrong-extra-rule faults. We confirmed these

faults with the administrator and he admitted that the re-

sulting sequence of modifications generated by our tool

can correct these faults automatically.

p1 : (157.96.252.36, 157.96.252.66, 13249, 25341, IP ) → a

p2 : (67.48.121.156, 157.96.139.10, 4537, 109, TCP ) → a

p3 : (35.121.47.232, 157.96.139.10, 21374, 109, TCP ) → a

p4 : (25.35.113.153, 157.96.139.10, 7546, 110, TCP ) → a

p5 : (154.182.56.79, 157.96.139.10, 16734, 110, TCP ) → a

p6 : (193.21.135.85, 157.96.139.10, 19678, 143, TCP ) → a

p7 : (213.174.191.25, 157.96.139.10, 24131, 143, TCP ) → a

Table 1: Seven failed tests for the real-life firewall policy

13 Conclusions

We make three key contributions in this paper. First, we

propose the first comprehensive fault model for firewall

policies, including five types of faults. For each type of

fault, we present an automatic correction technique. Sec-

ond, we propose the systematic approach that can auto-

matically correct all or part of the misclassified packets

of a faulty firewall policy. To the best of our knowledge,

our paper is the first one for automatic correction of fire-

wall policy faults. Last, we implemented our approach

and evaluated its effectiveness on real-life firewalls. To

measure the effectiveness of our approach, we propose

two metrics, which we believe are general metrics for

measuring the effectiveness of firewall policy correction

tools. The experimental results demonstrated that our ap-

proach is effective to correct a faulty firewall policy with

three types of faults: wrong order, wrong decisions, and

wrong extra rules.
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Appendix A

Before we prove Theorem 6.1, we first prove the follow-

ing two lemmas.

Lemma 13.1 Given a firewall policy FW :�r1,· · ·,rn�
and its all-match FDD {P1,· · ·,Ph}, for any rule ri in

FW , if Pi1 ,· · ·,Pim are all the decision paths whose ter-

minal node contains ri, the following condition holds:

C(ri) = ∪m
t=1C(Pit).

Proof : According to property 5 in the definition of all-

match FDDs, we have ∪m
t=1C(Pit) ⊆ C(ri). Consider

a packet p in C(ri). According to the consistency and

completeness properties of all-match FDDs, there exists

one and only one decision path that p matches. Let P
denote this path. Thus, we have p ∈ C(ri) ∩ C(P).
According to property 5, i is in the label of P’s terminal

node. Thus, we have P ∈ {Pi1 , · · · ,Pim}. Therefore,

p ∈ ∪m
t=1C(Pit). Thus, we have ∪m

t=1C(Pit) ⊇ C(ri).

Lemma 13.2 Given a firewall policy FW :�r1,· · ·,rn�
and its all-match FDD {P1,· · ·,Ph}, for any rule ri
in FW , there exists only one set of paths P ∈
{Pi1 , · · · ,Pim} such that C(ri) = ∪m

t=1C(Pit).
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Proof : Suppose there exists another one set of

path {P ′

i1
, · · · ,P ′

il
}, which is different from P ∈

{Pi1 , · · · ,Pim}. Thus, there exists at least one P ′

is
�∈

{Pi1 , · · · ,Pim} (1 ≤ s ≤ l). According to the consis-

tency and completeness properties of all-match FDDs,

for any Pit (1 ≤ t ≤ m), Pit ∩ P ′

is
= ∅. Thus,

∪m
t=1C(Pit) �= ∪l

s=1C(P ′

is
), which contradicts with our

assumption.

Next we can prove Theorem 6.1 based on Lemma 13.1

and Lemma 13.2.

Proof of Theorem 6.1: Based on Lemma 13.2, for

each rule r1i ∈ {r11, · · · , r
1
n} (1 ≤ i ≤ n), we can

find only one set of paths P ∈ {P1
1 ,· · ·, P1

h1
} such

that C(r1i ) = ∪m
t=1C(P1

it
). Because {r11 ,· · ·,r1n} =

{r21 ,· · ·,r2n}, there exists r2j (1 ≤ j ≤ n) such that

r2j = r1i . Thus, for each rule r1i and its corresponding

rule r2j , we have

C(r1i ) = C(r2j ) = ∪m
t=1C(P1

it
)

We also know that for the all-match FDD {P1
1 ,· · ·,

P1
h1
} generated from FW1:�r11 ,· · ·,r1n�, the following

condition holds:

∪n
i=1(∪

m
t=1P

1
it
) = {P1

1 , · · · ,P
1
h1
}

Similarly, for the all-match FDD {P2
1 , · · · ,P

2
h2
} gener-

ated from FW2:�r21 , · · · , r
2
n�, we have

∪n
i=1(∪

m
t=1P

1
it
) = {P2

1 , · · · ,P
2
h2
}

Thus, {P1
1 , · · · ,P

1
h1
} = {P2

1 , · · · ,P
2
h2
}.

Appendix B

The real-life firewall policy with 87 rules is shown as

follows.

# Src IP Dest IP Src Port Dest Port Protocol Action

1 67.54.138.163 157.96.119.153 * 9100 TCP accept

2 67.54.138.163 157.96.119.153 * 161 UDP accept

3 * * * * 53 deny

4 * * * * 55 deny

5 * * * * 77 deny

6 * 157.96.252.66 * * IP accept

7 32.45.186.83 * * * IP deny

8 * 157.96.139.14 * 443 TCP deny

9 231.49.182.251 * * * IP deny

10 * * * 3127 TCP deny

11 * * * 2745 TCP deny

12 * * 4000 * UDP deny

13 * * * 111 UDP deny

14 * * * 111 TCP deny

15 * * * 2049 UDP deny

16 * * * 2049 TCP deny

17 * * * 7 UDP deny

18 * * * 7 TCP deny

19 * * * 6346 TCP deny

20 * * * 7000 TCP deny

21 * * * 161 UDP deny

22 * * * 162 UDP deny

23 * * * 1993 UDP deny

24 * * * 67 UDP deny

25 * * * 68 UDP deny

# Src IP Dest IP Src Port Dest Port Protocol Action

26 * * * 49 UDP deny

27 178.95.49.* * * * IP deny

28 157.96.119.* * * * IP deny

29 157.96.120.* * * * IP deny

30 157.96.121.* * * * IP deny

31 157.96.122.* * * * IP deny

32 157.96.130.* * * * IP deny

33 157.96.138.* * * * IP deny

34 157.96.139.* * * * IP deny

35 157.96.143.* * * * IP deny

36 157.96.144.* * * * IP deny

37 157.96.158.* * * * IP deny

38 157.96.252.* * * * IP deny

39 * 157.96.139.9 * 1949 UDP accept

40 * 157.96.139.10 * 1949 UDP accept

41 * 157.96.120.2 * 1949 UDP accept

42 * 157.96.139.9 * 1949 TCP accept

43 * 157.96.139.10 * 1949 TCP accept

44 * 157.96.120.2 * 1949 TCP accept

45 255.255.255.255 * * * IP deny

46 0.0.0.0 * * * IP deny

47 * 157.96.119.* * * IP deny

48 * 157.96.139.10 * 109 TCP accept

49 * 157.96.139.10 * 110 TCP accept

50 * 157.96.139.10 * 143 TCP accept

51 62.78.103.* * * * IP deny

52 * * * 6667 TCP deny

53 * * * 6112 TCP deny

54 * * * 109 TCP deny

55 * * * 110 TCP deny

56 * * * 1433 UDP deny

57 * * * 1434 UDP deny

58 * * * 135 TCP deny

59 * * * 137 TCP deny

60 * * * 138 TCP deny

61 * * * 139 TCP deny

62 * * * 445 TCP deny

63 * * * 135 UDP deny

64 * * * 137 UDP deny

65 * * * 138 UDP deny

66 * * * 139 UDP deny

67 * * * 445 UDP deny

68 * * * 143 TCP deny

69 * * * 515 TCP deny

70 * * * 512 TCP deny

71 * * * 514 UDP deny

72 * * * 69 UDP deny

73 * * * 514 TCP deny

74 * 157.96.138.138 * 5900 TCP accept

75 * 157.96.138.138 * 5166 TCP accept

76 * 157.96.138.138 * * IP deny

77 * 157.96.138.101 * 5900 TCP accept

78 * 157.96.138.101 * 5166 TCP accept

79 * 157.96.138.101 * * IP deny

80 * 157.96.138.80 * * IP deny

81 * 157.96.138.82 * * IP deny

82 * 157.96.138.234 * * IP deny

83 * 157.96.138.235 * * IP deny

84 * 157.96.138.236 * * IP deny

85 * 157.96.128.* * * IP accept

86 * 157.96.140.* * * IP deny

87 * * * * IP accept
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Abstract
This paper addresses the unpredictable service availabil-
ity of large centralized storage solutions. Fibre Chan-
nel is a common connection type for storage area net-
works (SANs) in enterprise storage and currently there
are no standard mechanisms for prioritizing workloads
using this technology. However, the increasing use of
TCP/IP based network communication in SANs has in-
troduced the possibility of employing well known tech-
niques and tools for prioritizing IP-traffic. A method
for throttling traffic to an iSCSI target server is devised:
the packet delay throttle, using common TCP/IP traffic
shaping techniques. It enables close-to-linear rate reduc-
tion for both read and write operations. All throttling
is achieved without triggering TCP retransmit timeout
and subsequent slow start caused by packet loss. A con-
trol mechanism for dynamically adapting throttling val-
ues to rapidly changing workloads is implemented us-
ing a modified proportional integral derivative (PID) con-
troller. An example prototype of an autonomic resource
prioritization framework is designed. The framework
identifies and maintains information about resources,
their consumers, response time for active consumers and
their set of throttleable consumers. The framework is
exposed to extreme workload changes and demonstrates
high ability to keep read response time below a prede-
fined threshold. It exhibits low overhead and resource
consumption, promising suitability for large scale opera-
tion in production environments.

1 Introduction

Large scale consolidation of storage has been an increas-
ing trend over the last years. There are two main rea-
sons for this: rapid growth in the need for data-storage
and economy of scale savings. Also, centralized stor-
age solutions are essential to realize most of the cluster
and server virtualization products existing today. In the

last few years the storage market has shifted its focus
from expensive fibre channel (FC) technology towards
common-off-the shelf TCP/IP based technology. Storage
networking is converging into familiar TCP/IP network-
ing as performance of TCP/IP equipment increasingly
gets more competitive with respect to performance. The
times when dedicated storage administrators took care of
storage area networks (SANs) are about to disappear as
the underlying technology used to build SANs is shifting
towards less specialized technology. iSCSI is an exam-
ple of a technology enabling TCP/IP networks to con-
nect hosts to their virtual disks in the theirs SANs. The
growth in networked storage and the complexity in con-
junction with large scale virtualization increase the de-
mand for system administrators to understand and mas-
ter complex infrastructures of which storage devices are
a central part. Understanding the effects of performance
and resource utilization in TCP/IP based SANs is vital
in order to make keepable promises about storage per-
formance. Predictable storage performance is a vital re-
quirement for promising performance of the applications
utilizing it, and it is the system administrator’s job to en-
sure that storage performance meets the requirements of
the applications. Figure 1 gives a simple overview of
how several hosts share resources in an iSCSI storage ap-
pliance. Physical resource pools are colored, and virtual
disks from those pools share the available I/O resources
in the pool.

The advantages of storage consolidation/centralization
are duly recognized. However, there is a major differ-
ence between performance attributes of a virtual disk in a
centralized pool of storage and a dedicated local storage
unit: sharing of the underlying hardware resources. A lo-
cal disk may exhibit low total performance compared to
SAN devices with a pool of many striped disks, but the
performance of the local drive is predictable. The vir-
tual disk in the storage pool usually has a much higher
performance depending on the available capacity of the
underlying hardware resources. The key point is the de-

1
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Figure 1: Concept of centralized storage pools

pendence on available capacity, and that available ca-
pacity is dependent on the activity towards other virtual
disks sharing the same resource pool. A host may sat-
urate the underlying resources of a storage pool causing
poor performance of all hosts utilizing virtual disks from
that pool. A host utilizing a virtual disk in a shared stor-
age pool has no means to predict the behavior of other
hosts utilizing other virtual disks sharing the same pool
of resources. Hence, the performance experienced by
any host utilizing a virtual disk served by a shared pool
is unpredictable by the nature of resource sharing.

Addressing this issue requires a mechanism to priori-
tize workloads (Quality of Service,QoS) based on some
kind of policy defining important and less important
workload types. Most storage solutions are able to vir-
tualize the amount of storage presented to the host in a
flexible way, but the same storage devices seldom have
QoS features. Storage service level agreements (SLAs)
presupposes predictability in service delivery, but pre-
dictability is not present because of the nature of re-
source sharing and the absence of prioritization (QoS)
mechanisms in storage devices. Application SLAs de-
pend on individual components providing the application
with sufficient resources, thus, contributing to the appli-
cations’ SLA. The disk system is the component satu-
rated first in any computer infrastructure, because it is
the slowest one. This condition makes it hard, or im-
possible, to make keepable promises about performance,
and ultimately increases the risk for application SLA vi-
olations. Clearly this is sub-optimal situation for system
administrators whose mission is to keep applications and
their infrastructure running.

The work presented in this paper is motivated by one
of the author’s experiences with unpredictable service
availability of SAN devices at the University of Oslo.

2 System model and design

The goal of this work was to design a working prioritiza-
tion framework containing throttling, measurements and
decision making. The main idea was to utilize common
tools in novel ways in order to obtain more predictable
service availability of storage devices. The objective was
to demonstrate the ability to mend adverse effects of in-
terference between loads using a throttling mechanism
for reducing resource contention, thereby improving ser-
vice availability for important consumers. iSCSI utilizes
TCP for transportation and Linux Traffic Control (tc)
has advanced features for network traffic shaping, hence,
the decision to use tc for the purpose of throttling was
easy.

The amount of consumers that need to be throttled
could become large. Also, workloads may rapidly
change. Thus, a method to rapidly adapt throttling
schemes is a necessary requirement. Traditionally, TCP
traffic shaping with Linux Traffic Control is used with
static rules targeted only at the network itself, for in-
stance by limiting the network bandwith of traffic to spe-
cific IPs. This work utilizes feedback from resources out-
side of the network layer in order to adapt traffic throt-
tling rules inside the networking layer in a dynamic man-
ner.
In order to have sufficient control of the consumers’

resource utilization, both read and write requests must
be throttled. It is straightforward to shape outgoing TCP
traffic from a server since the rate of transmissions is
directly controlled. To the iSCSI server outgoing data
translates to delivery of the answer to initiator read re-
quests. Hence, controlling read requests are trivial but
controlling write requests is a challenge. iSCSI write re-
quests translates to inbound TCP traffic. Different ap-
proaches for dealing with the shaping of inbound traffic
are known. The easiest method to achieve this is ingress
policing. The concept of ingress policing is to drop pack-
ets from the sender when a certain bandwidth threshold
is crossed. The congestion control mechanisms of TCP
will then adjust the sender rate to a level that can be main-
tained without packet drops. There are clearly disadvan-
tages to this approach:

• Packet loss which leads to inefficient network link
utilization due to packet retransmits.

• The time it takes for the sender to adapt when the
receiver decides to change the allowed bandwidth.

Ingress policingmight be sufficient for a small number
of senders and seldom changes in the receivers’ accepted
bandwidth. However, the ability to change bandwidth
limitations fast is needed for rapid adaption to workload
changes. When the number of consumers and bandwidth
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Figure 2: Principle of throttling by delaying packets

limits changes rapidly, this method does not scale, and
adapts slowly and inefficiently.

2.1 Dynamic throttling
This paper suggests a novel method of throttling de-
signed to address the limitations just described. The
method implies introducing a variable additional delay
to packets sent back to initiators, the clients in SCSI ter-
minology. Read requests are simply throttled by delay-
ing all outbound packets containing payload. Outbound
ACK packets containing no payload are delayed in order
to throttle write request without dropping packets. This
method is illustrated in Figure 2. The actual delay is ob-
tained using the netem module of Linux Traffic Con-
trol, and packets are assigned different delays based on
Iptables marks.

In section 5 we propose an array agnostic version of
this throttle by implementing it in a standalone bridge.
The method of delaying packets makes this an attractive
idea because of the delay method. Using packet delay
rate instant rate reduction is achieved without dropping
packets.

As previously argued, the need for a dynamic selec-
tion method for throttling packets is needed. Iptables
provides this dynamic behavior with its many available
criteria for matching packets. Combined with the mark
target, which can be detected by the use of tcʼs fw fil-
ters, it is possible to set up a predefined set of delays that
covers the needed throttling range with sufficient granu-
larity.

The entities that consume resources in this context are
the iSCSI initiators. The entity that provides the re-

sources of interest to the initiators is the iSCSI target.
Both initiators and targets have IP addresses. IP ad-
dresses can be used for throttling selections. The IP ad-
dress of the iSCSI initiator will be chosen as the entity to
which throttling will apply. Differing priorities for con-
sumers will translate into different throttling schemes of
those consumers’ IP addresses. The underlying idea is
to apply throttling to less important requests in order for
important requests to have enough resources available to
meet their requirements.
Packet delay throttling makes it possible to influence

rates in both directions on a per initiator basis. In produc-
tion environments the amount of initiators to keep track
of quickly becomes overwhelming if throttling is based
on individual consumer basis. Moreover, it is likely that
the same throttling decisions should be applied to large
groups of initiator IP addresses. Applying the same rules,
over and over again, on lists of IP addresses is inefficient.
To avoid this inefficiency the Ipset tool is needed [1].
It is a patch to the Linux kernel that enables creation of
sets, and a companion patch to Iptables that makes
Iptables able to match against those sets. This is a
fast and efficient method of matching large groups of IP
addresses in a single Iptables rule: the set of throt-
tleable initiator IP addresses.

2.2 Throttling decision
As pointed out by previous research, remaining capacity
is not constant, it is dependent on both rate, direction and
pattern of the workloads. Hence, an exact measure of re-
maining capacity is hard to maintain. However, it is pos-
sible to indirectly relate how close the resource is to satu-
ration by measuring individual consumer response times
without any knowledge about the cause. In previous re-
search virtual disk response time has successfully been
utilized as a saturation level measure [2, 3, 4]. This work
uses a similar approach. An Exponentially Weighted
Moving Average (EWMA) of the response time is ap-
plied before it is used as the input signal to the control
mechanism. EWMA is widely adopted as a successful
method in the process control field for smoothing sen-
sor input signals. In the process control field, this filter
is commonly named a time constant low pass filter. The
standard moving average is susceptible for spikes in the
data. It is not desirable to trigger large throttling impacts
caused by transient spikes in the average wait time, throt-
tling should only occur as a result of persistent problems.
The utilization of EWMA enables this behavior.

Interference from less important read or write jobs
may lead the measured consumer response time to ex-
ceed the desired threshold. The framework should then
respond by adding a throttling delay to the packets of
the interfering loads, but it is difficult to determine the
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exact size of this delay. The idea of using a Propor-
tional Integral Derivative (PID) controller as decision en-
gine emerged from the observations of the relation be-
tween interfering workloads, the interference by other
consumers and the efficient operation of the packet de-
lay throttle. This behavior is similar to the control organs
used to control industrial processes operated by PID con-
trollers in the field of control engineering where they are
widely used in order to keep process variables close to
their set points and ensure stability for complete industry
plants [5].
The purpose of our PID controller is to control throt-

tling such that the consumer wait time of important re-
quests stays below or equal to a preset value even when
the load interference changes rapidly. The given value of
maximum wait time for storage resources is likely to be
constant, and close to the saturation point of the underly-
ing resource. However there is nothing that prevents im-
plementation of dynamically adjustable thresholds. The
main purpose of the controller in this work is to keep re-
sponse time of important requests from violating a given
threshold in spite of rapidly changing amounts of inter-
ference from less important requests. The appendix con-
tains a more detailed description of the PID controller.

2.3 Automated PID control approach
The ultimate goal of this work was the design of a fully
automated per-resource read-response-time-controller as
an example technique to utilize the throttle and the con-
troller in order to ensure maximum read response times.
Other prioritization schemes are equally possible. This
section describes experimental results where the auto-
mated framework is exposed to the same loads as in the
previous section. However, the selection of throttleable
consumers are automatically inferred by the framework
by the use of simple workload profiling: write activity of
a certain amount.

Most I/O schedulers, and those parts of an entity re-
sponsible for servicing application I/O requests, gener-
ally have a preference for satisfaction of read requests
over write requests. This is because waiting for read
requests is blocking applications from continuing their
work. Thus, read-over-write prioritization demonstrated
here comprises a relevant use case for the throttle and the
controller.

Usually, write requests are written to cache, at several
levels in the I/O path, for later de-staging to permanent
storage without blocking the application from further op-
eration. Hence, throttling write requests can be done to a
certain limit without affecting application performance.
Nevertheless, it has been demonstrated through earlier
experimental results that write requests are able to ad-
versely influence the more important read requests. The

design goal of the final prototype is the utilization of ear-
lier results to automatically prevent write requests from
adversely impacting read requests, thus contributing to
improved application service predictability without the
need for user input.

In the previous section the saturation level indicator
and the set of throttleable consumers where predefined
in order to influence the wait time of the important con-
sumers. This section will describe the design of a pro-
totype that completely automates the detection of sat-
uration level and the identification of throttleable con-
sumers, on a per resource basis. Instead of the proto-
type of the previous section’s reliance on user determined
list of important consumers, this prototype uses the read-
over-write prioritization to automatically find out what
to monitor and which consumers are eligible for write
throttling.

In most storage devices, the disk group from which
virtual disks are allocated, is bound to become the re-
source first saturated. This is the reason that LVM was
chosen to reproduce a similar environment in the lab
setup. In the lab setup, volume groups represent the
shared resource that logical volumes are striped across.
The objective of the prototype is to control the saturation
level caused by write activity on a per-resource basis,
thereby indirectly controlling the read response time of
the resource. This translates to per volume group in the
lab setup. In order to achieve this in the lab prototype,
the following requirements will be met:

• An entity that maintains sets of IP addresses that are
known to be doing write activity at a certain level:
eligible throttlers.

– Each set should have name of the resource of
which its members are consumers.

– Each set should be immediately throttleable
by using its name.

• An entity that maintains a value representing the
saturation level on a per-resource basis.

• An entity that spawns a PID controller for each re-
source and:

– Uses the resource’ saturation level as input.
– Throttles the set of throttleable consumers for

that particular resource so that the saturation
level is kept below a set threshold.

The requirements are fulfilled by three perl pro-
grams working together with Iptables, Ipset and
Traffic Control, utilizing shared memory for in-
formation exchange and perl threads for spawning paral-
lel PID controllers. Figure 2.3 illustrates the concept of
the framework implemented by the three scripts.

4
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Figure 3: Automated controller framework overview

2.3.1 Automatic population of throttling sets

The Perl program set_maintainer.pl reads
information about active iSCSI connections from
/proc/net/iet/*, where information about each
iSCSI target id is found: the connected consumer IP
and servicing device. For all active iSCSI sessions, the
device-mapper (dm) name and consumer IP address
is recorded. The lvs command is used to record the
logical volume name and volume group membership of
each device-mapper device detected to participate in an
active iSCSI session. The information found for each of
the device-mapper device is recorded in a data structure
and mapped into a shared memory segment with the key
ISCSIMAP. For each of the volume groups involved in
active iSCSI sessions, an empty IP-set is created with
the same name as the volume group. When iSCSI device
maps are exported to shared memory and the necessary
IP-sets are created, the program enters maintenance
mode. This is a loop that continuously monitors ex-
ponentially weighted averages (EWMAs) of the write
sector rates of all dm devices involved in active iSCSI
sessions. For each of the previously created IP-sets, it
then determines the set of consumers that have a write
sector rate exceeding a preset configurable threshold.
The generated set is compared with the in-kernel IP-set
for that resource, and any differences are converged to
match the current set of eligible consumes for throttling
that were detected. The IP-sets are converged once every
second, yielding continuously updated per resource
IP-sets known to contain consumers exhibiting write
activity at certain level. These sets are immediately
throttleable by Iptables matching against them.

2.3.2 Automatic determination of saturation moni-
tors

The ewma_maintainer.pl program reads
the shared memory information exported by the
set_maintainer.pl program. For each resource,
it continuously calculates an exponentially moving
average of the read response time using information
obtained from /proc/diskstats. Only consumers
having read activity are included in the calculation. The
data structure containing the resources’ read response
time EWMAs is tied to a shared memory segment with
key AVEWMAS and updated every 100ms. The read
response time EWMAs serve as per resource saturation
indicators which will be used as input values to the
subsequently described PID controller threads.

2.3.3 Per resource PID control

The pid_control.pl program attaches to the
shared memory segment with the key AVEWMAS,
and reads the saturation indicators maintained by the
ewma_maintainer.pl program. For each of the re-
sources (volume groups) found in the AVEWMAS shared
memory segment, a PID controller thread is created with
the resource name and its accepted read response time
threshold as parameters. Each PID control thread mon-
itors the saturation level of its designated resource and
directly controls the delay throttle of the set containing
current consumers exhibiting write activity towards that
resource. The pid_control.pl then detaches from
the worker threads and enters an infinite sleep loop, let-
ting the workers control resource saturation levels in par-
allel until a SIGINT signal is received.

3 Results

Experiments are executed using a Linux based iSCSI
appliance using striped logical volume manager (LVM)
volumes as virtual disks. Each of four striped logical vol-
umes are presented to the blade servers using iSCSI en-
terprise daemon [6, 7]. The blade servers act as iSCSI
initiators and are physically connected to the external
iSCSI target server using a gigabit internal blade center
switch. Figure 4 shows the architecture of the lab setup.

3.1 Without throttling

When there is no throttling mechanism in place, there is
free competition for available resources. Figure 5 shows
how four equal read loads, run on each of the equally
powerful blade servers, share the total bandwidth of the
disk resources, serving each of the logical volumes to
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Figure 4: Concept sketch of the lab setup

which the blade servers’ iSCSI block devices are at-
tached. The plotted read rates show what each of the
consuming blade servers achieve individually.

3.2 Throttling by packet delay
Throttling of workloads has been utilized as a means to
influence remaining capacity by many previous works,
and it is normally carried out by some kind of rate limi-
tation applied to the workloads. Utilization of the iSCSI
protocol comes with the additional benefit of utilizing
TCP traffic shaping tools to enforce rate limitation. In
order to examine the effects on consumers by throttling
taking place in the TCP layer, a number of experiments
were executed. The first throttling approach involved
bandwidth limitations by using hierarchical token bucket
filters (HTB). The expected effect of throttling individual
consumers was achieved, but the pure bandwidth throt-
tler had a few practical limitations: the need for con-
stantly calculating the bandwidth to be applied and, more
important, the inefficient way of controlling write re-
quests. Controlling write rates was not possible without
packet loss, resulting in slow and inefficient convergence
towards bandwidth target.

The shortcomings of the bandwidth shaping method,
especially with respect to writing, inspired the idea of
using packet delay for throttling. The netem module
of Linux Traffic control was used to add delay to pack-
ets in a dynamic way in conjunction with Iptables
packet marks. The concept is to add a small wait time to
outgoing ACK packets containing no payload, thus slow-
ing down the packet rate of the sender: the iSCSI writer.
The main outcome of the design and subsequent exper-

Figure 5: Equal sequential read load from four identi-
cally equipped blade servers without throttling

iments is an efficient way of throttling individual iSCSI
consumers’ traffic in both directions, with close-to-linear
rate reduction and without packet loss. The experiments
show that it is possible to throttle write and read activity
using the same set of delay queueing disciplines (qdiscs)
in Linux Traffic Control (tc). For writes, the outgoing
ACK packets containing no payload are delayed, and for
reads all other packets are delayed.

Figure 6 shows the effect of packet delay based throt-
tling on the same workload as in Figure 5, and Figure
7 shows the effect when writing the same load that was
previously read.

The shaping is done in using Iptablesʼ packet
marking abilities to place packets from individual con-
sumers in different predefined delay qdiscs at different
points in time. In this experiment, a shaping script on
the target server is throttling down blade servers b2, b3
and b4 at predefined time offsets from the start time of
the experiment and releasing them at later points in time.
Throttling of blade server b2 frees up resources to the re-
maining consumers. Next, throttling of b3 and b4 gives
increased resources to the remaining consumers. When
b2 is freed, b5 is already done with its job, and most re-
sources are available to b2 which increases its through-
put dramatically. When b3 is freed, b2 and b3 share the
resources again and stabilize at approximately 14 MB/s
each. Finally b4 is freed, and b2, b3 and b4 share the re-
sources, each having a throughput of ca. 10 MB/s. When
b4 finishes its job, there are two machines left to share
the resources, and when b3 finishes, only b2 is left to
consume all resources.

Figures 6 and 7 shows a drop in throughput for un-
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Figure 6: Throttling of initiator’s sequential read activity
using delayed ACK packets in tc(1).

throttled consumers when throttling starts. No plausible
explanation was found for this, and additional research is
necessary to identify the cause of this.

3.3 Introduced delay vs throughput

Previous results suggest that the method of introducing
artificial delay to outgoing packets could be an efficient
way of throttling iSCSI initiators in order to decrease the
pressure on shared resources like disk groups. To find
out the predictability of throttling as an effect of artificial
delay, 200 MB of data was repeatedly read and written
from the iSCSI initiator device of one blade server, mea-
suring the time it took to complete each job. Each job
were repeated 20 times for each value of artificial delay.
Figures 9 and 8 show the results with error indicators,
representing the standard error, on top of the bars. The
precision of the means is so high that it is hard to see the
error indicators at all.
The plots show that variation of artificial delay be-

tween 0 and 9.6 ms is consistently able to throttle reads
between 22 MB/s and 5 MB/s and writes between 15
MB/s and 2.5 MB/s. There is no absolute relationship
between artificial delay and throughput. Rather, the in-
troduced delay has an immediate rate reducing effect
regardless of what the throughput was when throttling
started. Figures 9 and 8 suggests that there is a close-to-
linear functional relationship between introduced delay,
the start rate and the resulting rate after throttling.

Figure 7: Throttling of initiator’s sequential write activ-
ity using delayed ACK packets in tc(1).

Figure 8: Repeated measurements of the time used to
read 200 MB with stepwise increase in artificial delay of
outgoing packets from target server.
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Figure 9: Repeated measurements of the time used to
write 200 MB with stepwise increase in artificial delay
of outgoing packets (ACK packets) from target server.

3.4 Interference between loads

Figure 10 demonstrates that a small random read job, that
causes negligible I/O load by itself, has its response time
increased with the amount of load caused by threads run-
ning on other hosts. The graphs in the figure is from 4
different runs of the sram random read job, but with dif-
ferent degree of interference in the form of write activity
to other logical volumes residing on the same striped vol-
ume group. This picture comprises the essence of load
interference. The consumer executing the small random
read job is unable to get predictable response times from
its virtual disk because of activity from other storage con-
sumers.

3.5 Effect of throttling on wait time

Figure 11 shows the effect on a small read job’s average
wait time when throttling the 12 interfering sequential
writers. Packet delay throttling is done in the periods
100s − 190s and 280s − 370s, using 4.6ms and 9.6ms

packet delay respectively. Clearly the throttling of in-
terference contributes to wait time improvement. The
magnitude of improvement is higher if the wait time is
high before throttling (i.e. level of saturation is high).
It means that the throttling cost for improving response
time from terrible to acceptable can be very low, but the
cost of throttling increases as the response time improves
(decreases).

Figure 10: The effect on average wait time for a rate lim-
ited (256kB/s) random read job running on one server
during interfering write activity from 1 and 3 other
machines respectively. The interference is started one
minute into the timeline.

Figure 11: The effect on a small read job’s wait time
when throttling interfering loads with delays of 4.6 ms
and 9.6 ms respectively.
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Figure 12: The average wait time of a rate limited
(256kB/s) random read job with 12 interfering write
threads started simultaneously and repeated with 5 sec-
onds pause in between. The black plot shows the effect
with free resource competition. The colored plots show
how the PID regulator keeps different latency thresholds
by regulating interfering workloads.

3.6 PID control of response time
Figure 12 demonstrates the PID controller’s ability to
keep the actual wait time below or equal to the desired
threshold. The black plot shows how latency is af-
fected by various changing interfering workloads when
no throttling is enabled. The colored plots show the ef-
fect of the same interfering workloads, but now with the
PID regulator enabled having thresholds set to 20,15 and
10 ms respectively. Figure 13 shows the throttling ef-
fect on the corresponding interfering workloads (aggre-
gated throughput). Notable is the relatively higher la-
tency improvement for the random read job by throt-
tling aggregate write throughput from its maximum of
39 MB/s down to 33 MB/s, yielding an improvement of
25 ms lower latency. Taking the latency down another
five milliseconds costs another seven MB/s of throttling
to achieve. Clearly the throttling cost for each step of
improved latency increases as latency improves.

3.6.1 Automated PID results

Figure 14 shows that the results with per resource satu-
ration level auto-detection, and dynamically maintained
throttleable consumer sets, is close to the results in the
previous section where throttleable consumers and re-
sponse time monitors where defined manually. Figure
15 shows the resulting aggregated write rates as a conse-

Figure 13: The aggregated throughput caused by throt-
tling to keep latencies at the set thresholds in Figure 12.

quence of the automated throttling carried out to keep
read response time below the set thresholds in Figure
14. Again, the black plot depicts response-time/write-
rate without regulation, and the colored ones depicts the
same but with regulation at different threshold values.
The results shows that the automated per resource PID

control framework is able to closely reproduce the previ-
ous results where throttleable consumer sets and resource
saturation indicators were manually given as parameters
to the PID regulators.

There is a slight delay in the throttle response com-
pared to the previous section, giving a slightly larger
magnitude and duration of the overshoot created by the
simultaneous starting of 12 interfering threads. It is rea-
sonable to speculate that this is caused by the additional
time required to populate the sets of throttleable con-
sumers.
During experiment execution, the OUT-

PUT chain of the Netfilter mangle ta-
ble was monitored with the command
watch iptables -L OUTPUT -t mangle.
As expected, the rule that marks the outbound ACK
packets of all consumers in the set of throttleable
consumers appeared as soon as the response time thresh-
old was violated. Further observation revealed rapid
increase of the mark value as the write interference
increased in magnitude, thus directly inhibiting write
activity to a level that does not cause write-threshold
violation. The command watch ipset -L was used
to observe that an empty set with the same name as the
active resources (the vg aic volumgroup) were created
upon startup of the set_maintainer.pl program.
Furthermore, the set was populated with the correct IP

9
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Figure 14: The average wait time of a rate limited
(256kB/s) random read job interfered by 12 write threads
started simultaneously and repeated with 5 seconds
pause in between. The black plot shows the effect with
free resource competition. The colored plots show how
the PID regulator keeps different response time thresh-
olds by regulating interfering workloads. In this plot, the
resource saturation indicator and the set of throttleable
host are maintained automatically.

Figure 15: The aggregated throughput caused by throt-
tling to keep latencies at the set thresholds in Figure 14

Figure 16: The resource average wait time, the throttling
delay and the aggregated write rate with a set resource-
wait-time-threshold of 15ms

addresses as the write activity of consumers violated the
set threshold, and the IP addresses were removed from
the set when consumers ceased/reduced write activity.

Before creating the workload used in this experiment,
various smaller workloads were tested while plotting av-
erage wait time in realtime during experiments. By ap-
plying various increasing and decreasing write interfer-
ence, the PID controller’s behavior was observed in real
time. The controller exhibited remarkable stability when
gradually increasing interference. Hence, it was decided
to produce the most extreme workload variation possible
in the lab for the plotted results by turning on and off 12
writer threads (powered by three machines) simultane-
ously.

It is interesting to examine how the throttle-produced
packet delay changes as the the PID controller decides
throttle values. Thus, the experiments were run again,
capturing the packet delay applied to the set of throt-
tleable hosts along the duration of the experiment. Figure
16 shows the monitored resource’s (vg aic) actual wait
time, the throttle value (packet delay) produced by the
PID controller and the actual resource’s aggregated write
rate. The 12 writer threads want as much I/O bandwidth
as they can get (37 MB/s without regulation), however,
they get throttled by introducing the packet delay seen in
the red plot. The decreased write rate caused by packet
delay prevents resource saturation, which again prevents
read response time of the resource from exceeding the set
threshold of 15 ms.

10
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3.7 Measuring overhead
This work introduces new features to prioritize work-
loads sharing a common resource. It is timely to ask if
this new feature comes with an added overhead. When
no throttling occurs overhead is unwanted. Since no
Iptables rules are active when no throttling occurs,
there is no overhead introduced by Iptables. The
only possible source of overhead in this situation is the
static tc queueing disciplines (qdiscs) and/or the static
filters attached to the root qdisc. All outgoing packets
are checked for marks by the static filters and there is
a risk that this checking introduce overhead. To investi-
gate if the existence of static delay queues and their filters
add overhead, the difference in throughput was measured
with static qdiscs present and absent.

Throttling only occurs when response time of a re-
source violates the preset threshold. When no throttling
occurs, there is a negligible worst case overhead of 0.4%
for reads and 1.7% for writes caused by the static traffic
control filters which are always present and ready to de-
tect packet marks. After the experiments where finalized
we discovered that Iptables is able to classify packets
directly to tc qdiscs making the check for Iptables
marks superfluous and there will be no overhead at all
when the treshold is not violated. This was confirmed by
experiment.

4 Background and previous work

The challenges regarding storage QoS are well recog-
nized and there has been numerous approaches to design
of such systems like Stonehenge [8, 9, 10], Cello [11],
Façade [12], Triage [13], Argon [14], Chameleon [15]
and Aqua [16, 17].
Despite all the research done in the field, specifica-

tions regarding QoS functionality are seldom found in
the specification sheets of storage devices.

The ability to specify service level objectives (re-
sponse time and bandwidth), among other data manage-
ment features, has been the subject of a decade long re-
search at HP Labs Storage Systems department. Looking
back in retrospect, Wilkes [18] points out the challenges
of incorporating the research results into real production
implementations. The challenge is to persuade users to
trust the systems to do the right thing. This is a human
challenge, one perhaps rooted in general healthy skepti-
cism to new technology and bad experiences from earlier
implementations that turned out to not fully take all real
life parameters into account. Wilkes points out the need
to remember that systems are built to serve people, and
the success of technical accomplishments is dictated by
how comfortable people ultimately are with them [18].

iSCSI based storage devices are the major competi-

tor to FC based storage devices at the moment. With its
lower cost, easier configuration and maintenance and in-
creasingly competitive performance, iSCSI seems to be
the enabler of large scale adoption of IP based SAN de-
vices. The introduction of IP as a transportation layer
introduces an additional, well known and well trusted
toolbox for enforcing policy and fairness amongst stor-
age consumers. Tools for traffic shaping in the TCP/IP
layer have been around for many years. The combi-
nation of well known and trustworthy throttling mech-
anisms and an extended knowledge about storage sys-
tem internals makes an appealing, pragmatic and non-
intrusive approach to the problem of QoS in storage sys-
tems. Instead of introducing the need to build trust to-
wards new interposed scheduling algorithms, bound to
add uncertainty and overhead, this work suggests uti-
lization of previously known and trusted tools to obtain
workload prioritization in case of resource saturation.
Lumb and coworkers point out the lack of a traffic shaper
in storage systems [12] (presumably FC based storage
systems). However, when utilizing TCP/IP as transport
mechanisms, traffic shapers are available.

The work described in this paper takes a different ap-
proach to the problem by utilizing well known tools, with
a high level of trust from other fields, and applying them
to the storage QoS problem for iSCSI storage devices.
The market for iSCSI based storage devices is growing
rapidly, making it an interesting target for QoS research.
The need for a throttling mechanism, as a means to con-
trol storage consumers, has been recognized by previ-
ous works [12, 15, 13, 2, 4, 3, 16, 17], and they inter-
pose their own throttlers/schedulers in the critical data
path. However, since iSCSI uses TCP for transportation,
it is possible to use well known network traffic shaping
tools for the purpose of this throttling. With the grow-
ing amount of virtual appliances utilizing iSCSI targets
as their disk storage, our approach enables global stor-
age QoS directly contributing to application SLAs using
well known tools with established trust in the networking
field.

5 Future work

This work opens several interesting paths for further re-
search and applications. By using the fundamental ideas
explored, it should be possible to create QoS modules
to be used as external bridges in front of iSCSI appli-
ances or integrated into Linux based iSCSI appliances
similar to the lab prototype. By utilizing the ideas from
this work, system administrators and vendors can offer
QoS for iSCSI storage. Hence, they can offer differenti-
ated SLAs to storage consumers with a confidence previ-
ously very difficult to achieve and contribute their share
to overall application SLAs.
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Figure 17: Illustration of how the framework could be
utilized as an independent black box with limited array
knowledge.

Figure 17 illustrates an approach for moving the con-
troller to an external bridge. Information about con-
sumer/resource mapping and virtual disk read latencies
would be necessary in order to directly utilize the tech-
niques demonstrated here. In the figure, usage of SNMP
GET requests towards the array is suggested as an easy
method for this purpose. However, the ultimate black
box approach would be to infer this information from
packet inspection. If achievable, this approach could
serve as a self contained, non-intrusive, iSCSI QoS ma-
chine applicable to all iSCSI solutions regardless of their
make and the feedback loop to the storage device would
not be necessary. But it is unlikely that the actual con-
sumer/resource mapping can be detected by packet in-
spection since this is internal storage device knowledge.
However, it could be indirectly inferred by using a pre-
defined initiator naming convention that contain resource
membership.

Even with high sampling rate, and convergence rate of
throttleable consumer sets, the PID controller framework
consumes little resources. Small resource consumption
and overhead are important attributes to enable high scal-
ability. The small resource consumption and overhead
seen in the lab prototype makes it reasonable to project
high scalability in a production environment with large
amounts of resources and consumers per resource. Com-
bined with the suggested PID controller tuning and rear-
rangement of tc filters an even smaller footprint can be
achieved.

The measuring point where virtual disk response time
is measured must be moved in order to detect bottlenecks
that occur before the local disks of the target server. An
approach using agents on iSCSI initiators would be the
best way of considering all bottlenecks along the data
path by providing the initiator-experienced wait time to
the throttling bridge. The advantage of this approach is

its simplicity, and how efficiently it will capture all bot-
tlenecks along the iSCSI data path. The disadvantage is
its reliance on initiator host modifications. A viable ap-
proach could be to use the attribute has agent installed
to infer relative higher importance to the set of initia-
tor that has agents, and automatically use the set of con-
sumers not having agents as a first attempt of throttling
before resorting to prioritization between initiators with
agents installed. Using this approach, the action of in-
stalling an agent serves both the purpose of making per-
formance metrics available to the controller and telling
about the membership in the set of hosts with the least
importance.
Previously developed algorithms other than the PID

algorithm can be combined with the throttling techniques
from this work to create even more efficient and/or gen-
eral purpose QoS mechanisms for iSCSI or even other
IP/Ethernet based storage technologies. Furthermore, the
PID control algorithm could be evaluated as a means to
create stability and predictability in other infrastructure
components than just iSCSI devices. It is likely that the
problem of controlling iSCSI consumers is not the only
one where a PID controller can contribute.

There is always a persistent and large interest in work-
load classification/modeling techniques in various re-
search areas, not only in the storage field. Together with
the ever-evolving efforts to model storage devices, this
research can be combined with the ideas and results in
this paper in order to add improved and even more gener-
alized frameworks. For example, these techniques could
be used to elect candidates for the different sets of throt-
tleable consumers in more sophisticated ways. Also,
more advanced algorithms could be combined with re-
sponse time measurements in order to more accurately
detect and/or predict if there is a real problem about to
occur.

6 Conclusion

Resource sharing is widely used in storage devices for
the purpose of flexibility and maximum utilization of the
underlying hardware. Sharing resources like this intro-
duces a considerable risk of violating application service
level agreements caused by the unpredictable amount of
I/O capacity available to individual storage consumers.
The difficulties experienced by system administrators in
making keepable promise about storage performance and
the amount of previous research in the storage QoS field
clearly emphasizes the need for practical and real-world-
usable QoS mechanisms for storage systems.

iSCSI based storage solutions are capturing increased
market share from FC based storage solutions due to in-
creased performance and low cost. Thus, iSCSI is an in-
teresting target technology for devolpment of QoS mech-
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anisms for wide industry and system administrator adop-
tion. The fact that iSCSI utilizes TCP for transporta-
tion makes it possible, and very interesting, to adapt well
known network traffic shaping tools for the purpose of
QoS in iSCSI environments.

This work reproduces and demonstrates the nature of
resource sharing, the effect of resource saturation on
throughput and consumer response time, and the result-
ing interference caused by load interaction. Using a
Linux based iSCSI storage appliance, experiments repro-
duce the varying performance of individual consumers
caused by other consumers’ activity. The lab environ-
ment, verified to exhibit similar properties to problem-
atic real-world storage solutions, is then used to design
methods to solve some relevant aspects of load interfer-
ence. The methods involve using a network packet delay
method, available in the netemmodule of Linux Traffic
Control, in novel ways and a modified proportional inte-
gral derivative (PID) controller. By combining the fea-
tures of the netem module with Iptables’ ability to dy-
namicallymark packets, an efficient bidirectionalmecha-
nism for throttling individual iSCSI initiators consumers
is created. The created packet delay throttle is utilized
by a modified PID controller implemented in software.
The PID controller utilizes the packet delay throttle as
a means to influence its input value: the average wait
time of the resource being controlled. The resource be-
ing controlled in the lab setup is LVM volume groups,
but the methods are generally adaptable to any kind of
resource exhibiting similar attributes.
The effect of packet delay throttling and the PID con-

trollers’ suitability as decision engine is thoroughly ex-
amined through experimental results. Finally, all pre-
viously designed and tested elements used in single as-
pect experiments are tied together in a prototype for a
autonomous resource control framework that is able to
keep resource read response time below a configurable
threshold by throttling write activity to the resource au-
tomatically. In spite of rapidly varying write workloads,
the framework is able to keep a resource read response
time below the set threshold. The set of throttleable
write consumers is automatically maintained and ready
to be used by the PID controller monitoring read re-
sponse time. The framework spawns a PID controller
per resource, using per resource sets of throttleable con-
sumers and per resource response time measurements.
The sets of throttleable consumers are automatically pop-
ulated using simple workload profiling.

This work opens several interesting paths for further
research and applications. By using the fundamental
ideas explored, it is possible to create QoS modules to
be used as an external bridge in front of iSCSI appli-
ances or integrated into Linux based iSCSI appliances
similar to the lab environment. Previously developed al-

gorithms can be combined with the throttling techniques
from this paper to create even more efficient and/or gen-
eral purpose QoS mechanisms for iSCSI or even other
IP/Ethernet based storage technologies. Furthermore, the
PID control algorithm could be evaluated as a means to
create stability and predictability in other infrastructure
components than just iSCSI devices.

By using the basic building blocks of this work it
is possible to create a vast amount of prioritization
schemes. The few examples given serves as a demon-
stration of the inherent opportunities. With the modular
design of the different programs it should be trivial to
reimplement the framework in similar setups with minor
adjustments only.

With the small resource consumption footprint of the
prototype, and room for further improvement of it, this
concept should scale to enterprise level production en-
vironments with large amounts of resources and storage
consumers.

By utilizing the ideas from this work, system admin-
istrators and vendors can offer QoS for iSCSI storage,
thereby making it possible to offer differentiated SLAs
to storage consumers supporting application SLAs with
a confidence previously very difficult to achieve.
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A The PID controller

The problem investigated in this paper is similar to a pro-
cess control problem solved by PID controllers. Figure
11 demonstrates the instant rate reducing throttling effect
freeing capacity, which again influences read response
time. Section 3.3 describes a stepwise close-to-linear re-
lationship similar to what a PID controller needs in or-
der to work. Figure 18 shows the concept of a PID con-
troller 1.
PID controllers can be implemented in software us-

ing a numerical approximation method. This work uses
a numerical implementation of the PID controller with
virtual disk wait-time as input signal and packet delay as
output signal.

The packet delay throttle is implemented as a range of
integers representing a stepwise proportional throttling
mechanism. Each integer step represents an increased
packet delay, thus, a decreased rate. Figures 8 and 9
suggest that steps of 0.5ms is a suitable granularity. At
0.5ms granularity, the amount of steps is determined
from maximum allowed artificial packet delay: i.e. zero

Figure 18: Block diagram of a PID controller. Licensed
under the terms of Creative Commons Attribution 2.5
Generic .

rate reduction plus 21 increasing steps of rate reduction
with a maximum delay of 20ms.

u(t) = Kpe(t)
︸ ︷︷ ︸

Proportional

+
Kp

Ti

t∫

0

e(τ)dτ

︸ ︷︷ ︸

Integral

+ KpTde
′(t)

︸ ︷︷ ︸

Derivative

(1)

Equation 1 represents the continuous function for out-
putting throttling amount as a function of the set-point
error e(t), the difference between the set value (thresh-
old) and real value. Hence, the PID controller is an error
driven controller. The proportional part is the first part
of the function and is parameterized by the proportional
gain Kp. The second part is the integral part. It is pro-
portional to both the error and the duration of it and is pa-
rameterized by the integral time Ti. The purpose of the
integrating part is to eliminate the residual steady state
error that occurs with a proportional-only controller. The
third part of the equation is the differential part. It is pa-
rameterized by the derivative gain tuning parameter Td.
The purpose of the derivative part is to slow down the
rate of change of the controller output, thereby reducing
the magnitude of overshoot created by the integral part.

When computer based controllers replaced older ana-
logue PID controllers, the PID function was discretized
using Euler’s backward method and became the basic
discrete function shown in equation 2 yielding the so-
called discrete PID algorithm on incremental form. The
function is used as the basis for most discrete PID con-
trollers in the industry [5, 19]. This paper implements
a variation of equation 2 that takes the distance above
preset response time threshold as input error signal and
computes an output throttling value. The modified algo-
rithm is named a single sided PID controller because it
only throttles when the error is positive, that is, when the
real value is higher than the set threshold.
The PID control algorithm is a direct implementation

of equation 2 below with two exceptions: the negative

14
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throttling value is capped to the maximum throttling step
corresponding to the integer value of the packet delay
class with the highest delay, and the positive throttling
value capped to zero. This is done to prevent integral
windup: the integral part accumulating too high values
that takes a long time to wind down again, and to dis-
able throttling completely when the error is negative: real
value is below the threshold. The output value of the PID
controller is rounded up to the next integer value, and
that integer becomes the Iptablesmark to apply to all
outgoing ACK packets matching destination addresses of
the iSCSI initiator IP addresses in the set of throttleable
consumers.

uk = Kpek
︸ ︷︷ ︸

Proportional

+ uik−1
+

KpT

T i
ek

︸ ︷︷ ︸

Integral

+
KpTd

T
(ek − ek−1)

︸ ︷︷ ︸

Derivative

(2)
The PID controller must be tuned for optimal control

of the process. In control engineering, the best operation
of the controller is when the actual value always is sta-
ble and equal to the set point no matter how fast the set
point changes or environmental forces influence the ac-
tual value. This ideal behavior is never achievable in real
world applications of the PID controller: there are always
physical limitations that makes the ideal case a theoreti-
cal utopia. The tuning process’ concern is finding the pa-
rameters to the controller that makes it behave as close to
the theoretical ideal as possible. There are several known
methods to tune PID controllers. The Ziegler-Nichols
method, the improved Åstrøm-Hägglund method and the
Skogestad method are some widely used methods in con-
trol engineering [5]. These methods have not been con-
sidered during this paper since a few iterative experi-
ments and according parameter adjustments yielded sta-
ble and good controller performance in short time. Thus,
the process in this paper is easy to tune compared to
many industrial processes. However, thorough tuning
efforts is likely to produce similar controller efficiency
with less less resource usage of the controller loop.
In addition to the PID parameters, the sample interval

influences loop stability and tuning. Generally, the dis-
crete PID controller approaches the behavior of a con-
tinuous PID controller when the sample interval goes to
zero. The reason to keep sample interval short is in-
creased stability and the reason for increasing the sam-
ple interval is minimizing resources utilized by the con-
troller. The sample interval used in this paper was found
by experimenting with values and observing CPU us-
age. A sample interval of 100ms yielded very stable
controller behavior and CPU utilization of approximately
1%.

However, lowering the sample frequency more may be
possible without sacrificing stability. Another benefit of

lowering the sampling frequency is calmer operation of
the throttle. It may not be necessary to move the throt-
tled IP addresses around as agilely as in the experiments,
but it must be agile enough to capture rapid workload in-
terference changes. The interval of 100ms seems to be
a fair balance between controller resource consumption
and agility.

Notes
1Created by the Silverstar user @ Wikipedia, as required by CC

licensing terms.
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Abstract

A flow meter generates flow data - which contains infor-

mation about each connection observed on a network -

from a stream of observed packets. Flow meters can be

implemented in standalone measurement devices or in-

line on packet forwarding devices, such as routers. YAF

(Yet Another Flowmeter) was created as a reference im-

plementation of an IPFIX Metering and Exporting Pro-

cess, and to provide a platform for experimentation and

rapid deployment of new flow meter capabilities. Sig-

nificant engineering effort has also gone into ensuring

that YAF is a high performance, flexible, stable, and ca-

pable flow collector. This paper describes the some of

the issues we encountered in designing and implement-

ing YAF, along with some background on some of the

technologies that we chose for implementation. In addi-

tion we will describe some of our experiences in deploy-

ing and operating YAF in large-scale networks.

1 Introduction

Network traffic continues to grow at an exponential rate,

with global internet traffic forecast to increase 34% year-

on-year though the first half of this decade [5]. Under-

standing the uses of the network and the needs of its users

is necessary for both operations and planning, for both

business and technical reasons. The need for network

monitoring has therefore never been greater in today’s

large-scale networks. While various tools exist to aid

in this problem, network flow data represents the most

comprehensive way to get an in-depth understanding of

network activity while still leveraging a huge amount of

data reduction necessary in order to practically analyze

large-scale network traffic.

The CERT Network Situational Awareness (NetSA)

Group had previously developed the System for Inter-

net Level Knowledge (SiLK) [12] in order to address the

analysis issues in this area. The SiLK tools are designed

to support the understanding of network flow information

for both network traffic and engineering, as well as secu-

rity. SiLK provides a set of command-line tools modeled

after the standard UNIX command-line tools to analyze

the collected data. A typical SiLK workflow consists of

a query to retrieve information from a SiLK data reposi-

tory, which is then piped into a set of SiLK tools to fur-

ther process the results. The data record format for SiLK

is proprietary format, but the data fields are fundamen-

tally similar to the NetFlow v5 record, as SiLK was orig-

inally designed to process NetFlow v5 data.

However, this approach left us at the mercy of ex-

isting flow meters, such as those deployed on forward-

ing devices, to generate the flow data on which SiLK

operates. Existing solutions had various issues. Flow

meters on forwarding devices often lose flows, because

high-fidelity flow generation is rightly a lower priority

for these devices than forwarding packets. Flow meters

using unreliable transport for export also suffer from flow

loss, especially during times of high traffic load. In ad-

dition, at the time no openly available flow meter had

support for the then-emerging IPFIX [6] standard.

YAF (Yet Another Flowmeter) was designed to ad-

dress this situation. We set out to build a standards-

conformant, high-performance, bidirectional network

flow meter. Standards-conformance was important to en-

sure a long operational lifecycle and wide interoperabil-

ity. We selected the IPFIX standard, based on Cisco Net-

Flow V9, the successor to the successful de facto stan-

dard Cisco NetFlow V5 export protocol. The authors

actively participated in the standards process within the

IETF to feed our experiences in building and deploying

YAF into improving the standard itself, and continue to

do so.

Performance was of utmost concern given the scale

of the networks we needed to monitor, and the ever-

increasing link speeds of the Internet backbone and large

enterprise borders. Bidirectionality was important to en-

able analysis on both sides of a communication, as well
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as to slightly increase export efficiency by eliminating

redundant information.

The result of this effort is a software tool, yaf, which

captures live packets or reads packet trace files, and ex-

ports IPFIX flows to a collector or to an IPFIX file [25].

It exports IPFIX bidirectional flows [24], and optionally

supports a set of additional Information Elements for ad-

ditional information derived from packet-level or packet

payload information, such as TCP initial sequence num-

bers or payload Shannon entropy.

YAF, in itself, is not a network analysis application

or an intrusion detection system. Instead, it is intended

as a stage in a comprehensive flow-based measurement

infrastructure, with a focus on security-relevant applica-

tions.

The rest of this paper is organized as follows. Section

2 describes network flow data, and the various protocols

in use for exporting flows, especially IPFIX, and espe-

cially as used by YAF. From there we explore the details

of the design of YAF in detail in section 3, focusing on

those choices which make YAF unique. Related work is

described in section 4. We then describe a few existing

applications of YAF in section 5, including its applica-

tion with SiLK [12] within the NetSA Security Suite and

its use in the middle tier of PRISM [11], a multi-stage

privacy-preserving network monitoring architecture.

2 Network Flow Data: Properties and Pro-

tocols

YAF exports flow data. A flow, simply stated, repre-

sents a connection between two sockets. More gener-

ally and formally, a flow is “a set of packets passing

an observation point in the network during a certain

time interval sharing a set of common properties, each

of which is the result of applying a function to packet,

transport, or application header fields; characteristics of

the packet itself; or information about the packets treat-

ment.” [6]. Specific flow export methods and proto-

cols may use more restrictive definitions than this, for

example, by constraining the set of common properties

(the flow key) or the method for selecting time inter-

vals. Flows may be unidirectional, in which case they

represent one direction of a socket connection, or bidi-

rectional, in which case they represent both directions,

or the entire interaction.

The time interval defining a flow generally spans from

the first observed packet of the flow to one of three

events: either the natural end of the flow, the idle timeout

of the flow, or the active timeout of the flow. The natural

end of the flow is determined by observing and maintain-

ing the state of the flow for connection-oriented protocols

such as TCP or SCTP. The natural end can be determined

exhaustively, completely modeling the state machine for

the transport layer protocol, or approximately, e.g. by

counting a flow as every packet between the first SYN

and the first FIN or RST observed for TCP.

The idle timeout of the flow is the longest period of

time between packets after which the flow will be consid-

ered idle; this is the natural way to expire flows in non-

connection-oriented protocols such as UDP. Idle time-

outs are generally configurable, and lead to a measure-

ment tradeoff: a short idle timeout leads to faster reac-

tion and lower state utilization during flow metering at

the expense of risking expiring flows prematurely.

The active timeout of the flow is the longest lifetime a

flow is allowed to have; any flow longer after the idle

timeout will be exported, and subsequent packets ac-

counted to a new flow. This is a final backstop against

growth of the flow table.

The exact relationship between idle and active timeout

and export time is implementation-specific. For example,

active timeout can be implemented as a continuous or pe-

riodic process; the latter approach leads to some variation

in the actual active timeout in the exported data.

The following few sections describes the origin of the

IPFIX flow protocol. The discussion is organized from a

historical perspective in chronological order.

2.1 Cisco NetFlow v5

Defined by Cisco, NetFlow v5 [4] is a widely deployed

de facto standard protocol and raw storage representa-

tion for network flow data. It is based on a fixed-length

binary record format, with a fixed set of fields. This im-

plies support only for export of IPv4 flows and 16-bit

autonomous system numbers, which has led to its being

superceded in recent years by NetFlow v9 (see section

2.2), but existing repositories of flow data as well as long

replacement cycles of routers which support NetFlow v5

ensure this protocol and representation will be around for

some time.

NetFlow v5 is a unidirectional protocol, with the flow

meter sending packets via UDP to the collector. It is a

“fire-and-forget” protocol; there is no provision for up-

stream control messages or error reporting, other than

that provided by UDP itself via ICMP. This design choice

was made to minimize resource usage and state require-

ments on the flow meter, which in NetFlow v5 is assumed

to be a router.

A NetFlow v5 data stream is made up of packets, each

of which has a header followed by a number of records.

NetFlow v5 records contain start and end timestamps in

terms of the reporting line card’s uptime in milliseconds,

source and destination IPv4 address, source and desti-

nation port, protocol, type-of-service, union of all TCP

flags in the flow, input and output interface, source and

2
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destination autonomous system number, and source and

destination prefix mask length.

The packet header contains the system uptime in mil-

liseconds at export, as well as the system realtime clock

at export with nanosecond resolution, which allows flow

timestamps to be expressed in millisecond resolution. It

also contains a sequence number, which is used to detect

dropped NetFlow v5 records.

2.2 Cisco NetFlow v9

Cisco NetFlow v9 [7] is the successor to NetFlow v5,

deployed to support IPv6 as well as flexible definition of

new record types. It abandons the fixed record format for

a template-based system wherein the record format is de-

fined inline. As NetFlow v9 was the base protocol from

which IPFIX was developed, the mechanisms it uses are

essentially the same as those in IPFIX, though some ter-

minology may be different; therefore, the details of this

approach will be elaborated in the following section.

While its flexible data definition makes it nonsensi-

cal to speak of a NetFlow v9 record format, and the

data exported by Cisco’s implementation of NetFlow v9

is administrator-configurable, the information commonly

provided in a NetFlow v9 record is more or less equiva-

lent to that available in NetFlow v5.

2.3 IPFIX

IPFIX is a template-based, record-oriented, binary ex-

port format. The basic unit of data transfer in IPFIX is

the message. A message contains a header and one or

more sets, which contain records. A set may be either

a template set, containing templates; or a data set, con-

taining data records. A data set references the template

describing the data records within that set. This is the

mechanism which lends IPFIX its flexibility.

Within the message, each set has a 16-bit ID in its

set header. This identifies whether the set contains tem-

plates, or data records. In the latter case, the data set

ID matches the template ID of the template which de-

scribes the records in that data set. A template is then

essentially an ordered list of information elements iden-

tified by a template ID. An information element (often

abbreviated IE) represents a named data field of a spe-

cific data type. The data types supported by IPFIX cover

the standard primitive types (e.g. unsigned32, boolean)

plus additional types for addresses and timestamps; each

data type defines an encoding. IEs are then instances of

these types, each with its own specific meaning.

IPFIX provides a registry of information elements, ad-

ministered by IANA [14], that cover most common net-

work measurement applications. This was initially de-

fined in RFC 5102 [18], and is extended both by subse-

quent IPFIX RFCs as well as by a community process

with expert review. Information elements may also be

scoped to SMI Private Enterprise Numbers; these can be

used to export information (as by YAF) not suitable for

standardization through the IANA process.

Because Templates are generally exported once per

session, the cost of self-representation is amortized over

many records. In this way, IPFIX can support a wide

variety of record formats, avoiding tying the implemen-

tation of a flow meter to a specific export data structure,

without the overhead of other representations with se-

mantic flexibility per record, e.g. XML. This extensibil-

ity allows innovation in flow metering and export, and as

such was the natural choice for YAF.

2.3.1 As exported by YAF

As shown in 2, YAF can export an extensive set of fields,

a superset of those available in earlier NetFlow ver-

sions, omitting those specific to packet-forwarding de-

vices. Many of these are IPFIX-standard fields defined in

the IANA registry, while others (those with an annotation

in the “YAF-specific” column) are enterprise-specific In-

formation Elements defined specifically for YAF.

YAF also takes extensive advantage of IPFIX’s tem-

plate mechanism to enable efficient export, as detailed in

section 3.4. As shown in the “Present when” column in

table 2, YAF exports IPv4 addresses only when the flow

is an IPv4 flow, and IPv6 addresses only when the flow

is an IPv6 flow. Reverse information elements are only

exported for flows which actually have packets in the re-

verse direction. In addition, command-line arguments

enabling various additional features of YAF at runtime

(e.g. DPI, entropy calculation, and others to be described

later in this work) cause YAF to capture that data and add

information elements to its export templates to represent

them. Each exported record contains only the informa-

tion elements it needs, with YAF selecting the appropri-

ate template at runtime, exporting it if it has not yet been

exported, and starting the export of a new Data Set if

necessary.

3 Detailed Design of YAF

YAF is designed as a bidirectional network flow meter.

At its core, it takes packet data from some source, de-

codes it, and associates the packet data with a flow. When

flows are determined to be complete, it exports them.

This is a rather simplified view, to which we will add

some more detail in the following subsections.

First we follow a packet through the various stages

of the basic YAF workflow shown in 1, from capture

through to export. Then we examine other interesting

3
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Name Present when YAF-specific

flowStartMilliseconds always

flowEndMilliseconds always

octetTotalCount always may use reduced-length encoding

reverseOctetTotalCount biflow may use reduced-length encoding

packetTotalCount always may use reduced-length encoding

reversePacketTotalCount biflow may use reduced-length encoding

sourceIPv6Address IPv6

destinationIPv6Address IPv6

sourceIPv4Address IPv4

destinationIPv4Address IPv4

sourceTransportPort always may contain ICMP type/code

destinationTransportPort always

protocolIdentifier always

flowEndReason always may contain SiLK-specific flags

silkAppLabel –applabel DPI application label

payloadEntropy –entropy Shannon payload entropy

reversePayloadEntropy biflow –entropy Shannon reverse payload entropy

mlAppLabel –mlapplabel Machine-learning app label

reverseFlowDeltaMilliseconds biflow RTT of initial handshake

tcpSequenceNumber TCP

reverseTcpSequenceNumber TCP biflow

initialTCPFlags TCP TCP flags of first packet

unionTCPFlags TCP TCP flags of 2..n
th packet

reverseInitialTCPFlags TCP biflow TCP flags of first reverse packet

reverseUnionTCPFlags TCP biflow TCP flags of 2..n
th reverse packet

vlanId –mac

reverseVlanId –mac

ingressInterface –live dag multi-IF

egressInterface –live dag multi-IF

osName –p0fprint p0f Operating System name

osVersion –p0fprint p0f Operating System version

reverseOsName biflow –p0fprint p0f reverse Operating System name

reverseOsVersion biflow –p0fprint p0f reverse Operating System version

firstPacketBanner –fpexport First forward packet IP payload

reverseFirstPacketBanner biflow –fpexport First reverse packet IP payload

secondPacketBanner –fpexport Second forward packet IP payload

payload –export-payload First n bytes of application payload

reversePayload biflow –export-payload First n bytes of reverse application payload

Table 2: Information elements in a YAF record

4
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

Figure 1: Basic Data Flow in YAF

aspects of YAF’s design, and additional optional features

it supports compared to other flow meters.

3.1 Recursive De-encapsulation

Packet data input can come from a variety of sources, in-

cluding libpcap dumpfiles, live capture on commodity

interfaces via libpcap as well as specialized devices

with libpcap-compatible interfaces such as Bivio and

Napatech devices, and Endace DAG cards. Each of

these sources generally yields Layer 2 and above infor-

mation; YAF then recursively unwraps encapsulations to

arrive at an IP header, possibly storing certain informa-

tion (e.g., VLAN tags or MAC addresses) for later ex-

port with the flow. In addition to the ubiquitous Ethernet

encapsulation, YAF also supports a variety of less com-

mon, carrier-use encapsulations. YAF can decode GRE,

MPLS, MPLE, PPPoE, cHDLC, Linux SLL, PPP, and

PCAP raw. Running on appropriate hardware, this al-

lows YAF to decode network information from Ethernet

to DS3 links, to OC-192 connections. Additionally, as

depicted in diagram 1, YAF can also decode odd com-

binations of encapsulation by running through the en-

capsulation phase multiple times. For example, one site

running YAF encapsulates Ethernet over MPLS. Addi-

tionally, YAF is constructed to allow new encapsulations

to be cleanly added. The decoding system requires only

minimal modification to support a new encoding. YAF

relies on the capture system to be able to identify the

base encapsulation.

3.2 Decoding

De-encapsulated packets are passed to the Layer 3 and

4 decoding layer, which extracts flow keys and counters

from the packet data. The flow key determines which

flow the packet belongs to, and in YAF consists of the tra-

ditional “5-tuple” (source and destination address, source

and destination port, protocol) as well as the IP ver-

sion number (4 or 6) if YAF is compiled for dual-stack

support. The flow key may also optionally include the

VLAN tag and, in the case of a DAG card as source,

the DAG interface number on which the packet was cap-

tured. This flow key is used for lookup in the flow table.

3.3 The Flow Table

The YAF flow table is implemented as a hashtable-

indexed pickable queue. This data structure is essen-

tially a queue paired with a hashtable. It allows random

access to any entry in the flow table via the hashtable,

but also constant access to the least-recently-seen entries,

which allows efficient timeout of idle flows. This design

evolved in part from the bin queue used in NAF [26].

The flow key calculated from the decoding stage is

looked up in the flow table’s hashtable. If no active flow

record corresponding to the flow key is found, a new

record is created. Regardless, the flow record is mod-

ified with information from the packet (e.g., counters,

payload and payload-derived information), and moved to

the head of the flow table’s pickable queue to implement

idle timeout. Active timeout is evaluated when each flow

is selected: if a packet belongs to a flow that is older than

the active timeout interval, that flow is removed from the

flow table and exported, and a new flow record is created

for the incoming packet.

From this point on, the YAF data flow operates on

flows only.

Since YAF flow records in memory are all equal size,

and they have variable lifetimes, they are allocated using

a slab allocator [3], which allows fast reuse of expired

flow records. This gives YAF additional performance

over true dynamic allocation, but still allows the flow ta-

ble to grow and shrink with variable traffic load unlike

with a statically-allocated table. However, since the slab

allocator never returns memory to the operating system,

its memory footprint will generally not be reduced dur-

ing low-traffic periods. Growth of the flow table can be

controlled by command-line options setting the idle and

active timeouts as well as the target maximum table size,

which dynamically reduces the timeouts in order to pre-

vent resource exhaustion during traffic bursts or inten-

tional denial-of-service attacks against the flow meter.

During the long transition from IPv4 to IPv6, a suf-

ficiently large and complex organization may use both

5
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protocols for some time; therefore, a design goal of YAF

is to be able to support measurement of both IPv4 and

IPv6 traffic efficiently, with efficient runtime storage and

export of both IPv4 and IPv6 flows from the same inter-

face.

If YAF is compiled with IPv6 support, it will dynami-

cally create either an IPv4 or IPv6 flow table entry based

upon the protocol of the flow. IPv4 and IPv6 flows are

defined as overlaid C structures, so most of the YAF code

for handling them that does not handle flow table entry

allocation or endpoint addresses treats the two flow types

equally. From the slab allocator’s point of view, this is

like having two separate flow tables, but both IPv4 and

IPv6 flows are unified in the same pickable queue. This

feature comes at the cost of some additional memory

to store the overlaid structure and some delay in select-

ing flow type at flow creation compared to an IPv4-only

YAF, but much less memory than would be required if

IPv4 and IPv6 flows were stored in a single union data

type with enough space for the larger addresses. Efficient

template selection as in section 3.4 below minimizes ex-

port bandwidth penalty for dual-stack support.

3.4 Efficient Export and Template Selec-

tion

When a flow ends, whether through natural completion

(presently supported only through the TCP FIN hand-

shake) or idle or active timeout, it is ready for export.

Though YAF exports what is semantically one type of

data, it uses multiple IPFIX templates to maximize ex-

port efficiency. As mentioned in section 2.3, IPFIX Tem-

plates are identified by a 16-bit number. YAF essentially

uses some of these bits as flags in order to enable or

disable fields in the Template used to export each flow,

based on the flow’s characteristics. The characteristics

used for template selection are:

• whether the flow requires full-length (64-bit)

counter export, or can be represented with 32-bit

packet and octet counters (reduced-length encod-

ing)

• whether the flow is an IPv4 or IPv6 flow

• whether the flow is a biflow (it has at least one

packet in the reverse direction)

• whether the flow is a TCP flow

• whether layer 2 (MAC and VLAN) export is en-

abled

• whether the flow was captured on a DAG card, and

has DAG interface information

• whether the flow has an application label

• whether the flow has entropy information

• whether the flow has a p0f fingerprint

• whether the flow has payload, and payload export is

enabled

Compare these characteristics with the record struc-

ture in table 2.

When a record is ready to be exported, YAF selects a

template by deriving a template ID from the properties

of the flow table entry and the configuration of the YAF

instance. If this template ID corresponds to a template

that has not yet been exported, it exports the template;

if it doesn’t match the that of the last exported record, it

starts exporting a new IPFIX set.

For example, a short IPv4 UDP flow with no reverse

direction will be exported using a template containing

IPv4 address elements, no reverse elements, no TCP ele-

ments, and reduced length counters.

When a flow is exported, YAF forgets about it, and its

entry is recycled by the slab allocator.

This concludes our trip through the “normal” YAF

workflow; subsequent subsections handle YAF’s design

approach to particular caveats of flow metering, or op-

tional features supported by YAF.

3.5 Just Enough Defragmentation

IP packet fragmentation causes a problem for flow me-

tering. Some implementations of flow assembly, espe-

cially those on resource-constrained devices or on de-

vices where flow metering is a secondary, lower-priority

function (e.g., routers), simply ignore fragmentation. For

TCP or UDP, these would treat the first four bytes below

the IP layer as the source and destination port of the flow

regardless of whether the packet contained the first frag-

ment; all fragments other than the first per packet are

accounted to the wrong flows. While this may be ac-

ceptable for some applications, given the relatively low

prevalence of fragmented traffic on the Internet [21], it

presents a simple attack against any flow meter ignor-

ing fragmentation: most packets can be accounted to the

wrong flows simply by aggressive fragmentation.

At the same time, full fragment reassembly is

resource-intensive, especially when most of the informa-

tion stored and reassembled will then be discarded, as is

the case with flow key extraction from fragments.

For this reason, YAF supports just enough defragmen-

tation: a fragment table designed very much like the flow

table (i.e., using pickable queues, slab allocation, and

dynamic timeouts for defense against resource overuse)

which keeps track of the flow a fragment belongs to, and

defragments only enough payload per flow to support the

6
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other features selected at runtime. Defragmentation oc-

curs between de-encapsulation and decoding.

Defragmentation is enabled by default, but can be dis-

abled at runtime to save resources (e.g., on networks

where fragmented packets are known not to be present)

or for compatibility with flow meters not supporting de-

fragmentation.

3.6 Packet Clock

YAF is designed to accept data both from live capture

as well as from files containing ordered packet traces.

For that reason, designed into the core of YAF is the

concept of the packet clock: YAF in effect “pretends”

that the current time is the timestamp of the packet it

is presently processing. This implies that timeouts are

evaluated against the data, and not against the system re-

altime clock of the machine running YAF. This is impor-

tant to ensure repeatability: that the same packet trace

processed multiple times will lead to identical output

data, as well as that YAF will produce identical data

whether from live capture or from playback.

3.7 Per-flow Payload Capture

If so configured at compile-time, YAF supports per-flow

payload capture. Payload capture is limited to the first

n bytes of each flow, configured on the command-line,

in order to provide the administrator control over YAF’s

resource consumption; payload capture can significantly

increase YAF’s requirements. Payload capture for TCP

flows provides full TCP reassembly.

Since each YAF record must fit within an IPFIX

record, and IPFIX imposes as 65515-byte content limit

on records, this maximum exportable payload is some-

what under 64kB for uniflows and somewhat under 32kB

for biflows. As well as supporting direct export of flow

payload, YAF payload capture can be used to support

entropy calculation and application identification, as de-

scribed in the following subsections.

3.8 Flow Payload Entropy

YAF can calculate the Shannon [22] entropy of the cap-

tured payload for use in understanding the nature of the

traffic within a flow. The Shannon entropy is calculated

by scanning through the first n bytes of captured payload

(the “banner”) byte-by-byte and creating a histogram dis-

tribution within a 256-entry array. The partial entropy of

each histogram value x is then summed to compute the

total entropy H as follows:

H =
255∑

i=0

xi

n
∗

log xi

log 2.0

The entropy is scaled to the range 0-255, for single

byte export, as follows:

Hexport = −1 ∗
H

8.0
∗ 256

The same operation is done for the reverse payload to

generate the reverse entropy.

This method of entropy calculation results in a mea-

sure of entropy in bits per byte (log base 2); i.e., a number

between 0 and 8 in 8-bit fixed-point representation. In

pure terms, a value of 255 would indicate a perfectly ran-

dom set of data, while a value close to 0 would indicate

an extremely redundant set of data with almost no infor-

mation content. High entropy values indicate data that is

either compressed or encrypted. Lower values likely to

indicate something such as an ASCII-based protocol, or

English text.

As a guide to the actual usage of the numbers from

YAF, values above approximately 230 indicate com-

pressed or encrypted traffic. Values centered around 140

are likely to be English text. A quirk in SSL/TLS is that

it commonly zeros its packets out before sending them.

This leads to extremely low numbers often indicating an

SSL/TLS encrypted flow.

3.9 Application Labeling

YAF can analyze the banner on each flow that it captures

in order to recognize the protocols above layer 4 in cap-

tured flows, and to label each flow with the application it

is running. Labeling runs at flush-and-export time (i.e.,

once the flow payload is known to be complete). YAF in-

dependently evaluates each direction of a biflow during

labeling. Application labeling is designed to be transport

port neutral in recognizing the protocol being used; how-

ever, port information is used as a hint to which protocol

match to attempt first, for efficiency purposes. For ex-

ample, if YAF has captured a biflow from two hosts with

ports 5238 and 80, YAF will attempt to match HTTP first,

due to the presence of port 80 in the flow. Application la-

beling is first match wins; in the example above, the flow

would be labeled HTTP and labeling would stop.

YAF application labeling currently recognizes the fol-

lowing protocols: HTTP, SSH, SMTP, Gnutella, Ya-

hoo Messenger, DNS, FTP, SSL/TLS, SLP, IMAP, IRC,

RTSP, SIP, RSync, PPTP, NNTP, TFTP, MySQL, and

POP3. Additional protocols are actively being added.

Areas of future work include an experimental integration

of the OpenDPI project [16], including the capabilities

of that engine as a plug-in. Additionally, it is possible

for users to add some recognizers for some simple proto-

cols simple by text editing a configuration file, which is

described below.
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3.9.1 Implementation Details

YAF uses multiple mechanisms for protocol recognition.

For some network protocols, e.g. DNS, YAF includes a

shared library written in C which can decode the struc-

ture of the DNS packets. The DNS protocol uses a well-

formatted binary structure making the tests for determin-

ing a valid DNS packet relatively easy in C. Additionally,

when exporting the extended packet details as in 3.9.2,

the C library has the added advantages of handling the

binary fields easily. In addition for cases like DNS imple-

menting name “decompression” is also relatively easy.

Conversely, other protocols, such as SMTP, IMAP, and

SIP, are ASCII or UTF-8 based protocols; these lend

themselves instead to textual analysis based on regular

expressions. YAF provides a method for defining label-

ing of these protocols based on the widely used PCRE

engine [13]. This provides two distinct mechanisms for

protocol recognition within YAF. This creates an advan-

tage of allowing application labeling to be applied using

two different mechanisms for the two different types of

protocols. Another advantage of using a regular expres-

sion system is that it allows easy in-the-field experimen-

tation, without recompiling anything, to find new proto-

cols.

In order to illustrate how the recognition system is

configured, a small sample of the application labeler con-

figuration file is shown:

# HTTP

label 80 regex HTTP/\d\.\d\b

# SSH

label 22 regex ˆSSH-\d\.\d

# SMTP

label 25 regex (?i)ˆ(HE|EH)LO\b

# DNS

label 53 plugin dnsplugin \

dnsplugin_LTX_ycDnsScanScan

The structure of the entries is keyword label fol-

lowed by the port number. This port number is used as

both the label that YAF will put into the record it pro-

duces as the output record as well as the port number for

hinting based on the source and destination ports. The

next keyword is either regex for a regular expression

based rule or plugin for a C-callable plugin. In the

case of the regex expression, everything beyond the

regex keyword will be interpreted as the regular ex-

pression.

The C plugin requires a set of functions to be defined

and a standard naming convention to be used. There are

11 functions to be defined required of every plugin, and

optionally, a twelfth function used for the deep packet

inspection. These functions are defined in the source file

yafhooks.c. Advanced users of YAF may also be ca-

pable of implementing a YAF extension in this way.

As previously mentioned the label which YAF applies

is defined as the primary port number on which the appli-

cation is expected to be seen. This is also used at runtime

to determine the most likely matching application for a

given flow, based on the source and destination ports of

the flow. If there is no match, the rules are evaluated in

order, which allows performance tuning by ordering the

rules in the order of their expected precedence on the net-

work. However, regular expression-based flow labeling

still presents a performance risk, and users should take

care that regular expressions are kept simple in order to

minimize negative impact on performance.

3.9.2 Extended Application Information Export

YAF can export extended information about a large num-

ber of protocols in its application labeling capability.

Many of these fields are relatively innocuous and detail

the general workings of the network and its protocols.

However, some fields may contain sensitive information.

Depending on jurisdiction, captured payload data or data

derived from payload capture may be considered Person-

ally Identifiable Information (PII), such that turning on

these features may require special handling of the flow

record output.

As previously mentioned, the recently released YAF

1.2 can identify via deep packet inspection (DPI) the

following protocols: HTTP, SSH, SMTP, Gnutella,

Yahoo Messenger, DNS, FTP, SSL/TLS, SLP, IMAP,

IRC, RTSP, SIP, RSYNC, PPTP, NNTP, TFTP, Teredo,

MySQL, and POP3. In addition to identifying those pro-

tocols, YAF may (or may not) export extended informa-

tion depending on the various protocols. YAF will cur-

rently export extended information about the following

protocols: HTTP, SSH, SMTP, FTP, IMAP, RTSP, SIP,

and DNS. Futhermore, we collect user name type infor-

mation in SMTP, FTP, IMAP, and SIP.

As an example of the extended information collected,

we will consider a single protocol, SIP [19]. For SIP

messages, YAF will optionally capture, identify, and ex-

port the following fields: the Via, Max-Forwards,

To, From, Contact, and Content-Length head-

ers, as well as the SIP method.

3.10 Performance

YAF was designed and developed with the goal of build-

ing a high-performance flow meter, while still maintain-

ing a cleanliness of design allowing future maintainabil-

ity and extensibility. Performance is measured through-

out development and maintenance using profile-based

measurement tools such as Shark and Instruments on the

Mac OS X development platform.
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YAF’s performance depends as well upon the perfor-

mance of the underlying fixbuf IPFIX library, since IP-

FIX transcoding on export is a significant portion of

the work YAF does. fixbuf is also designed to be a

high-performance IPFIX implementation, operating on

in-memory buffers containing messages and records, and

exploiting natural alignment of data structures in order

to speed the rearranging and copying from application

internal data structures to IPFIX records on the wire.

Subject to the capabilities of the underlying capture

device, YAF is tested for performance using various car-

rier line speeds and encapsulations during live capture.

It is tested on Ethernet systems from 100Mbit to 10Gbit,

and on optical carrier lines from OC-3 to OC-192, using

generated traffic from a dedicated load generator.

YAF is designed to perform well on generic PC hard-

ware running most UNIX variants as well as Apple OS

X. For many types of links, a capable PC will be suf-

ficient. YAF is also tested and tuned to run on various

custom capture systems including Endace DAG capture

cards and Bivio appliances. A future release of YAF will

also be developed with specific enhancements for Napat-

ech capture cards.

4 Comparing YAF to Other Flowmeters

The name Yet Another Flowmeter plays on the old

UNIX-community joke of prefixing the nth instance of

a particular type of tool “Yet Another x”; however, we

designed YAF to meet a combination of requirements

that were at the time not generally available: we needed

high performance, easy extensibility of both the output

record format and the flow-level measurement capabili-

ties, and compliance to an emerging standard to ensure

a long operational lifetime. Here we compare YAF to

existing flow meters, or flow-meter-like systems.

4.1 Software NetFlow Meters/Exporters

While there is a wide variety of both free and commercial

software designed to operate as NetFlow collectors and

analyzers, there is a smaller number of available NetFlow

meter/exporters, which generate flow data from packet

data and export via NetFlow or IPFIX. Two popular ex-

amples are softflowd [15] and nProbe [8].

softflowd does semi-stateful assembly of flows

and export via NetFlow v5 and v9; a related tool

pfflowd uses the OpenBSD packetfilter flow table in-

stead. It supports raw capture from libpcap only. It

was designed to be fast and simple, and as such supports

none of YAF’s flexibility or advanced features. Develop-

ment appears to have been inactive since 2006.

nProbe is an “all-in-one” tool for handling flow data

as part of the nTop [9] network measurement suite. One

of the features it provides is flow generation and export

from packet data. Its feature set is much more com-

parable to YAF’s: it supports IPFIX export, high-speed

collection from dedicated capture cards such as Endace

DAG and Napatech devices, and protocol inspection . In

addition, it does a few things YAF doesn’t: operating as

an IPFIX Mediator to translate older NetFlow versions

to IPFIX, and storing flow data directly into MySQL or

sqlite databases, for example. Development is active as

of summer 2010.

YAF and nProbe have to some extent been devel-

oped in parallel; features showed up in one or another

at roughly the same time, and the authors indeed tested

the interoperability the underlying IPFIX export imple-

mentation as early as 2006. However, in contrast to YAF,

while nProbe is published under the GNU GPL, it is not

generally freely available, with source download behind

a donation paywall and limited mirroring of older ver-

sions.

4.2 Argus

Argus [17] is a flow meter and analysis toolkit in a single

set of tools. While Argus does contain a set of powerful

analysis tools, similar in some ways to SiLK, that is be-

yond the scope of this paper. Instead, here we focus on

its flow measurement and export protocol type.

Argus is designed to measure bidirectional flows in the

network control plane. In order to complete that task,

Argus will attempt to merge relevant control plane in-

formation into a control flow via its monitoring points

independent of the link types monitored. For example, if

the goal is to monitor a high-performance cluster system

using Infiniband, Argus can monitor the control plane on

the cluster as well as the external link running an Eth-

ernet or optical carrier connection. In addition to moni-

toring both of those links, Argus will attempt to match a

DNS query on the external link with activity on the In-

finiband connection.

Argus is unique in its fundamentally “philosophically”

different approach to flow metering. While Argus at-

tempts to merge and relate flow information at the sensor

from related flows, YAF and most other flow sensors at-

tempt to capture the flow information in an IPFIX stan-

dard way and allow the back end analysis tools, such as

SiLK or others, find the relationships among the various

flows.

Argus also has a proprietary “sensor-centric” export

protocol in contrast to IPFIX and its predecessors, and

provides flexibility at the record level as opposed to the

informaiton element level. Argus “clients” (collectors)

initiate connections to the sensor and pull flow data off

the sensor.

Each approach has its pros and cons. In our appli-

9



116	 LISA ’10: 24th Large Installation System Administration Conference	 USENIX Association

cations, flow meters are generally deployed in environ-

ments where inbound connections are forbidden, and

where software maintenance is often difficult; meters

must be stable and not change very often; therefore, we

prefer to centralize the harder correlation work, and any

analysis which may see further innovation, while keep-

ing the edge fast and stable, and the bandwidth from the

edge to the data center as small as practical.

4.3 sflow

sflow [23] is a protocol which takes a different approach

to the same problems solved by flow collection and anal-

ysis. The key design decision here is that attempting full

flow assembly on high rate packet data requires too many

resources, and for many applications (e.g., traffic matrix

generation) sampled packet data is sufficient. Despite the

“flow” in the name, sFlow is not a flow metering or ex-

port technology: it simulates flows with packet sampling.

There is a free reference implementation, as well as sup-

port in nTop in addition to switches and routers from a

variety of manufacturers [20].

4.4 Netflow, Flexible NetFlow, and other

router-based approaches

The key difference between YAF and flow metering pro-

cesses running on routers is one of application: NetFlow

and related technologies run as secondary processes on

routers, and as such an important design consideration

is that packet forwarding performance must not be im-

peded by flow metering. This leads to reduced data fi-

delity during peak traffic times, as the router allocates

its limited resources to forwarding instead of monitoring.

When high data fidelity in flow metering is a primary re-

quirement, such as for security, flow meters such as YAF

can be used on a switch span port or optical tap to offload

the task from the router.

A key difference between YAF and Flexible NetFlow

is that, although both utilize the template functionality

in IPFIX or NetFlow V9, YAF uses it only for export

efficiency while Flexible NetFlow uses it for flow key

flexibility: it exports different record types, aggregating

packets into flow records on other than the traditional

flow key. In this way it is more akin to YAF followed

by aggregation operations in SiLK, or NAF [26].

5 Applying YAF

YAF was initially released in 2006, although it was

marked as an alpha-quality release for quite some time.

The YAF 0.7 release of August 2007 market the first re-

lease ready for operational deployment. Since then, YAF

has been adopted by several organizations as their main

software flow meter platform, and has been in produc-

tion use for quite some time. YAF is still used in the ex-

perimental side of network flow analysis as well. In the

following two sections we will describe our experiences

using YAF for those various purposes.

5.1 YAF and the Security Suite

SiLK [12] is designed to allow very large scale collec-

tion and analysis of network flow data. It provides a set

of command-line tools modeled after the standard UNIX

command-line tools (e.g. sort(1), uniq(1), cut(1)) to ana-

lyze the collected data. A typical SiLK command-line to

query a SiLK data repository is then piped into another

set of SiLK tools to further process the results. The data

record format for SiLK is a proprietary format, but the

data fields are fundamentally similar to the NetFlow v5

record, as SiLK was originally designed to process Net-

Flow v5 data.

Large SiLK deployments include one with more than

50 geographically distributed sensors monitoring every-

thing from DS3 to 10 gigabit Ethernet links. In this case,

YAF is run on one of two types of sensors: one a Linux-

based PC server with an Endace DAG card installed, for

monitoring a DS3 link; the other a Bivio 7500 series ap-

pliance using multiple blades to listen to a 10 Gigabit

Ethernet link.

Each deployed sensor sends data back to a centralized

data center via secure, encrypted connection. At that data

center, each record from the sensors is collected, tagged,

and stored onto a large SAN system for analysis by var-

ious analysis groups. This system collects many tens

of gigabytes of flow data per day, allowing analysts to

see the large-scale picture of network activity occurring

across the largest of enterprise networks.

A typical configuration for a PC with an Endace card

installed is to have YAF start at system boot. For this pur-

pose, YAF includes a set of startup scripts that can be in-

stalled on a typical Linux system to manage YAF. These

scripts start YAF via the included airdaemon utility,

which ensures that YAF will restart on abnormal shut-

down due to hardware issues. YAF then typically exports

via IPFIX to a local instance of the rwflowpack pro-

cess, part of the SiLK packing system. rwflowpack

then packs the received IPFIX record into a SiLK format,

and then compresses the records to make them smaller

still. After the records are fully compressed to an aver-

age of about 15 bytes per flow, rwflowpack passes the

records to rwsender for transmission back to the data

center.

YAF’s enhanced flow metering has been applied in

production in combination with SiLK in order to solve

operational problem. As a simple example, flows con-

taining traffic running on nonstandard ports can be de-
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tected simply by enabling application labeling, then run-

ning an rwfilter query to compare the application la-

bel (exported in the silkAppLabel information ele-

ment) with the ports in the flow. Enhanced information

can also be applied to inventory problems: DNS support

has been used to identify and patch DNS servers vulner-

able to the Kaminsky [10] exploit.

5.2 PRISM: Data Reduction in a Multi-

Stage Monitoring Architecture

YAF was also deployed in 2010 as part of the inte-

grated trial of the European Union Seventh Framework

PRISM [11, 2] project at a regional network service

provider in Italy. The aim of the PRISM project is to

apply semantically-aware access control, a multi-stage

monitoring architecure, aggressive data reduction, and

data protection and anonymisation techniques to enable

privacy-aware and privacy-preserving network monitor-

ing. The PRISM architecture is split into front-end (FE)

components which observe a packet stream and reject

packets unlikely to be of interest, back-end (BE) com-

ponents which further reduce, analyze, and store data

received from the FE, and beyond-the-back-end (BBE)

components.

A key insight of the PRISM project is that data reduc-

tion, such as reducing a packet stream down to a flow

stream early in the monitoring pipeline, removes poten-

tially privacy-relevant information; in the case of flow

data generation, the elimination of payload data signifi-

cantly reduces the potential privacy impact of the content

in the observed data stream.

YAF was used as one of the data reduction compo-

nents in the back-end of the integrated trial for a Skype-

detection application. In this scenario, higher levels of

privilege (e.g., a network administrator debugging a spe-

cific connection issue for a customer) would allow full

dissection of the Skype traffic from one host to another,

using a packet-based Skype analyzer [1] beyond-the-

back-end, while a lower level of privilege (e.g., a junior

administrator preparing a report on the volume of Skype

traffic on the network) would use a flow-based method,

reducing the fidelity of data seen beyond the back-end.

The PRISM access control system would automatically

select the correct reduction component based upon the

privilege and purpose of the request.

In this deployment, YAF was used as a straight flow

meter - payload inspection and capture were specifically

disabled. YAF was invoked on libpcap dumpfiles gen-

erated by the capfix utility developed as part of the

PRISM project, which provides for the framing of packet

traces in IPFIX/PSAMP, and configured to export to a

snack instance beyond the back-end, which in turn gen-

erated a list of Skype connection events used to count

distinct hosts running Skype.

YAF was selected for this application due in large

part to the effortlessness of integration. PRISM had se-

lected a data plane based entirely on IPFIX early in de-

velopment, in order to maximize the potential to leverage

off-the-shelf standards-compliant components within the

PRISM architecture. When the project decided on a

split packet/flow based approach to Skype traffic anal-

ysis, YAF was an obvious choice for the flow meter, and

its selection reduced the implementation of this stage of

the data plane to simply writing a little glue.

6 Availability

YAF is distributed by the Software Engineering Institute

as free software under a dual-license system. The gen-

eral public may download YAF (and all of the Network

Situational Awareness team’s software, including SiLK)

from

http://tools.netsa.cert.org

under the terms of the GNU General Public License ver-

sion 2. The US government maintains separate rights in

the software, and may use the software under the terms

of the Government Purpose License Rights of DFARS.

Support for building and using YAF and all the Network

Situational Awareness tools is available by sending email

to

netsa-help@cert.org

YAF should work on most flavors of Unix, and is de-

veloped and tested on Mac OS X, Linux, FreeBSD,

OpenBSD, and Solaris.
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Abstract
Network awareness is highly critical for network and se-
curity administrators. It enables informed planning and
management of network resources, as well as detection
and a comprehensive understanding of malicious activ-
ity. It requires a set of tools to efficiently collect, process,
and represent network data. While many such tools al-
ready exist, there is no flexible and practical solution for
visualizing network activity at various granularities, and
quickly gaining insights about the status of network as-
sets. To address this issue, we developed Nfsight, a Net-
Flow processing and visualization application designed
to offer a comprehensive network awareness solution.
Nfsight constructs bidirectional flows out of the unidi-
rectional NetFlow flows and leverages these bidirectional
flows to provide client/server identification and intrusion
detection capabilities. We present in this paper the in-
ternal architecture of Nfsight, the evaluation of the ser-
vice, and intrusion detection algorithms. We illustrate
the contributions of Nfsight through several case studies
conducted by security administrators on a large univer-
sity network.

1 Introduction

Network awareness, i.e., knowledge about how hosts use
the network and how network events are related to each
other, is of critical importance for anyone in charge of
administering a network and keeping it secure [11]. The
goal of network awareness is to provide relevant infor-
mation for decision-making regarding network planning,
maintenance, and security. NetFlow is among the most-

used information sources for gaining awareness in large
networks because it offers a good trade-off between the
level of detail provided and scalability. As a result, a
majority of networks are already instrumented through
their routers to collect and export NetFlow, and a variety
of tools are available to process such data [18, 36, 27].
However, there is still no practical solution to visualiz-
ing network activity at various granularities and quickly
gaining insight about the status of network assets. Nu-
merous attempts have been made [37, 31, 5] and are de-
tailed in Section 4, but none has gained a broad audience.

We developed a tool called Nfsight to address these
challenges. The objective of Nfsight is to offer a compre-
hensive network awareness solution through three core
functions: 1) passive identification of client and server
assets, 2) a web interface to query and visualize network
activity, and 3) a heuristic-based intrusion detection and
alerting system. Nfsight is designed to be simple, ef-
ficient, and highly practical. It consists of three major
components: a Service Detector, an Intrusion Detector,
and a front-end Visualizer. The Service Detector com-
ponent analyzes unidirectional NetFlow flows to identify
client and server end points using a set of heuristics and
a Bayesian inference algorithm. The Intrusion Detector
component detects suspicious activity through a set of
graphlet-based signatures [13], and the front-end Visual-
izer allows administrators to query, filter, and visualize
network activity. We trained and evaluated the Service
Detector using two different datasets of 30 minutes of
packet dumps collected at the border of a large univer-
sity network. The Intrusion Detector was evaluated by
security experts over a period of four months. Based on
several months of testing in a production environment
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of 40,000 computers, we believe Nfsight can greatly as-
sist administrators in learning about network activity and
managing their assets.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide an overview of Nfsight and we present
the implementation and evaluation of the different com-
ponents: the Service Detector (Section 2.2), the Intrusion
Detector (Section 2.3), and the front-endVisualizer (Sec-
tion 2.4). We discuss a number of use cases in Section 3
and we compare our approach to related work in Section
4. Finally, Section 5 offers some concluding remarks.

2 Architecture and Implementation

This section provides an overview of the architecture
of Nfsight and describes in detail the implementations
of the Service Detector, the Intrusion Detector and the
front-end Visualizer.

2.1 Nfsight Architecture Overview
The architecture of Nfsight is presented in Figure 1.
Nfsight uses non-sampled unidirectional NetFlow pro-
vided by a collector such as Nfdump/Nfsen [19]. A
network flow is defined as a unidirectional sequence of
packets that share source and destination IP addresses,
source and destination port numbers, and protocol (e.g.,
TCP or UDP). A NetFlow flow carries a wide variety
of network-related information about a network flow in-
cluding the timestamp of the first packet received, dura-
tion, total number of packets and bytes, input and output
interfaces, IP address of the next hop, source and desti-
nation IP masks, and cumulative TCP flags in the case of
TCP flows.
The Service Detector component takes NetFlow flows

and converts them into bidirectional flows in the IPFIX
format (bidirectional flow format specified by the IPFIX
working group [4]). During this process, it identifies
client and server end points using a set of heuristics and
a Bayesian inference algorithm. The bidirectional flows,
denoted by IPFIX in Figure 1, are stored in flat files,
while the server end points, denoted by Assets in Figure
1, are stored in a MySQL database. The Intrusion Detec-
tor component detects suspicious activity through a set
of graphlet-based signatures [13] applied on the bidirec-
tional flows. The high-level network activity and event
alerts generated by the Intrusion Detector are stored in
a MySQL database. An aggregation script runs periodi-
cally to maintain a round-robin structure in the database
and to provide three aggregation levels: every five min-
utes, hourly, and daily. We detail the data storage and
representation solution of Nfsight in Section 2.4. The
front-end Visualizer allows administrators to query, fil-
ter, and visualize network activity. They can access the

application simply by using a web browser and they can
collaborate through a shared knowledge base of events
reported either automatically by the Service Detector and
Intrusion Detector or manually by operators.

2.2 Passive Service Detection
2.2.1 Definitions

In the rest of the paper we use the following definitions.
A server is a network application that provides a service
by receiving request messages from clients and generat-
ing response messages. A server is hosted on a computer
identified by its IP address and accepts requests sent to a
specific port. In this paper, we focus on servers using the
UDP and TCP protocols. We are interested in both tran-
sient and permanent servers. Specifically, we consider
P2P transactions a part of the client/server model, even
if the server in this case may be handling client requests
for only a few minutes and for only specific clients. We
define an end point as a tuple {IP address, IP protocol,
Port number}. An end point may represent either a client
or a server.
We define a network session as a valid communication

between one client end point and one server end point.
All UDP flows are considered to be valid, but TCP flows
are valid only if both the request and the reply flows carry
at least two packets and the TCP acknowledgement flag.
For example, if a server refuses a TCP connection hand-
shake by sending a reset flag to the source end point, the
communication is not considered valid. Finally, we use
the term network transaction to describe any set of flows
between two end points during a time window smaller
than the maximum age limit of a flow (usually 15 min-
utes). There are two types of network transactions: uni-
directional and bidirectional. We assume that bidirec-
tional transactions are always between a client and a
server and that bidirectional transactions are always ini-
tiated by a client.

2.2.2 Approach

The task of accurately detecting servers based solely
on NetFlow flows is challenging because NetFlow does
not keep track of the logic of network sessions between
clients and servers. Specifically, we have to address the
following challenges:

1. NetFlow may break up a logical flow into multiple
separate flows;

2. NetFlow is made of unidirectional flows and there-
fore we need to identify the matching unidirectional
flows to make up bidirectional flows and identify
valid network sessions;
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IPFIX Intrusion Detector Alerts

Figure 1: Nfsight architecture

3. Identifying the server end point in a network session
is difficult because the TCP flags in the request and
reply flows are typically identical for valid bidirec-
tional flows. Furthermore, the flow timestamps have
proven to be sometimes unreliable and more often,
the request and reply flows have identical times-
tamps due to the granularity of the timestamps.

We solve the first and second challenges by match-
ing and merging the NetFlow flows as follows. First, for
each collection period (usually 5 minutes), we merge all
network flows that have the same source and destination
end points to eliminate any artificial breaking of unidi-
rectional flows. Then, to address the issue of combining
unidirectional flows into network sessions, we generate
bidirectional flows by merging all flows collected during
a given time window that have opposite source and desti-
nation end points. The network sessions are then selected
based on the number of packets and flags and accord-
ing to the definition of valid communication above. The
last step is to address the third challenge, i.e., to identify
client and server end points for every network session.
We describe below the approach we developed to per-
form this task.

2.2.3 Server Identification Heuristics

To correctly identify client and server end points for ev-
ery valid bidirectional flow, we developed a set of heuris-
tics that determine if an end point is a server (or not).
These heuristics were developed to cover a variety of in-
tuitions gathered from network experts. A heuristic may
be based on the attributes of an individual (bidirectional)
flow or it may consider a set of flows.
The heuristics implemented are:

H.0 Flow timing. Let t1 and t2 be the timestamps of
the unidirectional flows constituting a bidirectional
flow. The source of the flow with the larger (more
recent) timestamp is likely the server. The differ-
ence between t1 and t2 provides an indication on
the probability that this heuristic will identify the
correct end point as a server. If the timestamps are
identical, they cannot be used to decide which end
point is the server.

H.1 Port number. Let p1 and p2 be the port numbers
associated with a bidirectional flow. The end point
with the smaller port number is likely the server. If
the port numbers are identical, they cannot be used
to decide which end point is the server.

H.2 Port number with threshold at 1024. If an end point
has a port number lower than 1024, then it is likely
a server. The value of 1024 corresponds to the limit
under which ports are considered privileged and
designated for well-known services. If both ports
are above or below 1024, this heuristic cannot be
used to decide which end point is the server.

H.3 Port number advertised in /etc/services. If the port
number of an end point is listed in the standard
UNIX file /etc/services that compiles assigned port
numbers and registered port numbers [12], then it is
likely a server. If both or neither port numbers are in
/etc/services, this heuristic cannot be used to decide
which end point is the server.

H.4 Number of distinct ports related to a given end
point. If two or more different port numbers (in dif-
ferent flows) are associated with an end point, the
end point is likely a server. The number of differ-
ent port numbers related to an end point provides an
indication on the probability that this heuristic will
correctly identify the server. This heuristic comes
from the fact that ports on the client-side are often
randomly selected. Therefore, ports on the client-
side of a connection are less likely to be used in
other connections compared to ports on the server-
side. If both end points are related to the same num-
ber of ports, then this heuristic cannot be used to
decide which end point is the server.

H.5 Number of distinct IP addresses related to a given
end point. This heuristic is identical to the previous
one but counts IP addresses instead of ports.

H.6 Number of distinct tuples related to a given end
point. This heuristic is identical to the previous
one but counts end points instead of single IP ad-
dresses. This heuristic is based on the observation
that each server typically has two or more clients
that use the service. Furthermore, even if only one
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real user accesses the service (e.g., identified by the
IP address of the user’s machine), the communica-
tion will likely require multiple connections and the
client side of the access often uses different port
numbers. Thus, multiple end points will be de-
tected.

2.2.4 Evaluation of Individual Heuristics

We evaluated the accuracy of each heuristic by using
bidirectional flows generated byArgus [26] as the ground
truth. Argus is a flow processing application that gener-
ates bidirectional flows from packet data. We considered
Argus to be more accurate than Nfsight, and able to pro-
duce a baseline dataset for our evaluation, since it uses
detailed packet data as input instead of the high level flow
data used by Nfsight. We collected a dataset of 30 min-
utes of network traffic from the border of a large univer-
sity network and analyzed the data using Argus to iden-
tify bidirectional flows and their server end points. We
then processed the data using Nfsight to generate bidirec-
tional flows (6.2 million records) and applied the heuris-
tics to determine the server end points. We define the
accuracy of a heuristic as the probability that it correctly
identifies the server end point of a bidirectional flow. The
accuracy is estimated by dividing the number of bidi-
rectional flows correctly oriented based on ground truth
from Argus by the total number of bidirectional flows
correctly and incorrectly oriented.

For heuristics H.1, H.2 and H.3 the accuracy proba-
bility is a single value. Specifically, based on our in-
put data, we calculated the accuracies of these heuris-
tics to be 0.78, 0.75, and 0.74, respectively. Heuristics
H.0, H.4, H.5, and H.6 depend on parameter values, ei-
ther on time difference or number of distinct ports, IP
addresses, or tuples. Therefore, we can evaluate their
accuracy with regard to the parameter value as demon-
strated in Figures 2 to 5 (up to 10 seconds for H.0, and
up to 100 ports, IPs, and tuples for H.4, H.5 and H.6).
These plots show that the accuracy increases with the
time difference between requests and replies (Figure 2),
the number of related ports (Figure 3), IP addresses (Fig-
ure 4) and {IP, protocol, port} tuples (Figure 5) between
source and destination end points. Note that the simi-
larities between Figures 3 and 5 can be explained by the
fact that the client ports are randomly selected among
64,511 values. Therefore, the number of client ports and
the number of clients are different only in the case where
two clients communicating with the same server select
the same source port randomly.
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Figure 2: Bidirectional flow orientation accuracy in-
creases with the timestamp difference between request
and reply flows (H.0)
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Figure 3: Bidirectional flow orientation accuracy in-
creases with the difference between the number of source
and destination related ports (H.4)
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Figure 4: Bidirectional flow orientation accuracy in-
creases with the difference between the number of source
and destination related IP addresses (H.5)
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Figure 5: Bidirectional flow orientation accuracy in-
creases with the difference between the number of source
and destination related tuples (H.6)

2.2.5 Combining heuristics

While individual heuristics can be used to identify server
end point, they cannot make a decision for all the flow
processed. For example, some flows have similar request
and reply timestamps, or similar source and destination
port numbers. To address this issue and to get a better
estimate, we combine the evidence provided by the dif-
ferent heuristics using basic Bayesian inference. We con-
sider each end point that is present in at least one bidirec-
tional flow. For each end point X , we have two possible
hypotheses:

• Hs: end point X is a server.

• Hc: end point X is a client.

The different heuristics are used to identify evidence E

in the bidirectional flows. For example, the fact that
there is a difference in unidirectional flow timestamps
provides evidence based on heuristic H.0. Bayesian in-
ference combines any prior knowledge (the prior prob-
ability of hypothesis Hi being true denoted by P (Hi))
with information gained from new evidence E to pro-
duce a new estimate of the probability that the hypothesis
is true using the formula:

P (Hi|E) =
P (E|Hi) ∗ P (Hi)

∑
P (E|Hj) ∗ P (Hj)

where P (E|Hi) denotes the probability that evidence E

is present in a flow or set of flows given that hypothesis
Hi is true, that is, that a heuristic we use to generate the
evidence is accurate. While these conditional probabil-
ities could be assigned using expert knowledge, we use
the heuristic accuracies measured previously. We sum-
marize these empirical results in Table 1.

Table 1: Individual heuristic accuracies used as condi-
tional probabilities for Bayesian inference

Heuristic Output Accuracy
]0; 1.0[ 0.25

H.0 [1.0; 5.0[ 0.7
[5.0;∞[ 0.99

H.1 True 0.78
H.2 True 0.75
H.3 True 0.74

1 0.97
H.4 [2; 29] 0.9825

[30; 74] 0.9875
[75;∞[ 0.99

H.5 1 0.95
[2;∞[ 0.98

1 0.97
H.6 [2; 29] 0.9825

[30; 74] 0.9875
[75;∞[ 0.99

Note that while the naive Bayesian formulation used
assumes independence of evidence, and some of the
heuristics are obviously correlated, we find the approach
still useful for combining the heuristics. We are evalu-
ating other combining techniques, such as Bayesian net-
works, that allow explicit representation of dependencies
between heuristics.

2.2.6 Evaluation of Bayesian Inference

We evaluated the accuracy of Nfsight to address two
related issues: 1) generating correctly oriented bidirec-
tional flows, and 2) accurately identifying server end
points. For the first issue, we applied the approach previ-
ously described to individually evaluate heuristics by us-
ing Argus to provide ground truth. For the second issue,
we compared server end points discovered by Nfsight
against Pads [23]. Pads is a packet-based passive ser-
vice discovery tool. Similarly to Argus, we considered
Pads to be more accurate than Nfsight and able to pro-
duce a baseline dataset for our evaluation, since it works
from detailed packet data instead of high level flow data.
In our evaluation, we are interested in measuring how
much accuracy we lose by working only with flows.

We collected a second dataset of 30 min of network
traffic from the border of the same large university net-
work. Note that the dataset used for determining the ac-
curacy of individual heuristics (summarized in Table 1)
and the dataset used for this evaluation were collected
five months apart.

Concerning the issue of generating correctly ori-
ented bidirectional flow, we analyzed 3,617,077 bidirec-
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Table 2: Bidirectional flow orientation accuracy grouped
by confidence level from Bayesian inference

Heuristic Able to decide Accuracy
H.0 11.49% 94.54%
H.1 63,98% 85.54%
H.2 48.14% 98.15%
H.3 47.73% 98.17%
H.4 63.28% 93.72%
H.5 55.51% 88.76%
H.6 63.38% 92.58%

tional flows generated by both Nfsight and Argus. On
this dataset, Argus could decide on the orientation for
2,356,616 flows (65.15%) while Nfsight could make a
decision for 3,616,942 flows (99.996%). When Argus
could decide, we evaluated that Nfsight agreed on the
orientation for 2,183,440 flows. This represents an accu-
racy of 92.65%.

To understand further the contribution of the Bayesian
inference to combine heuristics, we expand the compar-
ison against Argus for each individual heuristic in Table
2. These results reveal that individual heuristics provide
high accuracies but they are able to decide for only a
fraction of the flows. For instance, H.0 agrees with Ar-
gus for 94.54% of the flows, but could decide for only
11.49% of the flows. The accuracies of H.1 to H.6 range
from 85.54% to 98.17%, while the decision capabilities
of H.1 to H.6 lie between 47.73% and 64.98%. These
results show the importance of the Bayesian inference to
combine heuristics, because it allows the overall decision
capability to reach almost 100% while keeping the over-
all accuracy above 92%.
The final step of the evaluation was to address the

second issue of accurately identifying server end points.
We compared server end points identified by Nfsight and
Pads. Out of 57,985 TCP servers detected by Pads from
the packet data, Nfsight was able to identify 45,932,
which represents an accuracy of 79.21%. We investi-
gated the services detected by Pads and not by Nfsight,
and we found that the majority of them were source end
points of unidirectional flows. This pattern indicates that
our evaluation dataset did not contain both directions of
network sessions for some flows. The lack of request or
reply flows can come from asymmetric routing or sam-
pling. We discuss in Section 3.4 the need to develop
additional heuristics that would allow Nfsight to handle
such cases.

2.3 Intrusion Detection
Once bidirectional flows have been generated by the
Service Detector, the Intrusion Detector identifies mali-

cious activity using a set of detection rules based on the
graphlet detection approach [13]. In this approach, the
patterns of host behavior are captured based on the flows,
and then these patterns are compared with intrusion de-
tection signatures. Patterns are generated for each host
and contain statistical information such as host popular-
ity, number of ports used, number of failed connections,
and total number of packets and bytes exchanged. Note
that working with bidirectional flows simplifies the defi-
nition of the detection rules and the pattern lookup since
the source and destination end points of each network
transaction are already known. We describe in detail the
data structure and the different detection rules we evalu-
ated in the remainder of this section.

2.3.1 Data Structures

The intrusion detection algorithm processes each bidi-
rectional flow generated over the last batch of NetFlow
flows collected (5 minutes in our setup) and creates or
updates two dictionary structures: one for the source and
the other for the destination IP addresses of the flow un-
der review. The structure for source IP addresses cap-
tures the fan-out relationships, while the other captures
the fan-in relationships. These dictionaries are organized
in a three-level hierarchy, where the IP address and the
protocol are used as keys for the first and second lev-
els, respectively. The different fields at the third level are
therefore all related to a specific {IP, protocol}. These
fields are:

• Peer: the set of distinct related IP addresses;

• Port: the set of distinct related destination or source
ports;

• TCP flag: the set of distinct flag combinations used;

• Packet: the total number of packets sent or received;

• Byte: the total number of bytes sent or received;

• Flows: the total number of bidirectional flows sent
or received;

• Failed connections: the total number of unidirec-
tional flows sent or received;

• Last source end point: the source port, IP address
and TCP flag of the last flow captured;

• Last destination end point: the destination port, IP
address and TCP flag of the last flow captured.

The last two fields are not used by the detection rules
but were requested by our team of administrators as
an additional time-saving information when classifying
alerts sent by email. For example, consider a case where
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a host is detected as initiating a large number of failed
connections over the last 5 minutes. If the last source
port appears to be random and the last destination port
is TCP/445, then the host will be immediately classified
as compromised by a malware that spreads over the Net-
bios service. On the other hand, if the last source port is
TCP/80 and the last destination port appears to be ran-
dom, then the host will likely be classified as a victim of
a denial-of-service attack.

2.3.2 Detection Rules

The next step performed by the intrusion detection al-
gorithm is to process each bidirectional flow again and
to try to match flow information and source and destina-
tion host patterns against a set of signatures. We cre-
ated a set of 13 rules organized in 3 categories: mal-
formed flows, one-to-many, and many-to-one relation-
ships. These rules and categories are described in Ta-
ble 3. They were based on expert knowledge and on a
study of attack traces to cover noisy malicious activity
such as scanning and denial-of-service activities gener-
ated by compromised hosts. We note that Nfsight pro-
vides the data structures and rule matching algorithm to
enable administrators to create and evaluate more fine-
grained rules.

As shown in Table 3, rules in the one-to-many and
many-to-one categories use thresholds. We defined these
thresholds empirically from a study of attack traces and
the feedback we received during the testing of the differ-
ent detection rules. These thresholds are likely specific
to a given network and a given time window of analysis.
Thus, they are subject for future tuning. The threshold
values used in our experiments were max dst ip = 200,
max dst port = 250, max src ip = 500, and max src port
= 500. Rules in the malformed flow category use
three data structures to catch incorrectly formed pack-
ets. These are: invalid code to detect incorrect ICMP
type and code combinations; invalid ip to detect forged
or misconfigured IP addresses sent to private or unallo-
cated subnets; and invalid flag to detect incorrect TCP
flag combinations.

2.3.3 Evaluation

Flow-based intrusion detection implementations often
suffer from two problems: 1) the difficulty to validate
and tune anomaly detection rules and 2) the difficulty to
access and understand the root cause of the malicious ac-
tivity detected. The first problem is illustrated in the con-
text of application detection in [14], where the authors
observe that the tuning of the 28 configurable thresh-
old parameters of the original graphlet approach [13] is
too cumbersome. To simplify rule tuning and validation,

192.168.1.2 [One-to-many IP] IP contacting more than 200 distinct
targets in less than 5min

* Heuristic: 201

* First detected on: 2010-08-10 14:05:00
* Last detected on: 2010-08-10 16:55:00
* Number of occurrences: 52,908
* Total flows: 52,908
* Unanswered flow requests: 52,908 (100\%)
* Packets: 89,918
* Bytes: 4,316,160

* Average number of related host every 5min: 4,580
* Average number of related port every 5min: 2

* Last source port: 3317 (2,339 distinct port(s) used every 5min)
* Last related tuple: 192.168.26.198 TCP/445
* Last flag value (if TCP): 2

To visualize related Nfsight data:
https://nfsight/index.php?net=192.168.1.2&time=201008101655

---------------------------------
Please rate this alert by clicking on one of the following links:

[+] True Positive:
https://nfsight/email_validation.php?q=156505&r=1&auth=r25kfGVk

[-] False Positive:
https://nfsight/email_validation.php?q=156505&r=-1&auth=r25kfGVk

[?] Inconclusive:
https://nfsight/email_validation.php?q=156505&r=0&auth=r25kfGVk
---------------------------------

Figure 6: Example of an alert email with validation links

we developed an evaluation process using email alerts.
The objective is to leverage administrator expertise while
minimizing the time and effort required to validate detec-
tion rules. Specifically, each alert emailed to security ad-
ministrators contains three embedded links that allow the
alert receiver to rate the alert as true positive, false pos-
itive, or unknown. A fourth link allows administrators
to open the front-end Visualizer and display the network
activity related to the alert under review. An example of
an alert email with validation links is given in Figure 6.
The second problem is due to the fact that flows are

based on aggregated header information and lack details
on the payloads required to precisely identify attack ex-
ploits. It is not possible to fully address this problem
if we restrict ourselves to Netflow, but we note that the
different visualization solutions offered by Nfsight and
described in Section 2.4 help to understand and assess
the illegitimate nature of suspicious network activity.
We configured the email validation script to send no

more than five alert emails in two batches per day to
four experts: two security administrators and two grad-
uate students working in network security. Alerts were
ranked according to the number of flows and the num-
ber of detection occurrences. Then the top five internal
IP addresses for which no alerts email had been previ-
ously sent were selected. Table 4 presents the validation
results collected over a period of four months for the five
detection rules that triggered alerts. In this table, TP de-
notes the number of alerts labeled as “true positives”, FP
denotes the number of alerts labeled as “false positives”,
and Unknown represents alerts for which experts could
not decide if the activity was malicious. The results in-



126	 LISA ’10: 24th Large Installation System Administration Conference	 USENIX Association

Table 3: Intrusion detection rules
Id Name Category Filter

101 Identical source and destination Malformed flow src ip = dst ip
102 Invalid ICMP flow size Malformed flow proto = ICMP and total byte ≤ 64000
104 Invalid ICMP code Malformed flow proto = ICMP and icmp code ∈ invalid code
105 Invalid IP address Malformed flow (src ip or dst ip) ∈ invalid ip
106 Invalid TCP flag Malformed flow proto = TCP and flag ∈ invalid flag
201 One-to-many IP One-to-many failed connection ≥ 1 and unique dst ip ≥

max dst ip and unique flag ≤ 1
301 One-to-many Port One-to-many failed connection ≥ 1 and unique dst port ≥

max dst port and unique flag ≤ 1
401 Many-to-one IP on TCP flows Many-to-one proto = TCP and flag /∈ {19, 27, 30, 31} and

unique src ip ≥ max src ip and unique flag ≤ 1
402 Many-to-one IP on ICMP flows Many-to-one proto = ICMP and unique src ip ≥ max src ip
403 Many-to-one IP on UDP flows Many-to-one proto = UDP and unique src ip ≥ max src ip
501 Many-to-one Port on TCP flows Many-to-one proto = TCP and flag /∈ {19, 27, 30, 31}

and unique src port ≥ max src port and

unique dst port = 1 and unique flag = 1
502 Many-to-one Port on ICMP flows Many-to-one proto = ICMP and unique src port ≥ max src port

and unique dst port = 1
503 Many-to-one Port on UDP flows Many-to-one proto = UDP and unique src port ≥ max src port

and unique dst port = 1

dicate that rules 105 and 201 are relatively accurate. We
note that these two rules allowed our team of adminis-
trators to detect 18 internal compromised hosts. How-
ever, rules 106, 301, and 501 have a high rate of false
positives. The poor performance of rule 106 can be ex-
plained by the facts that invalid TCP flag combinations
may be due to misconfigured hosts or legitimate TCP
connections may be broken over different flows. The
false positives for rules 301 and 501 are mainly due to
heavily used servers for which the thresholds max src ip
and max src port were too low. The feedback offered
by this validation process and the labeled alerts help ad-
justing the parameters and thresholds of the detection
rules. We are working towards implementing an auto-
mated process to adjust these values and revise the de-
tection rules.

2.4 Data Visualization
The front-end Visualizer allows administrators to query,
filter, and visualize network activity. This section
presents the web interface of Nfsight and the underlying
data storage solution.

2.4.1 Hybrid Data Storage

Alerts and client/server end points identified by the Ser-
vice Detector and Intrusion Detector modules are stored
in a MySQL database at three aggregation levels: five

minutes, hourly, and daily. An aggregation script that
expires data at different granularities runs periodically to
maintain a round-robin structure in the database. This
structure allows the storage of a large volume of data (88
million records organized in 107 tables in our implemen-
tation) while offering a fixed database size (11GB in our
implementation) and a fast access to network end points
at different time granularity levels. We configured the
5-minute granularity data to expire after two weeks.

2.4.2 Web Front-end

The front-end is developed in PHP and consists of a
search engine, a dashboard, and a network activity vi-
sualization table. The dashboard presents the latest gen-
erated alerts and the top 20 servers, services, scanned
services, and internal scanners. The search form and
the network activity visualization table are represented
in Figure 7. We note that IP addresses in Figure 7 and
in Section 3 have been pixelated on purpose. The search
form enables administrators to filter activity per subnet,
IP, time period, and type of activity (i.e., internal or ex-
ternal client and/or server).

The visualization table is organized by host IP, port
number, and type of activity (either client for source port
or server for destination port). For each end point, the
tool provides both statistical information and a visualiza-
tion of the activity over the given time period. The sta-
tistical information includes the confidence value given
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Table 4: Validation results for each detection rule triggered
Id Total Validated TP FP Unknown Accuracy: TP/(FP+TP)

105 23 11 4 8 73.3%
106 27 3 19 5 13.6%
201 68 40 21 7 65.6%
301 94 30 41 23 42.3%
501 78 21 38 19 35.6%

Figure 7: Nfsight front-end Visualizer

by the Bayesian inference algorithm and the number of
flows, packets, and bytes. The network activity is repre-
sented as a time series using a heat map that visually re-
veals the number and type of flows detected over the time
period. A color code enables network operators to sep-
arate client activity (blue) from server activity (green),
and also to identify the fraction of invalid, i.e., non-
answered (red), flows sent/received by an end point. The
intensity of the color is used to represent the number of
flows. Some servers may receive both unidirectional and
bidirectional flows, represented by a block divided into
green and red parts that represent the proportion of uni-
directional and bidirectional flows received by the server.
These unidirectional flows may be due to invalid packets
that the server rejected, an overwhelming number of re-
quests, or unidirectional flows that the Service Detector
component failed to pair correctly. Additional examples
of the visualization capabilities of Nfsight are provided
in Section 3.

3 Use Cases

We present in this section different use cases to demon-
strate how Nfsight can help security administrators and
network operators in their daily tasks.

3.1 Network Awareness
3.1.1 Server Identification

Nfsight can be used to rapidly identify the population
of internal servers. The passive service detection algo-
rithm identifies servers actively used in the organization
network. Through the front-end, operators can query

monthly, weekly, or daily network activity by port num-
ber. For example, one can query all internal IP addresses
hosting a VNC server (port TCP/5900), and display the
daily average number of peers each of the IP addresses
has been connected to over the past few weeks. The dash-
board also provides the top 20 hosted services ranked by
the number of internal servers.

3.1.2 Network Monitoring

In addition to filtering activity by port, one can query ac-
tivity by subnet to check for anomalies in a specific part
of the network. An example of anomaly is the loss of
network connectivity for a set of hosts. We illustrate this
case in Figure 8, which represents the effect of a power
outage from the perspective of both the servers which
lost power (activity in green) and the clients which could
no longer reach the servers (activity in red). The visu-
alization provided by Nfsight makes it easy to determine
the duration of the event (it started at 12:10 PM and activ-
ity was fully restored at 12:40 PM) and the list of internal
hosts affected.

3.1.3 Policy Checking

In most organizations, critical subnets are subject to a
tight security policy to prevent exposure of sensitive
hosts. Nfsight can be used to check that these policies
are properly implemented and are not compromised. The
front-end Visualizer organizes assets per IP address and
service, providing the operators an instant view to detect
rogue hosts or rogue services. A watchlist allows one to
register hosts with a service profile and be alerted when
an unknown service is detected. For example, the pro-
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Figure 8: Effect of a power outage on connectivity

file for an email server could consist of three services:
TCP/25 (mail), TCP/143 (IMAP), and TCP/993 (IMAP
over SSL). Any additional open port detected on this host
would raise an alert automatically. This functionality can
also be achieved by active scanning tools such as PBNJ
[24], but the passive approach provided by Nfsight is less
intrusive and offers a continous view of the service activ-
ity.

3.2 Malicious Activity
3.2.1 Scanning Activity and Vulnerable Servers

The filtering features of the front-end Visualizer allows
one to query external clients generating unidirectional
flows. These clients are often scanners targeting the orga-
nization IP addresses randomly or sequentially, and try-
ing to find open services to compromise. As shown in
Figure 9, the dashboard of Nfsight also provides the top
20 probed services ranked by number of scanners. Op-
erators can click on a service to display the details of
the scanning activity and more importantly, the list of
internal hosts that scanners were able to find. This in-
formation is critical when a new vulnerability linked to
a specific service is discovered, because security admin-
istrators can use Nfsight to learn, first, if attackers are
actively trying to exploit it, and, second, what are the in-

ternal hosts that potentially need to be patched or closed.
Figure 10 illustrates this feature by showing the activ-

ity for port TCP/10000 over a period of 19 days. This
port is known to host the Webmin application, which has
been vulnerable to remote exploits [34]. We can see
two parts in Figure 10: the top part in red shows ex-
ternal hosts scanning the organization network to find
vulnerable applications on port TCP/10000. The bot-
tom part in green represents internal hosts listening on
port TCP/10000. The coloring is automatic based on the
number of unanswered unidirectional flows (red) versus
valid bidirectional flows (green). Moreover, the average
number of peers displayed for each end point in the met-
ric section clearly discriminates scanning activity (be-
tween 16 and 27,200 peers scanned per day) and server
activity (1 client on average per day).

3.2.2 Compromised Hosts

In addition to external scanners, Nfsight can detect and
display internal hosts generating an abnormal volume of
unidirectional flows. These hosts are often compromised
by a malware that tries to spread. The Intrusion Detector
notifies the operators by means of automatically gener-
ated alarms when such a host is observed in the network.
As described in Section 2.3.3, each alert contains a link
that shows the service activity detected by Nfsight and
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Figure 10: Scanners targeting port 10000 and internal servers hosting a service on this port

Figure 9: Top 20 scanned services

the details of flows related to the event. Consequently,
operators can check if these alerts are due to malicious
behavior or normal server behavior.

Figure 11 illustrates the activity of an internal host
which was compromised and started at midnight to send
a massive number of probes to random destination IP ad-
dresses on port TCP/445. Nfsight provides information
about the scanning rate, on average 23,300 IP every 5
minutes, and the uniform distribution of targets from the
parallel plot provided by Picviz [33]. Security adminis-
trators who tested Nfsight indicated that they cannot con-
figure their IPS devices to detect and block this type of
massive scanning activity, because the IPS devices would
be at risk of becoming overloaded. Therefore, Nfsight
complements other security solutions by leveraging Net-
Flow for scalable security monitoring.

3.2.3 Distributed Attacks

The visualization feature of Nfsight enables security ad-
ministrators to identify coordinated attacks and to under-
stand their scope. An example of a distributed scan orig-
inating from a set of internal SSH servers is provided
in Figure 12. A total of 19 servers were compromised
because the password for one shared account was deter-
mined through brute-force attack. Attackers installed a
remote control software on each host and then launched
a distributed scan at 8 PM to find additional SSH servers
to compromise. The timeseries representation and the
distinction between client/server activity allows admin-
istrators to immediately see the coordinated nature of the
attack.
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Figure 11: Compromised internal host scanning a large range of destination IP on port TCP/445 (Netbios service)

Figure 12: Set of 19 compromised SSH servers remotely controlled (server activity in green) and launching a synchro-
nized distributed scan towards port TCP/22 (client activity in blue and red)
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Figure 13: User comment window for information shar-
ing about a specific host

3.3 Forensic and Collaboration
The different case studies described previously show that
Nfsight can be efficiently used to perform forensic tasks.
The overview representation and detail-on-demand capa-
bility offer a fast and easy solution to understand what
happened in the network. This functionality is aug-
mented by several collaboration features. First, operators
can click on any IP address or service to leave a comment
and rate its criticality (low, medium or high). The com-
ment window is illustrated in Figure 13. Second, email
alerts contain links that the operators can use to rate the
alert as true positive, false positive, or unknown. The
web page displayed after clicking on these links allows
operators to write a comment and rate the criticality of
the alert. These comments are displayed on the dash-
board of Nfsight and colored by criticality. Operators can
reply to comments left by others and share their finding
or expertise.

3.4 Limitations and Future Work

Nfsight provides a practical network situational aware-
ness solution based on NetFlow flows. The main con-
tributions are 1) passive service discovery, 2) intrusion
detection and 3) automated alert and visualization. We
showed with different use cases how Nfsight can help
network administrators and security operators in their
monitoring tasks. However, Nfsight has still important
limitations that we plan to address in our future work.
First, Nfsight works with non-sampled flows. We note

that results from other evaluations of passive detection
techniques indicate that sampling has a limited impact
on the overall accuracy. For example, [1] reports that
capturing only 16% of the data results only in an 11%

drop in discovered servers. However, we believe that
random flow sampling will likely break our algorithm for
identifying bidirectional flows. We plan on assessing the
effect of sampling on the detection accuracy of the dif-
ferent heuristics. Furthermore, asymmetric routing can
challenge our approach. Specifically, we assumed in
this study that NetFlow collectors covered the pathways
for both requests and replies. In some organization net-
works, replies and requests can sometimes take different
routes for which there is no NetFlow collector deployed
and therefore, we would not be able to pair the unidirec-
tional flows into bidirectional flows.

We also note that Nfsight works at the network layer
and therefore heavily relies on port numbers. As a con-
sequence, it can be difficult or impossible for a network
operator to identify the application behind a service de-
tected by Nfsight. This issue arises from the fact that
some applications use random ports or hide behind well-
known ports. For example Skype is famous for using
port 80 or port 443, normally reserved to web traffic, in
order to evade firewall protection. Related work [6] on
flow-based traffic classification proved that it is possible
to accurately identify applications using only NetFlow.
We plan on developing additional heuristics for Nfsight
to be able to classify traffic regardless of the port num-
bers used. These heuristics can work on 1) relationships
between flow characteristics, such as the ratio between
number of packets and number of bytes or the time dis-
tribution of flows, and 2) relationships between hosts.
We believe that discovering communication patterns be-
tween hosts would be critical to identify not only appli-
cations but also large communication structures such as
those used by P2P networks or botnets.

Finally, the current intrusion detection rules are rudi-
mentary and the fact that most of them are threshold-
based means that they are prone to generate a significant
volume of false positives. We implemented a feedback
mechanism to leverage human expertise and facilitate the
task of tuning the detection rules, but this process still in-
volves important manual development. We plan to auto-
mate this task and integrate a machine-learning approach
to create and tune rules based on samples of true and false
positives.

4 Related Work

NetFlow is highly popular among network operators and
researchers because it offers a comprehensive view of
network activity while being scalable and easy to deploy
in large networks. As a result, an important number of
tools and publications have been produced over the past
decade, as shown by [28] and [17]. We present in this
section an overview of these resources organized accord-
ing to our areas of interests: Netflow processing and vi-
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sualization, and service detection.

4.1 NetFlow Processing and Visualization
Applications

Working with NetFlow is a multi-step process. First,
flow records are generated by a compatible network de-
vice, typically a router, or by a software probe such as
[29, 21, 36]. These flows are then sent over the network
in UDP packets to collectors according to the NetFlow
protocol. The role of a collector is to store flow records
in flat files or in a database. The collector is often linked
to a set of processing tools to allow a network operator
to read and filter flow records. Processing tools include
CAIDA Cflowd [2], OSU flow-tools [27], SiLK [8] and
more recently Nfdump [18].

In addition to command line tools, several graphical
user interfaces exist to visualize and query network ac-
tivity. NTOP [22] and Nfsen [10] are two popular solu-
tions that provide a web interface to network operators.
We note that we developed Nfsight as a plugin of Nfsen
because of its simplicity, extensibility and processing ca-
pability.

An important body of research has been conducted on
the topic of NetFlow visualization. The NCSA research
center at the University of Illinois produced NvisionIP
[16] and VisFlowConnect [38]. NvisionIP provides a
two-dimensional map to visualize the network character-
istics of up to 65,536 hosts in a single view. It has been
extended to include a graphical filtering rule system [15]
to allow operators to easily spot abnormal activity. Vis-
FlowConnect offers a parallel-plot view with drill-down
features. Compared to Nfsight, the main limitation of
these two tools is that they work offline, while our solu-
tion processes NetFlow flows in near real time.

Researchers at the University of Wisconsin developed
FlowScan [25] and NetPY [3]. NetPY is an interac-
tive visualization application written in Python on top
of flow-tools. It provides an automated sampling algo-
rithm and enables operators to understand how network
traffic is used through heatmaps, timeseries and hierachi-
cal heavy hitters plots. FlowScan works at a higher level
by providing traffic volume graphs of network applica-
tions. The architecture of FlowScan, which consists of
Perl scripts and uses RRDTool, is very similar to the ar-
chitecture of Nfsen. Also, Nfsight shares with FlowS-
can the idea of using heuristics to classify flow records.
However, FlowScan lacks alerting capabilities and does
not determine client/server relationships.
Other research projects on the topic of flow visualiza-

tion include FloVis [31], VIAssist [5] and NFlowVis [7].
FloVis offers a set of modules such as Overflow [9] and
NetByte Viewer [30] to display the same network activ-
ity through different perspectives in order to gain a better

understanding of host behavior. VIAssist and NFlowVis
adopt the same objective with drill-down features and
multiple visualization techniques. NFlowVis integrates
state-of-the art plots by making use of treemap and a hi-
erachical edge bundle view. Similarly to Nfsight, VI-
Assist offers collaboration features to allow operators to
share items of interest and to communicate findings. We
note that none of these three visualization frameworks
are publicly available.

4.2 Service Detection and Bidirectional
Flows

Solutions for service discovery can be divided into ac-
tive and passive techniques. Active techniques send net-
work probes to a set of targets to check the presence of
any listening service, while passive techniques extract in-
formation about services from network sniffing devices.
A well-known open source active scanner is Nmap [20].
The drawbacks of active techniques are: 1) they provide
only a snapshot in time of the network, 2) they cannot de-
tect services protected by firewalls, 3) they are intrusive
and not scalable, and 4) aggressive scanning may also
cause system and network disruptions or outages [35, 1].
Passive solutions offer a continuous view of the network,
their results are not impacted by firewalls, and they are
highly scalable. The main limitation of the passive ap-
proaches is that they detect only active services, i.e., any
unused services with no incoming traffic cannot be dis-
covered. However, by providing a low overhead contin-
uous passive discovery approach, services that do com-
municate will be detected. A well-known open source
passive service detector working on packet data is Pads
[23].

A passive and accurate detection of network services
working on network flows would be trivial with bidirec-
tional flows where request flows initiated by clients and
reply flows initiated by servers can be easily identified.
However, most organization networks are currently in-
strumented with traditional unidirectional flow solutions
such as NetFlow, and they lack the capability to gener-
ate and collect bidirectional flows. This motivated us to
design a solution based only on unidirectional flow. We
note that the IPFIX IETF working group has recently in-
troduced a new standard format to export network flows
based on NetFlow version 9 [4], which includes the ca-
pability to export bidirectional flows generated directly at
the measurement interface [32]. We see our approach as
a robust intermediate solution between the current large
scale deployment of NetFlow, which is unidirectional,
and the future implementation by router vendors and de-
ployment by organization networks of IPFIX, which can
be bidirectional.

Rwmatch from SiLK [8] shares the same motivation of
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generating correctly oriented bidirectional network flows
from unidirectional flows. Rwmatch uses two heuristics
to decide on the orientation of bidirectional flows: times-
tamp of request and reply flows, and server port num-
ber being below 1024. However, we have observed that
both of these heuristics can be fallible by themselves.
Therefore, we use five additional heuristics and combine
heuristic outputs through Bayesian inference in order to
improve the accuracy of server detection over time. We
note that another tool similar to rwmatch called flow-
connect, developed as part of the OSU Flow-tools frame-
work, has been suggested in [27] but has actually never
been implemented.

Finally, two alternative approaches YAF from CERT
[36] and Argus [26] generate bidirectional flows not
from unidirectional flows but from packet data. Both
tools work by processing packet data from PCAP dump
files or directly from a network interface, and then export
bidirectional flows following the IPFIX format.

5 Conclusion

Timely information on what is occurring in their net-
works is crucial for network and security administrators.
Nfsight provides an easy to use graphical tool for admin-
istrators to gain knowledge on the set of services running
in their networks, as well as on any anomalous activi-
ties. Nfsight is non-intrusive since it relies on passively
collected NetFlow data, provides a near real-time report
on network activities, allows data to be viewed at dif-
ferent time granularities, and supports collaboration be-
tween system administrators. Nfsight uses a combination
of heuristics and Bayesian inference to identify services
and graphlet-based technique to detect intrusions. In this
paper, we described the architecture and heuristics used
by Nfsight, evaluated its accuracy in service discovery,
and presented a number of real use-cases. Our future
work includes development and evaluation of additional
server discovery heuristics. We also plan to revise the in-
trusion detection rules and to complete the implementa-
tion of the feedback mechanism to adjust detection thesh-
olds automatically.
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Abstract

Mitigating the impact of computer failure is possible if
accurate failure predictions are provided. Resources,
and services can be scheduled around predicted failure
and limit the impact. Such strategies are especially
important for multi-computer systems, such as com-
pute clusters, that experience a higher rate of failure
due to the large number of components. However pro-
viding accurate predictions with sufficient lead time
remains a challenging problem.
This research uses a new spectrum-kernel Support

Vector Machine (SVM) approach to predict failure
events based on system log files. These files con-
tain messages that represent a change of system state.
While a single message in the file may not be suffi-
cient for predicting failure, a sequence or pattern of
messages may be. This approach uses a sliding win-
dow (sub-sequence) of messages to predict the likeli-
hood of failure. Then, a frequency representation of
the message sub-sequences observed are used as input
to the SVM. The SVM associates the messages to a
class of failed or non-failed system. Experimental re-
sults using actual system log files from a Linux-based
compute cluster indicate the proposed spectrum-kernel
SVM approach can predict hard disk failure with an
accuracy of 80% about one day in advance.

1 Introduction

Clusters are quickly growing in size in terms of both
computing power and storage space. It is predicted
that by 2018, large systems could have over 800,000

disks. Out of these 800,000 disks, it is possible that
300 of them may be in a failure state at any given
time [13]. Since multicore processors are becom-
ing more prevalent, even one disk being unavailable
means that multiple processors may be unable to per-
form their work. Assuming one could predict these
failure events, the distribution of work on the cluster
could be altered to avoid effected disks before they
failed or jobs could be paused while the necessary
data is backed up.

Much work has been done in the field of hardware
failure predictions. Hammerly et al. [5] used a naive
Bayesian classifier on SMART data and managed to
predict disk failures that would occur in the next 48
hours with 52% accuracy. A team from IBM [8] used
data from a specialized logging system on its Blue-
Gene cluster. While the team achieved high accu-
racy, its data set may be too specialized to be of use
by the general public. Peter Broadwell [2] used a
supervised Bayesian approach to predict SCSI cable
failures. While he was able to create an effective pre-
diction method, the approach presented in the paper
is not scalable. Murray et al [11] compared the ef-
fectiveness of data mining techniques such as SVMs,
clustering, and a rank-sum test for failure predictions
using SMART data. Finally, Turnbull et al [16] pro-
posed an approach similar to the one presented in
this paper. However, Turnbull focused on predicting
system board failures instead of disk failures.

The prediction process in this paper uses the
syslog event logging service as data to predict failure
events. The syslog facility is common to all Linux
distributions as well as Unix variants. Using blocks

1
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of syslog entry tag and message strings, a Support
Vector Machine [3] creates a model of the data which
isolates patterns of log information that indicate fu-
ture disk failures. The main focus of this approach
is to predict disk failures at least one day before the
failure. One day’s notice gives administrators enough
time to make any necessary changes to the scheduling
process or ensure that they can obtain another hard
drive of the correct model [4].

The remainder of this paper is organized as follows.
Section 2 provides a description of the Unix syslog

facility and SMART messages. Section 3 describes
the approach to failure predictions proposed in this
paper. Section 4 describes the Support Vector Ma-
chine data mining technique while section 5 discusses
experimental results. Finally, section 6 summarizes
this paper and discusses some areas for future work.

2 System Log Facilities and

Messages

Syslog is a standard Unix logging facility, which
means that every computer running Linux is able to
use syslog [9]. The ubiquity of syslog means that
performing an analysis on syslog data allows for the
creation of a failure prediction approach which can
be used by anyone using a Linux or Unix system.
Syslog records any change of system state, such as
a login or a program failure.

As seen in Table 1, the standard syslog message
contains six fields [9]. However, the approach in this
paper uses only the timestamp, tag number, and mes-
sage fields. The tag is a numerical representation of
the importance of the message. The tag number is
an integer, where a lower number indicates a higher
importance. For example, a message with a tag num-
ber of 1 is more urgent than a tag number of 20. The
tag number field corresponds to the priority field in
the actual syslog packet, whose value is determined
by multiplying the facility by 8 and then adding the
level. Therefore, it provides a numerical representa-
tion of both the facility which posted the message
and how important the message is. The time field
records the time at which the message was posted,

commonly in Linux epoch time. The final field is the
message field, which consists of a plain text string of
varying length. The message is an explicit descrip-
tion of the associated event. While the other fields
only indicate how important the event was and when
it took place, the message field tells an observer that
the event was, for example, a login attempt or a disk
failure [9].

SMART messages record and report information
that relates solely to hard disks, such as their current
health and performance and is deployed with most
modern ATA and SCSI drives [1]. Since SMART
disks monitor health and performance information,
they are able to report and possibly predict hard
drive problems. Some of the attributes monitored
by SMART are the current temperature, the number
of scan errors, and the number of hours for which a
disk has been online. SMART checks the disk’s status
every 30 minutes and passes along any information
regarding the possibility of an upcoming failure to
syslog. Pinheiro et al. have shown that using indi-
vidual SMART messages to build a prediction model
is ineffective [12]. Therefore, the approach in this pa-
per uses all syslog data, including, but not limited
to, SMART data.

3 Approach

3.1 Sequential Data

As described by Pinheiro et al., single messages are
not sufficient for predicting failure [12]. However, ex-
amining sequences of messages may be a more effec-
tive means of failure predictions. Instead of consider-
ing messages in isolation, the approach in this paper
analyzes sequences of messages, which provides con-
text for individual messages.

A sliding window approach is used to isolate se-
quential data. In this method, a window of fixed
length, n, is placed at the beginning of the list of
data. All of the data that fall in that window is con-
sidered to be one sequence. Then, the sliding window
is moved forward one item and the next n items are
made into a sequence.

The type of information being examined alters how

2
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Host Facility Level Tag Time Message

node226 daemon info 30 1205054912 ntpd 2555 synchronized to 198.129.149.215, stratum 3

node226 local4 info 166 1205124722 xinetd 2221 START: auth pid=23899 from=130.20.248.51

node165 local3 notice 157 1205308925 OSLevel Linux m165 2.6.9-42.3sp.JD4smp

node165 syslog info 46 1205308925 syslogd restart.

Table 1: Example entries from a syslog file

the window moves across message boundaries. When
classifying based on tag numbers, each tag num-
ber represents one message. Therefore, the sliding
window indicates the criticality of the last n mes-
sages. However, this paper also examines the use
of keystrings to predict disk failures. In the case of
keystrings, there may be zero, one, or more keystrings
in a given message. Since the keystrings are arranged
by order of appearance in the logs, a given window
can provide context either within a single message or
two or more messages.
The spectrum kernel technique was devised by

Leslie et al. [7] to leverage sequences of data for use
with a classifier. For any k ≥ 1, the k-spectrum of
a given input sequence is defined as all of the subse-
quences of length k that the sequence contains. Given
a sequence length k, an alphabet size b and a single
member of the alphabet, e, the spectrum kernel rep-
resentation of a given sequence can be obtained using
Equation 1 [15]. The equation must be applied for
each letter in the input.

f(t) = mod(b ∗ f(t− 1), bk) + e (1)

3.2 Tag-Based Features

Consider the tag numbers that occur within a mes-
sage window. The order in which these messages ap-
pear forms a list of tag numbers. From this list of
tag numbers, one can create a feature vector which
combines two types of features: a count of the num-
ber of times each tag number and sequence number
appears in a window. For example, the sequence of
tag numbers shown in Table 2 correspond to a tag
count vector of {40:1, 88:1, 148:2, 158:3, 188:3}.
At first, the size of the alphabet is the number of

unique tag numbers in syslog, which is 191. How-

ever, as the maximum tag number seen in the experi-
mental data set is 189, the alphabet size is considered
to be 189. Using sequences of length 5, the list of pos-
sible features is 1895, which equates to over 241 bil-
lion unique combinations. Computing sequence num-
bers for all of these combinations will take an exces-
sively long time. Therefore, the alphabet is reduced
by assigning multiple tag numbers to a number of 0,
1, or 2 based on the tag’s criticality [4].

Tag numbers which are less than or equal to a 10
are considered to be high priority. Tag numbers be-
tween 11 and 140 are considered medium priority and
tag numbers above 140 are considered low priority.
The size of the reduced alphabet and cutoff values
are determined by examining the distribution of tag
numbers as seen in Figure 2(a). Using an alphabet
of size 3 reduces the possible number of features to
243.

Table 2 illustrates the process of assigning criti-
cality scores to each tag number and then determin-
ing sequence numbers where k = 5. The left hand
column contains a list of tag numbers. The mid-
dle column shows the sequence of the most recent
5 criticality scores, which are obtained by using the
sliding window method and criticality cutoff values
described earlier. The criticality score of the cur-
rent tag number is placed on the righthand side of
the criticality sequence. Finally, the righthand col-
umn shows the sequence number for the current se-
quence of criticality scores. The sequence number
is determined using Equation 1. While intermediate
sequence numbers are calculated for the first k − 1
sequences, sequence numbers are not recorded until
a full k-length sequence has passed. In this example,
sequence numbers are only recorded starting at the
fifth tag number.

3
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(a) A histogram which indicates the percentages of messages
in the data set which contained a given tag number. For
example, about 60% of all messages in the data set had a
tag number of 149.
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(b) An example of the tag number distribution on a given
host across time. Each circle represents the tag number for a
single syslog message.

Figure 1: Illustrations of tag number distribution in the experimental data set

Tag Translated Sequence Number
148 2
148 22
158 222
40 2221
158 22212 239
188 22122 233
188 21222 215
88 12221 160
158 22212 239
188 22122 233

Table 2: An example of a tag list being translated into se-
quences of criticality scores and then assigned sequence num-
bers using these criticality scores. For this example, k = 5.

3.3 Tags With Timing Information

Timing information is another feature that may help
improve failure predictions. The purpose of examin-
ing timing information is to discern whether or not
a change in message rate can be used to predict fail-
ures. During the creation of the sequence numbers,

the difference between time of the first message in the
sequence and the time of the last message in the se-
quence is recorded. Doing so provides an indication
of how quickly or how slowly those messages were
posted. The differences in time are recorded in the
same format as the tag and sequence numbers. This
information has not been considered in previous work
using this method [4].

3.4 Keystring-based Features

The myriad possible syslog configurations allow for
a set up in which tag numbers are not present [9].
One thing an administrator is unlikely to remove is
the message field itself. A string is defined as any
space-delineated collection of characters in the mes-
sage field. For example, a string can be an English
word, an IP address, or a number. Tag numbers are
not factored into this approach. The goal of this
method is to discover some pattern of actual strings
which will allow for failure prediction.

Unfortunately, the list of possible strings can be
quite large. For example, the syslog data set used in

4
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this paper contains over 2 billion unique strings, de-
spite the fact that the English language only consists
of about 1 million words [14]. Consider a message
which posts the temperature of a disk drive. Even if
the temperature only fluctuated by ten degrees across
all log files, those ten values (assuming the message
only posts integer values) are assigned unique iden-
tifiers in the alphabet. This alphabet results in a
feature space of over 8× 1027 when k = 3.

In an effort to reduce the number of strings, it is
possible to isolate only the strings that the SVM finds
useful in creating a model. To do this, the SVM is
trained on the entire data set, using only the number
of times each string appears. Once the SVM builds
a model of the data, the feature space is examined
to determine the most important strings. Any string
which the classifier finds useful will henceforth be re-
ferred to as a keystring.
Now that there is a list of the most important

strings, these strings are used to create the message
list. A count of each string is used as well as a count
of each sequence of strings. When building a se-
quence number, message boundaries are ignored. For
example, if keystrings 0 and 29 are in one message,
keystring 10 in the next message, and keystring 1 in
the third message, the keystring sequence when k = 4
is {0, 29, 10, 1}.
Many keystrings may represent similar items. For

example, each computer may have a unique ID num-
ber. While each of these keystrings is unique, they all
fall under the general label of an ID number. In the
interest of reducing the alphabet further, keystrings
are grouped into general types, such as computer ID
number, and a number is assigned to each type.
Timing information can also be included when us-

ing the keystring approach. As with the tag ap-
proach, a count is taken of the differences between
the time at which the first message in a sequence is
posted and that of the final message in a sequence.

4 Support Vector Machines

Each disk can be separated into one of two classes:
a disk which failed or a disk which did not fail. The
research in this paper uses an SVM to build a model

of the two classes based on past syslog events.

Figure 2: An illustration of the optimal 2-D hyperplane

An SVM is a classification method that takes a
set of labeled training examples. Each training ex-
ample is labeled to indicate which class the example
belongs to. Since an SVM is a binary classifier [6],
each training example must be in one of two, and only
two, classes. The binary nature of the SVM makes
it an ideal choice for predicting disk failures, as each
example must either fail within the given window or
not fail within the given window.

4.1 Optimal Hyperplane

Using an input set of labeled data points, the SVM
attempts to find an optimal hyperplane to separate
the data. Consider Figure 1, which provides an illus-
tration of the optimal hyperplane between the class
of circles and the class of crosses. The optimal hy-
perplane is the plane which maximizes the distance
between the two classes. In the case of the figure, the
optimal hyperplane is represented by the solid line.

To calculate the optimal hyperplane, one finds the
planes that separate the data which are located clos-
est to each class. In Figure 1, these hyperplanes are
represented by dashed lines. Since these hyperplanes
are defined by the points closest to the optimal hy-
perplane, only these few examples are needed to cal-
culate the optimal hyperplane. These data points are
called support vectors.

5
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(b) The accuracy, precision, and recall of tag-based methods as
the window size changes while lead time remains constant

Figure 3: The change in performance metrics as window size and lead time vary

5 Experimental Results

The syslog data used in these experiments is from
a 1024 node Linux-based cluster managed by the Pa-
cific Northwest National Laboratory. Each system
contained multiple processors and disks. There were
an average of 3.24 messages per machine per hour,
which results in about 78 messages per system per
day. There were 61 unique tag values, the distribu-
tion of which is shown in Figure 2(a). There were over
120 disk failures during the 24 months over which the
data was collected.

To train the SVM, blocks of syslog messages from
each system must first be isolated. The size of the
message window specifies the number of messages to
isolate prior to a failure. For example, if the win-
dow size is 500, then the 500 messages immediately
preceding the failure message are isolated. However,
if there are not enough messages before the failure,
then that window of messages is not used. If a given
failure comes within twenty four hours of a previ-
ous failure, then the failure is removed from the data
set to keep any patterns or events which lead to the

first failure from affecting predictions for subsequent
failures. The removal of these failures result in 100
useable disk failures. If there are no failures on a
given system, then a random window of 500 sequen-
tial messages is chosen.

Once all of the message windows are created, they
have to be trimmed. To simulate lead time before a
failure, a specified number of messages at the end of
the window is removed. By deleting messages at the
end of the window, there is a gap between the end of
the message list and the event to be predicted. As an
example, consider a window size of 1,200 messages. If
the window is then trimmed by 200 messages, there
are 1,000 messages left to classify on. By eliminating
the last 200 messages, there is a gap of a little over
two days between the final message in the block and
the failure or non-failure.

All experiments are performed using hold out and
10-fold cross validation. Hold out means that for
both the training and testing stages, an equal number
of failure and non-failure examples are in the data set
[17]. When using 10-fold cross validation, the data is
broken up into ten sets of equal size. The classifier is

6
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then trained on nine of these sets and tested on the
final set. A different test set is then chosen from the
ten groups, while the previous test set is added to
the training set, so each of the ten slices eventually
is used for testing [17].

The experiments performed in this paper use three
metrics to determine the effectiveness of a model: ac-
curacy, precision and recall [10]. Accuracy is the
total number of predictions which the model made
correctly. Precision is the true positive rate, which
indicates the number of disks which were predicted
to fail within the given window that actually did fail
within that window. Finally, recall is the percent-
age of actual disk failures that the model successfully
predicted.

5.1 Optimal Lead Time and Window

Size

The following experiment uses tag sequences of length
5 and a window size of 1,200 messages [4]. The
amount of lead time is varied to examine whether
or not attempting to predict a failure closer to the
failure event improves classification performance.

Figure 3(a) shows the accuracy, precision, and re-
call of varying the lead time for predictions. The
x-axis indicates the lead time in number of mes-
sages before a failure event. A failure event occurs
where x = 0. Each experiment uses a fixed window
size of 1,200 messages; therefore, a smaller lead time
means that the number of messages used to classify
increases, while the time between the final message
in the block and the failure event decreases. All three
metrics peak with a lead time of 100 messages, which
translates to a little over one day.

The recall dips as lead time increases beyond 300
messages due to the widening gap between the end
of the window and the failure event. By adding
more lead time before a failure, fewer of the messages
and patterns which lead up to a disk failure may be
present. While some disks might operate in a reduced
state for a few days before failure, some start show-
ing signs only a few hours or a day before the failure.
By increasing lead time, the model is unable to pre-
dict the failure of disks which only provide warning

signs closer to the failure event, as those events are
no longer in the training or test set.

5.1.1 The Effect of Window Size Using Tag-

Based Features

Figure 3(b) illustrates the effect of increasing the win-
dow size. Since the results of the previous experiment
suggest that a lead time of 100 messages is the most
effective, this experiment also uses a lead time of 100
messages. All three metrics increase until the win-
dow size hits 800 messages. After a window size of
800 messages, just like the previous experiment, re-
call begins declining. Recall declines because, as the
window size increases, the SVM must classify using
more and more information. The increased informa-
tion can make the two classes begin to look similar.
In the case of disk failures, the disks only produce
warning signs for a certain period of time. Before
these warning signs appear, they operate as normal
disks. By adding information from before the disks
start to fail, that disk acts more like a working disk
than a failing disk.

5.2 Tag-Based Features Without

Timing Information

The previous experiments all use sequences of length
5. This experiment varies the sequence length be-
tween sequences of length 3 and sequences of length
8. While increasing the sequence length may increase
the effectiveness of the model, the increase will also
exponentially increase the feature space. As such, the
time required to train and classify the data will in-
crease. Therefore, a balance must be struck between
the effectiveness of the model and the time required
to train. Table 3 compares the accuracy, precision,
and recall of training using each sequence length. All
experiments used a window size of 800 messages and
a lead time of 100 messages. The recall is maximized
using sequences of length 6. On the other hand, the
precision jumps to 85% at a sequence length of 7. The
recall plummets using sequences of length 8. Hence-
forth, sequences of length 5 are used because they
provide fewer false positives compared to a sequence
of length 6 while achieving similar recall while using a

7
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smaller feature space than either sequences of length
6 or of length 7.

Sequence Length Accuracy Precision Recall
3 73.166 74.9003 75.0011
4 75.6666 80.8341 72.6681
5 79.9993 82.8838 79.0012
6 79.4994 80.5503 80.6674
7 80.999 85.4837 78.668
8 78.4992 85.7335 73.3339

Table 3: A comparison of sequence lengths when using tag-
based features

5.3 Tag-Based Features With Timing

Information

The performance of classification using timing infor-
mation is compared to the performance without tim-
ing information in Tables 4 and 5. In neither case did
the addition of time differentials significantly increase
any of the three metrics. In the case of length 5 se-
quences, the recall actually gets substantially worse.
When using sequences of length 7, the results with
and without time are almost identical, as seen in Ta-
ble 5. In both cases, the recall may dip because the
message logging rate of nodes on a which a failure is
going to occur within the next 100 messages is sim-
ilar to the message logging rate of nodes which are
not predicted to fail. Since the two rates are similar,
the inclusion of timing information makes the two
classes look more similar than when no timing infor-
mation is included. Therefore, the addition of timing
information not only does not provide improvement
over tag sequences without timing information, but
it also increases the feature space. As a result, tag
based features are best when used without timing in-
formation.

Feature Space Accuracy Precision Recall
Sequences Using Tags 79.9993 82.8838 79.0012
Sequences Using Tags and Time 77.8329 82.2338 71.667

Table 4: Comparing performance between features using only
tags and features including time information using sequences
of length 5

Feature Space Accuracy Precision Recall
Sequences Using Tags 80.999 85.4837 78.668
Sequences Using Tags and Time 81.1661 86.9337 76.005

Table 5: Comparing performance between features using only
tags and features including time information using sequences
of length 7

5.4 Keystring Based Features With-

out Timing Information

The initial dictionary contains 54-keystrings. How-
ever, 25 of the strings in this dictionary are the names
of nodes on the cluster. To see whether or not the
SVM is learning what nodes tend to fail instead of
actual patterns which lead to failures, another dic-
tionary is tested. The second dictionary, made up of
24-keystrings, assigns all keystrings of a given type
to a single number. For example, all node names are
assigned a 0 and all number strings are assigned a 23.
In the 24-keystring dictionary, all node names, even
those not in the original 54-keystring dictionary, are
included. The results of these experiments using a
window size of 800 messages, lead time of 100 mes-
sages and sequences of length 3 are recorded in Table
6. The fact that the 54-keystring and 24-keystring
dictionaries perform similarly well suggests that the
SVM is not training on specific node names. In-
stead, the SVM is learning that the appearance of
any node name is useful for predicting failures. The
24-keystring dictionary has the benefit of reducing
the alphabet size dramatically when compared to the
54-keystring dictionary. As a result, all keystring ex-
periments henceforth use the 24-keystring dictionary.

Dictionary Accuracy Precision Recall
54 77.6661 81.8171 76.0008
24 77.6659 79.1004 78.6676

Table 6: A comparison of keystring dictionaries

Table 7 shows the change in performance as the se-
quence length increases when using the 24-keystring
dictionary. Sequence of length 4 perform significantly
better across the board than those of length 3. While
length 5 sequences perform slightly better than those

8
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of length 4, the improvement is not significant with
respect to recall, although the false positive rate dips
slightly. Since length 5 sequences significantly in-
crease the feature space with marginal benefit, the
24-keystring dictionary performs best when using se-
quences of length 4.

Sequence Length Accuracy Precision Recall
3 77.6659 79.1004 78.6676
4 79.4996 82.9838 80.6676
5 82.1428 85.0008 80.9543

Table 7: Performance of the 24-keystring dictionary as se-
quence length increases

5.5 Keystring Based Features With

Timing Information

Despite the ineffectiveness of combining timing in-
formation with tag sequences, the usefulness of tim-
ing with regards to the keystring based approach is
tested. Table 8 compares the performance of the
24-keystring approach both with and without tim-
ing information. The sequence length used for both
experiments is 4. The accuracy and recall values
of both approaches are essentially the same. How-
ever, when using time information, there is a slightly
lower false positive rate. Since a lower false positive
rate means fewer instances when a node goes into a
preemptive maintenance stage, minimizing the false
positives is a worthy goal. While the feature space
increases, a system administrator may be willing to
endure the longer training and classification time if
it results in fewer false positives. Thus, time infor-
mation keystring sequences are added to the final ex-
periment.

Experiment Accuracy Precision Recall
Without Time Info 79.4996 82.9838 80.6676
With Time Info 80.1657 85.567 78.6679

Table 8: A comparison of the 24-keystring dictionary with
and without the addition of time information

5.6 Combination Results

Classifying works almost identically well when us-
ing tag number sequences of length 5 as when using
keystring sequences of length 4. The use of tag num-
ber sequences achieves a slightly higher true positive
rate while keeping a similar accuracy and recall. If
the tag-based approach and the keystring-based ap-
proach are learning on different patterns, then per-
haps combining the two approaches will result in bet-
ter classifications.
The window size for this experiment is 800 mes-

sages and the lead time is 100 messages. Tag se-
quences of length 5 are used, while keystring se-
quences are 4 keystrings long. Since the addition of
temporal features is useful with keystring based fea-
tures, time differences are calculated for sequences of
length 4.

Approach Accuracy Precision Recall
Tags Without Time 80.999 85.4837 78.668
Keystrings With Time 80.1657 85.567 78.6679
Combination Without Time 77.9995 82.317 74.334
Combination With Time 80.6664 88.567 74.6673

Table 9: A comparison of tag based, keystring based, and
combination methods

Table 9 provides a comparison among the best per-
forming tag based approach, the best keystring ap-
proach, and a combination approach both with and
without time information. Neither a combination of
tag and keystring features with or without additional
timing information offers any substantial increase in
accuracy and both see a dip in recall, which means
the combination model predicts fewer of the failures
that occur. The recall dips because the message rate
does not provide a good indicator of a failure. As a re-
sult, the inclusion of time information makes the two
classes look more similar. However, this increased
similarity results in higher precision. The precision
increases because disks which were predicted to fail
with low confidence when omitting timing informa-
tion are now predicted to continue working. There-
fore, only disks that have a high confidence score for
failure are still predicted to fail. With the combina-
tion of approaches and time information, the decrease
in the number of failures predicted is balanced by

9
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an increased true positive rate, meaning that almost
89% of the disk failures predicted by this approach
do fail within the next 30 hours. In fact, this model
has the highest true positive rate of any of the exper-
iments, which means that the combination approach
in conjunction with timing information provides a
useful improvement over other models. Whether or
not it is the best model depends on whether a higher
recall rate or fewer false positives is the most desired
trait in a given situation.

6 Conclusions and Future

Work

To determine the overall best method, this section
considers the true positive rate as well as the recall.
In addition, this section proposes an event logging
system which requires less storage space than the cur-
rent syslog utility.

If a high recall is the more important goal, the best
approach is to use either tag sequences without tim-
ing information or keystring sequences using the 24-
keystring dictionary with timing information. Both
approaches hit almost 80% recall. In addition, both
had very few misclassified failures. If a high true pos-
itive rate is the most desired classification trait for a
given situation, then there is only one choice: com-
bining tag sequences with keystring sequences and
timing information, as this approach has a true pos-
itive rate of 89% while still predicting 75% of disk
failures.

The PNNL data set used for this experiment con-
tained, on average, 78 syslog messages an hour for
each node. As a result, there are approximately
699,678,720 messages on the cluster every year, which
requires 41.7 GB to store.

Now consider that using only keywords or tag num-
bers to predict failures is rather effective. If one can
predict events using only tag numbers or keywords,
then perhaps one could keep only the fields required
for these predictions.

While the approach which marries tag numbers
and timing information is the best combination of
speed and accuracy, combining the keywords with

timing information performs the best overall. Keep-
ing keywords provides another benefit over just keep-
ing tags: some amount of semantic data is retained.
Assume all words are kept. Keeping all of the words
allows the same data to be broken up using a different
set of keywords if a user is trying to predict another
type of event or if a more effective keyword list for the
current problem is found. In this case, the only fields
that are necessary are the timing information and the
message itself, as the level, facility, and tag numbers
add nothing to this prediction approach. As a result,
each message will be 31 bytes on average, which will
take up 20.2 GB per year for a 51.563% reduction on
the overall storage space needed.
Maximizing precision requires that one keep the

tag numbers as well. Keeping tag numbers as well as
timestamps and the message field uses 22.8 GB per
year. Therefore, one would need to keep about 2.6
more GB per year than when using only keystrings
to maximize recall. However, this still represents a
marked improvement over the space required by stan-
dard syslog and is the best choice if one wishes to
minimize the false positive rate.
There are two branches this research can take im-

mediately. The first direction is to try different classi-
fication methods. This research only examines the ef-
fectiveness of the SVM approach to classifying nodes
as likely to fail. Future work can explore the effec-
tiveness of both unsupervised learning methods and
other supervised learning methods.
Another direction this research could move in is to

try to predict other events. Perhaps this same ap-
proach could be used to predict whether or not an
entire node is going to go offline or if a RAID con-
troller is going to fail. One would simply need to
find these events in the logs and label each feature
vector appropriately before training. Otherwise, the
approach, as far as finding sequence numbers or key-
words, is exactly the same.
The generalizability of this approach should also

be examined by applying the approach to different
data sets. For example, a cluster may have a differ-
ent syslog configuration, average message rate, or
applications which are installed than those seen in
the data set used for this thesis. Perhaps these fluc-
tuations in configuration also affect the usefulness of

10
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the proposed approach. As another example, perhaps
the tag number distribution in a given set up is dif-
ferent than that of the PNNL data set. In this case,
it may be necessary to alter either the alphabet size
or the cutoff values for each criticality score.
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ABSTRACT 
System administrators have utilized log analysis for decades to monitor and automate their environments.  As com-
pute environments grow, and the scope and volume of the logs increase, it becomes more difficult to get timely, use-
ful data and appropriate triggers for enabling automation using traditional tools like Swatch.  Cloud computing is 
intensifying this problem as the number of systems in datacenters increases dramatically.  To address these problems 
at AMD, we developed a tool we call the Variable Temporal Event Correlator, or VTEC. 

VTEC has unique design features, such as inherent multi-threaded/multi-process design, a flexible and extensible 
programming interface, built-in job queuing, and a novel method for storing and describing temporal information 
about events, that well suit it for quickly and efficiently handling a broad range of event correlation tasks in real-
time.  These features also enable VTEC to scale to tens of gigabytes of log data processed per day.  This paper de-
scribes the architecture, use, and efficacy of this tool, which has been in production at AMD for more than four 
years.  

Tags: security, case study, syslog, log analysis, event correlation, temporal variables 
 
 
1 Introduction 
Log analysis is a critical component for effective auto-
mation of large cloud computing environments.  As 
clouds grow, day-to-day operational tasks such as fail-
ing hardware become an increasing burden for datacen-
ter operational staff.  In addition, emergent behavior in 
large clouds causes unusual problems that often are 
difficult to diagnose.  These issues require more com-
plex automation techniques in system maintenance and 
service operation.  Modern solutions such as SEC [1,2] 
and Splunk [3] have done a great job at scaling to large 
log volumes and making complex correlations feasible, 
but they have drawbacks.  This paper presents an alter-
native solution we developed at AMD called the Varia-
ble Temporal Event Correlator, or VTEC. 

AMD designed VTEC with multi-core and multi-
system scalability in mind.  Virtually every component 
is multi-process and/or multi-threaded to take advan-
tage of every available CPU cycle on the system.  If 
needed, each component can be isolated on its own 
machine to distribute load. 

VTEC also introduces a novel method for representing 
temporal event data; these constructs are called tempor-
al variables.  Temporal variables are constructed to 
represent temporal data about events, such as frequency 
and rate of change, in a way that is immediately useful 
when building event-correlation rules.  These rules can 
make use of the temporal data without the need for ex-
tra processing in the rule itself.  

Finally, VTEC includes a built-in job scheduler that 
allows for categorization, scheduling, and prioritization 
of actions generated in response to events.  This gives 
the user finer control over the sequencing and priorities 
of actions generated by log analysis than available be-
fore.  

This paper is organized as follows: Section 2 describes 
the computing environment and log analysis needs that 
drove the creation of VTEC.  Section 3 describes the 
internal architecture of VTEC.  Section 4 details several 
example "rule engines" that demonstrate how VTEC 
can be used to correlate various kinds of events in a 
computing environment.  Section 5 briefly describes 
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some of the useful rule engines implemented at AMD.  
Section 6 discusses designing for performance and scal-
ing as log traffic increases.  Section 7 describes the 
challenges currently faced using VTEC, and areas for 
improvement. 

2 Background 
As compute environments continue to grow in size, it 
becomes increasingly challenging to keep track of the 
various events happening in the grid.  How does a sys-
tems team note and track the failure of a hard disk or 
memory?  Or when one of thousands of compute nodes 
suffers a kernel panic?  An even more complex task is 
to deal with the inevitable emergent behavior of a mas-
sive network of computers.  Seemingly innocuous 
changes to systems (e.g., adding a simple cronjob to 
grid nodes), can have unexpected consequences (e.g., 
overloading NIS/LDAP servers). 

In this large, ever-changing, and complex computing 
environment, many organizations (including AMD) 
have turned to the practice of autonomic computing [4] 
to reduce the effort that sysadmins must exert to keep 
the environment stable.  There is a system and OS con-
figuration aspect to this, in which tools such as Cfen-
gine [5] can enable autonomic behavior.  There is still a 
gap, however, when it comes to detecting anomalous or 
interesting events, correlating them, and taking auto-
matic action to alert people or correct the problem. 

In the context of large Linux/UNIX compute grids, raw 
event data is generally available via syslog.  Standard 
syslog daemons, as well as more advanced ones such as 
syslog-ng [6], are able to send log data to a central 
server.  Thus, collecting enough raw data to analyze is 
rarely difficult.  However, the volume of this data is 
often a problem: so much data is collected that it be-
comes difficult to parse and extract useful information 
from it. 

During the past several years, a number of log parsing 
and event correlation tools have been developed.  Some 
Linux distributions, such as Fedora, ship with the Log-
watch [8] utility installed.  Logwatch parses system log 
files regularly and provides useful, human-readable 
reports via e-mail.  When using Logwatch, however, 
sysadmins are required to wade through e-mails and 
make event correlations manually, so it does not scale 
beyond a handful of servers. 

One of the first automated log analysis tools used at 
AMD was Swatch [7].  Swatch is very much a reactio-
nary log analysis system.  Events matching a particular 
regular expression can trigger events, such as an e-mail 
to an administrator.  At AMD, rudimentary flood pre-
vention routines often caused important events to be 
missed while a rule was stalled waiting for a flood timer 
to expire.  In addition, Swatch is single-threaded, and so 
was unable to scale to AMD's ever-increasing log vo-
lume (about 10GB/day at a typical site). 

Around 2006, as AMD's compute grids were growing at 
a rapid rate, the company determined the aging Swatch 
installation was no longer effective and chartered a 
project to implement a replacement log monitoring and 
analysis system.  The parameters for the project were: 

 Scale to tens of gigabytes of log data per day 
 Take advantage of multiple processors (AMD's strat-

egy is to embrace multi-core computing)  
 Be able to correlate events across thousands of sys-

tems in real-time (no batch processing) 
 Be able to prioritize and queue system repair jobs 

and e-mail alerts 
 Prevent floods of alerts without missing important 

events 
 Correlate events on arbitrary log streams (e.g. 

FlexLM license daemon logs) 
 Ensure correlation rules are easy to read, modify, and 

create 

At the time, SEC [1] and Splunk [3] were popular 
choices as core components to achieve the goals.  AMD 
tested both thoroughly, and ultimately decided a home-
grown system would be best.  SEC was (and still is) a 
very powerful and flexible tool, but the learning curve 
for writing rules its rules is quite steep.  This was dem-
onstrated by [1], which was actually supposed to "de-
mystify" SEC.  However, even moderately complex 
SEC rules were deemed unintelligible by sysadmins 
unfamiliar with its use. 

Splunk did not have an indexing system robust enough 
to handle the volume of log traffic we expected to run 
through it.  After routing just a few hundred megabytes 
of syslog data through Splunk, the indexer would stop 
working properly despite several weeks of tuning with 
the help of Splunk's developers.  Finally, the event cor-
relation features were limited to Swatch-like functional-
ity (this was in 2006: Splunk v1.0). 
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With its seven design goals in mind, AMD created 
VTEC from scratch.  In the process, we evolved a novel 
set of data types and data handling methods that have 
since greatly simplified event correlation and log analy-
sis at AMD. 

3 Architecture 

VTEC Components 
The VTEC system consists of five modules (Figure 1).  
Each module has a specific, well-defined task to per-
form, and communicates with the other modules in a 

well-defined language over TCP sockets.  Splitting the 
system into multiple components generates a number of 
benefits: 

 Bugs/errors in one rule engine generally do not affect 
the others 

 Multiple processes can leverage CPU capacity in 
multi-core systems 

 Standard interfaces between modules simplify the 
task of tuning modules to optimize performance or 
add features 

 

 
Figure 1: VTEC System Architecture 

 

Streamer - Log data enters VTEC via syslog.  The 
streamer component can tail log files or send arbitrary 
data from STDOUT of a process to VTEC.  Its most 
useful feature is the ability to insert "heartbeat" mes-
sages into the log stream so the absence of event data 
can trigger actions [10].  Use of the streamer compo-
nent is optional; most systems at AMD simply route 
their log data directly to the syslog-ng component with-
out going through a streamer. 

Syslog-ng - VTEC uses the powerful syslog-ng system 
logger [6] as the log router; it is the only non-Perl 
component.  Its purpose is to accept log streams from 
syslog, TCP/UDP sockets, and streamers.  It reformats 
messages, filters data, and routes messages to the 

appropriate rule engines and/or archival log files.  
Control of the filtering is accomplished by including 
filtering metadata within each rule engine, dictating 
what log data that rule engine wishes to receive.  The 
VTEC installer then injects this metadata into the 
syslog-ng.conf file, ensuring that each rule engine 
is tasked with parsing only the log data that is relevant 
to it.  The static parts of the syslog-ng.conf file 
allow for searchable log archives to be created.  For 
example, all log messages could go to 
/var/log/YYYY/MM/DD/hostname-msgs.log. 

Rule engines - These are composed of any executable 
code that accepts filtered and reformatted log data on 
STDIN.  In practice, these are Perl scripts, created from 
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a template, that include reusable interface modules to 
both the action server and the temporal variable server 
(which communicate over a standard TCP protocol). 
The rule engines are where the event correlation tasks 
occur.  Since the rule engines are open-ended editable 
custom scripts, a rule engine can do anything your lan-
guage of choice can do.  

Temporal variable server - VTEC hosts all the tem-
poral variables in a separate server daemon.  This frees 
the rule engines from the drudgery of maintaining state 
across reboots/restarts.  It also allows rule engines to 
share data easily, since the variable server presents a 
shared namespace to the rule engines; one rule engine 
can set a temporal variable, and another rule engine can 
query for it by using the same variable name. 

The temporal variable server can also inject special 
messages into the log stream when certain threshold 
conditions are met.  Rule engines can watch for these 
threshold messages and take appropriate action without 
being burdened with having to constantly query the 
state of variables. 

A Perl object interface to the temporal variable server is 
provided for use in rule engines.  Additionally, in cases 
in which the temporal variable server's features are 
more than are required, the temporal variable data types 
are available as Perl objects, meaning that rule engines 
can instantiate them locally without having to contact 
the temporal variable server at all. 

Action server - When rule engines need to take some 
sort of action, they have the option of running that task 
locally (which is not advisable, since this can block the 
rule engine from processing incoming data) or queuing 
a job in the action server.  Jobs are implemented in a 
Perl module as subroutines; queuing a job really means 
sending the name of a subroutine, its parameters, when 
to run it, and a queue name to the action server over a 
standard TCP socket interface.  A Perl object interface 
to the action server is provided for use in rule engines. 

The action server has a number of job queues with va-
rying priorities.  Users can schedule jobs to run imme-
diately or at a specific time (e.g., alert a sysadmin about 
this event, but not until 10 a.m., when they are awake).  
The action server processes queues with higher priority 
first, allowing an emergency page to go out immediate-
ly despite a backlog of less urgent repair jobs in lower-
priority queues. 

The actions that can be queued on the action server are 
defined in a Perl module as functions.  This allows ac-
tions to be developed that can be shared by rule en-
gines.  Since the actions are implemented in Perl, they 
can do virtually anything to the environment.  They can 
also communicate with the variable server if needed to 
get information about how to execute.  Some basic ac-
tions implemented on AMD's action server are: 

 run_cmd - executes a command on a remote 
machine 

 send_mail - sends an e-mail 
 hopenclose - instructs AMD's batch scheduling 

system to open or close a host to jobs 
 inject_log - injects a syslog message into the log 

stream (for signaling rule engines about job status) 

In addition to the actions themselves, an arbitrary 
number of queues that can be defined in the action 
server, with varying levels of priority.  The queues are 
defined in a configuration file.  In practice, only three 
queues are needed: 

 crisis - when any jobs are placed in this queue, all 
other queues are halted until this queue is empty 
(good for hotpage events or status checks that are 
time-sensitive) 

 normal - normal jobs, such as rebooting or 
reinstalling a server, or running a script 

 email - most e-mail jobs get queued here, so that 
they get processed in parallel with other jobs (e.g. a 
run_cmd job in the normal queue won't have to 
wait for a flood of 500 e-mails to get sent before 
executing) 

Temporal Variable Data Types  
The most interesting and novel aspect of VTEC is the 
temporal variable server and the temporal variables it 
hosts.  There are three data types in the temporal varia-
ble server: 

Scalar - A scalar consists of two pieces of information: 
a piece of scalar data (such as a string or a number) and 
a timeout.  The timeout is set when the scalar is created, 
and defines the length of time the data is valid.  When 
the scalar is queried, the timeout is checked.  If the cur-
rent time has not exceeded the timeout, the data value is 
returned.  Otherwise, a zero is returned.  Scalars are 
useful for setting alarms, preventing e-mail floods, and 
storing temporary data. 
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Incrementer - The incrementer data type builds on the 
scalar.  It is an organized collection of scalars, each 
with a data value of 1.  When an incrementer is instan-
tiated, it is given a timeout value.  Every time the in-
crementer is set (called a hit in VTEC), a new scalar is 
added to the collection with the predetermined timeout 
and a data value of 1.  When queried, the incrementer 

returns the sum of the values of its constituent scalars. 
Incrementers are useful for calculating and observing 
the rate of events over time.  Figure 2 demonstrates 
how the value of an incrementer changes over time as it 
is repeatedly hit by a rule engine.  When read at time=4 
sec, the reported value of "4" indicates that the current 
rate of hits is 4 per 7 seconds, or 34.29 per minute. 

 

 
Figure 2: Value of an Incrementer over Time 

 

List - A list is a collection of incrementers that are each 
referenced by a key - in short, a Perl hash of incremen-
ter objects.  Lists have the unique property that they can 
be queried in three different ways: 

1. The value of a particular key (the current value of 
that incrementer); 

2. The sum of the current values of all keys; or, 
3. The number of non-zero keys. 

Lists are useful because they can aggregate event rate 
data and organize it (e.g., by hostname), then present 
immediately useful data about that collection of rate 
data (e.g., the current number of hosts reporting an 
event, or the total number of those events across the 
entire environment). 

4 Examples 
In all of the following code examples, a substantial part 
of the actual Perl script has been removed for clarity.  
All Perl-based VTEC rule engines have three major 
sections: 

1. syslog-ng metadata.  This information is stored in 
comments at the top of the rule engine.  The VTEC 
installer parses this metadata and builds syslog-ng 
filter rules to ensure the desired log messages are 
passed into the rule engine. 

2. Initialization code.  This is boilerplate Perl code that 
includes the appropriate VTEC support modules, in-
stantiates the $variable_server and $ac-
tion_server objects, and sets up any thresholds 
needed by the rule engine in the variable server.  
This code is not shown in the examples in this paper, 
for brevity. 

3. Log processing.  This takes place in the 
while(<STDIN>) {} loop, and is generally the on-
ly part of the code that the sysadmin has to actually 
modify from the template. 

While most of a rule engine's code is boilerplate, it was 
decided to leave it available for modification to ensure 
that the rule engines would never be limited by any sort 
of hard-coded framework.  Plenty of comments are 
provided in the template to guide the rule engine author.  
While most event correlation cases can be covered with 
a few slight modifications of the template, more com-
plex cases might occasionally require inclusion of extra 
Perl modules or other initialization code that might be 
complicated by unnecessary abstraction of the code. 

In Code Example 1, the most basic type of rule engine 
is demonstrated; compare it to "Repeat Elimination and 
Compression" in [1].  The syslog-ng metadata ensures 
the only log data being passed into the rule engine on 
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STDIN are messages from host amdftp, where the mes-
sage portion matches the regular expression disk 
full error.  By performing initial filtering in syslog-
ng before the messages even reach the rule engine, the 
filtering process is only done once, rather than all rule 
engines having to parse through all the messages look-
ing for matches. 

When these messages arrive, the variable server is que-
ried to see if a scalar by the name of ftp_disk_full 
is set.  If not, an outgoing e-mail is queued on the action 

server, and the ftp_disk_full scalar is set, with a 
one-hour timeout, to prevent a flood of e-mail from 
being sent. 

Notice that the job submission hash includes a start 
parameter.  This parameter can be set to a delay (e.g. 
+600 means "10 minutes from now") or to an absolute 
time by using localtime() to generate an epoch time.  
Thus with very little added effort, a non-critical alert 
could be queued and delivered during business hours. 

 

In Code Example 2, a more complex event correlation 
is demonstrated.  Following [1], this code example de-
monstrates the functionality in both "Report on Analy-
sis of Event Contents" and "Detect Identical Events 
Occurring Across Multiple Hosts".  In this example, 
VTEC is configured to watch for "NFS server not res-
ponding" messages from all hosts, and will alert if the 
number of unique systems reporting this message for a 
particular file server exceeds 50 in a given five-minute 
period. 

First, notice the syslog-ng metadata is a bit more in-
volved this time.  We are filtering three types of mes-
sages into the rule engine: server XXX not res-
ponding, server XXX OK, and threshold messages.  
The threshold messages are important: when the rule 
engine runs the set_list_threshold method when 
it starts up, the variable server sets up a watch for that 
particular list.  In this case, we're telling it to watch two 
lists, filer_down and filer_up, and to send an alert 
if the value of a single key in either of them exceeds 50.  

The rule engine can then capture that alert and take 
action.  

Following the code, as log messages flow in from 
STDIN, they are checked to see if they are one of the 
three types we are filtering for.  In the basic filer 
down/up case, the variable server is told to update the 
appropriate list variable, using the affected file server's 
name as the key.  The timeout for each hit is set to five 
minutes.  Conceptually, this means we'll have two 
groups of incrementers, indexed by the name of the file 
server.  The value of each incrementer tells us roughly 
how many hosts are simultaneously reporting the given 
state for that server (we assume each host only reports 
the "not responding" or "OK" message once every five 
or more minutes).  If the message is a threshold mes-
sage, all we need to do is take action - in this case, send 
an e-mail about the affected filer. 

The important thing to grasp with this example is the 
relative simplicity with which this correlation was 
achieved, especially compared to the same example in 
Figure 9 of [1].  While the overall functionality is effec-

Code Example 1: Simple Event Alert with Repeat Elimination/Compression 
# syslog-ng metadata 
# filter: host("amdftp") and match("disk full error"); 
 
while(<STDIN>) { 
    if($variable_server->get_scalar("ftp_disk_full") == 0) { 
        my %job = ( 
            start      => time(), 
            queue      => "email", 
            action     => send_mail, 
            parameters => [ $address, $subject, $msg, $name ] 
        ); 
        if($action_server->add(%job)) { 
            # scalars can be set to arbitrary values (second parameter), but 
            # always return 0 when they have timed out. 
            $variable_server->set_scalar("ftp_disk_full", 1, "+3600"); 
        } 
    } 
} 
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tively the same, any sysadmin able to read basic Perl 
should be able to interpret, modify, and use the VTEC 
rule engine; the same functionality in SEC is much 

more difficult to grasp, even for a seasoned program-
mer. 

 

Code Example 2: Correlating Events Across Hosts 
# syslog-ng metadata 
# filter: match(".*server.*not responding.*") or \ 
#         match(".*server.*OK.*") or \ 
#         filter(f_thresholds); 
 
# Set up a threshold when we start up.  Thresholds are purged after 48 hours of inactivity. 
# VTEC restarts all rule engines nightly (during log rotation) to ensure needed thresholds 
# are kept fresh, and retired ones are purged from the variable server. 
$variable_server->set_list_threshold("ONE", "filer_down", ">", "50"); 
$variable_server->set_list_threshold("ONE", "filer_up", ">", "50"); 
 
my $window_secs = 300;  # sliding window of 5 minutes 
my $email_flood = 1800; # seconds between e-mails about a filer up/down 
 
while(<STDIN>) { 
    my %message = parse($_); 
 
    # Filer down messages 
    if($message{message} =~ /server (\w+)( is)? not responding/) { 
        $variable_server->set_list("filer_down", $1, "+$window_secs"); 
        next; 
    } 
 
    # Filer up messages 
    if($message{message} =~ /server (\w+) OK/) { 
        $variable_server->set_list("filer_up", $1, "+$window_secs"); 
        next; 
    } 
 
    # Filer up/down threshold exceeded messages 
    if($message{message} =~ /THRESHOLD EXCEEDED.*filer_(up|down).*\[(\w+)\].*\((\d+)\)/) { 
        my ($type, $filer, $num_messages) = ($1, $2, $3); 
        # Create a scalar that we'll use to prevent e-mail flooding for this filer 
        my $scalar_name = "email_filer_$type" . "_$filer"; 
        unless($variable_server->get_scalar($scalar_name)) { 
            my %job = ( 
                start      => time(), 
                queue      => "email", 
                action     => "send_mail", 
                parameters => [ $to_address, "Filer $filer being reported $type!", 
    "Filer $filer has been reported $type $num_messages times in the last $window minutes." ] 
            ); 
            Queue(\%job); 
            $variable_server->set_scalar($scalar_name, 1, "+$email_flood") 
        } 
    } 
} 
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With a few minor modifications, the code in Example 2 
could be updated to assist in security monitoring.  If 
you wanted to check for usernames that are making 
repeated unsuccessful attempts to login to a machine 
(brute-force attack), a number of list variables could be 
created and monitored with thresholds:  

 A list using usernames as the key, hit each time a 
message about an unsuccessful login attempt is seen 
for that username.  Using a LIST ONE threshold 
would alert when any given username has repeated 
failed logins (whether on a single host or distributed 
among many hosts). 

 A list using source IPs as the key, hit each time a 
message about an unsuccessful login attempt is seen 
for that IP.  Using a LIST KEYS threshold would 
alert when the number of source IPs attempting to 
connect in a short period of time increases beyond a 
threshold (e.g. a denial of service attack, or possibly 
a distributed brute force attack).  Using a LIST ONE 
threshold would alert when a given source IP is mak-
ing repeated login attempts (e.g. brute force attack). 

In Code Example 3, the ability to check for the ab-
sence of a log message is demonstrated.  This functio-
nality is achieved by using an alarm, which is a func-
tion provided by the temporal variable server and is 
implemented using what amounts to an anonymous 
scalar variable with a threshold attached. 

Much like the previous example, the code flows in a 
way that an average sysadmin with some Perl expe-
rience would be able to comprehend.  We filter for 
three types of messages: the job start message, the job 
finished message, and messages generated by the varia-
ble server when thresholds/alarms are generated. 

If the message is a job start, the job number is fetched 
from the message, an alarm is set, and a pair of Perl 
hashes is used to create a mapping between the job 
number and the alarm name.  If the job finished mes-
sage arrives before the alarm goes off, the alarm is 

cleared and no further action is taken.  If the alarm mes-
sage arrives, we use the mapping to see which job is 
late, and send an appropriate alert.  Further, if the late 
job actually ends up finishing, we can detect that too by 
noticing there is no alarm set for that particular job.  

In Code Example 3, the alert portion has been shortened 
into a pseudo-function called queue_alert().  In a 
real VTEC rule engine, the rule engine author would 
write a function that makes a call to the action server 
and have it queue an e-mail (or some sort of corrective 
action). 

With a few modifications, this code could have the rule 
engine comprehend multi-line log messages.  For ex-
ample, ECC errors on Linux systems often appear on 
multiple lines: 

kernel: CPU 3: Silent Northbridge MCE 
kernel: Northbridge status 940c4002:85080813 
kernel:     Error chipkill ecc error 
kernel:     ECC error syndrome 8518 
kernel:     bus error local node origin, \ 
       request didn't time out 
kernel:     generic read 
kernel:     memory access, level generic 
kernel:     link number 0 
kernel:     err cpu0 
kernel:     corrected ecc error 
kernel:     previous error lost 
kernel:     NB error address \ 
       0000001a230571d0 

By utilizing short alarms and a rudimentary state ma-
chine in the rule engine, a robust method for capturing 
multi-line messages like this can be built, which will 
function even if the log message is incomplete or miss-
ing lines.  In fact, at AMD we have implemented just 
such a rule engine that aggregates machine check errors 
like these and injects new single-line messages into the 
log stream so yet another rule engine can look for sys-
tems with unusually high rates of ECC errors, and close 
them for repair.  In some cases it can even detect which 
DIMM has failed (by analyzing the syndrome codes) 
and add that information to the system log in the asset 
database. 



USENIX Association 	 LISA ’10: 24th Large Installation System Administration Conference	 155

Code Example 4 demonstrates the ability to "chain" 
rule engines.  In this example, we have two low-level 
rule engines, each checking for a different kind of 
hardware problem on systems.  These rule engines use 
list variables and thresholds to take action when the rate 
of each type of hardware error exceeds an acceptable 
threshold.  The action taken in these cases is to inject a 
log message into the log stream that a third, "master" 
rule engine intercepts.  This third rule engine utilizes 
the key-counting functionality of lists to determine 
quickly how many kinds of hardware problems a given 
system has.  In the example, a pseudo-action "A" is 
taken if a system has only one type of hardware prob-
lem, while pseudo-action "B" is taken if a system has 
both. 

The net result is that a fairly daunting correlation task is 
reduced into its three core correlations.  These correla-
tions are easily made individually by utilizing temporal 

variable constructs in the temporal variable server, 
making the rule engines easy to write and maintain. 

Note the example has been distilled to its core functio-
nality, so is rather simplistic; the same functionality 
could be achieved in a single rule engine that simply 
parses more data.  However, consider the question of 
ongoing support and updates.  By separating the com-
plex correlation into multiple rule engines, the whole 
system becomes far easier to maintain over time than 
with a single, monolithic rule engine.  What if you want 
to start checking for a new class of hardware failure?  
Rather than modify (and potentially break) a single rule 
engine, a new (simple) rule engine is created that looks 
for this new type of failure that injects information 
about its findings into the log stream.  The master rule 
engine then only needs a minor modification (or, per-
haps, none at all) to take advantage of the new data.

Code Example 3: Checking for Missing Events 
# syslog-ng metadata 
# filter: match("Job.*started") or match("Job.*complete") or \ 
#         filter(f_thresholds); 
 
my %alarms_by_job; 
my %jobs_by_alarm; 
while(<STDIN>) { 
    my %message = parse($_); 
    # If job started, set an alarm so we can alert if it does not finish in 10 minutes 
    if($message{message} =~ /Job ([0-9]+) started/) { 
        # set_alarm returns the name of the scalar it created 
        $alarms_by_job{$1} = $variable_server->set_alarm("+600"); 
        $jobs_by_alarm{$alarms_by_job{$1}} = $1; 
    } 
    if($message{message} =~ /Job ([0-9]+) completed/) { 
        my $job = $1; 
        if($variable_server->get_scalar($alarms_by_job{$job}) { 
            # if the alarm is still active, clear it; we're OK 
            $variable_server->clear_alarm($alarms_by_job{$job}); 
            delete $jobs_by_alarm{$alarms_by_job{$job}}; 
            delete $alarms_by_job{$job}; 
        } 
        else { 
            # the alarm isn't active: the job has finished, but finished late. 
            delete $jobs_by_alarm{$alarms_by_job{$job}}; 
            delete $alarms_by_job{$job}; 
            queue_alert("Job $job finished late!"); 
        } 
    } 
    if($message{message} =~ /TIMEOUT: (\S+) (\S+)/) { 
        my ($type, $name) = ($1, $2); 
        # One of the jobs didn't finish within 10 minutes, so see which 
        # job it was and send an alert. 
        queue_alert("Job $jobs_by_alarm{$name} has been running for > 10 minutes!"); 
    } 
} 
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Code Example 4: Chaining Rule Engines 
#### Rule engine 1: Watches for hosts with bad RAM #### 
# filter: match("ECC Error") or filter(f_thresholds); 
# list threshold will alert when the value of a key exceeds 100. 
$variable_server->set_list_threshold("ONE", "ecc_errors", ">=", 100); 
while(<STDIN>) { 
    my %message = parse($_); 
    # an ECC error, hit the appropriate incrementer in the ecc_errors list 
    if($message{message} =~ /ECC Error/) { 
        # We use a 60-second timeout on the hit, which makes the list threshold 
        # above alert at an ECC error rate of >= 100 per minute. 
        $variable_server->set_list("ecc_errors", $message{from_host}, "+60"); 
    } 
    if($message{message} =~ /THRESHOLD EXCEEDED.*ecc_errors.*\[(\w+)\].*\((\d+)\)/) { 
        # We have found a bad host.  Generate a log message that Rule engine 3 will 
        # pick up that indicates just how bad things are. 
        my ($bad_host, $count) = ($1, $2); 
        # pseudo-function for brevity; in reality this would queue an inject_msg action 
        # that injects a message into the log stream at the given facility and priority. 
        queue_alert("daemon", "info", "ALERT: $bad_host with $count ECC errors per minute"); 
    } 
} 
 
#### Rule engine 2: Watches for hosts with bad DISKS #### 
# filter: match("EXT3 Error") or filter(f_thresholds); 
# list threshold will alert when the value of a key exceeds 20. 
$variable_server->set_list_threshold("ONE", "ext3_errors", ">=", 20); 
while(<STDIN>) { 
    my %message = parse($_); 
    # an EXT3 error, hit the appropriate incrementer in the ext3_errors list 
    if($message{message} =~ /EXT3 Error/) { 
        # We use a 3600-second timeout on the hit, which makes the list threshold 
        # above alert at an EXT3 error rate of >= 20 per hour. 
        $variable_server->set_list("ext3_errors", $message{from_host}, "+3600"); 
    } 
    if($message{message} =~ /THRESHOLD EXCEEDED.*ext3_errors.*\[(\w+)\].*\((\d+)\)/) { 
        # We have found a bad host.  Generate a log message that Rule engine 3 will 
        # pick up that indicates just how bad things are. 
        my ($bad_host, $count) = ($1, $2); 
        # pseudo-function for brevity; in reality this would queue an inject_msg action 
        # that injects a message into the log stream at the given facility and priority. 
        queue_alert("daemon", "info", "ALERT: $bad_host with $count EXT3 errors per hour"); 
    } 
} 
 
#### Rule engine 3: Watches for hosts with bad hardware #### 
# filter: facility(daemon) and priority(info) and match("ALERT:"); 
while(<STDIN>) { 
    my %message = parse($_); 
    if($message{message} =~ /ALERT: (\w+) with (\d+) (EXT3|ECC) errors per (minute|hour)/) { 
        my ($bad_host, $count, $type, $base) = ($1, $2, $3, $4); 
        # Use a list variable to keep track of the various types of problems a system has. 
        $variable_server->set_list("multi_problem_$bad_host", $type, "+3600"); 
 
        # If the system has only one thing wrong with it, we take action A, but if there are 
        # two things wrong with it we take action B. 
        if($variable_server->get_list_keys("multi_problem_$bad_host") >= 2) { 
            queue_action("B"); } 
        elsif($variable_server->get_list_keys("multi_problem_$bad_host") >= 1) { 
            queue_action("A"); } 
    } 
} 
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This ability to chain rule engines means that extraordi-
narily complex correlations can be achieved by reduc-
ing them to their constituent parts, then chaining rule 
engines together to track progress through the correla-
tion.  Combine this functionality with the fact that rule 
engines can share temporal variable information 
through the variable server, and you have an extremely 
flexible and powerful system for correlating events and 
taking appropriate actions that is much easier to create, 
modify, and troubleshoot than other event correlation 
tools. 

5 Useful Rule Engines at AMD 
Since VTEC has been in production at AMD for more 
than four years, we have amassed a significant number 
of rule engines that perform useful event correlation 
and self-healing tasks in our computing environment. 

Failed Hardware 
One of the earliest uses for VTEC at AMD was to look 
for systems with bad hardware.  We found most healthy 
systems would occasionally report ECC and EXT3 er-
rors, but systems with truly bad hardware would send 
these errors at a noticeably higher rate.  We imple-
mented a rule engine that checks for these messages 
(the ECC error check uses a chained rule engine that 
aggregates the multi-line machine check errors that the 
Linux kernel reports) and then closes bad machines to 
new compute jobs.  Systems in such bad shape that they 
are streaming error messages into the logs exceed an 
"emergency" threshold and a signal is sent to imme-
diately power down the affected machine. 

NFS File Server Checks 
As summarized and simplified in Code Example 2, we 
have a rule engine that monitors client systems for 
"NFS server not responding" messages and alerts the 
storage and networking teams when the rate of messag-
es exceeds a certain threshold. 

Reboot Loops 
We have all of our servers at AMD configured to send a 
syslog message when they have finished booting up.  A 
VTEC rule engine watches for these messages and 
alerts operational staff if a machine is rebooting more 
than five times in a 90-minute period.  These reboot 
loops can indicate a multi-bit ECC error, kernel panic, 
or other system configuration problem that requires the 
attention of a sysadmin. 

Interactive Load Monitor Collator 
At AMD we have several interactive login servers that 
are used by our design engineers as gateways into re-
mote datacenters.  Some engineers, instead of using our 
batch scheduling system, will run their jobs directly on 
the interactive login server, causing performance prob-
lems and occasionally even crashing the systems.  We 
have implemented a cronjob that checks for processes 
that violate our interactive server usage policy, that 
sends out syslog messages when it detects a process 
that violates policy.  A VTEC rule engine collects these 
messages, collates them, and generates a daily report 
for each engineer that is violating the policy with a 
summary of all of their processes at each site that are in 
violation of the policy.  Additionally, the whole list of 
users and processes is sent in a daily digest to our inter-
active server support team, which can determine if it is 
appropriate to forcibly kill ill-behaved processes. 

Out of Memory Tracking 
A common problem in AMD's compute grids is out-of-
memory conditions.  Leaky jobs, or jobs that simply 
need more memory than is installed on the machine, 
will cause the system to run out of memory; the kernel 
then invokes the out-of-memory killer (OOM killer).  
The syslog message that the OOM killer generates has 
very little useful data: just a PID and a process name.  
To identify the owner of the job that caused the OOM 
condition, we run a cron job every five minutes on our 
systems that caches the contents of 
/proc/<pid>/stat into a directory under 
/var/spool.  When a rule engine sees the OOM killer 
event, it queues a job ten minutes into the future (to 
give the server time to recover from the OOM condi-
tion) that logs into the machine and fetches the 
/var/spool/proc/<pid>/stat file that was refe-
renced by the OOM killer message.  This file tells us 
not only who was running the errant job, but also how 
large it was when it was killed.  This information is 
used to craft an e-mail alert to the user asking them to 
check the status of their batch job submissions to pre-
vent more problems on other compute nodes. 

Automatic System Stress Testing 
When bringing new systems online in our compute 
grid, it is important to stress-test them before allowing 
engineer's jobs on them.  We accomplish this at AMD 
by using a rule engine that watches for syslog messages 
indicating that a system has completed its automated 
installation sequence.  It then closes the machine to the 
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batch submission system, kicks off the stress test, and 
sets an alarm for 12 hours in the future.  If the alarm 
goes off, the stress test must have locked up the system; 
an operational staff member is alerted to check the sys-
tem.  If the stress test completes (notifying of its status 
via syslog, of course) the system is either opened for 
jobs (test was successful) or is left closed (test failed). 

Ignoring Flood-Generating Hosts 
Sometimes a machine will be so thoroughly broken that 
it is impossible to shut down the machine, and it just 
sits there spewing error messages into the syslog 
stream.  This can hamper the VTEC server not only 
because it can cause it to run out of disk space, but also 
because it forces syslog-ng to process a flood of 
irrelevant data.  We have implemented a rule engine 
that watches for hosts sending an excessive volume of 
log data to the system, and automatically updates the 
syslog-ng.conf file with a filter that drops all of the 
messages from that host for 24 hours.  Once the 24-
hour alarm expires, the filter is removed; if the system 
is still spewing messages, it will be re-ignored within a 
few minutes, preventing the log flood from adversely 
affecting performance or data space on the VTEC 
server. 

6 Designing for Performance 
The performance characteristics of VTEC can be best 
described by analyzing the potential bottlenecks of each 
component, since the slowest single component will 
likely represent the limiting factor for the overall sys-
tem.  However, due to the multi-core design of VTEC, 
even if one of the components (usually the variable 
server) maxes out a CPU, the other components can 
continue functioning without any degradation on other 
CPUs. 

Syslog-ng 
Methods for tuning the performance of syslog-ng are 
fairly sparsely documented in the reference manual [9].  
In the context of VTEC, we are most concerned with 
the performance of the filtering functions, especially 
since syslog-ng is a single-threaded process.  If syslog-
ng spends too much time on the CPU trying to parse 

through log filters, it could begin dropping log messag-
es. 

We have found after much experimentation that syslog-
ng's match() filter function is much slower than the 
other message filtering functions.  When rule engines 
are configured with nothing but a match() rule, the 
syslog-ng process spends all of its time on the CPU, 
even with a fairly modest (1-2GB/day) rate of traffic.  
Simply adding one of the "fast" functions in addition to 
the match() function returns performance to accepta-
ble levels, presumably by short-circuiting the match() 
function in many irrelevant cases. 

In general, this means that a filter rule like this: 

match(".*some message.*") 

can be written better as: 

facility("daemon") and priority("info") 
and match(".*some message.*") 

to get acceptable performance from syslog-ng. 

A typical VTEC server at AMD runs on a four-vCPU 
virtual machine with 2.9GHz AMD OpteronTM proces-
sors under the hypervisor.  The syslog-ng instance fil-
ters data into 21 rule engines and four local disk logs.  
The incoming data rate is about 1,000 messages/sec and 
10GB/day.  With that level of load, the syslog-ng 
process consumes about 30% of one CPU core, with 
occasional spikes to above 50% of one CPU core. 

Temporal Variable Server 
As demonstrated in the examples, the temporal variable 
server is a critical part of the speed path as log messag-
es route their way through the system.  Since virtually 
every log message that makes its way to a rule engine 
results in at least one (and many times multiple) re-
quests to the variable server, it is important that it be 
able to respond quickly. 

The variable server is implemented using Perl threads.  
This allows for simple sharing of the internal database 
of temporal variables (a hash for 
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Figure 3: Variable Server Performance Querying a Growing Incrementer 

 

each data type).  Six threads run in parallel, using a 
collection of locks to ensure atomic write access to the 
internal data structures: 

 A server thread that listens for connections (and 
spawns threads that handle those connections) 

 A backup thread that wakes up every ten seconds and 
backs up the internal state to disk 

 Three monitoring threads that wake up every 60 
seconds to purge stale data from the internal data 
structures 

 A thresholds thread that wakes up every 60 seconds 
to scan for variables that have exceeded thresholds. 

The persistent threads do not pose any real performance 
issues; they wake up infrequently, and spend only a few 
milliseconds to complete their duties before going back 
to sleep. 

The threads that get spawned to service incoming re-
quests are the potential bottleneck.  Testing has re-
vealed that for basic requests (e.g. fetch the value of a 
scalar), performance scales very well.  However, as the 
data structures being queried get more complex (e.g. 
fetch the value of an incrementer that has 1,000 active 
scalars in it), performance begins to degrade.  Figure 3 
shows the transactional performance of the variable 
server as the size of an incrementer being queried 
grows in size. 

The routine that calculates the value of an incrementer 
is O(n) with the number of active scalars it contains.  

An updated routine that is O(log n) is being tested 
and shows promising results, but requires significant 
code changes and so has not been deployed into pro-
duction yet. 

Rule Engines 
Obviously the rule engines, since they can have arbi-
trary code in them, can be a bottleneck.  But the idea 
behind VTEC is for the rule engines to take advantage 
of the action server, precisely so they don't have to 
block for long-running tasks.  If the rule engines are 
coded such that they do not block, they do not represent 
a bottleneck. 

7 Challenges 
As flexible and effective as VTEC currently is, there is 
always room for improvement.  We currently face two 
issues with VTEC. 

Variable Server Performance 
As described in Section 6, the variable server is the 
major bottleneck.  Since virtually all rule engines de-
pend on incrementers and lists (which are collections of 
incrementers), the fact that the incrementer data type 
scales so poorly is a significant hindrance.  However, 
there is new code in the works for the incrementer that 
should greatly improve its scalability and performance. 

Feedback from Actions 
The action server is currently a "fire and forget" system.  
When jobs are queued, the rule engine can get a job ID 
for tracking, but there is currently nothing useful that 
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can be done with it.  There is no way to query the status 
of job, or to collect the output of a job, from within a 
rule engine.  Jobs have the option to use logger or 
some other means to inject syslog messages and "phone 
home" to their parent rule engine, but this process is 
awkward and is not used in practice. 

A major improvement in this area would be to have the 
action server cache job status information and output 
for some period of time after the job completes, so rule 
engines can query for it.  Having the action server au-
tomatically inject messages into the log stream when 
jobs complete would also help, because it would give 
rule engines a trigger to work with to keep up with the 
jobs they've queued. 

8 Conclusion 
AMD has used VTEC since 2006 to monitor and auto-
mate maintenance activities on its large compute grids.  
Log volumes range up to 10 GB/day with VTEC run-
ning smoothly on modest two- to four-core virtual and 
physical machines.  VTEC tracks hardware problems 
such as disk, CPU, and RAM failures and takes appro-
priate actions (e.g., shut down/close the broken system 
and create a ticket).  VTEC can monitor the environ-
ment for trends that indicate events (e.g., n systems are 
unable to contact m NFS filers, so there must be a net-
work problem).  Most importantly, VTEC enables au-
tonomic computing by allowing intelligent dispatch of 
repair jobs in response to detected problems.  If these 
repair jobs fail to work, VTEC can notify humans to 
take over. 

In summary, VTEC is a powerful tool for automating 
log analysis and event correlation.  While there are 
many other tools that perform similar tasks, VTEC's 
approach to the problem presents a complete, scalable, 
and intuitive solution that is able to grow and adjust to 
virtually any workload. 
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engineering research and development grids, most 
commonly in support of the autonomic Linux OS provi-
sioning and configuration infrastructure. He graduated 
with a bachelor's degree in computer science from Tex-
as A&M University in 2005.  



USENIX Association 	 LISA ’10: 24th Large Installation System Administration Conference	 161

10 References 
1. Rouillard, John P. "Real-time Log File Analysis Using the Simple Event Correlator (SEC)." Proceedings of 

LISA XVIII (2004): 133-49. Print. 
2. SEC - Open Source and Platform Independent Event Correlation Tool. Web. 22 July 2010. <http://simple-

evcorr.sourceforge.net/>. 
3. Splunk | IT Search for Log Management, Operations, Security and Compliance. Web. 22 July 2010. 

<http://www.splunk.com>. 
4. M. Burgess. On the theory of system administration. Science of Computer Programming, 49:1, 2003. Print. 
5. Cfengine - Automatic Server Lifecycle Management. Web. 22 July 2010. <http://www.cfengine.com>. 
6. "Syslog Server | Syslog-ng." Gateway Solution | Network Security | BalaBit IT Security. Web. 22 July 2010. 

<http://www.balabit.com/network-security/syslog-ng/>. 
7. Hansen, Stephen E., and Todd Atkins. "Automated System Monitoring and Notification with Swatch." Proceed-

ings of LISA VII (1993): 145-52. Print. 
8. "Logwatch on SourceForge.net." SourceForge.net. Web. 22 July 2010. 

<http://sourceforge.net/projects/logwatch/files/>. 
9. "Syslog-ng V2.0 Reference Manual." Syslog: Main/Home Page. Web. 23 July 2010. 

<http://www.syslog.org/syslog-ng/v2/>. 
10. Finke, Jon, "Process Monitor: Detecting Events That Didn't Happen," Proceedings of LISA XVI (2002):  145-

153. Print. 





USENIX Association 	 LISA ’10: 24th Large Installation System Administration Conference	 163

Chukwa: A system for reliable large-scale log collection

Ariel Rabkin

asrabkin@cs.berkeley.edu

UC Berkeley

Randy Katz

randy@cs.berkeley.edu

UC Berkeley

Abstract
Large Internet services companies like Google, Yahoo,

and Facebook use the MapReduce programming model

to process log data. MapReduce is designed to work

on data stored in a distributed filesystem like Hadoop’s

HDFS. As a result, a number of log collection systems

have been built to copy data into HDFS. These systems

often lack a unified approach to failure handling, with

errors being handled separately by each piece of the col-

lection, transport and processing pipeline.

We argue for a unified approach, instead. We present

a system, called Chukwa, that embodies this approach.

Chukwa uses an end-to-end delivery model that can

leverage local on-disk log files for reliability. This ap-

proach also eases integration with legacy systems. This

architecture offers a choice of delivery models, mak-

ing subsets of the collected data available promptly for

clients that require it, while reliably storing a copy in

HDFS. We demonstrate that our system works correctly

on a 200-node testbed and can collect in excess of 200

MB/sec of log data. We supplement these measurements

with a set of case studies describing real-world opera-

tional experience at several sites.

Keywords: logging, scale, research

1 Introduction

Almost every distributed service generates logging data.

The rise of Cloud computing makes it easier than ever to

deploy services across hundreds of nodes [4], with a cor-

responding increase in the quantity of logs and the diffi-

culty of manual debugging. Automated log analysis is in-

creasing the amount of information that can be extracted

from logs, thus increasing their value [26, 30, 3, 16].

Hence, log collection and processing is increasingly im-

portant. Scalable data processing is challenging and so it

is very desirable to leverage existing tools.

MapReduce is emerging as a standard tool for data-

intensive processing of all kinds, including log file anal-

ysis [10, 29]. Tasks like indexing and aggregation fit

naturally into the MapReduce paradigm. So do more

sophisticated analyses, such as machine learning-based

anomaly detection using console logs [30].

In this paper, we present Chukwa, a scalable system

for collecting logs and other monitoring data and pro-

cessing the data with MapReduce. Today, an administra-

tor seeking to use MapReduce for system analysis would

need to build a great deal of infrastructure to connect data

sources with processing tools. Several sites have built

such tools [23, 29], but each has been highly tailored to

the specific context at hand. All have flawed failure re-

covery mechanisms, potentially leading to data loss. In

contrast, Chukwa is designed to integrate cleanly with a

wide variety of legacy systems and analysis applications

and to offer strong reliability guarantees. It is available as

open-source software and is currently in use at a number

of sites, including Berkeley, Selective Media, and CBS

Interactive. A previous publication described our initial

goals and our prototype implementation [7]. In this pa-

per, we describe Chukwa’s design in more detail, present

performance measurements, and describe real-world ex-

periences.

1.1 Why distributed log collection is diffi-

cult

While MapReduce is a powerful and increasingly pop-

ular tool, there is a tension between its performance

characteristics and those of many log collection work-

loads. One of the major design principles of MapReduce

is to push computation to the node holding the associ-

ated data. This is accomplished by storing the input to

a MapReduce job in a distributed filesystem such as the

Google File System (GFS) [12], or its open-source coun-

terpart, the Hadoop Distributed File System (HDFS).

GFS and HDFS are user-level filesystems that do not im-

plement POSIX semantics and that do not integrate with

the OS filesystem layer. Both MapReduce and the un-

1
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derlying filesystems are heavily optimized for the case

of large files (measured in gigabytes) [6]. This means

that applications must either be modified to write their

logs to these filesystems, or else a separate process must

copy logs into the filesystem.

This problem would be comparatively easy in a dis-

tributed filesystem that allowed multiple concurrent ap-

pends and where writes never failed. But such systems

are quite difficult to build; no existing filesystem has

both properties, and no system available in the open-

source world has either. Support for single-writer non-

concurrent appends has been in-progress in Hadoop for

several years, despite implementation effort by a large

population of paid full-time developers.

As a result, the implementation strategy adopted by

the open-source world has been to implement this func-

tionality in application code. In the standard approach,

processes send their log messages across the network

to a daemon, commonly called a collector, that serial-

izes the updates and writes them to the filesystem. Sev-

eral companies, such as Rapleaf, Rackspace, and Face-

book [23, 29, 1], have built specialized log collection

systems of this type.

These collection systems have largely treated log col-

lection as just another network service. They expose a

narrow interface to clients commonly using remote pro-

cedure call (RPC). The monitoring system is responsible

for receiving and recording data and plays no role once

data has been written to the distributed filesystem. While

this separation of concerns is normally an attractive de-

sign style, we argue that it is the wrong approach for re-

liable monitoring of monitoring legacy systems.

A common task for a monitoring system is to collect

data from legacy application log files on disk. Ideally,

files on disk would be deleted once their contents have

been stored durably by the monitoring system. But this is

impossible without some way for the monitoring system

to report back success or failure. In the event of a tran-

sitory failure, data may be buffered by the monitoring

system for some time, meaning that a synchronous RPC

model, with success or failure reported as soon as data

is sent, is insufficient. This problem is perhaps less sig-

nificant in organizations like Facebook or Google, where

legacy code can be rewritten. But in smaller organiza-

tions, it looms large as a problem.

1.2 Our innovations

Our system, Chukwa, adopts a different architecture.

Rather than expose a narrow interface to the monitoring

system, we try to confine as much complexity as possible

as close as possible to the application being monitored.

This means that the interface between the system being

monitored and the monitoring system is highly flexible

and can be tailored to a particular context. It also means

that the rest of the monitoring system can be simple and

optimized for the common case. This enables substantial

design simplification and good performance while offer-

ing superior reliability guarantees.

In Chukwa, data is collected by a dedicated agent pro-

cess on each machine being monitored. This process

can hold far more application-specific functionality than

the simple network services offered by systems such as

Scribe. As we show, this enables us to easily support a

range of desirable features not found in alternative mon-

itoring systems. Agents are responsible for three impor-

tant tasks: producing metadata, handling failures, and in-

tegrating with existing data sources.

• Unlike other systems, Chukwa has a rich metadata

model, meaning that semantically-meaningful sub-

sets of data are processed together. This metadata is

collected automatically and stored in parallel with

data. This eases the development of parallel, scal-

able MapReduce analyses.

• We push failure handling and data cleaning to the

endpoints of the monitoring system. Each agent is

responsible for making sure that data is stored at

least once. A MapReduce job removes duplicates.

As a result, the interior of the collection system can

be much simpler and can optimize for the common

case where writes succeed.

• Last, we optimize for the case of log files on lo-

cal disk. Such logs are common in many environ-

ments. Logs on disk are easy to create, easy to rea-

son about, and robust to many failures. They are

commonly produced by legacy systems. Chukwa

demonstrates that these logs can also be used for

low-cost failure recovery. From the point of view of

Chuwka agents, data collection is asynchronous and

need not be reliable. If a timer expires before data

is stored durably, agents re-send using the on-disk

log.

While Chukwa is optimized for logs on disk, it can

handle many other monitoring tasks. Chukwa can col-

lect a variety of system metrics and can receive data via

a variety of network protocols, including syslog. Our

reliability model encompasses these sources naturally

and flexibly. Depending on user preferences, each data

source can be buffered to disk pessimistically, buffered

on error, or not buffered.

This work is timely for two reasons. The development

of automated log analysis (such as [30, 3, 16] has made

system logs much more useful. If logs are rarely con-

sulted, then collecting them is a low priority. Now that

system logs can be analyzed automatically and continu-

ously, collecting them becomes a much higher priority.

2
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The rise of Cloud computing makes it easier than ever to

deploy services across hundreds of nodes [4], with a cor-

responding increase in the quantity of logs. At that scale,

sophisticated storage and analysis tools like Hadoop be-

come very desirable.

We begin, in the next section, by describing our de-

sign goals and assumptions and explaining why exist-

ing architectures do not adequately meet them. Section

3 describes our concrete implementation and Section 4

presents quantitative measurements. Section 5 discusses

deployment experience. We describe related work in

Section 6 and summarize our conclusions in Section 7.

2 Design Goals and Alternatives

Many monitoring and log collection systems have been

built before Chukwa. In this section, we discuss our

goals and why existing systems fail to meet them. These

goals were based on design discussions at both Yahoo!

and UC Berkeley and reflect real operational needs.

2.1 Supporting Production Use

We first list the core set of requirements needed to mon-

itor production systems.

• The system must support a wide variety of data

sources, not just log files. This is needed to col-

lect system metrics and to cope with existing legacy

systems that sometimes use other logging protocols,

such as syslog [15].

• If the monitoring system fails, the system being

monitored should continue working without inter-

ruption or slowdown.

• The system should scale to handle large numbers

of clients and large aggregate data rates. Our target

was to support 10,000 hosts and 30 MB/sec, match-

ing the largest clusters currently in use at Yahoo [7].

• The system should impose low overhead. We have

often heard 5% described as the largest fraction of

system resources that administrators are comfort-

able devoting to monitoring. Lacking any more

principled standard, we have adopted this as our tar-

get maximum resource utilization for the monitor-

ing system.

• No matter how intense a bust of log writes, the

resource consumption of the monitoring system

should remain with its resource bounds.

Some log analysis jobs are very sensitive to missing

data. In general, whenever the absence of a log message

is significant to an analysis, losing even a small quan-

tity of data can result in a badly wrong answer. For

instance, Rackspace uses a MapReduce-based analysis

of email logs to determine the precise path that mail is

taking through their infrastructure [29]. If the log en-

try corresponding to a delivery is missing, the analysis

will wrongly conclude that mail was lost. The machine-

learning based log file analysis developed by Xu et al.

[30] is another example of a loss-sensitive analysis. And

of course, if web access logs are used for billing pur-

poses, lost messages translate directly into lost revenue.

To support these sorts of log analysis applications, we

made reliable delivery a core goal for Chukwa.

Two of our goals conflict. A system cannot both offer

reliable delivery in all circumstances while never hav-

ing the system being monitored block while waiting for

the monitoring system. Local storage is limited, mean-

ing that if the monitoring system is unavailable for a

long time, the system being monitored must either dis-

card data or block. To reconcile these goals, we adopted

the following reliability standard: if the machine origi-

nating the data stays does not fail permanently, data will

eventually be delivered.

Making data available to MapReduce in less than a

minute or two was not a goal. Chukwa was primarily de-

signed to enable MapReduce processing of log data. Due

to scheduling overheads, a Hadoop MapReduce job sel-

dom executes in less than a minute. As a result, reducing

data delivery latency below a minute offers limited ben-

efit.

2.2 Why existing architectures are inade-

quate

Perhaps surprisingly, existing monitoring systems and ar-

chitectures are inadequate to meet the goals listed above.

The oldest and simplest form of logging is writing to

local disk. Local disk writes are low-cost, and have

predictable performance. Unfortunately, processing data

scattered across local disks of a cluster is difficult. Doing

so while processing data in-place will result in analysis

workloads and production loads conflicting, which is of-

ten unacceptable in practice.

Doing processing on a separate analysis cluster re-

quires some way of moving data from source to des-

tination. A shared NFS mount and streaming data via

syslog are two standard ways to do this. These

two approaches make contrasting reliability-availability

choices. If the network fails, an NFS write will fail,

blocking the application. Syslog, built on UDP, will

silently discard data.

That leaves writing data locally, either on failure or

before attempting to copy it to HDFS. We discuss each

in turn. Several systems, notably Scribe [1] attempt to

3
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write data across the network, and buffer locally only on

failure. The catch is that clients do not participate in fail-

ure recovery. Data loss will be fatal if a crash occurs

after data has been handed to Scribe, and before that data

has been stored durably. Likewise, data can be lost if

a filesystem write returns success before data is serial-

ized. (This can happen because HDFS buffers aggres-

sively before flushing data to remote hosts.) As a re-

sult, pessimistic logging by the application is required to

achieve high reliability.

For large files, copied periodically and all-at-once, this

is simple to implement and works well. For stream-

ing data, however, complexities emerge. There is an

“impedance mismatch” between many logging work-

loads and the optimal performance envelope for scalable

distributed MapReduce-friendly file systems like HDFS.

Those file systems are designed for a small number of

large files, written once and never updated. In contrast,

large numbers of small log files updated sporadically are

an important kind of monitoring data. Easing this gap re-

quires consolidating logs from many machines into one

file. Since HDFS lacks concurrent appends, this requires

a separate process to do the merging. This increases the

number of points at which failures can occur.

Chukwa responds to this reliability problem in an end-

to-end manner, by pushing the retry logic as close to the

data source as possible. Data is either stored in log files

on local disks, or else in HDFS. No other copies are

made, by default. Data transmission is only treated as

successful once data from the one source has been suc-

cessfully copied to the other. The technical challenge is

two-fold. Reliability needs to be integrated with legacy

applications that may be oblivious to the monitoring sys-

tem. And this comparison must be performed efficiently

and continuously at run-time.

Not all sources or uses of log data require the same

degree of reliability. A site might decide that pessimisti-

cally recording all system metrics to disk is an unnec-

essary and wasteful degree of robustness. An additional

design goal for us was to avoid imposing excessive costs

for collecting this sort of ephemeral data.

2.3 A choice of delivery models

It became clear to us as we were developing Chukwa that

in addition to reliability-sensitive applications, there is an

another class of applications with quite different needs.

It is sometimes desirable to use logs to drive an ongo-

ing decision-making process, such as whether to send

an alert to an administrator based on a critical error or

whether to scale up or scale down a cloud service in

response to load. These applications are perforce less

sensitive to missing data, since they must work correctly

even if the node that generated the missing data crashes.

Reliable delivery Fast-path delivery

Visible in minutes Visible in seconds

Writes to HDFS Writes to socket

Resends after crash Does not resend

All data User-specified filtering

Supports MapReduce Stream processing

In order No guarantees

Table 1: The two delivery models offered by Chukwa

To support latency-sensitive applications, we offer an al-

ternate “fast path” delivery model. This model was de-

signed to impose minimal delays on data delivery. Data

is sent via TCP, but we make no other concession to re-

liable delivery on this path. Applications using the fast

path can compensate for missing data by inspecting the

reliably-written copy on HDFS. Table 1 compares these

two delivery models.

3 Architecture

In the previous section, we described our design goals. In

this section, we describe our design and how it achieves

these goals. Like the other systems of this type, we in-

troduce auxiliary processes between the log data and the

distributed filesystem. Unlike other systems, we split

these processes into two classes. One set of processes,

the collectors, are responsible for writing to HDFS and

are entirely stateless. The other class, the agents run on

each machine being monitored. All the state of the mon-

itoring system is stored in agents, and is checkpointed

regularly to disk, easing failure recovery. We describe

each half of the system in turn. We then discuss our data

model and the fault-tolerance approach it enables. Figure

1 depicts the overall architecture.

3.1 Agents

Recall that a major goal for Chukwa was to cleanly in-

corporate existing log files as well as interprocess com-

munication protocols. The set of files or sockets being

monitored will inevitably grow and shrink over time, as

various processes start and finish. As a result, the agent

process on each machine needs to be highly configurable.

Most monitoring systems today require data to be

sent via a specific protocol. Both syslogd and Scribe

[15, 1] are examples of such systems. Chukwa takes a

different approach. In Chukwa, agents are not directly

responsible for receiving data. Instead, they provide

an execution environment for dynamically loadable and

configurable modules called adaptors. These adaptors

are responsible for reading data from the filesystem or di-

rectly from the application being monitored. The output

4
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













































Figure 1: The flow of data through Chukwa, showing retention times at each stage.

from an adaptor is conceptually a stream of consecutive

bytes. A single stream might correspond to a single file,

or a set of repeated invocations of a Unix utility, or the

set of packets received on a given socket. The stream ab-

straction is implemented by storing data as a sequence of

chunks. Each chunk consists of some stream-level meta-

data (described below), plus an array of data bytes.

At present, we have adaptors for invoking Unix com-

mands, for receiving UDP messages (including syslog

messages), and, most importantly, for repeatedly “tail-

ing” log files, sending any data written to the file since

its last inspection. We also have an adaptor for scanning

directories and starting a file tailing adaptor on any newly

created files.

It is possible to compose or “nest” adaptors. For in-

stance, we have an adaptor that buffers the output from

another adaptor in memory and another for write-ahead

logging. This sort of nesting allows us to decouple the

challenges of buffering, storage, and retransmission from

those of receiving data. This achieves our goal of allow-

ing administrators to decide precisely the level of failure

robustness required for each data stream.

The agent process is responsible for starting and stop-

ping adaptors and for sending data across the network.

Agents understand a simple line-oriented control proto-

col, designed to be be easy for both humans and pro-

grams to use. The protocol has commands for starting

adaptors, stopping them, and querying their status. This

allows external programs to reconfigure Chukwa to begin

reading their logs.

Running all adaptors inside a single process helps ad-

ministrators impose resource constraints, a requirement

in production settings. Memory usage can be controlled

by setting the JVM heap size. CPU usage can be con-

trolled via nice. Bandwidth is also constrained by the

agent process, which has a configurable maximum send

rate. We use fixed-size queues inside the agent process,

so if available bandwidth is exceeded or if the collectors

are slow in responding, then back-pressure will throttle

the adaptors inside the process [28].

The agent process periodically queries each adaptor

for its status, and stores the answer in a checkpoint

file. The checkpoint includes the amount of data from

each adaptor that has been committed to the distributed

filesystem. Each adaptor is responsible for recording

enough additional state to be able to resume cleanly,

without sending corrupted data to downstream recipients.

Note that checkpoints include adaptor state, but not the

underlying data. As a result, they are quite small – typi-

cally no more than a few hundred bytes per adaptor. This

allows Chukwa to scale to many hundreds or thousands

of files being monitored.

One challenge in using files for fault-tolerance is cor-

rectly handling log file rotation. Commonly, log files are

renamed either on a fixed schedule, or when the reach

a predetermined size. When this happens, data should

still be sent and sent only once. In our architecture, cor-

rectly handling log file rotation is the responsibility of

the adaptor. Different adaptors can be implemented with

different strategies. Our default approach is as follows:

If instructed to monitor log file foo, assume that any file

starting with foo.* is a rotated version of foo. Use file

modification dates to put rotated versions in the correct

order. Store the last time at which data was successfully

committed and the associated position in the file. This is

enough information to resume correctly after a crash.

3.2 Collectors

We now turn to the next state of our architecture, the col-

lectors. If each agent wrote directly to HDFS, this would

result in a large number of small files. Instead, Chukwa

5
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uses the increasingly-common collector technique men-

tioned in the introduction, where a single process multi-

plexes the data coming from a large number of agents.

Each collector writes the data it receives to a single

output file, in the so-called “data sink” directory. This

reduces the number of files generated from one per ma-

chine or adaptor per unit time to a handful per cluster.

In a sense, collectors exist to ease the “impedance mis-

match” between large numbers of low-rate sources and a

filesystem that is optimized for a small number of high-

rate writers. Collectors periodically close their output

files, rename the files to mark them available for pro-

cessing, and begin writing a new file. We refer to this as

“file rotation.” A MapReduce job periodically compacts

the files in the sink and merges them into the archive of

collected log data.

Chukwa differs in several ways from most other sys-

tems that employ the collector design technique. We do

not make any attempt to achieve reliability at the collec-

tor. Instead, we rely on an end-to-end protocol, discussed

in the next section. Nor do Chukwa agents dynamically

load-balance across collectors. Instead, they try collec-

tors at random until one appears to be working and then

use that collector exclusively until they receive errors, at

which point they fail-over to a new one. The benefit of

this approach is that it bounds the number of agents that

will be affected if a collector fails before flushing data to

the filesystem. This avoids a scaling problem that would

otherwise occur where every agent is forced to respond

to the failure of any collector. One drawback is that col-

lectors may be unevenly loaded. This has not posed any

problems in practice since in a typical deployment the

collectors are far from saturated. With a collector on

every HDFS node, we have found that the underlying

filesystem saturates well before the collectors do.

To correctly handle overload situations, agents do not

keep retrying indefinitely. If writes to a collector fail, that

collector is marked as “bad”, and the agent will wait for

a configurable period before trying to write to it again.

Thus, if all collectors are overloaded, an agent will try

each, fail on each, and then wait for several minutes be-

fore trying again.

Collectors are responsible for supporting our “fast

path” delivery model. To receive data using this model,

clients connect to a collector, and specify a set of reg-

ular expressions matching data of interest. (These reg-

ular expressions can be used to match either content or

the Chukwa metadata, discussed in the next subsection.)

Whenever a chunk of data arrives matching these filters,

it is sent via a TCP socket to the requesting process in

addition to being written to HDFS. To get full coverage,

a client needs to connect to every collector. As we will

show in the next section, a modest number of collectors

are sufficient for the logging needs of large datacenter

services. Hence, “every collector” is often only a hand-

ful.

Filtering data at collectors has a number of advan-

tages. In the environments we have seen, collectors are

IO-bound, not CPU-bound, meaning that CPU resources

are available for the pattern matching. Moreover, col-

lectors are stateless, meaning that it is straightforward to

spread out this matching across more machines, if need

be, by simply adding more collectors.

The fast path makes few reliability promises. Data can

be duplicated, if an agent detects a collector failure and

resends. Data can be lost, if the collector or the data

recipient fails. In some failure scenarios, data can be re-

ceived out of order. While data is normally delivered to

clients as soon as it is received by the collector, it can be

delayed if the network is congested. One guarantee the

fast path does make is that each individual chunk of data

will be received correctly or not at all. As we will see,

this guarantee is enough to be useful.

On the regular “reliable path”, collectors write their

data in the standard Hadoop sequence file format. This

format is specifically designed to facilitate parallel pro-

cessing with MapReduce. To reduce the number of files

and to ease analysis, Chukwa includes an “archiving”

MapReduce job that groups data by cluster, date, and

data type. This storage model is designed to match the

typical access patterns of jobs that use the data. (For in-

stance, it facilitates writing jobs that purge old data based

on age, source, and type: “Store user logs for 14 days,

and framework logs for one year.”) The archiving job

also detects data loss, and removes duplicate data. Re-

peated invocations of this job allow data to be compacted

into progressively larger files over time.

This stored data can be used in a number of

ways. Chukwa includes tools for searching these files.

The query language allows regular-expression matches

against the content or metadata of the stored data. For

larger or more complex tasks, users can run customized

MapReduce jobs on the collected data. Chukwa in-

tegrates cleanly with Pig, a language and execution

environment for automatically producing sequences of

MapReduce jobs for data analysis [18].

3.3 Metadata

When agents send data, they add a number of meta-

data fields, listed in Table 2. This metadata serves

two distinct purposes: uniquely identifying a chunk

for purposes of duplicate detection, and supplying con-

text needed for analysis. Three fields identify the

stream. Two are straightforward: the stream name (e.g.

/var/log/datanode) and source host. In addition,

we also tag data with the “source cluster.” In both clouds

and datacenters, users commonly allocate virtual clus-

6
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ters for particular tasks and release them when the task

is complete. If two different users each use a given host

at different times, their logs may be effectively unrelated.

The source cluster field helps resolve this ambiguity. An-

other field, the sequence ID, identifies the position of a

given data chunk within that stream.

To these four fields, we add one more, “data type,”

that specifies the format of a chunk’s data. Often, only a

subset of the data from a given host is relevant to a given

analysis. One might, for instance, only look at Hadoop

Task logs. The datatype field lets a human or a program

describe the logical content of chunks separately from

the physical origin of the data. This avoids the need to

separately maintain a table describing the semantics of

each file or other physical data source.

Taken together, this metadata set allows MapReduce

jobs to easily check if data is missing from a stream.

(Data can be missing from a stream either for streams

with reliable retransmission disabled, or as a transitory

condition before a retransmission.) Missing data will

show up as a gap between the sequence numbers for a

pair of adjacent chunks, in precisely the same way that

TCP sequence numbers allow dropped packets to be de-

tected.

The Chukwa metadata model does not include time

stamps. This was a deliberate decision. Timestamps

are unsuitable for ordering chunks, since several chunks

might be read from a file in immediate succession, result-

ing in them having identical timestamps. Nor are times-

tamps necessarily useful for interpreting data. A single

chunk might correspond to many minutes of collected

data, and as a result, a single timestamp at the chunk

level would be misleading. Moreover, such timestamps

are redundant, since the content of each chunk generally

includes precise application-level timestamps. Standard

log file formats include per-line timestamps, for instance.

3.4 Reliability

Fault-tolerance was a key design goal for Chukwa. Data

must still arrive even if processes crash or network con-

nectivity is interrupted. Our solution differs substantially

from other systems that record logs to distributed storage

and is a major contribution of this work. Rather than try

to make the writer fault-tolerant, we make them stateless,

and push all state to the hosts generating the data.

Handling agent crashes is straightforward. As men-

tioned above, agents regularly checkpoint their state.

This checkpoint describes every data stream currently

being monitored and how much data from that stream

has been committed to the data sink. We use standard

daemon-management tools to restart agents after a crash.

When the agent process resumes, each active adaptor is

restarted from the most recent checkpoint state. This

means that agents will resend any data sent but not yet

committed or committed after the last checkpoint. These

duplicate chunks will be filtered out by the archiving job,

mentioned above.

File tailing adaptors can easily resume from a fixed

offset in the file. Adaptors that monitor ephemeral data

sources, such as network sockets, can not. In these cases,

the adaptor can simply resume sending data. In some

cases, this lost data is unproblematic. For instance, los-

ing one minute’s system metrics prior to a crash does

not render all subsequent metrics useless. In other cases,

a higher reliability standard is called for. Our solution

is to supply a library of “wrapper” adaptors that buffer

the output from otherwise-unreliable data sources. Cur-

rently, users can choose between no buffering, buffering

data in memory, or write-ahead logging on disk. Other

strategies can be easily implemented.

Rather than try to build a fault tolerant collector,

Chukwa agents look through the collectors to the under-

lying state of the filesystem. This filesystem state is what

is used to detect and recover from failure. Recovery is

handled entirely by the agent, without requiring anything

at all from the failed collector. When an agent sends data

to a collector, the collector responds with the name of the

HDFS file in which the data will be stored and the future

location of the data within the file. This is very easy to

compute – since each file is only written by a single col-

lector, the only requirement is to enqueue the data and

add up lengths.

Every few minutes, each agent process polls a collec-

tor to find the length of each file to which data is being

written. The length of the file is then compared with the

offset at which each chunk was to be written. If the file

length exceeds this value, then the data has been commit-

ted and the agent process advances its checkpoint accord-

ingly. (Note that the length returned by the filesystem

is the amount of data that has been successfully repli-

cated.) There is nothing essential about the role of col-

lectors in monitoring the written files. Collectors store

no per-agent state. The reason to poll collectors, rather

than the filesystem directly, is to reduce the load on the

filesystem master and to shield agents from the details of

the storage system. On error, agents resume from their

last checkpoint and pick a new collector. In the event of a

failure, the total volume of data retransmitted is bounded

by the period between collector file rotations.

The solution is end-to-end. Authoritative copies of

data can only exist in two places: the nodes where

data was originally produced, and the HDFS file system

where it will ultimately be stored. Collectors only hold

soft state; the only “hard” state stored by Chukwa is the

agent checkpoints. Figure 2 diagrams the flow of mes-

sages in this protocol.
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Field Meaning Source

Source Host where Chunk was generated Automatic

Cluster Cluster host is associated with Configured by user per-host

Datatype Format of output Configured by user per-stream

Sequence ID Offset of Chunk in stream Automatic

Name Name of data source Automatic

Table 2: The Chukwa Metadata Schema
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Figure 2: Flow of messages in asynchronous acknowl-

edgement. Data written through collector without wait-

ing for success. Separately, collectors check lengths of

written files, and report this back to agents.

4 Evaluation

In this section, we will demonstrate three properties.

First, Chukwa imposes a low overhead on the system be-

ing monitored. Second, Chukwa is able to scale to large

data volumes. Third, that Chukwa recovers correctly

from failures. To verify these properties, we conducted a

series of experiments at scale on Amazon’s Elastic Com-

pute Cloud, EC2. Using EC2 means that our hardware

environment is well-documented, and that our software

environment could be well controlled. All nodes used

the same virtual machine image, running Ubuntu Linux,

with a 2.6.21 kernel. We used version 0.20.0 of the

Hadoop File System.
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
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


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Figure 3: Cloudstone benchmark scores (HTTP requests

per second), with and without Chukwa monitoring

4.1 Overhead of Monitoring

To measure the overhead of Chukwa in production, we

used Cloudstone, a benchmark [24], designed for com-

paring the performance of web application frameworks

and configurations. Each run takes about ten minutes

to complete and outputs a score in requests handled per

second for a standardized simulated workload. The ver-

sion we used starts a large number of Ruby on Rails pro-

cessors, backed by a MySQL database. We used a 9-

node cluster, with Chukwa running on each host. Each

node was an EC2 “extra large” (server class) instance.

Chukwa was configured to collect console logs and sys-

tem metrics. In total, this amounted to 60 KB per minute

of monitoring data per node.

Our results are displayed in Figure 3. As can be seen,

the runs with and without Chukwa were virtually indis-

tinguishable. All of the runs within Chukwa performed

within 3% of the median of non-Chukwa runs. This

shows that the overhead of monitoring using Chukwa is

quite modest. One run each with and without Chukwa

failed, due to a bug in the current Cloudstone implemen-

tation. These have been excluded from Figure 3.

To test overhead with other workloads, we ran a series

of Hadoop jobs, both with and without Chukwa. We used

a completely stock Hadoop configuration, without any

Chukwa-specific configuration. As a result, our results

reflect the experience that a typical system would have
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Figure 4: Hadoop job execution times, with and without

Chukwa monitoring

when monitored by Chukwa. We used a 20-node Hadoop

cluster, and ran a series of random-writer and word-

count jobs, included with the standard Hadoop distribu-

tion. These jobs are commonly used as Hadoop bench-

marks and their performance characteristics are well un-

derstood [32]. They first produced, then indexed, 50

GB of random text data. Each pair of jobs took roughly

ten minutes to execute. Chukwa was configured to col-

lect all Hadoop logs plus standard system metrics. This

amounted to around 120 KB/min/node, and an average

of 1296 adaptors per node.

Of this data, roughly two-thirds was task logs, and

most of the rest was Hadoop framework logs. This is

in accord with the internal Yahoo! measurements quoted

in [7]. The IO performance of EC2 instances can vary by

a few percent. We used the same instances throughout

to control for this. The first job, run with Chukwa, was

noticeably slow, presumably due to EC2 disk effects. All

subsequent sequences of runs appear indistinguishable.

Statistically, our results are consistent with Chukwa im-

posing no overhead. They effectively rule out the pos-

sibility of Chukwa imposing more than a 3% penalty on

median job completion time.

4.2 Fan-in

Our next round of experiments was designed to verify

that Chukwa collectors could handle the data rates and

degree of fan-in expected operationally. Recall that our

goal was to use no more than 5% of a cluster’s resources

for monitoring. Hence, designating 0.5% of machines as

Chukwa collector and storage nodes is reasonable. This

works out to a 200-to-1 fan-in.

We measured the maximum data rate that a single col-

lector could handle with this degree of fan-in by conduct-

ing a series of trials, each using a single collector and 200

agents. In each run, the collector was configured to write
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Figure 5: Throughput as a function of configured max-

imum send rate, showing that Chukwa can saturate the

underlying filesystem. Fan-in of 200-1.

data to a five-node HDFS cluster. After 20 minutes, we

stopped the agents, and examined the received data.

As can be seen in Figure 5, a single collector is able to

handle nearly 30 MB/sec of incoming data, at a fan-in of

200-to-1. However, as the data rate per agent rises above

that point, collector throughput plateaus. The Hadoop

filesystem will attempt to write one copy locally, mean-

ing that in our experimental setup, Collector throughput

is limited by the sequential-write performance of the un-

derlying disk. From past experiments, we know that 30

MB/sec is a typical maximum write rate for HDFS in-

stances on EC2 in our configuration. Chukwa achieves

nearly the maximum possible data rates on our config-

uration. We checked for lost, duplicate, and corrupted

chunks — none were observed.

4.3 Scale

Hadoop and its HDFS file system are robust, mature

projects. Hadoop is routinely used on clusters with thou-

sands of nodes at Yahoo! and elsewhere. HDFS performs

well even with more than a thousand concurrent writers,

e.g. in the Reduce phase of a large distributed sort. [19].

In this section, we show that Chukwa is able to take ad-

vantage of these scaling properties. To do this, we started

Hadoop clusters with a range of sizes, and a Chukwa col-

lector on each Hadoop worker node. We then started

a large number of agents, enough to drive these col-

lectors to saturation, and measured the resulting perfor-

mance. The collectors and HDFS DataNodes (workers)

were hosted on “medium CPU-heavy” instances. The

agent processes ran on “small” instances.

Rather than collect artificial logs, we used the output

from a special adaptor emitting pseudorandom data at

a controlled rate. This adaptor chooses a host-specific

9
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Figure 6: Aggregate cluster data collection rate, showing

linear scaling.

pseudorandom seed, and stores it in each chunk. This al-

lows convenient verification that the data received came

from the expected stream and at the expected offset in

the stream.

Our results are displayed in Figure 6. Aggregate write

bandwidth scales linearly with the number of DataNodes,

and is roughly 10 MB/sec per node — a very substan-

tial volume of log data. This data rate is consistent with

our other experiences using Hadoop on EC2. In this ex-

periment, the Chukwa collection cluster was largely IO-

bound. Hosts had quite low CPU load and spent most

of their time in the iowait state, blocked pending disk

I/O. Chukwa is saturating the filesystem, supporting our

assertion above that collector processes will seldom be

the bottleneck in a Chukwa deployment.

Recall that our original goal was for Chukwa to con-

sume less than 5% of a cluster’s resources. The ex-

periments presented here demonstrate that we have met

this goal. Assume that monitoring imposes a 3% slow-

down on each host. That would leave 2% of the clus-

ter’s resources for dedicated collection nodes. Given

a thousand-node cluster, this would mean 20 dedicated

Chukwa collectors and a 50-to-1 fan-in. Given the data

rates observed in [7], each collector would only be re-

sponsible for 130 KB/sec; slightly over 1% of our mea-

sured collection capacity on a 20-node HDFS cluster. We

conclude that, given 5% of a cluster’s resources, Chukwa

is able to easily keep up with real-world datacenter log-

ging workloads.

4.4 Failure Tolerance

Fault-tolerance is a key goal for Chukwa. We ran a se-

ries of experiments to demonstrate that Chukwa is able to

tolerate collector failures without data loss or substantial

performance penalty. The configurations in this experi-
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Figure 7: Performance before and after killing two col-

lectors, showing modest degradation of throughput. La-

bels represent numbers of agents/collectors.

ment were the same as described above, with a Chukwa

collector on every HDFS node.

We began by testing Chukwa’s response to the per-

manent failure of a subset of collectors. Our procedure

was as follows: After running a test cluster for 10 min-

utes, we killed two collectors, and then let Chukwa run

for another 10 minutes. We then stopped the agents and

analyzed the results. We repeated this experiment with a

variety of cluster sizes. In each case, all data had been re-

ceived correctly, without missing or corrupted data. Fig-

ure 7 plots performance before and after stopping the two

collectors. Having fewer collectors than Datanodes de-

graded performance slightly, by reducing the fraction of

writes that were local to the collector.

We also tested Chukwa’s response to a transient failure

of all collectors. This models what would happen if the

underlying filesystem became unavailable, for instance if

the HDFS Namenode crashed. (The HDFS Namenode is

a single point of failure that sometimes crashes, result-

ing in the filesystem being unavailable for a period from

minutes to hours.) We began our experiment with 128

agents and 10 collectors running. After five minutes, we

turned off the collectors. Five minutes later, we turned

them on again. We repeated this process two more times.

We plot data received over time in Figure 8. As can be

seen, data transfer resumes automatically once collectors

are restarted. No data was lost during the experiment.

The data rate quickly jumps to 100 MB/sec, which is

consistent with the maximum rates measured above for

clusters of this size.

10
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Figure 8: Data rate over time with intermittent collectors.

Data transfer resumes automatically whenever collectors

are available.

5 Case Studies

In this section, we discuss operational experiences using

Chukwa in several contexts: web log analysis at several

technology companies and real-time Cloud monitoring at

Berkeley. We show that Chukwa is a natural solution for

these disparate problems.

5.1 Web Log analysis

Web access logs are a particularly important class of log-

ging data. These logs are typically line oriented, with one

line per HTTP request. Automatically analyzing these

logs is a core technical underpinning for web content

and advertising companies. This makes analysis a good

fit for Chukwa: the data volumes are large and short-

turnaround automated analysis is important. We describe

the experiences of two different companies: CBS Inter-

active and Specific Media.

CBS Interactive manages a wide range of online con-

tent, including the CBS News web site. Short-turnaround

analysis allows the news room staff to monitor the pop-

ularity of stories from minute to minute, helping them

gauge reader interest in particular topics. It also al-

lows them to track the source of referrals to each story.

Chukwa is a key piece of infrastructure for the under-

lying analysis. Content is served from a cluster of app

servers, each of which writes its logs to local disk.

Chukwa then copies this data into a small Hadoop clus-

ter, where a series of Pig jobs aggregate this data and

store it into a MySQL database. This database, in turn,

is used by an internal web application to render data for

users. Chukwa has been in use for several months and is

functioning smoothly. The total volume of data is several

gigabytes per day. A single collector is able to keep up

with this load.

Specific Media is a leading online advertising vendor,

responsible for placing advertisements on affiliate sites.

Short-turnaround analytics are essential to make sure that

ads are placed on sites with high likelihood of click-

throughs from the advertiser’s target demographic. The

click-through data totals over a terabyte per day, before

compression.

Chukwa is a natural fit for these uses. The data rates

and past data volumes are high enough that distributed

computing is necessary. Hadoop, with its easy scale-

out, is a natural choice. However, blocking the produc-

tion websites because of a monitoring or analysis system

failure is unacceptable. As a result, the loosely-coupled

Chukwa log tailing strategy is a good approach.

Both of these deployments made modifications to

Chukwa to cope with site-specific needs. (These changes

have been contributed back to the project.) Developers

found it convenient to use the Chukwa agent process to

manage parts of their logging workflows; notably CBS

Interactive contributed the ability to trigger an HTTP

post after every demux run in order to trigger further

downstream processing.

5.2 Near-real-time Adaptive Provisioning

Chukwa was originally targeted at system analysis and

debugging. But it can also be used for applications re-

quiring lower latency in data delivery. One such ap-

plication is adaptively provisioning distributed systems

based on measured workload. SCADS, the Scalable

Consistency-Adjustable Data Store, is an ongoing re-

search project aiming to develop a low-latency data store

with performance-safe queries [5]. A key component

of SCADS is the “Director,” a centralized controller re-

sponsible for making data placement decisions and for

starting and stopping storage nodes in response to work-

load. Internally, SCADS uses X-Trace reports [11] as its

data format. The total data volume varies from 60 to 90

KB/sec of data per node.

The SCADS development team opted to use local

UDP to send the reports to Chukwa. Using TCP would

have meant that SCADS might block if the Chukwa pro-

cess fell behind and the kernel buffer filled up. Using the

filesystem would have imposed unnecessary disk over-

head. Each X-Trace report fits into a single UDP packet

and in turn is sent through Chukwa as a single Chunk.

This means that the Director will always see complete re-

ports. The price for using UDP is that some kernels will

discard local UDP messages under load. Some data loss

is acceptable in this context, since the Director merely re-

quires a representative sample, rather than every report.

Rather than wait for data to be visible in HDFS, the

Director receives updates via fast path delivery. On boot,

11
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the Director connects to each collector, and requests

copies of all reports. Once received, the reports are used

to detect which hosts were involved in each read and

write operation, and how long each host took to respond.

Using this information, the Director is able to split up the

data stored on an overloaded host, or consolidate the data

stored on several idle ones. Data is typically delivered to

the Director within a few seconds of being generated.

Using Chukwa in this scenario had a significant ad-

vantages over a custom-built system. While seeing data

immediately is crucial to the Director, having a durable

record for later analysis (potentially with MapReduce) is

very helpful in tuning and debugging. Chukwa supports

both, and can guarantee that all data that appeared once

will eventually be stored. Using Chukwa also meant that

the code for receiving data locally could be shared be-

tween this application and others.

5.3 Machine learning on logs

As mentioned in the introduction, one of our key goals

was to enable various log analysis techniques that can-

not gracefully tolerate lost data. We give an example of

one such technique here. This illustrates the sort of au-

tomated log analysis Chukwa was intended to facilitate

and shows why unreliable delivery of logs can poison

the analysis.

Xu et al. have developed a machine learning approach

able to detect many subtle error conditions by inspect-

ing logs [30]. In a nutshell, their technique works as

follows. Categorize the messages in a log and group

them together based on whether they have a shared iden-

tifier (an ID number for an object in the system, such

as a task ID.) Compare the number of messages of each

type mentioning each identifier. For instance, on the

Hadoop filesystem, a fixed number of “writing replica”

statements should appear for each block. Seeing an un-

expected or unusual number of events is a symptom of

trouble.

Imperfect log statements can easily throw off the anal-

ysis. There is no easy way to differentiate a message

dropped by the collection system event report from a

message that was never sent because of an application

bug. To conduct their experiments, Xu et al. copied logs

to a central point at the conclusion of each experiment

using scp. This would be unsuitable in production; logs

grow continuously and the technique requires a consis-

tent snapshot to work correctly. As a result, the largest

test results reported for that work were using 200 nodes

running for 48 hours. Experimental runs needed to be

aborted whenever nodes failed in mid-run. There was no

easy way to compensate for lost data.

Copying data off-node quickly, and storing it durably,

would significantly enhance the scalability of the ap-

proach. Chukwa does precisely this, and therefore in-

tegrating this machine-learning approach with Chukwa

was of practical importance. (This integration took place

after the experiments described above had already been

concluded.)

Adapting this job to interoperate with Chukwa was

straightforward. Much of the processing in this scheme

is done with a MapReduce job. We needed to add only

one component to Chukwa — a custom MapReduce “in-

put format” to hide Chukwa metadata from a MapReduce

job and give the job only the contents of the collected

chunks of log data. Aside from comments and boiler-

plate, this input format took about 30 lines of Java code.

The analysis job required only a one-line change to use

this modified input format.

6 Related Work

The Unix syslogd deamon, developed in the 1980s,

supported cross-network logging [15]. Robustness and

fault-tolerance were not design goals. The original spec-

ification for syslogd called for data to be sent via UDP

and made no provision for reliable transmission. To-

day, syslogd still lacks support for failure recovery,

for throttling its resource consumption, or for recording

metadata. Messages are limited to one kilobyte, incon-

veniently small for structured data.

Splunk [25] is a commercial system for log collection,

indexing and analysis. It relies on a centralized collec-

tion and storage architecture. It does not attempt high

availability, or reliable delivery of log data. However, it

does illustrate the demand in industry for sophisticated

log analysis.

To satisfy this need, many large Internet companies

have built sophisticated tools for large-scale monitoring

and analysis. Log analysis was one of the original mo-

tivating uses of MapReduce [10]. Sawzall is a scripting

language, designed for log analysis-type tasks, that sim-

plifies writing big-data queries and that uses MapReduce

as its execution engine [21]. A query language is only

useful if there is data to query. While the MapReduce

and Sawzall query tools have been described in the open

literature, the details of log collection and management

management in enterprise contexts are often shrouded in

secrecy. For instance, little has been published about

Google’s “System Health infrastructure” tools, beyond

mentioning their existence [22]. Chukwa is more com-

parable to these data sources, rather than to the query

languages used to process collected data.

In the introduction, we mentioned a number of spe-

cialized log collection systems. Of these, Scribe is the

best documented and has been used at the largest scale.

Scribe is a service for forwarding and storing monitoring

data. The Scribe metadata model is much simpler than
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that of Chukwa: messages are key-value pairs, with both

key and value being arbitrary byte fields. This has the ad-

vantage of flexibility. It has the disadvantage of requiring

any organization using Scribe to develop its own meta-

data standard, making it harder to share code between

organizations.

A Scribe deployment consists of one or more Scribe

servers arranged in a directed acyclic graph with a pol-

icy at each node specifying whether to forward or store

incoming messages. In contrast to Chukwa, Scribe is not

designed to interoperate with legacy applications. The

system being monitored must send its messages to Scribe

via the Thrift RPC service. This has the advantage of

avoiding a local disk write in the common case where

messages are delivered without error. It has the disadvan-

tage of requiring auxiliary processes to collect data from

any source that hasn’t been adapted to use Scribe. Col-

lecting log files from a non-Scribe-aware service would

require using an auxiliary process to tail them. In con-

trast, Chukwa handles this case smoothly.

As mentioned above, Scribe makes significantly

weaker delivery guarantees than Chukwa. Once data has

been handed to a Scribe server, that server has responsi-

bility for the data. Any durable buffering for later deliv-

ery is the responsibility of the server, meaning that the

failure of a Scribe server can cause data loss. There can

be no end-to-end delivery guarantees, since the original

sender does not retain a copy. Clients can be configured

to try multiple servers before giving up, but if a client

cannot find a working Scribe server, data will be lost.

Another related system is Artemis, developed at Mi-

crosoft Research to help debug large Dryad clusters [9].

Artemis is designed purely for a debugging context: it

processes logs in situ on the machines where they are

produced, using DryadLINQ [31] as its processing en-

gine. The advantage of this architecture is that it avoids

redundant copying of data across the network, and en-

ables machine resources to be reused between the system

being analyzed and the analysis. The disadvantage is that

queries can give the wrong answer if a node crashes or

becomes temporarily unavailable. Artemis was not de-

signed to use long-term durable storage, which requires

replication off-node. Analysis on-node is also a poor

fit for monitoring production services. Analyzing data

where it is produced risks having data analysis jobs in-

terfere with the system being monitored. Chukwa and

Scribe, in contrast are both designed to monitor pro-

duction services and were designed to decouple analysis

from collection.

Chukwa is flexible enough to emulate Artemis if de-

sired, in situations with large data volumes per node. In-

stead of writing across a network, agents could write to

a local Hadoop filesystem process, with replication dis-

abled. Hadoop could still be used for processing, al-

though having only a single copy of each data item re-

duces the efficiency of the task scheduler [20].

Flume is another, more recent system developed for

getting data into HDFS [2]. Flume was developed af-

ter Chukwa, and has many similarities: both have the

same overall structure, and both do agent-side replay on

error. There are some notable differences as well. In

Flume, there is a central list of ongoing data flows, stored

redundantly in Zookeeper. Whereas Chukwa does this

end-to-end, Flume adopts a more hop-by-hop model. In

Chukwa, agents on each machine are responsible for de-

ciding what to send.

There are also a number of more specialized mon-

itoring systems worth mentioning. Tools like Astro-

labe, Pier, and Ganglia [27, 14, 17] are designed to help

users query distributed system monitoring data. In each

case, an agent on each machine being monitored stores

a certain amount of data and participates in answering

queries. They are not designed to collect and store large

volumes of semi-structured log data, nor do they sup-

port a general-purpose programming model. Instead, a

particular data aggregation strategy is built into the sys-

tem.. This helps achieve scalability, at the cost of a cer-

tain amount of generality. In contrast, Chukwa separates

the analysis from the collection, so that each part of a

deployment can be scaled out independently.

7 Conclusions

There is widespread interest in using Hadoop to store

and process log files, as witnessed by the fact that sev-

eral systems have been built to do this. Chukwa im-

proves on these systems in several ways. Rather than

having each part of the monitoring system be responsible

for resuming correctly after a failure, we have demon-

strated an end-to-end approach, minimizing the amount

of state that needs to be stored in the monitoring sys-

tem. In recovering from failures, Chukwa takes advan-

tage of local copies of log files, on the machines where

they are generated. This effectively pushes the responsi-

bility for maintaining data out of the monitoring system,

and into the local filesystem on each machine. This file-

centered approach also aids integration with legacy sys-

tems. Chukwa also offers the flexibility to support other

data sources, such as syslog or local IPC.

Chukwa is efficient and practical. It was designed to

be suitable for production environments, with particular

attention to the cloud. Chukwa has been used success-

fully in a range of operational scenarios. It can scale to

large data volumes and imposes only a small overhead

on the system being monitored.

We have shown that Chukwa scales linearly up to 200

MB/sec. If sufficient hardware were available, Chukwa

could almost certainly match or exceed the highest re-
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ported cluster-wide logging rate in the literature, 277

MB/sec. [9]. While few of today’s clusters produce re-

motely this much data, we expect that the volume of col-

lected monitoring data will rise over time. A major theme

in computer science research for the last decade has been

the pursuit of ever-larger data sets and of analysis tech-

niques to exploit them effectively [13]. We expect this to

hold true for system monitoring: given a scalable log col-

lection infrastructure, researchers will find more things

worth logging, and better ways of using those logs. For

instance, we expect tracing tools like XTrace and DTrace

to become more common [11, 8]. Chukwa shows how to

build the necessary infrastructure to achieve this at large

scale.

Availability

Chukwa is a subproject of Hadoop and is overseen

by the Apache Software Foundation. All code is

available under permissive license terms. At present,

the Chukwa website is http://hadoop.apache.

org/chukwa; releases can be obtained from there.
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Abstract 
 
Modern datacenters contain a large number of virtualized applications and services with constantly changing 
demands for computing resources. Today’s virtualization management tools allow administrators to monitor current 
resource utilization of virtual machines. However, it is quite challenging to manually translate user-oriented service 
level objectives (SLOs), such as response time or throughput, to suitable resource allocation levels.  We presented 
an adaptive control system which automates the task of tuning resource allocations and maintains service level 
objectives. Our system focuses on maintaining the expected response time for multi-tier web applications. Our 
control system is capable of adjusting resource allocation for each VM so that the applications’ response time 
matches the SLOs. Our approach uses individual tier’s response time to model the end-to-end performance of the 
system. The system helps stabilize applications’ response time. It can reduce the mean deviation of the response 
time from specified targets by up to 80%. Our system also allows the physical servers to double the number of VMs 
hosted while maintaining the target response time.  

Tags: VMs, research, control, resource, allocation 

1. Introduction 
 
Modern datacenters contain a large number of 
virtualized applications and services; with constantly 
changing demands for computing resources. These 
virtual workloads are executed on multiple virtual 
machines (VMs) which can be consolidated onto a 
smaller number of physical hosts. Today’s 
virtualization management tools allow administrators 
to monitor current resource utilization of virtual 
machines. Management capabilities such as 
adjustable resource allocation [9] are also provided as 
a way to configure the underlying resource to meet 
applications’ demands. 

However, it is quite challenging to manually translate 
user-oriented service level objectives (SLOs), such as 
response time or throughput, to suitable resource 
allocation levels.  Such tasks demand experience 
administrators and significant amount of time. 
Moreover, virtualized applications are often 
distributed and dependent on each other. It is 
imperative that the administrators understand the 

complex behaviors of the applications before they are 
able to manually tune them effectively. 

In this work, we developed an adaptive control 
system which automates the task of tuning resource 
allocations and maintains service level objectives. 
Our system initially focuses on the expected response 
time for multi-tier web applications as our primary 
SLOs. Our control system is capable of adjusting 
CPU share allocation for each VM so that the 
applications’ response time matches the SLOs. Our 
approach uses individual tier’s response time to 
model the end-to-end performance of the system. 
This allows our model to capture systems’ dynamics 
without relying on just their resource utilization level. 

Our system helps stabilize applications’ response 
time. It can reduce the mean deviation of the 
response time from specified targets by up to 80%. 
The system also allocates only the required amount 
of resource to satisfy the SLOs for each VM. Without 
over-provisioning, our system can increase the 
number of hosted applications by up to 100%.  
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The capabilities provided by our system are useful 
for administrators. It provides a way to express levels 
of services in terms of actual application 
performance. Our system can be applied to a cloud-
based service provider model as well as in smaller 
clusters where resources are limited and applications 
may have different priorities. Our controllers can 
allocate just enough resource to satisfy the level of 
service required, allowing individual host to process 
more workloads. 

We deployed our system on Linux and Kernel Virtual 
Machine environment in a local cluster. Our results 
suggest that the system can maintain the service 
response time for different VMs running on the host. 
Our system can also adapt to the level of workload 
changes and adjust system parameters in order to 
match the service response time. 

We will explain the overall design of our system in 
section 2. The detailed specification on each 
component could be found in section 3. We evaluate 
our system’s performance in section 4. The related 
works are reviewed in section 5. The discussion and 
ongoing works are explained in section 6. 

2. System Overview 
 
Our control system consists of four components; 
sensor, actuator, modeler, and controller as shown in 
Figure 1. Our design resembles a closed-loop control 
system. During each control interval, the sensors 
collect application-related performance (such as 
response time) from VMs hosting the controlled 
application. The collected information is fed to the 
modeler and is used to update the application’s 
performance model. The modeler creates a 
performance model for targeted applications by 
adjusting the model parameters based on sensor 
inputs. The model obtained can be later used to 
predict the applications’ performance for possible 
system configurations.  The controller then uses the 
model to find the optimized system configurations 
and send the result to actuators. The actuators then 
adjust the system parameters accordingly. The impact 
on the applications’ performance can be measured 
during subsequent intervals by the sensors, forming a 
closed-loop control system. 

We currently use Linux and KVM as our hypervisor. 
However, the system can be extended to support 
other environments. 

 

Figure 1: Control System Overview 

Our initial system design primarily focuses on the 
response time as our controlled objective. The system 
tries to control the CPU share allocation for each VM 
in order to match the specified response time 
objectives. The system can automate the task of 
finding suitable CPU allocation for each VM tier. By 
controlling the number of shares allowed for each 
VM, we are able to increase the number of VMs 
running on a host without impacting the response 
time of the controlled applications. This allows the 
overall cluster to be more efficient and able to accept 
more workloads while maintaining existing SLOs. 

The detailed description of our system is discussed in 
the next section. 

3. System components 
 
The components of our system could be described as 
followed. 

3.1 Sensors 
Sensors utilize packet filtering and capturing tools to 
analyze packets intended for the controlled VM. Our 
sensors can extract response time from the target 
applications’ components. The response time is the 
time from the moment the last packet of the request is 
sent to the moment the last packet of the response 
arrives. 

We collect the application performance metrics from 
different application tiers. For our initial system 
design, our sensor try to determine the application 
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performance based on network packets going through 
the VMs. We are currently using the response time 
collected from each application tier. However, the 
sensor can also be used to collect other performance-
oriented metrics such as the application’s throughput, 
or number of concurrent requests. 

 

Figure 2: Sensor implementation 

Our current implementation of the sensor is a 
combination of packet filtering and capturing tools 
which capture packets intended for the concerned 
server (as shown in Figure 2). The sensor is a guest 
VM running on the controlled hosts. This allows us 
to deploy and modify the sensor without too much 
modification on the physical host.  The sensor utilizes 
tshark (packet analyzer) and pcap (packet capture 
driver) to extract the response time of the controlled 
applications. 

The applications’ response time is determined by 
recording the timestamp of packets (belonging to the 
same connection) with matching request parameters 
on the specified port number. Currently, the 
administrators have to supply URIs’ pattern for 
HTTP requests/responses, or MySQL command for 
database queries as the request parameters. 

Since all VMs in the host share a single virtual 
network bridge, we can filter only packets destined to 
controlled VMs (with iptables) and forward copies of 
the packets (with xtables-TEE target) to the sensor 
VM. This reduces the overall number of packets that 
our sensor has to process and analyze. We also avoid 
placing pcap driver directly on the host because it can 
only capture packets that actually pass through the 
machine’s network interface. By placing pcap driver 

in the guest VM, we can intercept packets from 
dependent VMs communicating within the same host.  

Our sensors periodically generate a response time 
summary for each VM. The summary consists of the 
name of service being monitored, its application tier, 
VM server, and its response time. 

As the sensor is located on the host, the response time 
is measured starting at the moment when a packet has 
arrived on the host and stopping when a response 
packet has been observed by the sensor. In our test 
environment, the network propagation time is 
negligible since all hosts are located on the same 
local area network. 

3.2 Actuators 
Actuators are small agents installed on the host. They 
adjust the hypervisor parameter as specified by the 
controller. Currently our actuators can control the 
number of CPU shares allocated for VMs on physical 
hosts. It is possible to extend the actuator to control 
other system parameters. 

In our test environment we adjust the scheduler level 
of CPU share for each VM using Linux Control 
Groups subsystem (cgroups.) Cgroups allows us to 
set the CPU share for each process running on the 
host. By default, KVM utilizes the Linux kernel’s 
Completely Fair Scheduler (CFS.) The scheduler’s 
behavior is configurable via cgroups cpu share 
(cpu.shares).  

Cgroups allows us to set the CPU share for each 
process running on the host. We use the default 
Linux Completely Fair Scheduler (CFS) configurable 
via cgroups CPU share (cpu.shares). In the CFS 
scheduler, each process (or a virtual CPU) is given 
1024 shares, unless configured otherwise. The 
portion of time scheduled for the process is 
calculated as a ratio between the number of the shares 
given to the process and the sum of all shares given 
to every runnable process (on the same physical 
CPU).  

Moreover, the CFS scheduler exhibits work-
conserving behavior. This means that if a process 
happens to be the only one running on a CPU, it gets 
all available CPU time regardless of the number of 
shares allocated. Such behavior also indicates that the 
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share configured for CFS does not constitute CPU 
limits for the process. 

In a system with multiple CPUs, the scheduler also 
utilizes a load-balancer which tries to balance the 
amount of workload equally amongst each CPU. 
However, the load-balancer can move a virtual CPU 
of a VM after it is assigned a preferred number of 
shares. Such behavior can lead to inaccurate measure 
between the number of share allocated and the 
observed applications’ performance. In order to 
effectively control the scheduling parameter, we also 
have to pin CPUs of all controlled VMs on the same 
physical core. This makes the relationship between 
the number of share allocated and the measured 
response time to be more stable. Our actuators then 
only have to set the share to match a number 
specified by the controller. It is the controller’s task 
to find the best possible share for the current 
workload. 

3.3 Modeler 
The modeler creates a performance model for 
controlled applications by resolving its internal 
parameters based on sensor inputs. The obtained 
model can later be used to predict the application’s 
performance for specified system configurations. 

Our modeler updates a prediction model for the 
application performance based on the sensor inputs. 
The model is based on observations between the 
measured response times from different application 
tiers. The model uses control signals (CPU share) and 
measured input (individual tier response time from 
the sensors.) Although building an accurate model 
may be a time-consuming process and could be 
applied only to a specific application, we found that 
an intuitive model based on application tier 
relationship could be used to derive a practical 
performance prediction model.  

 

Figure 3: Two-tier web application model 

Consider a generic two-tier web application shown in 
Figure 3; we could build an empirical model for the 

end-to-end system response time as a linear 
combination of the time spent in the database and 
web tier. When a client requests a (dynamic) web 
page, the web server will make additional requests to 
the database. The web server then processes the 
responses before returning the value to the client. 
Assuming that our concerned requests exhibits 
similar behavior, the relationship between the web 
response time (𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤) and the database response time 
(𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤) could be represented by 
 𝑇𝑇      𝑇𝑇    . 

For example, in Figure 4, the response time used to 
access a Wordpress home page (a popular blogging 
web application) exhibits a linear relationship with its 
database server response time. When the time takes 
to process database requests increases (due to 
additional load from another VMs residing on the 
same host with the database server), the overall web 
response time also increases. 

 

Figure 4: Linear relationship between web and 
database server response time 

We can use this linear model to predict possible 
performance values for the next sensor interval. 
Given previous measurement values for the web 
 𝑇𝑇      and database response time 𝑇𝑇    , we can 
represent the current measurement from our sensor as 
𝑇𝑇    𝑇𝑇        𝑇𝑇   𝑇𝑇    . By performing an 
ordinary least-square regression on multiple data 
points (obtained from the sensors), we can estimate 
the common coefficient   and use the same equation 
to predict the web response time for the next sensor 
interval. 
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If we want to be able to adjust the number of shares 
for the database VM, we also have to find a 
relationship between the database server CPU share 
allocation  𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶  and the database response 
time 𝑇𝑇𝐷𝐷𝐷 . On a physical host with very high CPU 
utilization, which represents a worst-case scenario for 
consolidation, we found that the relationship between 
the database response time and its CPU share could 
be represented by a power law curve (𝑇𝑇   𝑎𝑎  
𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 ). Figure 5 shows the observed relationship 
between the response time of the database server and 
the number of CPU shares allocated for the database 
VM. We can also obtain the relationship coefficient 
by fitting a least square on the log-scale of 𝑇𝑇   and 
𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 , i.e.   𝑇𝑇   𝑎𝑎  𝑏𝑏   𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 

 

Figure 5: Power law relationship between the 
database server's response time and its allocated 

shares 

Note that the model given in this section might 
initially seem to be very specific to our scenario. 
However, such scenarios are quite common in actual 
deployments. For example, the linear relationship can 
be directly applied to many existing web 
applications. The relationship between allocated CPU 
shares and the database server response time can also 
be used to approximate other scenarios where a 
controlled VM is placed on a very busy host.  

Additionally, our model parameter can be obtained 
on-line by periodically updating the regression 
parameters with recent measurements. This also 
allows our system to dynamically adapt its model 

based on the current level of workloads. However, 
since our current model relies on many past sensor 
readings, its ability to adjust the models for sudden 
change of workload levels will be limited. 

3.4 Controller 
The controller is the final component which glues all 
the pieces of our system together. Our controller 
takes the updated model obtained by the modeler and 
sensor inputs from the current interval. It then tries to 
find the minimal virtual CPU allocation that yields 
the response time closest to the one defined in the 
SLOs. 

Our controller also utilizes both long-term and short-
term prediction. The long-term prediction uses the 
moving average value generated from previous 
sensor readings as the input for the model. The short-
term prediction uses the most recent sensor reading 
as the model input. The controller primarily 
determines the number of shares based on the long-
term prediction to maintain system stability. 
However, the short-term prediction is utilized when 
the sensors’ reading shows SLO violations. This 
allows the system to avoid immediate SLO violations 
while still maintaining stability. 

Once the control decision has been made, the 
controller forwards the result to the actuator which 
actually adjusts the system based on the control 
signal. 

In more complex scenarios, we may have to optimize 
for a large number of potential parameters. We could 
view such scenario as a state-space search problem 
and additional heuristic will be needed. Alternatively, 
we are currently exploring methods used in classical 
control theory which could be applied to our linear 
models. 

4. Evaluation 

4.1 Experimental Setup 
Although the framework of our system design is 
generic, we deployed a proof-of-concept system on 
an example system as shown below. The targeted 
application is a blogging web application 
(Wordpress) which consists of a web server (Apache 
and PHP) and a database server (MySQL). 
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Figure 6: Test setup for evaluation 

Our test system setup is shown in Figure 6. We run 
two instances of the described web application. Each 
instance may have different service level 
requirement. This represents differentiate levels of 
service demanded in actual infrastructure deployment 
and will be described in the evaluation. 

We use Linux KVM as our hypervisor in the 
experiment. The deployed operating system on all 
systems is Fedora 12 with Linux 2.6.33 kernel.  The 
host systems contain Intel Quad Core Q6600 with 
4GB of memory. Each VM is allocated 1 GB 
memory with one virtual CPU. The VM image is 
storing on a dedicate NFS server on the local 
network. As our test workload fits in the system 
memory, the storage system does not cause a 
bottleneck in our test scenario. The web server is 
more CPU-intensive, compared to the database. 
Client loads are generated from other machines 
located on the same local area network. Each client is 
associated with a single web server VM. Every 
1,000ms, the client generates a request to the home 
page on its associated web server. 

We placed sensor on all participating hosts. For the 
purpose of evaluation, we only concern with the 
actuator on Host 2 where potential contention could 
occur. The actuator needs to arbitrate the amount of 
CPU shares allocated between the web and the 
database server for two different services with 
different service response time objectives. Both 
sensor and control interval are set to 5,000ms. 

4.2 Evaluation Result 
Our evaluations suggest that our control system can 
be used to maintain the service level objectives for 

the hosted applications. It could also react to change 
in workload level. 

4.2.1 Multiple SLOs 
Our control system allows multiple service level 
objectives to be achieved. In this experiment, we set 
the demand so that the expected end-to-end response 
time for the blogging web application instance 1 
should be 800ms while the response time for instance 
2 should be 4,000ms. Note that this represents 
differentiate level of services, and the objective is 
described in term of the end-user experience. We 
expect that our control system will try to adjust the 
CPU allocation on host 2 so that both SLOs could be 
met. As for the driving workload, instance 1 was 
serving 2 concurrent clients. Instance 2 was serving 
15 concurrent clients. 

The system response time and its target for each 
instances is shown in Figure 7 and 8. Figure 7 shows 
the result when we do not use our control system and 
each VM is allocated the default number of CPU 
shares. Figure 8 shows the result when we enable our 
control system. The absolute mean deviation from the 
target response time for each instance is shown in 
Table 1.  

 

Figure 7: Response time without the control 
system (static workload) 
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Figure 8: Response time with the control system 
 (static workload) 

Without the control system, the default number of 
shares allocated for the database VM instance 1 is too 
high. Therefore, its response time is much lower than 
the expected value. However, the response time for 
instance 2 is also much higher than the SLO specifies 
as too many resources are given to instance 1. Such 
system fails to meet the given service demands for 
instance 2. 

With our control system, both instances can be 
satisfied as the controller adjusts the share to track 
the expected response time. As a result, both 
instances can operate within the demanded response 
time. The share allocated for the database VM for 
instance 1 is shown in Figure 9. Initially, the adjusted 
allocation will have high variance as it attempts to 
find the stable operating points.  

Once the operating points have been found, it is also 
possible that the controller will react to unanticipated 
system event (such as disk paging, or periodic system 
maintenance tasks.) These events are indicated by 
occasional spikes in the response time and the share 
graph. However, the control system will finally try to 
revert back to its normal operating points in order to 

maintain the SLO. The current controller takes about 
one minute to readjust after such event occurs. 

Our current implementation of the controller only 
attempts to match the actual and the expected 
response time. As a result, some of the requests may 
go over the given requested time. In actual 
deployment, it is possible to specify a lower expected 
response time than the wanted limits to account for 
the variances. 

 

Figure 9: Number of CPU shares allocated by the 
controller for instance 1’s database server 

Note that it is also possible for system administrators 
to manually analyze the workload characteristics and 
preset the allocation accordingly. However, such task 
is time-consuming and the administrator may not be 
able to react as quickly to changes in workload or 
other system events. 

4.2.2 Dynamic Workload 
Another benefit of having the control system is it can 
adapt the allocation for dynamically changing 
workload. The result in this section shows the 
effectiveness of the control system while workload 
level changes for instance 1. The workload level for 
the instance is shown in Figure 12. The system setup 
is the same as in previous section. The differences are 
the number of concurrent clients for instance 1. Also, 
due to higher overall load, we set the response time 
required by instance 1 to 1,000ms. For non-controlled 
system, the number of CPU shares for DB server 1 
has been set to satisfy the average load over the 
evaluation period. 
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Figure 10: Response time without the control 
system (dynamic workload)  

 

 

Figure 11: Response time with the control system 
(dynamic workload)  

 

 

Figure 12: Number of concurrent clients over the 
test period 

 

Figure 10 shows the response time of the web server 
when the control system is not enabled. Figure 11 
shows the response time of the web server when the 
control system is enabled. The absolute mean 
deviation from the target response time for instance 1 
is also shown in Table 2. 

Without the control system, it is possible that, for 
particular level of workload, the SLO could be easily 
met because the workload level is well below the 
average. However, when the level of work load is 
higher than the average, the instance also fails to 
meet the SLOs provided. 

With the control system, the response time tracks 
more closely to the expected response. However, the 
controller may not react as quickly as in the static 
workload cases. This behavior happens because our 
model relies on past sensor readings to build up the 
system models. After the workload level has been 
changed, the system has to readjust itself and settle to 
a new model. However, the system can still maintain 
the target workload level, although it shows higher 
degree of variances. 

5. Related works 
 
Existing commercial solutions remain focused on the 
resource utilization aspect of VMs, not the 
applications’ performance. Current management tools 
are capable of reacting to high levels of resource 
utilization by performing live migrations [7] to 
reduce the hardware usage.  

Existing tools could assist in capacity planning by 
profiling the hardware utilization level and 
forecasting future resource demands in datacenters 
[8]. However, such tools do not directly address the 
problem of managing the applications’ performance. 

Previous works have been done to investigate the 
behavioral model of multi-tier application using 
profiling-based methods [2] [6]. Such model only 
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predicts long-term statistical behavior and is 
applicable for static workloads. 

Control systems have been used in tuning computer 
applications’ parameters [4] [5]. Researchers have 
applied control-theoretical approach to address VMs’ 
resource allocation [1] [3]. Such system adjusts its 
model by observing only the clients’ response time 
whereas our system also responds to performance 
changes in related application tiers. Feedback-
controlled systems have also been investigated in 
order to improve the system utilization for CPU 
throughput-based applications [11]. Our work could 
compliment such method as we are focusing on 
achieving target response time for delay-based 
applications. 

6. Discussions & Future Works 
 
Our results suggest that it is possible to use a control 
system to maintain target SLOs on virtualized system 
and also able to react to changes in workload levels. 
With the control system, administrators will be able 
to deploy virtualized workload without concerning 
about low level system-configuration such as CPU 
shares. 

6.1 Workload modeling 
Actual enterprise applications could be much more 
complicated than the current model given in this 
paper. The linearity assumptions may not be held for 
complex chain of dependent VMs. We are interesting 
to explore possible composition models (such as 
Markov Chains) that can be used to approximate the 
response time performance of such distributed 
applications. It should be possible to derive a more 
accurate performance model for complex application 
based on a composition of simpler models such as 
those described in this paper. 

Our initial model only captures direct dependency 
between application tier (e.g. a web server directly 
makes request to a database server.) We also 
investigate the performance behavior and its relation 
between particular types of behaviors. These include 
partitioned requests, load-balance, or aggregate 
behavior of the application tiers. Such model could 
give us more insight into the relationship between the 
performance and application’s composition which 

allows us to generate a model for complex 
applications. 

6.2 Control Parameters 
In this paper, we have been only experimented with 
controlling the CPU share allocation. In actual 
system, more control parameters could be used to 
change the behavior of the VMs. For example, it is 
possible to associate traffic for different VMs with 
multiple network traffic classes. This allows the 
system to have more control over the queuing and 
priority for behavior of the VMs’ network traffic. 
Similarly, for local storage control, it is possible to 
use I/O-controller [10] to control the share for disk 
I/O access. 

7. Conclusions 
 
We presented an automated control system for 
virtualized services. Our system suggests that it is 
possible to use intuitive models based on observable 
response time incurred by multiple application tiers 
as a model for the overall performance. The models 
are also used in conjunction with a control system to 
determine the optimal share allocation for the 
controlled VMs. Our system helps maintain the 
expected level of service response time while 
adjusting the allocation to meets the demand for 
different level of workloads. Such behavior allows 
administrator to simply specify the required end-to-
end service-level response time for each application, 
without the need of constant monitoring or 
understanding complex behavior of the applications. 
Our system helps simplifying the task of managing 
the performance of many VMs already exists in 
today’s datacenter. 
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ABSTRACT 

Existing Virtual Machine (VM) management 

systems rely on host resource utilization metrics to 

allocate and schedule VMs. Many management 

systems only consolidate and migrate VMs based on 

hosts’ CPU utilizations. However, the performance of 

delay-sensitive workloads, such as web services and 

online transaction processing, can be severely 

degraded by contention on numerous of the hosts’ 

components. Current VM management systems 

typically use threshold based rules to decide when to 

migrate VMs, rather than using application-level 

performance. This means that they cannot easily 

provide application-level service level objective 

(SLO) guarantees. Providing SLO guarantees is even 

more difficult when considering that today’s 

enterprise applications often consist of multiple VM 

tiers. 

In this paper we show how the performance of a 

multi-tiered VM application can be empirically 

captured, modeled and scaled. This allows our 

management system to guarantee application-level 

performance, despite variable host utilization and 

VM workload levels. Additionally, it can predict the 

performance of an application at host utilization 

levels that have not been previously observed. This is 

achieved by performing regression analysis on the 

previously observed values and scaling the 

applications performance model. This allows the 

performance of a VM to be predicted before it is 

migrated to or from a new host. We have found that 

by dynamically, rather than statically, allocating 

resources, average response time can be improved by 

30%. Additionally, we found that resource 

allocations can be reduced by 20%, with no 

degradation in response time. 

1. INTRODUCTION 

Modern data centers contain a large number of 

virtual machines (VMs). Additionally, internet Cloud 

services use VMs to run multiple applications across 

multiple physical servers, under the premise that the 

Cloud is a single resource pool. While hypervisor 

vendors such as VMware [1], Citrix [2] and 

Microsoft [3] tout the potential benefits of VMs, 

these benefits are not always fully realized. This is 

typically due to increased overheads and resource 

contention cause by other VMs. In this paper we 

show how application-level performance can be 

guaranteed for multi-tier VM applications. 

Additionally, we show how hardware utilization can 

be increased over current VM management systems 

by more densely packing VMs than threshold based 

systems. Finally, we show that the overall 

performance of the applications in a datacenter can 

be improved by dynamically setting resource 

allocation levels. 

VMs were originally deployed as a way to 

increase resource utilization levels. This is achieved 

by consolidating multiple machines that have low 

resource utilization levels onto a single physical host, 

saving both hardware capital and energy costs. This 

is possible as VMs are isolated from each other by 

the hypervisor, allowing them to share the same 

physical resources. Additionally, modern VMs can be 

live-migrated [21] and will run on heterogeneous 

hardware. While consolidating under-utilized 

applications is easy, consolidating even moderately 

used applications can be difficult. This is because 

VMs are not entirely isolated from each other, and 

virtualization adds additional overhead. Thus, two 

VMs running on the same physical host can have an 

impact on each other's performance; as shown in [12] 

and [13]. 

To achieve the greatest amount of capital and 

energy savings, VMs must be placed to minimize the 

number of physical hosts required. However, a 

placement scheme must also ensure that the 

applications' performances remain at an acceptable 

level. To achieve this, VMs must be placed in such a 

way as to minimize the performance impact they 

have on each other. Current placement schemes 
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primarily focus on setting utilization threshold levels. 

However, resource utilization levels can be a poor 

indicator of application level performance. This 

suggests that VM placement schemes should not be 

solely based on the idea of bin-packing resource 

utilization levels. 

Commercial VM placement technologies, such as 

VMware Distributed Resource Scheduler (DRS)[4], 

place VMs based on resource utilization levels. DRS 

uses the VMs' CPU utilization level and RAM usage 

commitment to automatically decide which VMs 

should be placed on which physical hosts. VMs are 

then migrated between hosts as resource utilization 

levels change. Placement schemes such as this rely 

on the assumption that resource utilization levels 

reflect application-level performance. However, as 

resource utilization levels do not always reflect 

application level performance, such a scheme cannot 

easily guarantee application-level SLO. 

In this paper we show that a VM management 

system can model multi-tiered applications to 

guarantee application-level SLO. This would allow 

system administrators to choose performance 

guarantees, such as response time < 500ms, without 

having to manually configure resource allocations. 

We show how the applications’ model can be scaled 

to unobserved utilization levels, to allow SLO 

guarantees despite varied host workloads. 

Additionally, scaling the applications’ model can 

predict the performance impact on an application 

before migrating VMs to or from a host where one of 

the application’s tiers resides. Lastly, we show that 

modeling applications can help to more effectively 

and flexibly place VMs over a threshold based 

approach. For example, an application’s VMs tiers 

can be placed to minimize power usage, or to 

minimize the risk of a certain response time being 

exceeded. 

The paper is organized as follows: In Section 2 we 

discuss related works. In Section 3 we describe our 

system. In Section 4 we describe our experimental 

setup. In Section 5 we evaluate our results, followed 

by our conclusion in Section 6. 

2. RELATED WORKS 

There are many works on maximizing resource 

utilization levels and increasing efficiency in the 

virtual environment [5], [6], [7]. Existing commercial 

products are also available to facilitate the task of 

managing and relocating VMs. For example, 

VMware DRS [4] monitors the CPU and memory 

usage of VMs and migrates them to balance 

utilization levels. Similarly, VMware Distributed 

Power Management [4] minimizes the power usage 

of a data center by migrating VMs from lowly-

utilized hosts and powers them off. Both systems 

focus on maintaining CPU and memory usage. Our 

work focuses on service level performance. 

Recent efforts such as [8], [14], [15] and [16]  

have attempted to further increase resource utilization 

levels by migrating VMs. Each VM's resource 

utilization level is monitored and VMs are migrated 

to new hosts such that host resource utilization is 

maximized, and no host is overloaded. Kochut et. al 

[14] consider both autocorrelation and a periodogram 

to decide which VMs are best candidates to be placed 

together. Ideally, colocated VMs should have a low 

probability of overloading the host. Hermenier et. al. 

[15] consider the order that the migrations occur in 

addition to which VMs to migrate to minimize the 

impact of the migrations on system performance. 

Another method to maximize resource utilization 

levels is overbooking resources. Urgaonkar et. al. [9] 

shows that a 500% increase in utility can be achieved 

by overbooking hosts by 5% of their peak load 

values. This only causes a 4.6% decrease in overall 

throughput. However, the study focuses on a shared 

hosting environment, not a virtual one, and considers 

neither contention nor the overhead caused by a 

virtual environment. 

To maintain end-to-end service level 

performance, Stewart et.al [11] offers a response time 

prediction model. The model is based on an identified 

trait model for multi-tier applications. Their work 

focuses on predicting the service response time, 

based on pre-identified trait model relationships 

between processor properties and observed response 

time. Liu et. al. [18] use an autoregressive model to 

control CPU allocation. This allows VMs to be 

assigned a certain resource level as to normalize 

multiple applications' performance. Padala et. al. [19] 

and [20] have further used an autoregressive moving 

average to assign VM multiple resources. 

3. MOTIVATION 

The motivation behind our work is to remove the 

need for administrators to perform resource 

allocation in the virtual environment. Our system 

aims to achieve SLOs by automatically allocating 

resources when they are required by a VM. 

Resources are then taken away and reallocated to 

other VMs as resource needs change. In a non-

virtualized datacenter, applications avoid 

performance degradations by being isolated and run 

on dedicated hardware. However, this typically 

means low resource utilization levels, resulting in 

high hardware and energy costs. It is therefore 

attractive to place applications within VMs to reduce 
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these costs. However, once applications are placed in 

a virtual environment, they must contest for resources 

as they are no longer entirely isolated. This can cause 

applications to suffer from performance degradations. 

To ensure applications perform satisfactorily, 

Virtual Machine Monitors can be set to allocate a 

certain amount of hardware resources to each VM. 

There are however, a number of problems with 

current VM management systems. Firstly, 

administrators typically need to set the resource 

allocation levels manually. This requires 

administrators to monitor their applications’ 

performances, and set each VMs’ resource allocation 

and priority in the VM management system. This task 

can be made more difficult if the VMs’ resource 

requirements frequently change. Secondly, the 

resource allocation levels only guarantee that a VM 

will receive a certain share of a resource. They do not 

provide any application-level performance guarantee. 

This can lead to lower hardware utilization levels, as 

administrators will typically over-provision resource 

allocations to ensure satisfactory performance. 

Lastly, administrators must manually set the 

utilization levels at which VMs will be migrated to 

and from hosts. This can again lead to lower 

hardware utilization as migration thresholds must be 

set low enough to ensure application-level 

performance does not suffer due to high resource 

contention. 

To address these problems, our system monitors 

application-level performance and automatically 

allocates VMs the minimum level of resources they 

need to meet an application-level SLO guarantee. 

Our system works by monitoring the applications’ 

performances at various user, resource allocation, and 

resource contention levels. Resource contention 

occurs on a host when multiple VMs require the use 

of the same resource. Once our system has multiple 

readings at different values, it can interpolate the 

minimum resource allocations needed to achieve a 

certain response time. 

Figure 1 shows the basic flow of information in 

the management system. The process starts by an 

application reporting its response time and the level 

of resource contention on each host where one of its 

VMs resides. The management system then chooses 

the model that best describes the application's 

response time based on the current resource 

contention levels. Initially, this model will be empty 

as the management system does not have any data 

about the application. The model is then stretched 

based on how far the readings in the model are from 

the current resource contention levels. The missing 

data points in the model are then interpolated from 

the data that is available. The minimum resource 

allocation levels that allow the application to meet its 

response time target are then found in the 

interpolated model. Finally, the resource allocations 

are set on the hosts, and the hosts wait to take a new 

reading to report to the management system. 

The applications’ performance models are created 

automatically by analyzing the performance achieved 

at the various resource allocation levels. Although 

such models could contain millions of potential data 

points, we have found that a model can be 

constructed with only 10’s of data points. Although 

each application will have a unique model, in future 

work it may be possible to apply a generic model to 

different types of applications, and then quickly tailor 

them with even fewer data points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to interpolating the minimum resource 

allocations needed to achieve a certain response time, 

our system can also interpolate a response time value 

for a given resource contention level. This can help 

predict the performance of a VM before it is migrated 

to or from a host. This allows migration decisions to 

be made more flexibly, as they can be based on VM 

performance, rather than occurring at a fixed 

threshold. 

As many of today’s datacenter applications rely 

on multiple tiers, our system allows for this. Our 

system sets the resource allocations at each tier, such 

that the total response time experienced by the end 

user is below the SLO target. This allows an 

administrator to configure a single SLO value for an 
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entire application stack. This is in contrast to current 

management systems, where the resource allocation 

must be configured individually for each tier. 

3.1 Monitoring 

To collect the data we need for our system we 

record the application’s response time at its first tier; 

as shown in Figure 2. Throughput based applications 

can be monitored in a similar fashion, with 

throughput per time period recorded rather than 

response time. While monitoring response times at 

each individual tier could possibly provide a more 

accurate model, such monitoring would incur a 

significant overhead. Additionally, monitoring at 

intermediate tiers does not always reflect the overall 

performance characteristics experienced by the end-

users.  

 

 

 

 

 

 

 

 

 

The data we capture are the applications’ average 

total response time, CPU utilization, and storage and 

network throughput. All of the data are captured 

outside of the VMs, thereby not requiring a client to 

be inside the VMs. To allow our system to react 

quickly to changes, we take a reading every 10 

seconds. This period could be increased or decreased 

as needed, depending on the system being controlled. 

After the data is captured, it is passed to a server 

and added to our model. The model then interpolates 

the resource allocations that each VM should receive 

to meet a specified response time and chooses the 

minimum value. These resource allocations are then 

set on each host so that each VM receives the amount 

of resources calculated by the model, as shown in 

Figure 3. 

 

 

 

 

 

Figure 3: Control flow  

3.2 Model Interpolation 

Once the data is reported to our management 

system it is added to an application system model. An 

application’s system model describes the previous 

response time values that we have observed for an 

application at various user, resource allocation, and 

hardware contention levels. We then use this model 

to predict the minimum resource allocations an 

application’s VMs require to meet a certain response 

time. 

To predict the required resource allocation levels 

we must first identify trends in the data. Figure 4 

shows the effect of CPU contention on the host 

containing the web tier of TPC-W. The CPU 

contention is the total CPU utilization minus the 

amount used by the VM itself. As shown, the 

response time curve follows an exponential 

distribution. As the data closely fits an exponential 

distribution very few points are needed during run 

time to interpolate estimated resource allocation 

values. 

 

Figure 4: CPU contention and response time 

degradation 

Figure 5 show the response time of TPC-W as the 

web tier has its CPU allocation changed from 10% to 

100%. The resource allocation levels are currently 

capped to a minimum of 10% in our system as we 

have found that response times quickly approach 

infinity (the website crashes) for extremely low 

resource allocation values. Both the proxy and SQL 

tiers were set to 80% CPU allocation. As shown, for 

45%-100% CPU allocation the response time for all 

four contention levels can be roughly predicted by 

the same linear function. For allocation values less 

than 45%, each contention level follows its own 

steeper linear function. This occurs as the web server 

tier is not the bottleneck of the application until it 

receives less than 45% CPU allocation. 
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Figure 5: TPC-W response time with proxy and 

web server set at 80% CPU allocation 

If the SLO guarantee we are trying to fulfill is 

100ms, for example, Figure 5 would suggest that we 

allocate the web tier 45% of the CPU share if the 

CPU contention on the host is 20% or above. 

However, this only considers a single tier of the 

application. Figure 6 shows the response time curves 

when the web tier’s CPU allocation is changed from 

10% to 100%, but the proxy tier’s allocation has been 

reduced to 30%. In this situation, there is no way to 

meet the 100ms response time goal if the contention 

on the host is more than 10%. This is because the 

proxy tier has become the application’s bottleneck, so 

assigning more resources to the web tier will not 

significantly improve the response time. Because of 

this, it is clear that to minimize the resource 

allocations the model must include every tier of the 

application as a dimension. 

 

Figure 6: TPC-W response time with proxy set at 

80% CPU allocation 

 

 

Figure 7 shows the surface plot for the TPC-W 

proxy and web tiers with 300 active users and 40% 

CPU contention on each host. It should be noted that 

our system uses data from every application tier and 

from multiple hardware components. However, 

displaying graphs with more than three dimensions is 

difficult. 

While Figure 7, 8 and 9 contain hundreds of data 

points to show the complete resource allocation to 

response time model, the runtime model does not 

require this much data. If, for example, the 

administrator has set 150ms as the SLO target, each 

model will contain points around that response time, 

but only a few points for the rest of the model. For 

example, in Figures 8 and 9 the model will mostly 

need to record data points between the dotted lines. 

In addition to having to store less data points, being 

able to characterize the application with fewer data 

points helps the model converge and adapt to changes 

quickly. 
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Figure 9: Proxy and Web tier CPU allocation 

response times for 30% CPU contention

3.3 Dimensional Reduction  

As there are potentially thousands, or even 

millions, of resource contention combinations, it is 

infeasible to keep a model for every combination we 

encounter. Instead, we keep a subset of models, and 

scale the response time values to fit the current 

contention levels. To achieve this scaling 

same data used in the resource allocation to response 

time models (Figures 7, 8 and 9), but instead 

interpolate contention to response time for a given 

resource allocation level. We use piecewise 

linear regression to estimate the value that each point 

in the model should be scaled by. 

estimating resource allocation values for a resource 

contention level that we do not have a model for, the 

management system needs to choose the model that 

most accurately represents the current resource 

contention levels. The model chosen to be scaled is 

the one with the smallest Euclidean distance 

current resource contention levels. 

Figure 10 shows the actual response time 

TPC-W and the estimated response time calculated 

using the regression coefficients. The data 

subset of data points where the CPU contention is 

between 10% and 40% for each tier. As can be seen 

in Figure 10, the estimated and actual response times

are highly correlated, as would be expected 

fit of the data shown in Figure 4. 

Figure 11 shows the response time increase

the number of users increase; in this

10% CPU contention on each of the hosts where the 

TPC-W VMs are placed. As can be seen, the 

response time increases exponentially with the 

number of users. This can be accurately 

by linearly scaling three copies of an

resource allocation model. 
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Figure 11: Response time increase 

Figure 12 shows the degredation in TPC

responce time at various CPU contention level

responce times shown are when the web tier is 

assigned 50% or 10% CPU allocation. 

share allocation the CPU contention has little affect 

on the response time. This is because the web tier 

recieves CPU cycles very frequently, and is not the

application’s bottleneck. At 10% CPU share 

allocation the response time quickly degrades to 

almost a 50% increase in response time with a 10% 

increase in CPU contention. Even though the CPU 

had over 40% free cycles, the web tier does not 

receive its cycles promply enough, cauing it to 
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Figure 12: Regression values used to stretch a 

model 

To scale an application's performance model, we 

multiply the model from the current contention level 

to the new one for each resource allocation level. For 

example, if we wanted to know the response time at 

20% CPU contention and 50% CPU share allocation 

we would estimate 73 + 1.1 * 20 = 95ms. If our SLO 

target is 100ms, we would know that we could place 

the web tier on a host with 20% CPU contention if it 

could receive 50% of the CPU share allocation. 

However, if the host only had 40% CPU share 

allocation remaining, the estimated response time 

would be 80 + 1.15 * 20 = 103ms. Therefore, we 

would not expect that we could palce the web tier on 

that host. 

4. EXPERIMENTAL SETUP 

4.1 Infrastructure  

Our experiments are setup on a flat local area 

network using commodity hardware. The host 

operating system is Fedora 12 with Linux kernel 

2.6.31. We use KVM as our hypervisor. The VM 

hosts consist of three nodes with tri-core 2.1 GHz 

CPU, 4GB RAM. The test clients consist of two 

nodes with quad-core 2.66 GHz CPU, 4GB RAM. 

The storage node contains a dual-core 2.8 GHz CPU, 

4GB RAM. 

The network topology we use is two flat-networks 

each with one switch: the user data network and the 

management network. Each physical host has two 

network interface cards (NICs). One NIC is 

connected to a user data network using a 24-port 

Gigabit switch. The user network carries all of the 

user workload and benchmark traffic. The other NIC 

is connected to a management network using a 

separate Gigabit switch as shown in Figure 13. The 

management network carries management-related 

commands and network attached storage traffic for 

the VMs' virtual disk images. 

The storage system is hosted on two-spindle 

RAID-0, 2TB, 7200rpm hard disks. The storage 

server exports an NFS share. All virtual machine 

images are served from this location. To ensure 

network storage was not the bottleneck in our system, 

we benchmarked the network storage and found it 

more than capable of handling all of the VMs' disk 

traffic.  

 

 

 

4.2 Workloads 

To test our system we use the TPC-W benchmark 

suit [22]. We use TPC-W as a test of a real-world 

delay-sensitive application. TPC-W mimics an 

online-bookstore application. It consists of an Apache 

web proxy front-end, a Tomcat application server, 

and a MySQL database back-end. There are 15 types 

of page requests. The benchmark client is a closed-

loop client which simulates multiple users 

concurrently accessing the server. TPC-W's 

performance is measured based on response time for 

each action performed. 

5. RESULTS 

In this section we discuss the results from our 

system. We test our system by running the TPC-W 

benchmark with each of the application’s tiers on a 

separate host. Each host also contains another VM 

running an Apache web server hosting 

computationally intensive web pages. The additional 

VMs are used to create resource contention on the 

hosts. They represent other applications that would 

undoubtedly also be running in a shared virtual 

environment.   The number of requests per second to 

each Apache server was varied throughout the 

experiments to change the resource contention levels. 
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5.1 Meeting SLO target  

Figure 14 shows the resulting response times of 

TPC-W when the resource allocation levels are set 

manually and when they are controlled by our 

system. When the resource allocations are set 

manually, each tier receives the same resource 

allocation on each host. For example, in the 50% 

resource allocation experiment, each tier has a fixed 

50% resource allocation throughout the experiment. 

As can be seen in Figure 14, when using our 

system TPC-W’s response time closely follows the 

SLO target that is set. It is expected that the response 

time will oscillate above and below the SLO target as 

our system attempts to make the median response 

time equal to the SLO target. It is also evident from 

Figure 14 that the response time when using our 

system is usually faster, rather than slower, than the 

SLO target, and therefore averages to faster than the 

required SLO value. This is due to the resource 

allocation optimizer being cautious in its estimates. 

This is a conscious design decision, as a system that 

constantly over performs is more useful than a 

system that constantly under performs. 

It can also be seen in Figure 14 that setting the 

resource allocation levels manually does not always 

produce a consistent response time. This is because 

resource contentions may increase over time, but the 

resource allocations do not. When the resource 

allocation is set to 50%, TPC-W’s response time is 

faster for a longer period of time than when the SLO 

target is set to 150ms. However, at time period 480, a 

50% resource allocation is no longer sufficient to 

continue providing that fast response time. However, 

with a dynamically set resource allocation our system 

can keep providing the same response time despite 

the CPU contention increase. 

 

 

 

Test RT average Resource 

allocation 

average 

Apache VM 

average 

SLO = 100ms 89ms 48% 125ms 

SLO = 150ms 127ms 35% 107ms 

50% resource 

allocation 

150ms 50% 120ms 

10% resource 

allocation 

355ms 10% 83ms 

Table 1: Response time for TPC-W and 

contention workload 

As can be seen in Table 1, despite the 50% 

resource allocation test having a faster response time 

for a longer period of time than the SLO 150ms test, 

its final average response time is greater. 

Additionally, the SLO 150ms test uses on average 

15% less resources to achieve this faster average 

response time. As TPC-W uses less resources in the 

SLO 150ms test, the Apache workload on the host 

receives a greater share of resources; thus reducing 

its average response time from 120ms to 107ms. This 

is because the optimizer does not needlessly 

overprovision TPC-W, allowing the host scheduler to 

allocate remaining resources as needed.  This shows 

that dynamically setting the resource allocation levels 

can not only guarantee a specified response time, but 

is also a more efficient use of resources. In this case, 

both applications have benefited from faster response 

times, despite our system only guaranteeing one of 

them.  

Comparing the two tests with the closest resource 

allocation levels, we find that dynamic resource 

allocation helps achieve a faster average response 

time while using overall fewer hardware resources. 

Even excluding the final 120 readings, where the 

50% allocation test performed poorly, dynamic 

allocation still performs faster, with an average 

response time of 89ms vs. the static allocation 

average of 106ms. 
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5.2 Resource Allocation 

Figure 15 shows the resource allocation levels that 

TPC-W received for the SLO 100ms and 150ms tests. 

The other two tests remain at 50% and 10% 

allocation throughout and are not shown. 

At time period 200 it can be seen that the CPU 

contention on the SQL VM's host jumps 40%; 

however, the resource allocation only increases 

roughly 10%. This shows an advantage of modeling 

and predicting the application’s performance over a 

more simple resource control scheme, such as 

increasing the resource allocation by a fixed factor of 

CPU contention. The regression analysis identifies 

that the CPU contention on the SQL VM's host does 

not cause large increases in response time. Therefore, 

when a model is used to predict the resource 

allocations for the new contention level, the scaling 

factor is low. This is in contrast to time period 110, 

when the CPU contention on the web server VM's 

host increases by 10%. In this case, the resource 

allocation increases by 20% in the SLO 150ms test 

and by 30% in the SLO 100ms test. This is because 

the model has correctly predicted that increased CPU 

contention on the web server VM’s host will cause an 

increase in response time and has scaled the resource 

allocation model accordingly. We can see that the 

system predicted the correct resource allocation 

increases in both cases, as the response times for the 

SLO tests in Figure 14 both change to the configured 

SLO level at time period 110. 

5.3 Change in user levels 

Figure 16 shows the TPC-W response time when 

the number of users is varied during the experiment. 

We again configure our system to meet either a 

100ms or 150ms response time SLO. We also 

experiment with the VMs resource allocations set 

statically to either 50% or 10%. 

It can be seen from Figure 16 that our system can 

dynamically adjust resource allocations to meet an 

SLO despite a varying user level. Our system keeps 

the response time near the SLO target, whereas the 

static resource allocation causes response time to 

vary from 100ms-400ms. 
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6. CONCLUSION AND FUTURE WORK 

In this work we have shown that applications 

comprised of multiple VM tiers can meet SLOs by 

dynamically allocating host resources. We show that 

by capturing an application’s previous performance, 

we can model and predict the minimum amount of 

resources it needs to meet an SLO. Additionally, we 

show that these models can be stretched to changes in 

host utilization levels. This allows the resource 

allocation to be quickly altered when resource 

utilization levels change. 

We evaluate our system using TPC-W and setting 

response time SLO targets. The host utilization is 

then varied throughout the experiments. Our system 

adapts to the changes in host utilization levels, and 

helps maintain TPC-W’s response time within the 

SLO target. Our system also assigns the minimum 

amount of resources required to meet the SLO, 

allowing the other application running on the same 

hosts to improve its performance. 

Although our system allows applications to meet 

SLOs, minimizing the total amount of resources used 

by each application may not be the most desirable 

goal in a data center. As VM migration causes both 

performance degradation and increased utilization, 

assigning resources in such a way as to lower the 

number of migrations may achieve lower global 

resource utilization than attempting to minimize 

resource allocation alone. Additional study would be 

needed to analyze the application specific 

performance degradation caused by migration. 

While our current control scheme ensures that 

VMs receive the correct amount of resources to meet 

an SLO, it does not actually provide a hard guarantee 

about the number of violations. In future work we 

will bound the number and severity of SLO 

violations to provide administrators with hard 

guarantees about application level performance. 

Additionally, rather than starting with a blank 

slate for each application, we hope to identify 

common traits between applications. This will allow 

performance models to be created and adapted more 

quickly, and could allow for different modes of 

control for different application types. This could 

potentially make the task of bounding the number of 

SLO violations easier.  
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Abstract

In this paper we present our experience in building the
Research Compute Cloud (RC2), a cloud computing
platform for use by the worldwide IBM Research com-
munity. Within eleven months of its official release RC2
has reached a community of 631 users spanning 34 coun-
tries, and serves on average 350 active users and 1800
active VM instances per month. Besides offering a util-
ity computing platform across a heterogeneous pool of
servers, RC2 aims at providing a living lab for exper-
imenting with new cloud technologies and accelerating
their transfer to IBM products. This paper describes
our experience in designing and implementing a flexible
infrastructure to enable rapid integration of novel ideas
while preserving the overall stability and consumability
of the system.

1 Introduction

Cloud Computing has become synonymous with ways to
contain and manage IT costs for enterprises. Cloud Com-
puting is a paradigm where compute capacity is made
available to users in an on-demand fashion through a
shared physical infrastructure. The expectation is that
sharing hardware, software, network resources, and man-
agement personnel would reduce per unit compute cost
for enterprises. Several vendors such as Amazon EC2,
Google, and Rackspace have been providing commer-
cial Cloud offerings. Though not enterprise-grade level
yet, Cloud Computing has piqued the interest of several
large enterprises, which have started deploying and ex-
perimenting with the technology for their test and devel-
opment environments. IBM Research has developed and
deployed a Cloud Computing platform called Research
Compute Cloud (RC2) for use by the worldwide IBM
Research community. The goals of RC2 are to establish
an “innovation” platform for the IBM Research commu-
nity and to serve as a “living” lab for the research tech-

nologies developed by the IBM Research community.
The platform has been purposefully architected to facil-
itate collaboration among multiple research groups and
encourage experimentation with cloud computing tech-
nologies. The platform also serves as a showcase of
new research technologies to IBM customers and busi-
ness partners.

The IT infrastructure of the IBM Research division re-
sembles that of a global enterprise having many differ-
ent lines of business spread across multiple geographies.
IBM Research is a geographically distributed organiza-
tion, consisting of several thousand research personnel
spread across 9 research laboratories worldwide. Each
IBM research lab operates its own local data center that
is used predominantly for lab-specific research experi-
ments. In addition, a portion of the data center infrastruc-
ture is collectively used for production workloads such
as email, employee yellow pages, wikis, CVS servers,
LDAP servers, etc. Critical production workloads can be
replicated across different lab data centers for purposes
of failover. This infrastructure is a substantial investment
built over many years, and is very heterogeneous in its
make up. For instance, IBM’s POWER series systems
and System Z mainframes are mixed with many genera-
tions of commodity x86 blade servers and IBM iDataplex
systems.

The Research Compute Cloud (RC2) is an
infrastructure-as-a-service cloud built by leveraging
the existing IT infrastructure of the IBM Research
division. Its goals were two-fold: (a) create a shared
infrastructure for daily use by the research population,
and (b) provide a living lab for experimenting with
new cloud technologies. There were several challenges
that the team needed to address to meet the two goals.
The first challenge was to design and build a consistent
infrastructure-as-a-service interface over a heterogenous
infrastructure to meet the needs of the Research user
community. The second challenge was to enable a
true living lab where the Research community could
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develop and test new technologies in the cloud. The
architecture of RC2 had to be flexible enough to enable
experimentation with different cloud technologies at
the management, platform, and application layers. All
this had to be achieved without any disruptions to the
stability and consumability of the overall infrastructure.

In this paper, we present our experience in building
RC2. In Section 2, we present the architecture of RC2 to
meet the two design goals. Next, we discuss the imple-
mentation of RC2 in Section 3. Section 4 presents our
experience specifically in the context of pluggability and
extensibility of the environment. We conclude the paper
by discussing related work in Section 5 and future work
in Section 6.

2 Architecture

As mentioned in Section 1, RC2 aims to provide a re-
search platform where exploratory technologies can be
rapidly introduced and evaluated with minimal disrup-
tion on the operation of the cloud. This requirement calls
for a componentized, extensible cloud architecture.

Figure 1 shows the architecture of RC2 which con-
sists of a cloud dispatcher that presents an external REST
API to users and a collection of managers that provide
specific services. For each manager, the dispatcher con-
tains a proxy whose role is to marshal requests to and
responses from the manager itself.

This architecture enables a loose coupling between the
managers. Any manager only knows its corresponding
proxy; there is no direct communication between man-
agers. Different groups within IBM Research can work
on different managers without anyone mandating how
their code should integrate. Groups only need to agree
on the APIs that the manager proxies will expose within
the dispatcher.

The dispatcher is driven by an extensible dispatch ta-
ble that maps request types to manager proxies. When a
request enters the dispatcher (whether from an external
source like an RC2 user or an internal source like one
of the managers), the dispatcher looks up the request’s
signature and dispatches it to the manager proxy respon-
sible for that type of request. A new manager can be
added simply by adding its request type and mapping in-
formation to the table.

Another benefit of this design is that, because all re-
quests pass through the dispatcher, features such as ad-
mission control, logging and monitoring can be imple-
mented easily in the dispatcher. A potential drawback is
that the dispatcher becomes a bottleneck, but this prob-
lem can be solved by distributing requests among multi-
ple dispatcher instances.

Figure 1 shows the managers that currently exist in
RC2. The user manager authenticates users. The im-

age manager catalogs, accesses, and maintains virtual-
machine images. The instance manager creates, deploys,
and manipulates runnable instances of the image man-
ager’s images. The security manager sets up and con-
figures the network isolation of cloud tenants’ security
domains for communication both outside the cloud and
with other security domains inside the cloud.

Distribution of functionality implies distribution of the
system’s state among individual components. This dis-
tribution makes it difficult to obtain a complete and con-
sistent view of the system state during long-running re-
quests (for example, instance creation), which compli-
cates failure detection and recovery. Our architecture
tackles this problem by requiring each manager to main-
tain and communicate the states of the objects it man-
ages. For example, both images and instances have as-
sociated states, which can be queried by sending a “de-
scribe image” or “describe instance” request to the ap-
propriate manager. Long-running requests are processed
in two stages. The first stage synchronously returns an
object that represents the request’s result, and the second
stage asynchronously completes the time-consuming re-
mainder of the request and updates the object’s state ac-
cordingly. Request completion (or failure) can be deter-
mined by querying the object’s state.

Another challenge was to design a set of
infrastructure-as-a-service APIs that could be im-
plemented consistently across a heterogeneous pool of
servers. Differences among platforms can be huge. For
example, consider two different server platforms: an
IBM xSeries blade server and an IBM pSeries blade
server. The former runs a software virtual-machine
monitor (in RC2, Xen or KVM) on commodity x86
hardware, while the latter runs a firmware hypervisor
(PHYP), on IBM Power hardware (also referred to
as System P). These two platforms support different
operating systems, different image formats, and different
mechanisms for creating instances from images.

For example, for Xen and KVM based VM instances,
the images exist in raw (block) disk format. Deploying
those images into new VM instances requires copying
the disks onto the host’s storage and mounting the file
system of those disks to customize the images. The pro-
cess is completely different for the AIX operating sys-
tem that runs on the pSeries servers – the images exist
in a special backup (tar-like) format, and are referred to
as mksysb backups. Deploying those images into new
PHYP instances requires booting off an initial install ker-
nel which in turn drives the installation of the image files
into the newly booted VM. The installation is achieved
through a special central server called the Network In-
stallation Manager (NIM), which creates filesystems for
the instance, with files restored from the mksysb backups.

Our design supports multiple platforms by requiring

2
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Figure 1: RC2 Architecture

that requests avoid platform-specific parameters. For ex-
ample, both types of images are stored in the repository
with the same format, has identical list of attributes, and
can be queried in an identical manner. Similarly, the
same instance creation API is used to start an instance for
both image types (although the parameter values vary).
The requester is not required to know the specific plat-
form type of the image or instance that she is operat-
ing on. This approach minimizes the complexity of sup-
porting multiple platforms, as only the instance manager,
which receives requests for creating instances, must con-
cern itself with differences among platforms.

3 Implementation

The RC2 hardware infrastructure is comprised of man-
agement servers, the host server pool, and the storage
subsystem. The management servers host RC2 man-
agement services, provision and capture of virtual ma-
chines, and http access for users. The host pool houses
the provisioned instances and consists of a collection of
IBM iDataplex blades varing in size from 32GB-4way
to 128GB-8way systems. The storage pool consists of
a SAN subsystem that is shared across both the host
servers and the management servers.

3.1 Dispatcher

The RC2 cloud dispatcher is composed of three layers:
a REST servlet, the cloud manager, and several man-
ager proxies. The REST servlet provides an HTTP-based
REST interface to cloud operations. The interface can
be used by programs as well as through a web-based
graphical user interface. The manager proxies decou-
ple interactions between user and cloud dispatcher and
communication between the dispatcher and managers.
This separation promotes flexibility of managers while
allowing uniform cloud interfaces to users. Although,
in the current implementation, all managers are accessed
through REST APIs, they can be easily replaced with im-
plementations that use different communication mecha-
nisms such as Java Message Service (JMS).

The cloud manager sits between the REST servlet and
the manager proxies, providing admission control and
rate control using dispatch queues and request-handler
threadpools. There are currently two types of dispatch
queues: synchronous request queues and asynchronous
request queues. The former handles short-lived cloud re-
quests such as looking up image information and list-
ing an owner’s instances whereas the latter handles long-
lived cloud requests such as creating an instance or cap-
turing an image. The threadpool size of the synchronous
request queue is typically set to a large value to allow

3
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more requests to be processed concurrently while that
of the asynchronous request queue is limited to a num-
ber that matches the rate at which the back-end man-
ager can process requests. The configuration of dispatch
queues such as queue length and threadpool size can be
changed at runtime through an administrative REST in-
terface, which is designed to allow feedback-based rate
control in the future.

3.2 Instance Manager

The instance manager keeps track of the cloud’s virtual-
machine instances. An instance-manager implemen-
tation must provide several basic services: “start in-
stance”, which adds a running instance to the cloud;
“stop instance”, which stops an instance; “delete in-
stance”, which removes an instance from the cloud; and
a query service for listing instances and their state. Only
the implementation of “start instance” is described here
because it is the least straightforward.

Starting an instance involves four tasks: selecting a
target host, creating and configuring an instance on that
host (which includes choosing a security domain), re-
trieving and configuring the virtual-machine image, and
finally starting the instance. Each task is implemented
by plugins, so as to support a variety of host and image
types.

The instance manager selects a host with the proper
resources to run the user-requested instance. The current
implementation uses a best-fit algorithm [7] that consid-
ers memory, cpu, disk, network connectivity, and host-
specific requirements such as the host’s architecture and
virtual-machine monitor. Selecting the host also binds
some instance parameters, including the IP address of the
new instance.

The instance manager retrieves the image from the
image manager and configures it for execution. Image
configuration sets both user-specific parameters, such as
ssh keys, and instance-specific parameters, such as the
IP address. Some parameters are set by modifying the
retrieved image before startup while others are set at
startup-time by embedding an “activation engine” [3] in
the image that runs the first time the instance boots. The
instance-specific parameters are provided through a vir-
tual floppy drive. The activation engine is designed for
extensibility and can configure operating system, mid-
dleware, and application parameters.

Next, the instance manager instructs the chosen host to
allocate a new instance. The details are host-specific; the
current implementation includes plugins for AIX hosts
and for x86 hosts based on Xen and KVM.

Finally, the instance manager starts the instance. The
user is notified and a description of the new instance is
sent to a database for compliance tracking.

3.3 Image Manager

The image manager maintains a library of images. The
image manager cooperates with the user manager to con-
trol access to images and with the instance manager to
create runnable instances of images and to capture im-
ages of runnable instances as images.

Each image has a unique image identifier, which
names the image for access-control purposes. The library
stores one or more versions of each image and each ver-
sion has a version identifier, which names both data and
metadata. The data consists of a set of files, including
disk images and other files required to create a runnable
instance. The metadata is a set of version attributes, such
as a name, a description, and the identifier of the ver-
sion’s parent.

Version data is immutable. Therefore, if a disk image
is modified by a running instance, it can be captured back
to the library only as a new version, whose parent will be
the version from which the instance was created. Some
version attributes are mutable, such as the description,
while others are immutable, such as the parent identifier.
The access-control information associated with an image
is mutable.

The most important image manager services are
“checkout” and “checkin”. Given a version or image
identifier and a target URL, checkout creates a runnable
instance from a version; if an image identifier is supplied,
the most recent version of that image will be checked
out. The target URL identifies a directory on the SAN
where the instance manager expects to find the runnable
instance and to which the image manager copies the ver-
sion’s data files. The image manager also places control
files in the directory that, among other things, identify
the source version.

Given a source URL, which identifies a directory on
the SAN that was populated by a checkout, checkin cre-
ates a new version. Note that the directory’s data files,
including its disk images, may have been modified by
instance execution. There are two kinds of checkin calls:
the first creates a new version of the original image while
the second creates the first version of a new image. Cur-
rently, only the second kind is exposed to RC2 users.

Both checkout and checkin are asynchronous calls.
The instance manager invokes these two interfaces and
tests for completion by polling a status file, which the
image manager updates on completion, or by supplying
the URL of a callback, which the image manager invokes
on completion.

The image manager controls access to images in the
library. Each image has an owner, a list of users and
groups with checkout access, and a list of users and
groups with both checkout and checkin access. Only the
owner may update the lists. Each image manager call in-

4
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cludes an owner and a list of groups to which the owner
belongs, which the manager uses to verify that the caller
has the required access for the call. The image manager
assumes that a call’s owner and group list is correct: the
user manager is responsible for user authentication and
the cloud dispatcher ensures that calls do not forge user
or group names.

The image manager provides other services besides
checkin and checkout. These include calls that list, de-
scribe, and delete images and versions, plus calls that
update access-control lists. Deleted versions retain their
metadata but lose their data files.

The image manager uses a file-granularity, content-
addressable store (CAS) to maintain the image con-
tent [9]. The CAS saves space by guaranteeing that the
same item is never stored twice. It also keeps the ref-
erence information necessary to garbage collect deleted
image data.

3.4 Security Manager

RC2 has been architected with several mechanisms to
provide security in a cloud environment. In particular,
the security manager provides support for isolation be-
tween different cloud user’s workloads in a heteroge-
neous, multi-tenant environment. The isolation model
follows our established concepts of Trusted Virtual Do-
mains (TVDs) [2] and a Trusted Virtual Data Center
(TVDc) [10]. A TVD is a grouping of (one or more)
VMs belonging to the same user that share a trust rela-
tion and common rules for communicating among them-
selves as well as with the outside world.

The security manager exports a broad API through the
cloud dispatcher and provides extensive functionality for
life-cycle management of security domains and their run-
time configuration.

The security manager is currently built on top of mod-
ifications to the Xen daemon for the establishment and
runtime configuration of firewall rules on virtual ma-
chines’ interfaces in Domain-0. Our architecture makes
use of the fact that in the Xen hypervisor all virtual ma-
chines’ network packets pass through the management
virtual machine (Domain-0) and firewall rules can be ap-
plied on the network interface backends that each VM
has in that domain. This allows us to filter network traffic
originating from and destined to individual virtual ma-
chines.

The extensions to the Xen daemon provide functional-
ity for the application of layer 2 and layer 3 network traf-
fic filtering rules using Linux’s ebtables and iptables sup-
port. While a VM is running, its layer 3 network filtering
rules can be changed to reflect a user’s new configuration
choices for the security domain a virtual machine is asso-
ciated with. We support a similar network traffic filtering

architecture with the Qemu/KVM hypervisor where we
implemented extensions to the libvirt management soft-
ware providing equivalent functionality as the extensions
to the Xen daemon.

Functionality that the security manager provides for
support of security domain life cycle management in-
volves the following:

• Creation and destruction of security domains.

• Renaming and configuration of parameters of secu-
rity domains.

• Retrieval of security domain configuration data.

• Modifications of security domains’ network traffic
rules.

• Establishment of collaborations between security
domains of the same or different cloud tenants.

Altogether, the security manager adds 17 new com-
mands to the dispatcher API.

The realization of the security domains concept drove
extensions to several other existing components in the
architecture. Extensions were implemented in the cloud
dispatcher layer to make the new APIs visible to other
management components as well as external entities.
The instance-manager request that creates a virtual ma-
chine instance was extended with optional parameters
describing the security domain into which a virtual ma-
chine is to be deployed. A new internal request was
added to the instance manager for deployment of filter-
ing rules associated with VM instances. Several previ-
ously existing workflows, which are part of the instance
manager, were modified to notify the security manager
of VMs’ life cycle events as well as to perform configu-
ration in the Xen management virtual machine (Domain-
0).

3.5 Chargeback
We implemented a simple allocation-based pricing
model to experiment with users’ behavior in resource
consumption under different pricing models. Users are
charged for compute capacity based on a billable unit of
“per instance hour consumed”. This begins with instance
creation and ends when an instance is destroyed. At this
time, the same charges are incurred whether the instance
is active (that is, running) or inactive (stopped). Rates
differ by system type (XEN, PHYP, and KVM) and con-
figuration (small, medium, large, and extra large). In ad-
dition, there are separate charges for end-user initiated
transactions that lead to state changes of their instances
(Initialize, Start, Stop, Reboot, Destroy). Charges are
calculated on an hourly basis and are integrated with
IBM’s existing internal billing systems.

5
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3.6 User Manager

The user manager authenticates users by invoking ser-
vices available in the IBM infrastructure and associat-
ing authentication with sessions. It also manages user-
specific information, such as ssh public keys, that can be
queried by other managers during provisioning.

4 Experience

RC2 was released in a Beta version in early April, 2009,
and officially released to IBM Research world-wide in
early September, 2009. In this section, we present global
usage statistics of RC2 and our experiences using RC2 as
a research platform to experiment with new cloud tech-
nologies.

4.1 RC2 Usage

Within 11 months of its official production release, RC2
has served 631 distinct users spanning 34 countries. The
image library has accumulated a collection of 2286 im-
ages, all of which derive from just three root images that
were imported into the libary at the beginning. The num-
ber of images in the library grew starting about a week
after the Beta release. The library grew modestly during
the Beta testing period but has been experiencing faster
growth since the official release in early September. The
number of instances has grown at a similar rate; Figure 2
shows this growth since the production release.

The average number of active instances per month is
also growing, reaching 1800 in the most recent month.
This includes 102 instances of the System P type. On
the average there are about 350 distinct active users per
month, who consume a total of 600,000 virtual-machine
hours.

Figure 2: Instance Growth

RC2 was first released free of charge. When charges
for instance ownership were introduced in early October,
it had a dramatic impact on user behavior, as shown in
Figure 3. There was a significant drop in the number of
instances right after users received their first statements,
leading to a drop in memory utilization. Interestingly,
the number quickly bounced back, and memory utiliza-
tion again approached pre-chargeback levels. We con-
sider this to be a strong endorsement from our user com-
munity about the value of the service provided by RC2.

Figure 3: Cloud Memory Utilization
Percentage of memory allocated for instances as a ratio

of total available memory.

4.2 RC2 as a Living Lab
In addition to its role as a production-quality IT offering
for IBM’s research organization, RC2 also serves as an
experimental testbed for innovative cloud management
technologies. To this end, we show how RC2’s archi-
tectural emphasis on extensiblity and pluggability has
helped facilitate these experimental activities.

The initial version of RC2 consisted of three man-
agers: the image manager, the instance manager, and the
user manager. The security manager was added to pro-
vide stronger isolation between multiple tenants’ work-
loads in the cloud. While the security manager presented
significant functionality enhancements, the core RC2 ar-
chitecture remained essentially the same given that it was
designed to be extensible from the start and most changes
were contained at the cloud dispatcher.

The pluggable cloud dispatcher architecture enabled
us to deploy an image manager based on the Network
File System (NFS) for Research sites that lack a SAN
storage environment. For these sites, we reimplemented
the image manager interfaces using NFS as the backing
store. As with the SAN, the file system is mounted on

6
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each hypervisor node so that images are locally acces-
sible. The instance manager required no change as the
NFS-based image manager supports the same set of re-
quests as does the SAN-based image manager. The flex-
ibility of RC2 allowed researchers to experiment with
alternate implementations without requiring changes to
other components.

Being a living lab implies that sometimes RC2 needs
to deal with unusual infrastructure-level changes that are
typically not seen in production systems. One such ex-
ample is change of supported hypervisor types. Initially,
RC2 adopted Xen as its only x86 hypervisor. Later on
there was a strategic decision to switch to KVM, which
means that RC2’s entire Xen image collection needs to
be converted to KVM.

Because RC2 is a production system, the conversion
needs to be accomplished with minimal disruption to
the user. This translates into two concrete requirements.
First, the contents of all existing Xen images as well
as instances need to be preserved. Users should just
be able to start their existing images as usual without
even noticing that the images will be in fact running on
a KVM hypervisor. Similarly, when existing Xen in-
stances are captured, they should automatically be con-
verted to KVM without any user intervention. Second,
conversion of the entire Xen image/instance collection
needs to be achieved with zero downtime (except for
the regularly scheduled maintenance window). During
the conversion period, both Xen and KVM provisioning
must be supported.

Our solution required multiple enhancements to be
made to both the instance manager and the image man-
ager. The instance manager, upon receiving a capture
request, performed an on-the-fly conversion of the cap-
tured Xen image to a KVM image. The image manager
was enhanced with a locking functionality that hid newly
converted KVM images from the end user until the im-
ages were ready to be seen by the users. Again, the
decoupled architecture of the RC2 system allowed indi-
vidual component to be separately tested and replaced,
making it possible to achieve the conversion without any
disruption of the system.

The RC2 team successfully converted the entire Xen
image collection (419 images) to KVM. The migration
process started on May 6th, 2010 and ended on June
14th. During this whole period, the RC2 production
system was continuously running with all functionalities
enabled and no noticeable performance slowdown. The
process was also completely transparent to the users. All
conversion activities were shielded from the end users.
End users did not notice any change of their images until
the “conversion” day, at which point the newly converted
images (with new image numbers) appeared on user’s lo-
gin view. Advance notice was sent to the users a few days

earlier so they were prepared for this change on “conver-
sion” day.

5 Related Work

Current cloud computing offerings focus on building an
optimized, homogeneous environment for delivery of
compute services to customers. Amazon’s EC2 [1] and
IBM’s Developer Cloud [4] are examples of such offer-
ings. By contrast, our work focuses on heterogeneity and
providing a pluggable and extensible framework to serve
as a living lab for cloud technologies. The open source
project Eucalyptus [8] provides capabilities similar to
those of Amazon’s EC2 and could be used in a living lab,
as developers can modify and extend the source. How-
ever, the project lacks support for heterogeneous plat-
forms and a pluggable architecture.

6 Conclusion and Future Work

The RC2 project succeeded in achieving its two main
goals: (1) it delivers high-quality cloud computing ser-
vices for the IBM Research community and (2) it pro-
vides an effective framework for integration of novel
ideas into a real cloud platform, rapidly enriching the
evaluation of new technologies by offering meaningful,
realistic user experience and usage/performance data.
Many of these new technologies were adopted by newly
announced IBM products in 2009 such as Websphere
Cloudburst Appliance [6] and VM Control [5].

The current RC2 system is implemented only in the
New York area data center. However, the RC2 services
are available to all of the worldwide IBM Research Labs.
In 2010, we plan to create RC2 zones in at least two other
labs on two different continents.

The current RC2 production system has numerous
monitoring probes installed at different points in the in-
frastructure and in the management middleware that runs
the data center. These probes provide a rich set of real-
time monitoring data, which is itself available as a ser-
vice provided through a collection of REST APIs. We
plan to use this feature to provide a simulated data center
environment over the RC2 production environment, for
experimental purposes. The simulated environment will
behave as if it is the actual production environment un-
derneath, by tapping into the real-time monitoring data
provided by the probes.
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Abstract
We present PeerMon, a peer-to-peer resource monitor-

ing system for general purpose Unix local area network

(LAN) systems. PeerMon is designed to monitor sys-

tem resources on a single LAN, but it also could be de-

ployed on several LANs where some inter-LAN resource

sharing is supported. Its peer-to-peer design makes Peer-

Mon a scalable and fault tolerant monitoring system for

efficiently collecting system-wide resource usage infor-

mation. Experiments evaluating PeerMon’s performance

show that it adds little additional overhead to the sys-

tem and that it scales well to large-sized LANs. Peer-

Mon was initially designed to be used by system services

that provide load balancing and job placement, how-

ever, it can be easily extended to provide monitoring data

for other system-wide services. We present three tools

(smarterSSH, autoMPIgen, and a dynamic DNS binding

system) that use PeerMon data to pick ”good” nodes for

job or process placement in a LAN. Tools using PeerMon

data for job placement can greatly improve the perfor-

mance of applications running on general purpose LANs.

We present results showing application speed-ups of up

to 4.6 using our tools.

1 Introduction

General purpose LANs of workstations are systems

where multiple machines (nodes) are connected by a net-

work. Each machine runs a stand-alone operating system

(OS) and typically runs a network file system and may

support a few other types of networked resource sharing.

These types of systems are common at universities and

other organizations where machines in offices and labs

are connected to allow some system-wide resource shar-

ing, but where most of a machine’s resources are under

the control of its local OS. Typically, these systems do

not implement any kind of centralized scheduling of net-

worked resources; resource scheduling is done locally by

the OS running on the individual nodes.

In general purpose LANs multiple users can log into

individual nodes and use the networked resources to run

any workload including batch, interactive, sequential and

parallel applications. The workload in such systems is

much more dynamic and not as well controlled as in clus-

ter systems that typically run system-wide job scheduling

software that users must use. As a result, there are often

large variations in system-wide resource usage and large

imbalances in the use of computational resources in gen-

eral purpose LANs [3].

To perform computational tasks efficiently it is often

key to have some knowledge of resource availability and

resource load. For example, it would be ideal to choose

the node with the lowest CPU load, the largest amount

of free RAM, and the fewest number of users to run a

computationally intensive sequential program. For par-

allel applications (such as MPI) running on a network of

workstations, performance is usually determined by the

slowest node. If a user had a tool that could easily iden-

tify the best nodes on which to run a parallel job, avoid-

ing heavily loaded nodes, the result could be a dramatic

improvement in execution time of the application.

Because general purpose networked systems do not

provide system-wide resource scheduling, it is up to

users to either guess at good placement or gather current

usage information on their own to make better informed

job placement options. In some cases, this can require a

fair amount of effort; in others, it may not be possible.

For example, a system may be set up so that individual

nodes cannot be specified for remote ssh. Instead, the

DNS server may use a round-robin mapping of a generic

name like lab.cs.swarthmore.edu to one of the

nodes in the system. In this case, a user can end up on a

heavily loaded node, her only recourse being to log out

and hope for better placement when she tries again.

A network resource monitoring system that efficiently

provides system-wide usage data could be used to better

distribute users and program workloads across the sys-

tem. This would result in more balanced resource usage
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across the system, better system-wide resource utiliza-

tion and, thus, better average system-wide performance.

We designed PeerMon to efficiently provide system-

wide resource usage information to tools that implement

load balancing functions in general purpose LAN sys-

tems. Each node in the system runs a PeerMon dae-

mon peer that periodically collects system usage statis-

tics about its own node and sends its information about

system-wide resource usage to a fixed number of peers

(currently three). The peers are chosen based on heuris-

tics designed to maintain accurate system-wide data and

a high degree of P2P network connectivity while at the

same time minimizing network overheads.

PeerMon’s peer-to-peer design solves problems as-

sociated with more centralized client-server monitoring

systems like those based on Simple Network Manage-

ment Protocol (SNMP), namely the single server bottle-

neck and single point of failure. Because there is no

central authority for system-wide resource information,

there is no central server that can become a bottleneck as

systems grow to larger numbers of nodes. Applications

that use PeerMon data access it locally on the nodes on

which they run by interacting with their local PeerMon

daemon. This ensures that system-wide resource usage

data are always available and can be accessed quickly

through a local service on each node. Additionally, since

it is not necessary that system-wide resource usage data

be consistent across all peers for the data to be useful,

our system is designed to avoid costly peer data synchro-

nization and peer data recovery.

PeerMon is also fault tolerant. Each PeerMon peer

is equal and provides system-wide usage information

to clients on its local node. If a node fails, PeerMon

daemons on other nodes just stop receiving data about

the failed node, but continue to provide system-wide re-

source information for non-failed resources.

To demonstrate how PeerMon resource monitoring

data can be used, we implemented three tools that make

use of its data. The first tool, smarterSSH, uses data

collected from the peer monitor process to select the

best machine to ssh into. Currently, we support se-

lecting the ”best” machines based on combinations of

CPU load, RAM load, and number of CPU cores. The

second tool, autoMPIgen, uses PeerMon data to auto-

matically generate MPI host files based on system-wide

resource capabilities and usage. The third tool is dy-

namic DNS binding based on system-wide resource us-

age. Using data provided by the PeerMon daemon run-

ning on the DNS server, our tool sets bindings so that

a single name is mapped to the current set of ”best”

nodes in the system. A user who remotely ssh’s into

cslab.cs.swarthmore.edu will be logged into

one of the ”best” machines in our LAN. The result is that

we better distribute remote logins across machines in our

system.

Currently PeerMon runs on the Swarthmore Computer

Science Department’s LAN of about 60 Linux 2.6/x86

machines. All three tools that make use of PeerMon data

are available to the users of our system.

The remaining parts of the paper are organized as fol-

lows: Section 2 discusses related work; Section 3 dis-

cusses the design of PeerMon; Section 4 discusses Peer-

Mon’s current implementation, configuration, and run-

ning details; Section 5 discusses our three example tools

that we designed that make use of PeerMon data; Sec-

tion 6 presents performance results of PeerMon and our

example tools; and Section 7 concludes and discusses fu-

ture directions for our work.

2 Related Work

Our work is most closely related to other work in net-

work management and network resource scheduling.

There has been a a lot of work on network manage-

ment systems that are designed to obtain usage informa-

tion and manage networked resources. Most of these are

centralized systems based on the Simple Network Man-

agement Protocol (SNMP) framework [9]. The frame-

work is based on a client-server model in which a single

central server periodically sends requests to clients run-

ning on each node to send back information about the

node. In addition, SNMP allows the manager to send

action requests to clients to initiate management opera-

tions on individual nodes. The centralized design allows

for a single central authority to easily make system-wide

resource management decisions; however, it also repre-

sents a single point of failure in the system and a bottle-

neck to scaling to large-sized networks.

To address the fault tolerance and scalability problems

associated with a centralized design, there has been work

in distributing network management functionality. Some

work uses a hierarchical approach to network manage-

ment [8, 20, 10]. In these systems, one or more top-level

managers communicate with distributed mid-level man-

agers to perform resource management activities. Be-

cause the mid-level managers are distributed over the

network, these systems scale better than centralized sys-

tems. Additionally, there is typically some support for

handling failure of one or more manager processes.

There have also been systems proposed using a P2P

design for networked management systems [2, 18]. In

particular, Panisson et al. [15] propose a modification to

the SNMP protocol whereby the network contains nodes

of three different roles, two types of managers as well as

an agent processes.

Our work is similar in that we use a P2P design to

solve the fault tolerance and scalability problems with

centralized solutions. However our work differs in two

2
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fundamental ways. First, PeerMon is designed to pro-

vide system-wide resource monitoring and resource us-

age data collection only. It is not a network manage-

ment system, but provides lower-level monitoring and

data collection. Thus, its design is much less compli-

cated than this other work and as a result, can be better

optimized for its system-wide data collection task inde-

pendently of how its data may be used by higher-level

services. A higher-level resource management system

could be implemented as a client of PeerMon data rather

than being integrated into PeerMon. The second differ-

ence is that every PeerMon peer is an equal peer. The

result is a purer P2P design than this other work; one

that provides a more layered and flexible architecture for

designing resource management systems, and one that is

more fault tolerant and scalable.

Other work related to ours is in the area of resource

scheduling and load balancing tools for networked sys-

tems. There has been a lot of work in this area, most

focusing on cluster and grid systems [7, 13, 11, 4, 16, 17,

19].

Condor [13] and the Now/GLUnix project [7] are two

examples that are designed, in part, to run on general pur-

pose networked systems like ours. NOW/GLUnix imple-

ments a cluster abstraction on top of a network of work-

stations that are simultaneously being used by individ-

ual users as a general purpose LAN. GLUnix stores the

global state of the network on a single master node. This

state is updated by daemon processes running on each

node, which periodically send their local resource usage

information to the master. The data are used to support

resource allocation and parallel and sequential job place-

ment by the master.

Condor implements a job submission and scheduling

system for running parallel and sequential applications

on LANs, clusters, and grids. When run on general pur-

pose LANs, Condor discovers idle nodes on which to run

jobs. When a node running a Condor job is no longer

idle, Condor uses process migration to move Condor jobs

to other idle nodes in the system. Condor uses a central-

ized manager and local daemons to collect system-wide

load statistics and to perform process control.

GLUnix and Condor provide much higher-level ser-

vices and abstractions than our work, but both collect

system-wide resource usage data on the same types of

target systems. PeerMon provides only the underlying

system for data collection, but uses a P2P design instead

of a centralized one. PeerMon could potentially be used

to provide data to higher-level system services like Con-

dor or GLUnix.
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Figure 1: PeerMon Architecture. Each host runs a PeerMon

daemon . The Listener thread receives UDP messages from

the P2P network (1) and updates the hashMap with the newest

data (2). The Sender thread periodically wakes-up and updates

the hashMap with local node resource data (3). It then selects

three peers to send its hashMap data via UDP messages (4 and

5). Applications, like smarterSSH, interact with the PeerMon

Client Interface thread via a TCP/IP to obtain PeerMon system-

wide resource usage data.

3 The PeerMon System

PeerMon is designed to run on a general purpose net-

worked system where users can log into any node at

any time and run any mix of parallel and sequential pro-

grams, and batch and interactive applications. The three

main goals in designing PeerMon are: to efficiently pro-

vide, in real-time, system resource usage information; to

scale to large-sized systems; and to be fault tolerant. The

system also needs to be flexible enough to allow nodes to

easily enter and leave the P2P network. Additionally, be-

cause each node continuously runs a PeerMon daemon,

it is important that PeerMon uses minimal network and

other system resources.

To meet these goals we chose a P2P design for Peer-

Mon. Each node in the network runs a PeerMon dae-

mon, which is an equal peer in the system; there is no

central authority nor is there a hierarchical relationship

among peers. Every node in the system provides system-

wide resource usage data to its local users. Thus, users

of PeerMon data need only contact their local daemon to

get information about the entire system.

When a PeerMon node fails, the rest of the system

3
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continues to function; non-failed nodes continue to use

PeerMon data collected from their local PeerMon dae-

mons. Data from failed or unreachable nodes ages out

of the system and will not be included as a ”best node”

option by system services that use PeerMon.

Recovery from failure is easy. When a node comes up,

it starts a PeerMon daemon that reconnects to the system

by sending its information to three peers. Once other

peers hear of the new peer, they will send it system-wide

resource usage data in subsequent peer data exchanges.

Our tests show that it takes on average eight rounds of

message exchanges for a new peer to become fully con-

nected into the system.

To reduce the amount of network traffic between

peers, we use the observation that it is not necessary,

nor is it possible, to have completely accurate system-

wide resource usage information in general purpose net-

worked systems. Even in a centralized resource moni-

toring system, the data do not represent an instantaneous

snapshot of system-wide state [12]. PeerMon is designed

so that each peer collects system-wide resource informa-

tion, but individual PeerMon nodes may have slightly

different information about the system. Distributed Peer-

Mon data do not need to have the same type of consis-

tency constraints as distributed file system and database

data do. Thus, we do not need to implement expensive

synchronization to support consistency of data across all

peers. As long as each PeerMon peer has relatively re-

cent resource-usage information about the system, its

data is just as accurate and useful as data provided by

a centralized system.

Higher-level services that use PeerMon data to imple-

ment load balancing or job-placement combine PeerMon

data with accounting of their activities to make policy

decisions. These higher-level services could be imple-

mented as centralized, hierarchical or distributed inde-

pendent clients of PeerMon. The constraints on higher-

level service determine which PeerMon peers it would

use to make policy decisions. This is no different than

how such systems would use data from a centralized re-

source monitoring system. PeerMon, like other resource

monitoring systems, does not need to account for how its

data may be used by higher-level services.

3.1 System Architecture

Figure 1 shows the structure of the multi-threaded Peer-

Mon daemon process. The Listener thread receives mes-

sages from other peers containing system-wide resource

statistics. The Sender thread periodically wakes up, col-

lects resource usage information about its local node

and sends a copy of its system-wide state to three other

PeerMon peers. The Client Interface thread exports the

peer’s collected system-wide state to local applications

IP TS TTL Indegree payload

130.52.62.123 5 7 4 (char *...)

Table 1: Structure of a hashMap entry.

that want to use PeerMon data.

Each PeerMon daemon stores its resource usage data

in a data structure called the hashMap. The Listener and

Sender threads update hashMap data in response to re-

ceiving or collecting newer resource information. The

Sender and Listener threads communicate using UDP/IP

sockets and the Client Interface thread communicates

with applications using TCP/IP.

3.1.1 Resource Usage Data

Each PeerMon daemon stores system-wide resource us-

age information in a data structure called the hashMap.

Table 1 shows the structure of a hashMap entry. Each en-

try in the hashMap contains information associated with

a specific machine (node) in the network. The set of in-

formation stored includes the IP and port number of the

node and PeerMon Listener thread, and the payload that

contains the resource usage data from that node. Cur-

rently, PeerMon is implemented to collect and store re-

source usage information in the payload field, but the

general structure is such that it could be modified to store

other types of data.

The time to live (TTL) field approximates the age of

the data. Its value is decremented each time stamp (i.e.

each time the Sender thread sends information to three

other peers). The Indegree field counts the number of

messages that a node has received in the latest interval

between two time steps. The time stamp (TS) field con-

tains the last time stamp when the node was directly con-

tacted from this PeerMon daemon. The TTL, Indegree,

and TS are used by heuristics to select the three peers to

send hashMap data to at each time step. The TS field is

stored locally and is not sent to other nodes. All other

hashMap data are shared with peers.

3.1.2 Sender and Listener Threads

The Sender thread periodically wakes up, collects re-

source statistics about its local node, adds them to

its hashMap, and then selects three peers to send its

hashMap data. The Listener thread is responsible for re-

ceiving hashMap entry data from other peers and updat-

ing its local hashMap with all or some of these data. The

Sender thread decrements the TTL field of each entry

each time it performs this operation. The TTL field ap-

proximates how old the resource data are for each node.

The Listener thread compares TTL fields of entries in its

hashMap and entries received from peers. If the peer data

4
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has a larger TTL value, it updates the hashMap with the

peer data (i.e. this is more recent data about the node). If

the current hashMap entry’s TTL value is larger, it does

not update its hashMap with the data from the peer (i.e.

the current entry represents more recent data about the

node than the data the peer sent). Currently, the TTL

field’s value starts at 10. Experiments run on networks

of sizes 25-500 show that this value works well to ensure

both recent data and high connectivity.

We chose to have the Sender and Listener threads use

UDP/IP sockets to communicate to avoid TCP connec-

tion overheads each time peers wanted to communicate.

As long as most UDP messages are delivered, an occa-

sional dropped packet will not affect the quality of the

data in the system. Because absolute correctness of the

data cannot be guaranteed, losing an occasional packet

will have little or no effect on the system. When the

node receives other system-state messages, the window

of time during which it missed an update about a node’s

state is small. If packet loss is common, then the added

guarantees provided by TCP may be worth its higher

communication overhead.

Because UDP is used to send hashMap data, care

must be taken to ensure that loss of a single packet does

not cause a Listening thread to block forever waiting

for a lost message. To ensure this, the Sender thread

sends several independent messages containing parts of

its hashMap data to each node. Each independent mes-

sage fits into a single packet so that if a packet is dropped,

the Listener thread will never block trying to receive it; it

just receives and handles the next independent message

never knowing that it received one fewer message than a

Sender thread sent.

3.1.3 Heuristics used to select Peers

To ensure that all nodes have recent usage information

about all other nodes in the system, care must be taken in

selecting which of three peers the Sender thread sends it

hashMap data to. We developed three heuristics for se-

lecting peers that, when used in combination, do a good

job of distributing new data to all peers and of maintain-

ing a high degree of connectivity in the P2P network.

Each time the Sender thread wakes up, it applies one of

the three heuristics. The heuristics are cycled through in

round-robin order.

The first heuristic, named ”Contact New Nodes”,

picks peers that are relatively new to the network. Since

PeerMon nodes can enter or leave the P2P network at

any time (e.g. due to node failure and restart) this heuris-

tic ensures that new nodes in the system collect system-

wide information soon after they connect the network.

The heuristic picks peers with the smallest value of:

MAX TTL−TTL+Indegree. The heuristics ensures

that nodes with a high TTL (i.e. nodes whose informa-

tion is new) and a low Indegree (nodes who have not been

sent to recently) are selected. The heuristic results in new

peers being quickly integrated into the system; however,

its use alone can lead to P2P network partitioning.

The second heuristic, ”Contact Forgotten Nodes”, se-

lects the three nodes with the lowest TTL (i.e. nodes

that the present node has heard from least recently). The

third heuristic, ”Contact Old Friends”, is designed to en-

sure that a node cannot become permanently isolated. It

uses the TS field values to choose peers that it has not

sent data to recently.

The combination of three heuristics works well to pre-

vent network fragmentation and to allow for new nodes

to quickly become fully incorporated into the system.

4 Current Implementation of PeerMon

PeerMon is implemented in C++. It runs on the Swarth-

more Computer Science Department network of about 60

Linux 2.6/x86 machines. Our system has some hetero-

geneity in that machines have different numbers of cores

(we have 2, 4 and 8 core machines), different amounts

of RAM, and slightly different processors. All machines

are connected by a switched 1Gbit Ethernet network.

PeerMon daemons collect local resource data for CPU

load, amount of free RAM, and number of users through

the Linux /proc interface on the node on which they run.

PeerMon can be modified to collect and distribute other

data. Currently, this would require changing PeerMon

code. In the future we plan to add a programming inter-

face that would allow users to more easily change the set

of data PeerMon collects and change how it collects it.

4.1 Starting Up a PeerMon Daemon

The PeerMon executable takes several command line ar-

guments that can be used to run and configure Peer-

Mon in different ways. Figure 2 shows the command

line options that include specifying the port number for

the Listener thread, running the daemon in collector-

only mode, starting with a user-defined configuration

file, and specifying the number of seconds the Sender

thread sleeps between collecting local information and

sending its hashMap data to three peers.

When a PeerMon daemon starts-up it reads informa-

tion from a config file that contains addresses of three

PeerMon nodes. These are the first three nodes that the

Sender thread contacts to start the exchange of system-

wide resource data.

If the PeerMon daemon is started in collector-only

mode it will receive resource usage information about

other nodes, but sends ”invalid” information about itself.

5
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peermon -p portnum [-h] [-c] [-f configfile] [-n secs]

-p portnum: use portnum as the listen port for peermon

-c: run this peermon daemon in collector-only mode

-f conf_file: run w/conf_file (default /etc/peermon/peermon.config)

-n secs: how often daemon sends its info to peers (default 20)

Figure 2: Command line options to peermon daemon.

Other nodes, upon receiving ”invalid” data, will not in-

clude the collector node’s information in data it exports

to its local users. This allows a collector-only node to use

PeerMon data but not make itself a candidate for other

node’s use. We run PeerMon in collector-only mode on

our DNS server so that other nodes will not choose it as

a target for ssh or spawning application processes.

Each machine in our system is configured to start a

PeerMon daemon when it starts-up. Each machine also

periodically runs a cron job to detect if the PeerMon dae-

mon is still running, and if not, re-starts it.

4.2 PeerMon Data Interface

Users (clients) of PeerMon data, such as smarterSSH, ob-

tain PeerMon data by connecting to the Client Interface

thread and sending it a message requesting its hashMap

data. TCP sockets are used to connect to the Client In-

terface thread.

In our current implementation, the PeerMon daemon

also exports its hashMap data by writing it to a file on

the local file system. The PeerMon Sender thread re-

places the old contents of the file with updated hashMap

values each time it wakes up. Clients can access Peer-

Mon data by opening and reading this file. There is a

potential race condition between the reader and writer of

this file. However, because we do not plan to support the

file interface in the final version of the code, we ignore

handling the unlikely event of a read/write conflict to this

file (in practice we rarely see it). The file interface was

our initial client interface to PeerMon before adding the

Client Interface thread, and is currently used to help with

debugging of our system.

Although the file interface is easier for clients to use

than the TCP interface, it has two problems: the first is

the potential read/write race condition to the shared file

that could result in clients reading garbage or incomplete

data; the second, and more serious, problem is that there

is non-trivial overhead associated with re-writing the file

contents each time data are collected. With the TCP in-

terface the PeerMon daemon only exports its data when

they are being used by a client.

In the future we plan to implement a higher-level pro-

gramming interface for PeerMon clients that will hide the

underlying TCP interface in an easier to use library.

5 Example Applications that make use of

PeerMon data

The initial motivation for developing PeerMon was to

design tools that could make better load balancing de-

cisions in general purpose network systems by consid-

ering system-wide resource usage data. As a demonstra-

tion of how PeerMon data can be used for such purposes,

we developed three tools: smarterSSH; autoMPIgen, and

dynamic DNS binding based on resource load.

5.1 smarterSSH

smarterSSH is our tool for choosing the ”best” ssh tar-

get node based on PeerMon data. It is implemented in

Python and has several command line options that allow

a user to specify different criteria for ordering the ”best”

node(s) and to select different runtime options.
The following are the command line options to

smarterSSH:

-c: order nodes by CPU load

-m: order nodes by free memory

-n num: print out the best num nodes

rather than ssh into the best

-i: verbose printing mode

By default, smarterSSH orders nodes based on a com-

bination of their CPU load and amount of free RAM us-

ing the function: freeMem

1+CPUload
(1 is added to prevent divi-

sion by 0).

When run with no command line options, smarterSSH

connects to its local PeerMon daemon to obtain its

hashMap data, sorts the data based on the combination of

CPU load and free RAM, randomizes the order of equiv-

alent nodes, and ssh’s into the top node from the sorted

result. Running with command line options -c or -m

sorts the data by CPU load only or free RAM only. The

ordering functions use small delta values to place nodes

into equivalence groups so that small differences in free

RAM or CPU load are not deemed significant.

Running with command line options [-n num]

causes smarterSSH to print out an ordered list of its top

num nodes rather than ssh’ing into the ”best” node.

As an example, Figure 3 shows output from a run of

smarterSSH with the command line options: -c -i -n

10. This run will order nodes by CPU load only, and will
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host CPU load free RAM cores

--------------------------------------

avocado 0.000 13068052 8

pimento 0.000 15828112 8

orange 0.000 2933896 4

cucumber 0.000 6291932 4

dill 0.000 5967724 4

ginger 0.000 3170436 4

marjoram 0.000 7049804 4

molasses 0.000 6881228 4

anise 0.030 14659024 8

perilla 0.020 5597020 4

Figure 3: Example output from a run of smarterSSH -c

-n 10 -i (print out the top 10 ”best” nodes as ordered by

CPU load). Eight of the nodes are equally good with a CPU

load of 0.0. anise is ranked higher than perilla because it has

8 cores vs. 4.

print out the top 10 nodes rather than ssh’ing into the top

node. In this example there are eight ”best” nodes, all

with CPU load 0.0. Each time smarterSSH is invoked, it

randomizes the PeerMon data so that the total ordering

among equal nodes varies. This means that subsequent

runs of the above command could result in a different

ordering of the first eight nodes. Randomization is used

so that multiple invocations of smarterSSH will distribute

the load over the ”best” nodes while these new ssh’s have

not yet had time to effect system load.

5.2 Automatic MPI host file generation

autoMPIgen is another tool that uses PeerMon data to

perform load balancing in general purpose LANs. It

automatically generates MPI host files by choosing the

best nodes based on PeerMon’s system-wide resource

use data. It is written in Python and is very similar to

smarterSSH. When run, autoMPIgen interacts with the

local PeerMon daemons to obtain system-wide resource

usage information. It has command line options to allow

the user to specify how to order machines and how to

configure the resulting OpenMPI [5] hostfile 1 contain-

ing the ”best” machines.
The following are the command line options to autoM-

PIgen:

-n num: choose total num nodes

-f filename: specify the output file.

-c: order best nodes by CPU load only

-m: order best nodes by free RAM only

(default is combination CPU and RAM)

-i: printout results to stdout

-p: include a node’s number of CPUs

in the generated hostfile

-cpus: interpret the num value from

(-n num) as number of cores

As an example, using the PeerMon data from Figure 3,

autoMPIgen run with the command line options -n 9

-c -p generates the following hostfile (the 9 best hosts

ordered by CPU load and including the core count in the

hostfile (”slots=n”)):

avocado slots=8

pimento slots=8

orange slots=4

cucumber slots=4

dill slots=4

ginger slots=4

marjoram slots=4

molasses slots=4

anise slots=8

A run adding the additional command line argument

-cpus interprets the -n 9 value to mean CPUs rather

than nodes, and generates the following hostfile (best

machines with at least a total of 9 cores):

avocado slots=8

pimento slots=8

5.3 Dynamic DNS

Our third example of using PeerMon data is to incorpo-

rate it into dynamic domain name server (DNS) bind-

ing. [1] This allows a virtual host name to be mapped

to one of the set of ”best” physical nodes where ”best”

nodes are selected based on system-wide load.

Using PeerMon data to select a set of ”best” nodes has

several benefits over BIND’s support for load distribution

that selects a host to bind to using either round-robin or

random selection from a fixed set of possible hosts. Our

solution allows for the ”best” host to be selected based on

current system resource load, thus adapting to dynamic

changes in system resource usage and resulting in better

load distribution. Our solution is also resilient to nodes

being unreachable due to temporary network partition-

ing, node failure, or to deliberate shut-down of nodes in

order to save on energy consumption during times of low

use. In BIND, if the selected host is not reachable, then

ssh hangs. Using our system, unreachable or failed nodes

will not be included in the set of ”best” targets. When a

node is reachable again, PeerMon will discover it and the

node may make its way back into the set of ”best” targets.

Adding support for dynamic DNS binding using Peer-

Mon data is fairly easy if you have control over your own

domain name server. In our department we run our own

DNS server and control both the name-to-address and the

reverse address-to-name mappings for our sub-domain

(cs.swarthmore.edu.) The following is a summary

of the steps we took to add support for dynamic binding

to nodes chosen using PeerMon data:

1. Run PeerMon on our domain name server in

collector-only mode.
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2. Periodically (currently once per minute) update the

resource records for our sub-domain so that one

hostname (cslab.cs.swarthmore.edu) has

n address records associated with it (we have n set to

5). These 5 machines are selected using data from

the local PeerMon daemon.

3. Use the round-robin feature of BIND 9 to ro-

tate through the 5 addresses when queries for

cslab.cs.swarthmore.edu are made

The first step requires that PeerMon is running on po-

tential target machines in our system and on the DNS

server. We run PeerMon daemons on most of our ma-

chines (we exclude most servers and a few other ma-

chines that are designated for special use). The DNS

server runs the PeerMon daemon in collector-only mode,

which will exclude it from being a target of smarterSSH,

autoMPIgen, or any other tool using PeerMon.

The second and third step for adding PeerMon data

into the DNS records require that we first enable the dy-

namic update feature of BIND 9 by adding an ”allow-

update” sub-statement to our DNS zone configuration

file:

zone "cs.swarthmore.edu" {

type master;

file "cs.db";

allow-update {127.0.0.1;130.58.68.10;};

};

Next, a script to update DNS records based on Peer-

Mon data is added as a cron job that runs once per

minute. When run, the script first contacts its local Peer-

Mon daemon to obtain system-wide resource usage data

to determine the 5 ”best” machines. For example, sup-

pose these are currently the five best machines based on

PeerMon data:

130.58.68.41

130.58.68.70

130.58.68.162

130.58.68.74

130.58.68.148

The script next generates a file of commands for nsup-

date (part of the BIND 9 software), deleting the old

records first, and then adding new A records (an example

is shown in part (a) of Figure 4.) As a last step, the script

runs ”nsupdate” on the generated file to change the DNS

records (the results on the example are shown in part (b)

of Figure 4):

The round-robin feature of BIND will map

cslab.cs.swarthmore.edu to one of these 5

”best” nodes until the cron job runs again to change the

mapping to a possibly new set of the 5 ”best” nodes.

Our implementation led to a couple difficulties that

we had to solve. First, every PeerMon daemon

must have the same ssh host key. Otherwise, when

users repeatedly ssh to cslab, each time getting a

different machine from the PeerMon list, ssh would

warn them that the host identification has changed for

cslab.cs.swarthmore.edu. We solve this prob-

lem by giving all machines running PeerMon the same

ssh host key, and distributing an ssh known hosts2 file

that reflects this fact.

The second difficulty had to do with editing DNS data

files. Because we are using dynamic DNS, a program

running on our DNS server updates our domain data files

every few minutes. A serial number in the domain data

file is used to signal the change in the zone’s data, which

means that the serial number for the zone data is be-

ing changed with each dynamic update. This poses no

problem until we need to manually edit the domain data

file (e.g., to add a new name-to-address mapping). To

solve this problem, our system administrators must first

”freeze” the zone, then make manual editing changes,

and then ”unfreeze” the zone. BIND 9’s rndc command

makes this fairly easy:

$ sudo rndc freeze

(edit the data files here, being

sure to update the serial number)

$ sudo rndc thaw

Once set up, students and faculty can ssh into

cslab.cs.swarthmore.edu and be automatically

logged into a machine with the lowest load in the sys-

tem. Because we update the mappings every minute,

and because remote ssh is not a frequent system ac-

tivity, the result will be good distribution of remote

ssh’s accross nodes in our system. Another benefit is

that users do not need to remember specific machine

names to log into our system; they simply ssh into

cslab.cs.swarthmore.edu and are placed on a

good machine.

By using PeerMon data, machines with high loads,

machines that are unreachable, or machines that have

been shutdown will be excluded from possible hosts.

This not only means that there is better load balanc-

ing using PeerMon data, but that our approach to dy-

namic DNS binding is resiliant to network partitioning

and node failures. No longer do users log in to machines

that are already heavily loaded, or try to log into a ma-

chine, only to see their ssh process timeout. A benefit for

our system administrators is less editing of the DNS data

files. If a machine is taken out for service, it is automat-

ically (within a minute or two) removed from the pool

of best-available machines, requiring no manual editing

of the DNS data files. When a machine is restarted, it

will quickly be added back into the PeerMon network

8
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(a) example generated file contents:

--------------------------------

update delete cslab.cs.swarthmore.edu.

update add cslab.cs.swarthmore.edu. 30 IN A 130.58.68.41

update add cslab.cs.swarthmore.edu. 30 IN A 130.58.68.70

update add cslab.cs.swarthmore.edu. 30 IN A 130.58.68.162

update add cslab.cs.swarthmore.edu. 30 IN A 130.58.68.74

update add cslab.cs.swarthmore.edu. 30 IN A 130.58.68.148

<a blank line is necessary here>

(b) results after executing nsupdate:

---------------------------------

$ host cslab.cs.swarthmore.edu

cslab.cs.swarthmore.edu has address 130.58.68.70

cslab.cs.swarthmore.edu has address 130.58.68.74

cslab.cs.swarthmore.edu has address 130.58.68.148

cslab.cs.swarthmore.edu has address 130.58.68.162

cslab.cs.swarthmore.edu has address 130.58.68.41

Figure 4: Dynamic DNS impementation details: (a) an example generated file containing update command for nsupdate; and (b)

output from running host after the script runs nsupdate.

and will automatically be a candidate target for dynamic

DNS binding.

6 Performance Results

We present results mesuring the performance of Peer-

Mon in terms of its overheads, the degree of P2P net-

work connectivity, the age of system-wide resource data,

and its scalability to larger networks. We also present

results using the tools we developed that make use of

PeerMon data to perform load balancing in our network.

Our results show that these tools significantly improve

the performance of application programs running on our

system.

6.1 PeerMon P2P Network Conectivity

and Age of Resouce Usage Data

To evaluate the connectivity of PeerMon peers, we sim-

ulated a network of 500 nodes by running 10 instances

of a PeerMon daemon process on each of 50 machines

in our lab. Each daemon was started with a time stamp

value of 5 seconds 2 (how frequently the Sender thread

wakes-up and collects and distributes usage data).

P2P network connectivity is computed as the average

number of nodes contained in each daemon’s hashMap

divided by the total number of nodes in the network. A

connectivity of 1 means that every node in the network

has current information about every other node in the net-

work. For networks up to size 500, we consistently saw

connectivity values above 0.99.

Figure 5: Average message age across all nodes in the network
for various network sizes.

In addition to connectivity, we computed the average

age of hashMap data for different sizes of networks. Fig-

ure 5 shows the results. For a network of size 50, the

average age of data is about 3 iterations (roughly 15 sec-

onds old). The average message age increases with the

size of the network. For a network size of 500, the av-

erage age of a message is about 5 iterations (roughly 25

seconds old).

Additionally, we ran experiements to help us deter-

mine a good value for the number of peers that the Sender

thread should send to each time it wakes-up. We ran ex-

periements of different numbers of send-to peers on a

network of 500 nodes. The results, in Figure 6(a), show

that that as the number of peers increases (x-axis) the

9
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average message age decreases (y-axis). However, Fig-

ure 6(b) shows that as the number of peers increase, the

PeerMon network load increases linearly.

Picking a good number of peers to send to each time

step involves acheiving a good balance between main-

taining newer data and good P2P network connectivity

and maintaining low messaging overheads. Our results

indicate that a send-to value of 2 is too small, result-

ing in older resouce usage data and potentially less than

full connectivity. A send-to value of 4 results in an av-

erage data age of about 22 seconds with 100% connec-

tivity; however, nearly 150 Kb/s of data are sent from

each node in the network. Based on our results, we chose

3 peers as producing a good balance between achieving

low data age (about 25 seconds on average), high connec-

tivity (around 99.5%), and moderate network bandwidth

usage (about 120 Kb/s).

(a) Average Message Age

(b) Network Bandwidth Use

Figure 6: Average message age (a) and bandwidth used (in

Kb/s) (b) on each node for different send-to values on a network

of 500 nodes.

6.2 PeerMon Scalability

To evaluate how well PeerMon scales to larger-sized sys-

tems, we ran multiple instances of PeerMon on each of

55 machines in our system to simulate systems of larger

Figure 7: The average additional CPU load per PeerMon host

for different sized networks (Numbers of Nodes). The results

show a basically fixed-size per-node CPU load as the PeerMon

network increases.

sizes. We ran experiements with 1, 2, 4, 10, 20, and 40

PeerMon daemons per real machine to simulate LANs of

size 55 to 2,200 nodes. For these experiments we used

the default 20 second rate at which the Sender thread

sends to three of its peers. We ran a script on our monitor-

ing server to periodically get MRTG [14] data to obtain

a trace of five minute averages of network, memory and

CPU load for every machine in our network. In order to

ensure that our results for different sized systems were

comparable, we ran experiments over a weekend when

our system was mostly idle so that PeerMon was the pri-

mary load on the system. The data collected from each

of the physical 55 machines in our network were divided

by the number of PeerMon daemons running per host to

obtain the per-node values for the larger systems that we

simulated.

Figure 7 shows CPU load per PeerMon node and

Figure 8 shows the amount of free RAM per PeerMon

node for different sized networks. Both per-node CPU

load and per-node RAM use stay relatively fixed as

the network size increases. As the system-size grows,

each PeerMon node has a larger hashMap data structure.

However, the amount of memory storage and CPU pro-

cessing that this data structure requires is so small that

the overheads for a network of 2,200 nodes are equiv-

alent to overheads for a network of 55 nodes. These

results show that neither RAM nor CPU use will limit

PeerMon’s scalability to larger sized LANs.

Figure 9 shows the number of bytes sent and received

per second per PeerMon node for different sized net-

works (from 55 to 2,200 nodes). The amount of net-

work traffic remains very small as the size of the net-

work grows. On the 2,200 node PeerMon network each
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Figure 8: The Amount of Free RAM (in MB) per PeerMon host

for different sized networks. These data show that PeerMon

uses little RAM space, and that the amount it uses per node

stays fixed as the size of the network grows.

Figure 9: The average Network load per PeerMon host for dif-

ferent sized networks. The data are the average Mbits/second

sent and recieved per node. The data show that although there

is a slight increase in network bandwidth used per node as the

PeerMon network size increases, the amount used per node is

still a small fraction of the total bandwith available to the node.

PeerMon daemon uses less than 0.16 Mbits/second on its

1 Gbit connection. However, there is an increase in the

amount of data each PeerMon daemon sends to its three

peers as the network grows (the number of peers sent to

by each PeerMon daemon is constant, but the size of each

message grows with the number of nodes). On a 55 node

network, each PeerMon deamon’s hashMap has at most

55 entries. On a 2,200 node network, each hashMap can

contain up to 2,200 entries. Each time the Sender thread

wakes up and sends its hashMap contents to three peers,

the total number of bytes sent to each peer grows with

the size of the network.

Even for a network with 2,200 nodes, our results show

that PeerMon adds very little network overhead and that

its network use scales well to the types of systems for

which it was designed. However, the data show some

added network costs as the size of the network grows.

The decision for each PeerMon daemon to send its full

HashMap contents works well for the systems we are

targeting, but it could become a bottleneck if PeerMon

were to be deployed on a system with tens or hundreds

of thousands of nodes. In this case, its design may need

to be changed so that each peer exchanges only partial

hashMap contents.

Our results show that PeerMon scales well to large-

sized systems of the type we are targeting. It adds only

negligable amounts of network, RAM, and CPU load to

the system.

6.3 Results Using smarterSSH and autoM-

PIgen on Application Workloads

The initial motivation for developing PeerMon was to

implement tools that could distribute user and program

load in general purpose networked systems. Therefore,

as a way to evaluate this use of PeerMon data, we ran ex-

periments using smarterSSH and autoMPIgen to select

the best nodes on which to run sequential and parallel

MPI applications.

The experiments were run during a time when our

system was heavily used so that there was variation in

system-wide resource usage. For some experiments we

additionally ran artificial workloads on some nodes to en-

sure more variation in resource usage across nodes. For

these experiments, we needed to ensure some variation in

resource usage, because if all nodes are basically equal, a

randomly chosen node will be just as good as one chosen

based on PeerMon’s system-wide resouce usage data.

We evaluated the results of running different applica-

tions in the network using smarterSSH and autoMPIgen

to select the nodes on which to run the applicaiton. We

found significant improvements in application runtime

when using our tools. The results were consistent across

a broad range of tests.

11
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For each experiment we compared runs of a bench-

mark program using smarterSSH or autoMPIgen to pick

the ”best” node(s) to runs of the benchmark on randomly

selected nodes (representing no use of PeerMon data).

For the smarterSSH runs, we tested all three node order-

ing criteria (CPU only, RAM load only, and both). We

ran each benchmark 200 times, doing 50 tests of random

selection and 50 tests of each of the three smarterSSH

ordering criteria. We interleaved the runs of each test so

that the results would be equally affected by changes in

system load over the course of the experiement.

Our first benchmark is a memory intensive sequential

program that allocates a 2.8 GB array of integers and

then iterates over the array elements ten times, modifying

each array element as it goes. By reading and writing ar-

ray values with each iteration, we ensure that if the entire

array does not fit in available RAM, the application will

trigger swapping on the node, which will significantly

increase its total execution time.

The ”Memory” column in Table 2 lists speedup val-

ues of using smarterSSH over randomly chosen nodes.

The results show that the run time using smarterSSH

with CPU load ordering is not significantly different

from random (speedup value of 0.87) 3 However, the

two smarterSSH runs that use RAM load to select the

”best” node perform significantly better than randomly

selected nodes (speedup values of 4.62). The speedup

value of 0.87 for CPU, although not significantly differ-

ent than random, does show that picking nodes based on

CPU load alone for this benchmark will not necessarily

result in good choices. Since this is a memory inten-

sive benchmark, it makes sense to choose nodes based

on their RAM load.

Our second experiment uses a primarily CPU inten-

sive benchmark consisting of an openMP implementa-

tion of Conway’s Game of Life (GOL) [6]. The bench-

mark program runs on a single machine. It consists of

a two threaded process that computes the Game of Life

on a 512x512 grid for 1000 iterations. The column la-

beled ”OpenMP GOL” in Table 2 presents the speedup

values obtained using smarterSSH vs randomly select-

ing a node. Our results show that speedup is significant

for all three smarterSSH runs, with the combination or-

dering criterion performing slightly better than the others

(speedup of 2.29).

The final benchmark program is an OpenMPI imple-

mentation of the Game of Life 4. We ran the benchmark

on a 10000x10000 grid for 30 iterations. The program

consists of 8 MPI processes that are distributed across 8

different nodes in our system. The implementation pro-

ceeds in rounds where processes must synchronize with

the others before starting the next round. As a result, the

runtime is determined by the slowest process. autoMPI-

gen was used to automatically generate the MPI hostfiles

Node Benchmark

Ordering Memory OpenMP GOL MPI GOL

CPU 0.87 1.63 1.27

Memory 4.62 2.19 1.78

Both 4.62 2.29 1.83

Table 2: Speedup over random selection of machines using

each heuristic on all three of the benchmarks. Cursive entries

are not significantly different from random selection.

for the runs using PeerMon data.

For these experiments we ran a CPU intensive pro-

gram on 9 of the 50 nodes to create imbalances in CPU

load across machines in our system (18% of the ma-

chines in our network have a high CPU load). Using

randomly selected nodes, there is a 85.7% chance that

each trial would include one of the nine machines run-

ning our CPU intensive program. For the autoMPIgen

runs, these 9 nodes should not be selected.

The speedup values are shown in the ”MPI GOL” col-

umn in Table 2. The results show autoMPIgen runs per-

forming significantly better than random node selection.

Ordering nodes based on both CPU load and RAM load

results in the best performance (speedup of 1.83).

Our benchmark tests show that using PeerMon data to

select good nodes based on CPU load and RAM load re-

sults in applications performing significantly better than

when run on randomly selected nodes. In the worst case,

ordering nodes by CPU load does not perform signifi-

cantly worse than random. A knowledgeable user should

be able to predict which ordering criterion is most useful

for her program based on whether the program is more

CPU-intensive or more memory-intensive. However, our

results demonstrate that for all the benchmarks ordering

nodes using the combination of CPU load and RAM load

works best. This is likely due to the fact that all programs

require a certain amount of both CPU time and RAM

space to execute efficiently. Based on these performance

results, we use a combination of CPU and RAM load as

the default ordering criteria in smarterSSH and autoM-

PIgen.

7 Conclusions

Our results show that PeerMon is a low overhead sys-

tem that quickly provides accurate system-wide resource

usage data on general purpose LAN systems. Its peer-

to-peer design scales well to large sized systems and is

fault tolerant. Our example applications that use Peer-

Mon data (smarterSSH, autoMPIgen, and dynamic DNS

binding based on system load) demonstrate that PeerMon

data can be very useful for implementing load balancing

applications for systems that do not have centralized con-
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trol of resource scheduling. Our benchmark studies show

significant improvement in application performance us-

ing PeerMon data to make good choices about process

placement in the system. PeerMon provides a system-

wide data collection framework that can be used by

higher-level tools that implement management, schedul-

ing or other monitoring activities.

Future directions for our work include: investigat-

ing, collecting, and using other system-wide statistics in

PeerMon; investigating scalability and security issues as-

sociated with supporting PeerMon running on multiple

LANs; and further investigating ways in which PeerMon

data can be used to improve individual application per-

formance in general purpose LANs. Additionally, we

plan to implement an interface to PeerMon clients that

is easier to program than the current TCP interface. Our

current plan is to implement a library interface that would

hide the low-level TCP socket interface. We also plan to

implement better support for extensibility by adding an

interface to allow users to more easily change the set of

system resources that are monitored by PeerMon.
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Abstract
The Akamai platform is a network of over 73,000 servers
supporting numerous web infrastructure services includ-
ing the distribution of static and dynamic HTTP con-
tent, delivery of live and on-demand streaming media,
high-availability storage, accelerated web applications,
and intelligent routing. The maintenance of such a net-
work requires significant monitoring infrastructure to en-
able detailed understanding of its state at all times. For
that purpose, Akamai has developed and uses Query, a
distributed monitoring system in which all Akamai ma-
chines participate. Query collects data at the edges of
the Internet and aggregates it at several hundred places
to be used to answer SQL queries about the state of the
Akamai network. We explain the design of Query, out-
line some of its critical features, discuss who some of
its users are and what Query allows them to do, and ex-
plain how Query scales to meet demand as the Akamai
network grows.

1 Introduction

Akamai’s edge network is a distributed computing plat-
form with over 73,000 servers in 70 countries in about
1,000 autonomous systems, which on any given day may
handle upwards of 20% of Internet traffic. Akamai pro-
vides multiple services including the delivery of static
and dynamic HTTP content and live and on-demand me-
dia streams, reliable storage, Web and IP application
acceleration, and DNS services; see [15] for a recent
overview. Each Akamai server runs multiple applica-
tions, constructed out of multiple components, and po-
tentially participates in providing more than one of these
services. Thus, Akamai’s edge platform consists of over
1 million distributed software components.

The Akamai network supports customer businesses
that run twenty-four hours a day, seven days a week. In
many cases outages of even a short period of time can

cause substantial business impact. The need for reliable
real-time monitoring of the state of our network, there-
fore, is critical.

Query is a near real-time monitoring system, devel-
oped in-house, that monitors the Akamai network to pro-
vide up-to-date information about its state. It is used by
automated applications to detect problems and measure
performance over time, by software engineers to ensure
their systems are behaving properly in the field, by oper-
ations staff to troubleshoot problems and ensure that the
network is properly configured, and by services that pro-
vide data to customers. Information from Query is pro-
vided through a SQL interface, allowing users a familiar,
precise way of specifying the information they need.

The Akamai network is divided into several thousand
clusters all over the world at the edges of the Internet. It
is in those clusters that Query begins collecting data. Ev-
ery Akamai machine runs Query, and any software com-
ponent on any machine can send data to the local Query
instance to be published into database tables. Some sub-
set of the machines in each cluster are designated as
Cluster Proxies who also have the job of collecting all the
data from their respective clusters. Each Cluster Proxy
takes all the tables it receives from machines in its clus-
ter and combines them into larger tables.

Query is partly distributed and partly centralized. The
collection of data in thousands of clusters all over the
world is fully distributed, but that data need to be aggre-
gated to allow the issuing of SQL queries about the en-
tire Akamai network. A set of a few hundred machines,
called Top-Level Aggregators (TLAs) collects data from
the cluster proxies and combines data from all the clus-
ters into larger tables. Because it takes all the resources
available to most TLAs just to talk to all those clusters
and combine their data, TLAs don’t have enough pro-
cessing time left to also answer queries. Therefore they
send their aggregated tables to SQL parsers that actually
receive queries and compute their answers.

Several types of users make requests to Query. Hu-
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man users, including software engineers and operations
staff, issue queries to understand the state of the Aka-
mai network. This is particularly important for detect-
ing and responding to problems quickly. This monitoring
and diagnosing is facilitated by the fact that Query pro-
vides aggregated data in the form of tables that can be
accessed using a familiar SQL interface. This interface
enables users to easily combine data from multiple real-
time data sources, as well as statically generated config-
uration data, without the need to log in to individual ma-
chines. For example, by issuing a query such as the one
below, a user can see processes on machines with role
“dns” that are using more than 75% of system memory
for their RSS:

SELECT sys.ip ip, procname, rss, pid
FROM sys, processes
WHERE sys.ip = processes.ip

AND (rss*100)/sys.memtotal > 75
AND sys.ip in

(SELECT ip
FROM machinerole
WHERE role=ʼdnsʼ);

Numerous automated applications issue queries as
well. For example, Akamai’s alert system is an impor-
tant tool for detecting problems and fixing them before
they affect customers. It issues queries to detect each
of several thousand conditions that indicate problems,
then alerts staff in the Network Operations Control Cen-
ter whenever those conditions are present.

A third group of users is customer-facing applications.
For example, EdgeControl [3], the Akamai customer por-
tal, provides graphs of usage to each customer. The data
presented fall under two categories. The most reliable us-
age data are collected from detailed logs on the machines
and displayed precisely. Query, however, can report re-
sults faster than the logs can be processed, but with less
than perfect reliability. We display to customers the most
recent data based on results from Query, and the most ac-
curate data based on log analysis. Similarly, graphs such
as the ones that are available to the general public on
the Akamai website [22] depend on data collected from
Query. We will discuss how each of the groups men-
tioned above uses Query and the benefits each gains from
it.

The rest of this paper is structured as follows: Sec-
tion 2 talks about the goals of Query’s design. Section 3
talks about the architecture of Query that achieves these
goals. Section 4 explains several of Query’s features that
are most important to users, and Section 5 details who
some of those users are and how they use Query. In Sec-
tion 6, we present techniques that have allowed Query
to scale as the company has grown far beyond its size

when Query was first written. Along with those tech-
niques we use a number of other techniques to manage
Query and make sure that it is provisioned and config-
ured as needed, detailed in Section 7. In any large de-
ployed network, failures are bound to occur, so we ex-
plain how Query handles them in Section 8. Finally, we
compare query against related systems in Section 9, be-
fore concluding in Section 10.

2 Design Goals

Query is designed with a number of goals in mind. Occa-
sionally, those goals conflict, providing us with difficult
tradeoffs. We describe those goals and some resulting
tradeoffs.

2.1 Goals
• Reliability: Query should always be available to

answer requests.

• Scalability: Query should continue to stand as the
load doubles several times over.

• Data latency: When data are published at the
edge, they should appear in the answers to queries
promptly.

• Query latency: When a user issues a query, an an-
swer should come back quickly.

• Completeness: All published data should be avail-
able. Query results should be based only on com-
plete tables.

• Consistency: When data are published, they should
eventually be available everywhere. Requests
served by distinct machines should have similar an-
swers.

• Synchronization: All data available on a machine
should be up-to-date as of about the same time, so
that all tables from that machine reflect the state at
one moment as closely as possible.

• Fault tolerance: When a machine fails or a connec-
tion goes down, the system should still be available
to serve requests.

• Fault quarantining: A fault in one place should
stay in that place instead of spreading.

2.2 Tradeoffs
Some of the aforementioned goals sometimes conflict.
Here we describe some of the more interesting tradeoffs
we face in the design of Query.

2
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2.2.1 Data Latency and Completeness

To have complete data, Query must wait for every ma-
chine to send its contributions to every table before
putting each table together. To have low data latency,
Query must put its tables together quickly, waiting for as
few things as possible. We achieve a balance between
the two by providing a relaxed notion of best effort com-
pleteness, which will be discussed in Section 4.2.

2.2.2 Fault Tolerance and Completeness

Fault tolerance requires Query to move on and work
around machines that fail. Completeness requires it to
find a way to obtain their data. We strike a balance be-
tween the two with the same relaxed notion of complete-
ness we describe in Section 4.2.

2.2.3 Fault Tolerance and Quarantining

A desire for fault tolerance suggests that when a machine
fails, we should move requests to it to another machine.
A desire for limiting the scope of faults suggests that,
because a request could consume a large number of re-
sources and take down a machine, we should not move
requests that fail to another machine. We achieve a bal-
ance by having sets of a few equivalent machines called
aggregator sets among which requests can move. A bad
request may take down two or three machines in one ag-
gregator set, but it will not take down the hundreds of
aggregators system-wide or any machines that serve cus-
tomer data. We are also very careful with aggregator sets
used for critical data so that they do not get requests that
consume more resources than they can afford. We de-
scribe aggregator sets in more detail in Section 3.5.

3 Architecture

We explain the architecture of Query by tracing the path
data take from the time they are published to the time
users see them affect the answers to queries.

3.1 Query at the Edge
Every machine on the Akamai platform runs an instance
of Query. That instance listens for communications from
processes on the same machine. Any process may open
a connection to Query, after which point it is required
to send Query a list of tables it wants to publish. Query
does not start collecting these tables immediately, how-
ever. Some of them are very rarely used, and collecting
them all preemptively would be a waste of resources. In-
stead, each Query instance maintains a list of tables that
have been requested from it and requests from each pro-
cess on the machine only those tables it needs.

Every once in a while (once a minute or two, depend-
ing on the machine configuration), every process is obli-
gated to send Query a copy of all tables that process has
claimed to be publishing that Query has requested. At
the same frequency, but offset by several seconds, Query
combines the tables being published by all processes on
that machine. We call the set of tables a machine com-
bines together a generation. The reason for the offset is
so that the other processes have time to publish the data
before Query consumes them. When Query prepares its
generation, all the data were collected within a relatively
short time span (several seconds), so the data provided
by any individual edge machine come close to reflecting
its state at one moment.

Figure 1: Query on an edge machine. Three processes,
P1, P2, and P3, are shown publishing into Query, as is
one example table.

There are several interfaces to Query used to publish
on the edge machines. The most basic is a program-
matic C interface that handles all the communication
with Query. Wrappers around that interface exist in sev-
eral other languages. Users also have the option of writ-
ing a file containing the values in their table in a text-
based format. A daemon on the machines reads those
files periodically and publishes their contents into Query.
Finally, a separate software component enables Query to
collect data published by SNMP-enabled devices, such
as routers or filers.

A picture of an edge machine is shown in Figure 1.
A single Query process and three publishing processes
are shown, as is one row of an example table. That row
describes information about one mount point on the ma-

3
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Figure 2: Query in a cluster. Two edge machines and a Cluster Proxy are publishing tables, which the Cluster Proxy
aggregates. One example table is shown.

chine. In reality, that table has multiple rows per edge
machine. Also, there are really several times as many
publishing processes and hundreds of different tables
available on each machine.

3.2 Cluster Proxies
The collection of data by Query is hierarchical. The Aka-
mai network is divided into clusters all over the world,
each located within a single data center. Within each
cluster, some number of machines are designated Clus-
ter Proxies and have the job of collecting data from all
machines in the cluster. Each cluster is small, having at
most a few dozen machines, so data collection does not
incur a high overhead.

Each Cluster Proxy collects requests from the next
level down the hierarchy and requests tables from each
machine in its cluster. Every time any Query process
collects a generation, it sends each Cluster Proxy a copy
of all tables the Cluster Proxy is requesting. Any time
Query sends a generation of tables from one machine to
another, it sends it in an efficient encoded format to save
bandwidth. Offset by several seconds from that process,
the Cluster Proxies collect their own generations contain-
ing all the data from their entire respective Clusters.

The Cluster Proxies also serve as edge machines, so
they also publish their own data, which they combine
with the data from other machines in the cluster when
making their generations.

A picture of Query in a cluster is shown in Figure 2.
Only two edge machines, a cluster proxy, and one table
are shown. In practice, a cluster would have up to dozens
of machines, several cluster proxies, and hundreds of ta-
bles. The rows from all the edge machines are combined
at the Cluster Proxy.

3.3 Aggregators
The next level in the hierarchy is the Top-Level Aggre-
gators (TLAs). Each TLA has a complete view of the
network, because it talks to a Cluster Proxy in each clus-
ter. The job of a TLA is to collect generations from the
Cluster Proxies, aggregate together global generations of
all the tables from everywhere, and provide those global
generations to other machines that will use them to an-
swer SQL queries. We don’t have the TLAs answer
queries because it takes all the resources they have just
to aggregate the generations.

TLAs collect generations of data from all Cluster
Proxies in much the same fashion that Cluster Proxies do
from machines in their clusters. TLAs collect their gen-
erations once every one or two minutes. Because we are
interested in data about all Akamai machines, including
TLAs, each TLA also publishes into Query. It collects
its own information and sends it to all other interested
TLAs. Each generation a TLA makes can include, in ad-
dition to data from the Cluster Proxies, data from itself
and other TLAs.
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3.4 SQL Parsers
A SQL parser is a machine that receives generations of
tables from a TLA, receives the text of SQL queries from
clients, computes the answers to the queries, and sends
back the results. If a SQL parser has all the tables it needs
to answer a query, it does so immediately. Otherwise, it
sends a request to the TLA and waits for the TLA to send
back a generation that contains those tables. To provide
results with data collected at about the same time, all the
tables used to answer a query are required to be from a
single generation.

Just as Cluster Proxies and TLAs publish into Query,
so do SQL parsers. When TLAs collect their generations,
they can also include data from SQL parsers.

A picture of the Query system is shown in Figure 3.
The cloud represents all the thousands of clusters talking
to the TLA. The TLA shown is currently providing tables
to two SQL parsers. There is a user at a terminal issuing a
query against the table published in Figure 1 and Figure 2
to figure out which machines on the network have less
than 3% of space available on some mount point. There
are actually hundreds of TLAs and SQL parsers, but only
one TLA and two SQL parsers are shown.

3.5 Aggregator Sets
Not all queries are interested in data from the whole net-
work, so not all TLAs talk to the whole network. For
example, some queries’ sole purpose is to monitor the
health of the TLAs and SQL parsers. Those queries can
get sent to machines that contain only data from the ma-
chines they are interested in. Each TLA can be config-
ured to talk to only a subset of the network, and each
SQL parser can be configured to talk to only a certain
set of TLAs. We call the subset a TLA talks to its span.
Because a SQL parser can get exactly the same data its
TLAs can get, the span of a SQL parser is the same as
the span of its TLAs.

Different users have different needs. For some users,
latency is critical, and they need to issue queries to ma-
chines that are lightly loaded so that they never have to
wait for a machine to collect a large generation before
it can compute the answers. Other users need to join
so much data that the issuing of their queries alone will
make a machine heavily loaded.

We handle these disparate needs by dividing clients
who issue queries into groups and giving each group
some set of aggregators. We call the group to which a
TLA or SQL parser is assigned that machine’s domain.

Any time a set of TLAs or SQL parsers share a span
and domain, the machines of each type in that set are
performing the same job and are interchangeable. We
call such a set of TLAs and SQL parsers sharing a span

Figure 3: The Query system. The cloud is the whole
Akamai network. Also shown are a TLA, the two SQL
parsers getting tables from it, and a user at a terminal
issuing a query.

and domain an aggregator set.

3.6 Combined TLA-SQLs

Some aggregator sets are under light enough load that
one machine can actually do all the work of a TLA and
all the work of a SQL parser for that set. We configure
those sets to do just that, to reduce our machine count
and our costs. We call a machine doing the work of a
TLA and a SQL parser a TLA/SQL.

3.7 Overall Network Distribution

Currently, Akamai has several hundred TLAs, SQL
parsers, and TLA/SQLs divided into several dozen ag-
gregator sets. Each aggregator set has at least three tuples
of TLAs and SQLs for fault tolerance, and often many
more, depending on its load.
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4 Features

In this section we elucidate several of Query’s features
and explain how they empower its users.

4.1 Near Real-Time View
Query makes a new generation at each machine every
minute or two, so the data at the edges of the network are
at most two minutes old. Seconds go by between the col-
lection of those generations and the aggregation of gen-
erations at the Cluster Proxies. Seconds more pass before
aggregation begins at a TLA, a process which takes tens
of seconds on the TLAs with the heaviest load. Encoding
a generation to send to a SQL parser and decoding it at
the SQL parser each take tens of seconds. Consequently,
data at the SQL parsers can be a few minutes old.

Compared to the amount of time it may take for a hu-
man to diagnose and respond to a problem, a few minutes
is not much. However, because Query’s work is the first
step in detecting and understanding a problem, a minute
of time spent before data get into the results of queries
represents a minute delay in the rest of the response pro-
cess. Therefore, even though the latency of data is fairly
low, continuing to lower it remains a priority.
Query’s reliability is not perfect (see Section 8). Con-

sequently, data in Query cannot be relied upon for certain
things. Nevertheless, it is one of our fastest means of
getting information, and sometimes we need fresh data,
even if they are imperfect. In such situations, we use
Query.

4.2 Synchronization
All data collected from a machine are collected within
the span of several seconds. Although a TLA may have
data collected potentially minutes apart from two differ-
ent edge machines, its data from any one machine were
published at about the same time. This condition is weak
enough that we can achieve it without much overhead,
but strong enough to provide some valuable abilities to
the company.

The low variance in age of data from a given machine
means we don’t miss multiple related conditions, or the
correlations among them. For example, suppose some
rare event lead to the consumption of a large amount of
memory. When one datum is present, the other will be as
well, allowing us to detect such correlations.

4.3 Historical View
Query is used not just to understand the state of the net-
work now, but also how it has changed. Query can be

used to record prior data to get a view of past partial
states of the Akamai network.
We have two means of doing this. The first is Aka-

mai’s historical reporting system, which will be de-
scribed in Section 5. This system stores the results of
queries for a long time and displays them in graphs, giv-
ing us a visual representation of how data in Query have
changed. The second is Query History, a feature whereby
aggregators can be configured to store old generations’
copies of certain tables, load them, and answer queries
based on them.

The ability to get a historical view has tremendous
power. It allows us to see how usage patterns have
changed over time, predicting future growth in usage
based on past trends. It allows us to correlate changes
in multiple parameters, so that we can know how much
CPU is consumed by additional end user requests, how
much memory, how much bandwidth, etc. If we detect a
problem after it has existed for a while (say due to a soft-
ware bug causing occasional spikes in the usage of some
resource), we can figure out when that condition started
to exist, helping us narrow down the cause.

4.4 Static Tables
Some tables don’t change often and have contents that
should be dictated by the structure of the network or
some sort of unchanging information. There is no rea-
son to spend resources to aggregate such tables through
the normal Query system at the cluster level. Instead,
we store tables in text files on the disks of TLAs, and we
store index files describing where those files reside. Each
TLA reads its static data off of its disk, adds it to the data
it has from the Cluster Proxies, and re-reads the data any
time they change.

Below is an example of a query that joins normally
published data with static data. It looks at three tables:
(1) load info, which has information about all requests
Akamai is currently handling; (2) region data, which de-
scribes data about the geographical regions our machines
are in; and (3) continent data, which describes informa-
tion about the seven continents. The query computes how
many hits we’re serving on each continent per second.

SELECT c.continent name,
SUM(l.hits) hits

FROM load info l,
region data r,
continent data c

WHERE l.georegion=r.id AND
r.continent=c.continent

GROUP BY c.continent name
ORDER BY hits DESC;
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c.continent name hits
---------------- ---------

North America 4,620,551
Europe 3,392,102

South America 655,175
Asia 552,258

Africa 106,781
Oceania 39,905

Antarctica 135

A query similar to this one is used to generate one of
the graphs Akamai displays on its web site [4]. The num-
bers of hits and even the ordering of continents change
throughout a typical day. That data, for example, were
collected at about 3:15 PM Eastern Standard Time, when
one would expect most of the Americas and Europe to be
awake, but most of Asia and Australia to be asleep.

5 Applications

We now explain several of the key uses of Query and how
they empower operations staff at Akamai.

5.1 Alert System
Akamai’s alert system is the primary tool for detecting
problematic conditions on the Akamai network. Engi-
neers and operations staff can easily develop and activate
alerts by writing SQL statements which are submitted to
the Query system at regular intervals. For example, con-
sider this simplified SQL statement to detect disks with
less than 3% of their disk space left free:

SELECT
machineip ip key,
mountp mnt key,
bavail*bsize free space,
(100*bavail)/blocks pct

FROM
filesystem a

WHERE
blocks > 0 and
(100*bavail)/blocks < 3;

ip key mnt key free space pct
------------ ---- ----------- --
10.123.123.1 /var 150,179,840 2
10.123.123.7 /var 72,216,576 1

The SQL statement along with many other config-
urable settings form an alert definition. Each row re-
turned by the SQL statement constitutes a problematic
condition, or an alert instance. Each time the alert query
is run, the result is compared to the previous result. Any

new rows are considered new instances of the alert. As
soon as an alert instance is detected, the alert is said to
fire. If any rows from the previous iteration are no longer
present, the alert is said to clear.
Akamai has found it important to tune when alerts fire

and clear. For example, when writing a ”High CPU us-
age” alert for a critical server, we may want to fire an
alert when CPU is over 98% usage. A single spike to
98% isn’t interesting but if we check every 2 minutes
and the CPU is still greater than 98% after 15 iterations,
then there is clearly a more chronic condition worthy of
investigation. On the other hand, when writing a ”Disk
showing SCSI errors” alert, we would want to ensure the
alert stays active even if the underlying disk errors do not
repeat. This gives time for the operations staff to react to
the alert and investigate the condition further.
As a result, three commonly used alert definition set-

tings deal with these timing parameters:

• Frequency of SQL execution (typically oneminute).

• Number of iterations the data are present before an
alert fires.

• Amount of time the data must be absent before an
alert clears.

When an alert fires, the alert system can be configured
to do one of two things. It can alert staff in the 24/7 Net-
work Operations Control Center (NOCC), which is done
for urgent matters, or it can send an e-mail to engineering
or operations staff for later follow-up. In the former case,
the NOCC staff can take appropriate action using a cus-
tom user interface shown in Figure 4. The user interface
combines the alert details with corresponding procedure,
network access and ticketing. In many cases, alert proce-
dure steps include analysis using further Query data. The
NOCC can routinely handle over 10,000 new alert in-
stances in a single day with this approach, coming from
over 73,000 machines. (That figure includes problems
on partner networks, and problems that the Akamai map-
ping system can automatically route around.)

At present, there are several thousand queries that run
to detect alert conditions, with multiple thousands run-
ning every minute. The alert SQL queries are typically
much longer than the example queries above, sometimes
with pages of complicated SQL logic. Using techniques
such as the ones we describe in Section 6, we have al-
lowed a few tens of TLAs and SQL parsers to handle all
of this load.

The alert system and Query provide several advan-
tages for incident detection and response. If an opera-
tions staff member begins to suspect a problem and wants
to create a query to detect it, that person can create a
query in a matter of minutes, start testing it immediately
to make sure it produces the desired results and doesn’t
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Figure 4: Alert-handling interface.

consume too many resources, and begin collecting re-
sults very quickly. Query also allows us to detect a prob-
lematic condition, then examine a large amount of in-
formation about it, all using one tool. Even if we did
not anticipate needing some specific information before
a problem is detected, we can write new queries and issue
them at any time to help diagnose a problem.

The need to run the alert system using Query imposes
several key constraints on Query’s design that relate to
the tradeoffs described in Section 2. Reliability, com-
pleteness, and low data latency are critical for the alert
system. When the alert system issues a query, the an-
swer needs to come back reliably, quickly enough, and
be computed with data that are fresh and comprehensive
enough to detect the problem promptly and respond to
it before it affects our service to customers. The alert
system also needs Query to be scalable. The ability to
issue alerts to detect a wide variety of problems is quite
useful. When the network grows in size and is handling
more traffic, we need to continue to be able to answer
all of the existing alert queries, as well as new ones that
become necessary.

5.2 Historical Reporting System
Another tool for analyzing and diagnosing the Akamai
network is the historical reporting system, which col-
lects and stores data from Query over time and graphs
the results. The reporting system is Akamai’s primary
tool for observing how the network has changed over
time. While we use the alert system to detect issues that
need immediate attention, we use the reporting system to
proactively analyze network behavior with the intention
of preventing issues before they occur.

Much like the alert system, the reporting system stores

several thousand queries written by developers and oper-
ations staff. Each query is issued every few minutes and
the results are shown on graphs. The system provides
various ways of displaying data to assist in visualizing
and understanding the parameters of the network.

The resolution of the reporting system, which issues
each query once every several minutes, is insufficient to
detect problems and respond to them in real-time. It is
sufficient, however, to help understand problematic con-
ditions over the span of several hours. For example, a
bug in Query itself once caused it to consume too much
CPU. Due to the difference in scale between the Akamai
network and the test network, this bug was not realiz-
able in the test environment. After deploying the new
software with the bug to a small number of machines,
the alert system detected the increase in CPU load on
some machines. Before deploying the software to more
machines, we investigated the problem. The reporting
system showed spikes in the CPU utilization of Query
on certain machines, and seeing the frequency of CPU
spikes helped in diagnosing the bug.

5.3 Customer Access
Several Akamai services that provide data to customers
use Query to collect that data. Most customer interac-
tion with those systems is through a web-based interface,
EdgeControl [3], which is the Akamai customer portal.

The alert system can issue alert queries on customers’
behalf, notifying a customer if one of that customer’s
alerts fires. That notification may be done via e-mail,
a web service call, or through an SNMP MIB that runs
on the customer’s site (which allows customer alerts to
be integrated with local monitoring clients like Open-
view [10], and Tivoli [11]).

8



USENIX Association 	 LISA ’10: 24th Large Installation System Administration Conference	 231

Figure 5: Customer access to traffic data via EdgeControl. The highlighted estimated data come from Query.

In addition to providing certain alerts to customers, we
provide each customer with graphs of various data, such
as how much traffic we have served for that customer
over time. Figure 5 shows an example of such a graph.
Query does not achieve perfect completeness. The first
several hours of data are based on processing logs of all
traffic we have served. However, we want to display us-
age graphs to our customers more quickly than we can
process all the logs. Therefore we show customers log
data until the latest time they are available, then show
what we call estimated data for the most recent time pe-
riod. That estimated data come from Query.

Several requirements arise from the fact that the data
are customer-visible. The machines collecting the data
have to be reliable, to have uninterrupted data display.
In order for our displayed estimates to be as accurate
as possible, the data need to be as complete as possi-
ble. Data must also be consistent across Query to avoid
graph discrepancies. This is because a query may be is-
sued to one SQL parser at a particular time and then is-
sued to another SQL parser several minutes later. Addi-
tionally, data latency and query latency must be low, be-
cause we want to display near real-time data to customers
quickly, providing them with current estimates. Finally,
several of the queries whose results are displayed to cus-
tomers are expensive and grow rapidly, joining multiple
tables. Several of these tables grow as the number of ma-
chines in the Akamai network and the number of Akamai
customers grow. Thus, Query must be scalable, to con-
tinue to handle the load from collecting the data for those
graphs. Failure to provide features such as the ones out-
lined above would be unacceptable to customers.

5.4 Incident Response

An incident is an urgent occurrence that adversely af-
fects customers, or may adversely affect them if left
unchecked. Query is a vital tool for incident response at
Akamai. As previously explained, it underlies the alert
system and the reporting system, two important tools for
incident response. Often, incidents begin when the alert
system detects a high severity problem. If the problem is
related to any of the thousands of graphs collected in the
reporting system, that is another tool for understanding
the problem.

In addition to being used by these tools that help
with incident response, responders often issue SQL state-
ments directly to Query. Much of the time, some in-
formation published into Query can help illuminate the
problem and possible solutions. This use of Query,
again, emphasizes certain goals for Query’s design. Data
latency and query latency are both vitally important: in
an incident, we need to end problems before they impact
customers, or minimize their impact, and every minute
counts. Scalability is also important, because we don’t
know what tables will be needed until the incident takes
place. The system may need to get any data from any or
all of Akamai’s machines, and the amount of data col-
lected is far larger than any one machine can hold. The
ability to divide data up among many machines, provid-
ing scalability, is vital to handling incidents. Our tech-
niques for achieving such scalability are addressed in
Section 6.

6 Scalability

In this section, we discuss the reasons Query has high
needs for scalability and how we deal with those needs.
We will address three ways of achieving scalability:
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caching at each machine only the tables that machine
needs; partitioning the network so that each machine
needs only a subset of the data; and adding SQL parsers.

6.1 Causes of Growth
The volume of data and queries a TLA or SQL parser
must be able to handle depends on several factors: the
number of machines on the network publishing into
Query, the number of customers about whom data are
published, the volume of traffic on the network to be
monitored, the number of services on each machine pub-
lishing data, and the number of ideas for things to moni-
tor that people have come up with, among others. All of
these factors grow monotonically with time.

As time goes by, Akamai signs more customers. As
the Internet grows, our customers have more customers,
so Akamai must serve more end users, leading to more
traffic. To handle this additional load, we must deploy
more servers. Managing rapid growth is one of the major
challenges in the design and operation of Query.

6.2 Caching Policies
We try to cache tables around the SQL parsers and TLAs
such that (1) each machine always has many of the tables
it will need soon, and (2) machines have few tables they
won’t need soon. This is necessary because the volume
of data available in Query is far larger than any single
Query machine can hold: tens of gigabytes, a generation
of which would take minutes to decode. That’s why SQL
parsers request tables from TLAs, which in turn request
them from Cluster Proxies, which request them from the
machines in their clusters.

Each machine prewarms tables. This means that it
fetches those tables whether it needs them or not. That
dramatically reduces query latency, because if the tables
a query needs are already resident on the SQL parser,
it doesn’t need to spend minutes fetching them from the
clusters through the TLAs. We can configure each aggre-
gator set to prewarm its own distinct set of tables. That
set can be thought of as our guess for which tables the ag-
gregator will need. For example, we know what queries
the alert system needs to issue for alerts. That means ag-
gregators devoted to the alert system will need a specific
known set of tables, so we prewarm that set.

Of course, tables exhibit temporal locality of refer-
ence: if a user issues a query using a table, that table
is likely to be used again in the near future. If a table that
isn’t prewarmed is used, it continues to be requested in
all generations for some period of time afterwards, and
that timer is reset every time the table is used again.

A second type of caching is views. We cache the re-
sults of every view we compute for use in future queries,

invalidating that cache every time we switch to using a
new generation of tables. There are about 1000 view
queries defined, many of which describe common sub-
queries. Storing their results reduces query latency and
improves scaling in the number of queries by avoiding re-
peated computations. It also reduces the memory load on
the SQL parsers, because the intermediate state for com-
puting the answers to queries can be reduced by comput-
ing them fewer times.

Another technique for improving scalability is diff up-
dates. Instead of sending a full copy of each encoded
table to each TLA, the Cluster Proxies send only a diff
– that is, a description of how the tables in that cluster
have changed. The first time a Cluster Proxy sends data
to a particular TLA, it sends a full generation, but subse-
quently, it sends only the diff. This makes TLAs decode
tables more quickly, and saves about half the bandwidth
Query would otherwise need to consume.

6.3 Partitioning
Partitioning the Query system can provide scalability.
We have three ways of doing this: we can partition the
network, we can partition the users, and we can partition
the tables each individual user needs.

6.3.1 Network Partitioning

Talking to 73,000 machines takes a lot of resources from
each TLA, but not all issuers of queries are interested in
data from the whole network. Therefore we designate
certain subsets of the Akamai network to be the span of
each machine, as described in Section 3.5. For example,
aggregators whose purpose is to monitor the Query sys-
tem itself need span only the few hundred aggregators,
not all 73,000 or more Akamai machines. Aggregators
with small spans suffer far fewer demands on their mem-
ory, bandwidth, and CPU than machines that span all of
Akamai.

6.3.2 User Partitioning

We don’t want users going to randomly chosen aggre-
gators to issue queries. Some applications, like the alert
system, are critical, and must send queries to machines
we know will have the resources to handle them. Some
users run test queries to see how they perform, and while
they are being written, they may mistakenly use exces-
sive amounts of machine resources. This leads to as-
signing each aggregator set to a user or set of users, as
described in 3.5.

After assigning a span and domain for each aggregator
set, we can figure out what tables it is likely to need and
make sure each machine in the set can decode, aggregate,
and store all the tables it needs.
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Because each machine in an aggregator set prewarms
the same tables, no aggregator set can have more tables
than one machine can handle. If a user is so demand-
ing as to need more tables than a machine can handle,
that user needs multiple aggregator sets. Users can is-
sue queries to whichever of multiple aggregator sets they
need, but operations staff responsible for Query need the
ability to change where queries are sent without having
to change the software of the components issuing the
queries. We place each aggregator set behind a hostname
and have users issue their queries to an arbitrary machine
that hostname resolves to. Operations staff for Query can
then change the machines a hostname resolves to, to add
or remove aggregators from a set.

6.3.3 Table Partitioning

Partitioning tables among aggregators also helps with
scalability. Suppose an aggregator set has four machines,
A, B, C, and D, and the tables it prewarms grow too
large for one machine to handle. We can partition that
aggregator set into two subsets, say A, B and C, D. On
each subset, we prewarm half the tables the original set
had. We point the same hostname at all four machines,
but if A gets a query for which it doesn’t have the tables
and C, D do have them, A can send, in place of an an-
swer, a message redirecting the query to C, D. The pro-
grammatic interface to Query then automatically goes to
C or D to get its answer. In practice, the partitioning
can’t be perfectly even and some overlap between the ta-
bles on A, B and the tables on C, D must exist to still
answer every query users want to issue. To date, in all
cases where we have tried to partition an aggregator set
in this fashion, no machine has needed more than 55% of
the data of the original set.

6.3.4 Aggregator Sets and Fate-Sharing

Different users have different needs, but sometimes their
needs are similar enough that they can be grouped to-
gether using a single aggregator set. There are a number
of benefits, risks, and costs to doing so.
The main benefit is saving machines. Instead of many

aggregator sets, we must deploy only one. The main risk
is that two users on the same aggregator set share fate. If
one user causes a failure, all of them will feel it.

The lesson here is that the most critical users should be
isolated, and other users should be placed in groups with
shared expectations about reliability and failure. If two
non-critical applications that may potentially bring down
an aggregator set have to share it, no problems will occur:
both applications are non-critical and are designed with
aggregator failures in mind.

6.4 Adding SQL Parsers
Akamai provides global traffic management and en-
hanced DNS services [2], mapping a hostname to several
IP addresses and balancing the load among them. Be-
cause Query’s users issue their requests to hostnames,
rather than specific IP addresses, we can allocate the
queries approximately evenly among all the IP addresses
sharing a hostname. We create a hostname for each ag-
gregator set’s SQL parsers (or combinedTLA/SQLs) and
have our users issue queries to those. If we need to add
more machines to handle more queries, we can do so
transparently to the user. Twice as many machines can
handle twice as many queries.

There are two caveats. First, we cannot simply add
SQL parsers, because each TLA won’t have the re-
sources to send hundreds of megabytes of encoded ta-
bles (gigabytes of decoded tables) to that many other
machines during an one or two-minute interval between
generations. If we add too many SQL parsers, we must
also add TLAs. Second, we must combine this approach
with partitioning and wise caching policies. Each SQL
parser must decode a generation of tables every time
one arrives. Without partitioning and intelligent caching,
as the network grows, eventually the SQL parsers will
spend most or all of their time decoding generations.

7 Management Lessons

Managing a complex system like Query has taught us
several lessons that may be of use to administrators of
other systems. We need to be able to fix a variety of
problems in Query that arise during operation. Some of
these problems are due a user needing more tables than
one aggregator set can handle. Some are due to a user
needing to issue more expensive queries than their ag-
gregators can handle, due to their requirements in either
CPU or memory. Some are from the need for new fea-
tures. Some are from software bugs. We now explain
some of the lessons we have learned about these issues.

7.1 Management options
When a difficult use case arises, either due to new needs
or due to organic growth, we have several options:

• Find a less expensive means of achieving the same
goal.

• Reconfigure the network.

• Deploy additional hardware.

• Perform additional operational work to handle the
use case.
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• Develop the Query software to be more efficient
about that use case.

• Go without, telling the user that the difficult use
case cannot be accommodated.

The first option, finding a less expensive solution, is al-
ways the first thing we try, as it clearly saves the company
the most money. Unfortunately, it isn’t always possible,
and the interesting tradeoffs are among the remaining op-
tions.

7.2 Configuration Options
For urgent problems, reconfiguring the network is usu-
ally the best option if it is a possibility. We can de-
ploy configuration files to the entire network quickly to
change what the machines are doing. For example, if a
set of queries are taking up a lot of CPU on some set of
SQL parsers, but they contain a common subquery, we
can push a configuration file that creates a new view to
reduce the number of times we need to compute it.

This example shows an important lesson: make rapid
changes in behavior easy any time it is safe to do
so. Some aspects of a machine’s behavior, such as the
software version, are difficult to change safely without
restarting. Others, such as the views, are easy to change
safely without restarting. In early versions of Query, all
of these changes required a software install. Now, many
just require our configuration management system [19]
to copy new configuration files to the machines, which
makes us much more reactive.

7.3 Adding Hardware
We can deploy new hardware to fix some problems. If a
SQL statement is too expensive for the machines trying
to run it, we can always put up additional SQL parsers to
send it to. Deploying new machines takes less work than
developing new software and can be done much more
quickly. If we can’t accommodate a request by configu-
ration options or finding a more efficient way to achieve
the user’s goal, this is by far our most common solution.

7.4 Operational Intervention
Sometimes, a problem can be fixed by operations per-
sonnel manually. For example, we found a slow mem-
ory leak in Query that affected one set of aggregators
such that their resources were essentially all consumed
after about a month of continuous operation. We came
up with a temporary solution to use until the next regu-
larly scheduled release: manually restart the machines in
the set every few weeks.

The lesson we’ve learned from trying this solution is
that it’s good for the short term only. It’s expensive, be-
cause it requires a human in the loop. It’s time consum-
ing and stressful for operations personnel. It doesn’t ac-
tually fix the problem; it’s just a way of living with it.
We try to use this approach as rarely as possible and to
depend upon it only for short periods of time.

7.5 Software Development
Software development is a longer-term activity than
pushing a configuration file or deploying new machines.
To deploy new software, we must develop it, run it
through Quality Assurance, and install it in several
phases, allowing time between phases to make sure the
part of the network that was installed initially is working
properly.
The advantage to developing software to fix a problem

or add a feature is that once it’s done, the problem is fixed
or the feature is available everywhere forever. No one has
to do any work to maintain it, and there is no additional
hardware cost.

One lesson we have learned about when to develop
new software to solve a problem is that it’s best to use
it after the other solutions, because it’s slower, cheaper,
and more permanent. A few years ago, there was a bug
that caused SQL parsers to be unable to get new data
and to continue answering queries with old data. We ini-
tially solved this problem with operational work, adding
an alert to the alert system to detect the condition and
asking the Network Operations Control Center to restart
machines when the alert fired. That was a temporary so-
lution that lasted for a few months until we could fix the
bug.

8 Handling Faults

With over 73,000 machines publishing into Query and
several hundred running infrastructure for Query (TLAs,
SQL parsers, and TLA/SQLs), some number of them are
down at any time. Sometimes pairs of them can’t reach
one another. Sometimes TCP sockets between machines
fail due to congestion. Sometimes machines have too
many resources consumed and can’t keep up with all the
communication they’re supposed to do. This section is
about how we handle faults.

There are several goals regarding handling faults, in-
cluding:

• Easy detection: Problems should be found quickly
and easily.

• Fault tolerance: When a fault occurs, Query
should work around it.

12
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• Quarantining faults: The scope of a fault should
be kept narrow, limiting the number of machines
that go down.

8.1 Error Detection
Query is unusual among Akamai systems in that a lot
of the other systems can count on Query to detect their
faults. If something goes wrong with Query itself, we
have an obvious bootstrapping problem.

If something goes wrong with a subset of the Query
processes on the network, we can detect it because mul-
tiple aggregator sets span all the TLAs, SQL parsers, and
TLA/SQLs. If any of those aggregator sets are func-
tioning properly, we can detect problems. Additionally,
we can detect problems that cause queries to fail rather
quickly, because the absence of an answer coming back
registers as an error in, for example, the alert system.

There remain two cases: incorrect results coming back
that cause false positives for alerts, and incorrect results
that cause false negatives. False positives are easy to
deal with: when an error has been detected but the peo-
ple looking into it can’t figure out the root cause, they
know to also bring in experts on Query to debug simul-
taneously. This shows another lesson we have learned:
don’t forget that your monitoring tools may be the prob-
lem when you’ve detected an error.

False negatives are trickier. Occasionally, an alert will
not fire. Usually, we find this is due to a bug in the alert
SQL, not a bug in Query. The only way to deal with that
is for alert writers to test carefully before and after their
alerts are deployed. If there were a mass-scale incident
of Query failing to publish data, we would also detect
that case, because of a number of alerts that check for
the presence of data, not their absence. For example, if
data from half the network were to disappear, the alert
for Query having data from too few machines would fire
almost immediately.

8.2 Fault Tolerance and Quarantining
When deciding how to achieve fault tolerance and quar-
antine faults, we must keep in mind the tradeoffs of Sec-
tion 2.2. There is a tension between the two goals. Toler-
ating faults requires moving load away from a machine
that fails, so that its outstanding requests may still be
serviced. Quarantining faults requires that load not be
moved away from a machine that fails, because the load
may have caused the failure.

Aggregator sets help us limit the scope of failures
while achieving fault tolerance. The SQL parsers of each
set have a single hostname pointing to all of them. If a
SQL parser fails, the programmatic interface to Query
automatically redirects the query to another machine in

the set. A Query that consumes enough resources to take
down a machine could thus take down the whole set. This
can happen occasionally due to an ad hoc query being
written by a human, but only on non-critical aggregator
sets used for development. If an aggregator set is used by
humans writing ad hoc queries, we only send queries to
it from applications that are allowed to fail to get answers
sometimes.

If a TLA goes down, any SQL parsers talking to it
continue providing answers to queries with old data un-
til they can get tables from another TLA in the same
aggregator set. This typically takes a few minutes (not
much more than a normal interval between generations).
This allows the same balance between tolerating faults
and quarantining them as for SQL parsers failing.

If a TLA loses its connection to a cluster, similarly,
SQL parsers switch away from it. Each TLA advertises
how many clusters it can see and SQL parsers take that
information into account when selecting TLAs. Initially,
each SQL parser chooses a TLA arbitrarily. Suppose
SQL parser S chose TLA T 1. If T 1 loses visibility to
some clusters, some other TLA, T 2, may gain the abil-
ity to see some percentage more clusters than T 1 can. S

will then switch to using T 2 instead of T 1. If there are
multiple such T 2, S will switch to an arbitrary one.

Usually, if there are connectivity problems, one TLA
will fail to see some set of clusters, but the other TLAs
will be able to see it. In other words, there will be multi-
ple possible choices for a T 2 to switch to. That prevents
the switching algorithm from placing extreme load on
any one TLA.

We want SQL parsers to prefer TLAs that are geo-
graphically close to them. Using configuration files we
can tell each SQL parser to give a bonus to some set of
TLAs when deciding which one to use. That helps make
the mapping from SQL parsers to TLAs more static and
prefer close by machines, while also helping each SQL
parser have as complete a view of the network as possi-
ble.

TLAs are normally required to have a full view of the
network before they can collect a generation. Each clus-
ter must have reported tables within a certain time inter-
val. If a cluster has failed to do so, the TLA drops the
cluster’s tables and advertises one fewer cluster, so that
SQL parsers can switch away from it as needed.

9 Related Work

In this section we review related work in the area
of large-scale network monitoring that has appeared
throughout Query’s lifetime of approximately 12 years.

Several system administration tools such as Na-
gios [14], Microsoft SCOM [21], Hewlett-Packard
OpenView [10], IBM Tivoli [11], and Sun Management

13
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Center [20] exist for monitoring network services and
machine resources, often using SNMP. Akamai accom-
plishes network monitoring by feeding data collected and
aggregated by Query into applications such as the ones
discussed in Section 5. Query allows users to specify
complex monitoring tasks using a SQL-like interface. In
addition to providing a familiar interface, Query’s fo-
cus is on scaling its monitoring capabilities to tens of
thousands of machines, while still providing near real-
time updates. Via a software component that acts as
an SNMP gateway, Query is able to collect data pub-
lished by SNMP-enabled devices, as was described in
Section 3.1. Similarly, Query is also able to export data
as an SNMP MIB, as was described in Section 5.3.

One common approach to network management for
security purposes is Security Event Managers (SEMs).
An SEM logs all events it expects will be interesting to
system administrators. When a problem is detected, the
SEM provides a means of reading the logs from each ma-
chine and presenting them to the administrators. By pub-
lishing such data into Query, Akamai has all of that infor-
mation in one place that is easy to monitor constantly by
human users and automated applications. Additionally,
queries can be issued right away, minimizing the setup
time for detecting conditions of interest.

Processing large volumes of continuously updated
data in real-time has also been the focus of sev-
eral academic and industrial research projects in the
area of stream processing systems. Telegraph [6],
STREAM [13], and Aurora/Medusa [7] were the first
generation of such systems, with a focus on providing a
SQL-like interface to query continuously updated data.
The next generation of such systems focused on dis-
tributed implementations, to increase both the scalability
and the fault-tolerance of low-latency, high-throughput
stream processing applications. Borealis [1] has focused
on challenges related to implementing a stream process-
ing system in a distributed fashion, with particular em-
phasis in load shedding and fault-tolerance. Synergy [18]
has focused on composing distributed stream processing
applications, while paying attention to their end-to-end
Quality of Service requirements. Among industrial re-
search efforts in the area of distributed stream process-
ing, IBM’s System S [23] has focused on a variety of
stream processing applications with highly variable rates,
utilizing a large number of stream processing nodes. Ad-
ditionally, AT&T’s Gigascope [8] has focused on moni-
toring network traffic at extremely high-volumes. Simi-
lar to the systems above, one of Query’s main challenges
comes from the large data volumes that need to be pro-
cessed near real-time. Query addresses this challenge via
the clustered architecture outlined in Section 3 and the
techniques described in Section 6.

Research efforts have also focused on the challenges

faced by large-scale network monitoring systems, both
due to data volume and network size, as well as due
to network and machine failures. SDIMS [24] has at-
tacked the scalability challenges by using Distributed
Hash Tables to create scalable aggregation trees. It has
also utilized lazy and on-demand reaggregation to ad-
just to network and node reconfigurations. PRISM [12]
has proposed imprecision to provide consistency guaran-
tees with reduced monitoring overhead and despite fail-
ures. Specifically, arithmetic imprecision was proposed
to bound numeric inaccuracy, temporal imprecision to
bound update delays, and network imprecision to bound
uncertainty due to network and node failures. Query
faces similar tradeoffs, as was described in sections 2
and 8.

Distributed event services can also be used for net-
work monitoring. Research projects in this area, such
as Siena [5] and ECho [9], have focused on maximizing
the performance of event notification, while providing
data models that are generic enough to express a variety
of events. CORBA also provides support for event [16]
and notification [17] services. Akamai uses Query to col-
lect data from many different software components, im-
plemented in a variety of programming languages. To
achieve that, the publishers utilize various native lan-
guage interfaces that Query provides, as was described
in Section 3.1.

10 Conclusion

We have explained the goals and design of Query, Aka-
mai’s near real-time monitoring system. We have pre-
sented a number of the issues we face developing, man-
aging, and operating it. We have stated some of the
lessons we have learned from our experiences. Manage-
ment of Query has been made much easier by the avail-
ability of rapid changes in configuration; isolating criti-
cal users and putting others into groups of similar relia-
bility expectations; having multiple ways of addressing
a problem in both the short term and the long term, and
being explicit about which ones are good for each time
scale; and having a strategy for debugging our monitor-
ing tools. All of those strategies have allowed Query to
scale with the Akamai network and handle the growth of
load that it has been experiencing for more than a decade.
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Abstract

In troubleshooting a complex system, hidden depen-
dencies manifest in unexpected ways. We present
a methodology for uncovering dependencies between
behavior and configuration by exploiting what we call
“weak transitive relationships” in the architecture of
a system. The user specifies known architectural re-
lationships between components, plus a set of infer-
ence rules for discovering new ones. A software sys-
tem uses these to infer new relationships and suggest
culprits that might cause a specific behavior. This
serves both as a memory aid and to quickly enu-
merate potential causes of symptoms. Architectural
descriptions, including selected data from Configura-
tion Management Databases (CMDB) contain most
of the information needed to perform this analysis.
Thus the user can obtain valuable information from
such a database with little effort.

1 Introduction

Troubleshooting is about linking symptoms with
causes. The speed of troubleshooting depends upon
how quickly one can do that, as well as how complete
the list of potential causes can be made. It can fur-
ther be enhanced so that more frequent causes are
checked first. In a very complex system, it can be
laborious to make a list all of the potential causes of
a behavior.

In this paper, we present a method for deriving a
description of causal relationships from a description
of system knowledge. This method maps symptoms
to possible causes via a methodology that we call
“weak transitivity”. Architectural facts and logical

inference rules describe relationships between archi-
tecture and causation in a knowledge network. So,
while architecture might vary, inference rules, de-
limiting meanings of relationships, are invariant and
reusable. One can use these rules to efficiently reason
about potential causes and to eliminate options incre-
mentally as troubleshooting progresses. The system’s
logic and reasoning are straightforward, simple to un-
derstand, and scalable to arbitrarily large networks.

The key contributions of this work include:

1. An exterior (“black box”) model of the mean-
ing of relationships between architectural com-
ponents, that permits logical inference based on
incomplete or partial information.

2. The ability to exploit existing knowledge – e.g in
Configuration Management Databases – to aid
in the troubleshooting process.

3. The ability to generate a human-readable expla-
nation of the possibly subtle relationships be-
tween components.

4. A set of useful, reusable classes and relationships
along with rules that define their meanings.

2 Background

Our work arose from ideas for and against the use of
logical reasoning in system administration[4, 9], but
we approach the problem of applying logic to system
administration from a new angle based on knowledge
representation, specifically Topic Maps[23, 24]. In
using topic maps to index documentation, we found
that a particular way of thinking about the map led
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to more efficient use of documentation. If we view
the map as a set of links between topics, it is easy
to get lost in the map, while if we view a map as a
set of chains of reasoning, the relationships become
clearer and the map becomes more useful[7]. The
same kind of reasoning that can be used to under-
stand documentation can be utilized to understand
complex systems. This paper applies our approach
to the specific task of troubleshooting, which is – at
its core – a problem of understanding and coping with
what is known and unknown.

There are plenty of other approaches to
troubleshooting[25]. Snitch[17] applies a maximum-
entropy approach to creating dynamic decision trees
for troubleshooting support, using a probabilistic
model inferred from practice. Snitch is related to
“revealed causal modeling”[18, 19], which also at-
tempts to measure causality as a set of probabilities
of relationships. Troubleshooting has an intimate
relationship with cost of operations[12], which
justifies use of decision trees and other probabilistic
tools to minimize cost and maximize value. The
Maelstrom approach[8] exploits self-organization in
troubleshooting to re-organize the process based
upon hidden precedences. STRIDER[26] employs
knowledge of behavior of similar hosts and Windows
registries to infer possible trouble points. Outside
the system administration domain, SASCO[15]
guides troubleshooting by heuristics, using what it
calls a “greedy approach” to pick most likely paths
to a solution.

There are several differences between our work and
these prior approaches to troubleshooting. We base
our troubleshooting upon an incomplete description
of the architecture of the system under test, rather
than statistical information about likelihood. We use
architectural reasoning to infer the nature of depen-
dencies in the system, and use those inferences to
guide troubleshooting. This leads to a synergy be-
tween the accuracy of the description and effective-
ness of troubleshooting, which leads in turn to in-
creasing accuracy of the architectural information as
it is revised to reflect observations. The net result
is that we show how to apply something we already
need to have – a global map of the architecture – to
the troubleshooting process.

2.1 Formal reasoning

While it is certainly a kind of formal reasoning, this
work is difficult to place in the context of other ap-
proaches to formal reasoning. It is a form of logi-
cal abduction[13, 16, 20] that explains connections
between entities. Very complex systems have been
built to reason using abduction, but none of these is
guaranteed to output an easily understandable se-
quence of logical dependencies. Our method has
its roots in using logic programming for configura-
tion management[9], but also takes inspiration from
methods used to manipulate topic maps in library
science[23, 24], and is closely related to ontological
reasoning in the semantic web. Unlike ontological
reasoning, which attempts to match concepts based
upon their interaction with others, we concentrate
on inferring relationships between individual entities,
based upon facts and rules that describe an architec-
ture.

Our methods are somewhat removed from tradi-
tional approaches to logical inference and computer
logic. First, we sidestep the difficult problem of rea-
soning with modal logic, by encoding modality into
our relationships. A “modal logic” includes the abil-
ity to distinguish modal facts in English, e.g., “X
might affect Y” from non-modal facts, e.g., “X af-
fects Y.” Instead of modeling modality, we incorpo-
rate all modality into our relationships, which makes
our rules for relationships somewhat more complex,
but also reusable and perhaps easier to compute.

2.2 Information modeling

Our work includes a limited form of information mod-
eling as proposed by Parsons[21]. However, our no-
tation escapes what Parsons calls the “tyranny of
classification”[22] in which an instance must be a
member of some class. We escape that tyranny
by only partially defining such classifications, and
leaving what is unknown out of the data specifica-
tion. Likewise, our data are much simpler in struc-
ture from that in the Shared Information and Data
model(SID)[14], mostly due to lack of structure (or
even the need for structure) in our approach.

2
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2.3 Knowledge management

Our problem is a sub-problem of the larger issue
of knowledge management for complex networks.
Knowledge management is a key challenge of the
coming decade. The technologies and tools for system
administration and configuration management have
all progressed to the point where the main difficulty
lies in the knowledge required to integrate them to
produce a seamless IT infrastructure. With many of
the basic problems of system administration essen-
tially solved, a major system administration concern
of the next decade will be loss of business continuity,
due to inability to maintain and utilize appropriate
systems knowledge. For example, when system ad-
ministrators are fired or leave, the business can suffer
from lack of knowledge of what they did, resulting
in increased downtime, risk, and cost. It costs real
money for a new system administrator to learn what
his or her predecessors did. Knowledge and under-
standing of system complexity are also major limita-
tions to system growth (scalability).

Cfengine was recently redesigned with knowledge
in mind, using a model of “promises”[1, 4, 5, 6] that
separates the intentions of system components from
the mechanism by which they achieve those inten-
tions. Promises combine clearly defined goals with
self-documenting statements that have an associa-
tive structure. From there, it is a small step to
create an associative meta-model (semantic web) of
promises, which can be integrated with any other
kind of semantically annotated documentation. Such
a knowledge model can be used not only for searching
for relevant information, but also for reasoning and
for encoding expertise. Expert systems have been
discussed many times before, but they are usually
data-intensive and expensive to maintain. Here, we
present a mechanism that is both cheaper and is de-
signed to work for humans rather than to replace
them. Most important, it arises naturally from the
act of managing systems with Cfengine and requires
no separate data collection.

2.4 Configuration Management
Databases (CMDB)

Configuration Management Databases (CMDB), as
defined by the IT Infrastructure Library (ITIL),
gather system data, usually in a brute-force taxo-
nomic form. Common data models in use include the
Common Information Model (CIM) and the Shared
Information and Data Model (SID). These concen-
trate on configuration data of specific hosts, while
their meanings and inter-relationships are assumed
to be entirely implicit in the taxonomy. The problem
with this (and all hierarchical classifications) is that
new information can only be introduced by expand-
ing the model itself.

Our technology was developed specifically for
Cfengine and its cf-know utility (where the required
architectural model is available), though we describe
the techniques we use more generally here. The les-
son from Cfengine is that meta-models with weak
constraints avoid many of the pitfalls of ‘Object Ori-
ented’ hierarchical classification. The techniques can
be used with any kind of configuration management
database, provided that one can mine appropriate
kinds of relationships from it.

3 A motivating example

Using architectural knowledge for troubleshooting
might be a counter-intuitive idea, so here is a sim-
ple example. Suppose we have a very simple network
with a fileserver ‘host01’, a DNS server ‘host02’, and
a client workstation ‘host03’. We might code the re-
lationships between these hosts as a set of abstract
“sentences”, like:

host01 | is an instance of | file server
file server | provides | file service
host02 | is an instance of | dns server
dns server | provides | dns service
host03 | is an instance of | client workstation
client workstation | requires | file service
client workstation | requires | dns service

Each sentence has a subject, a verb, and an object
separated by vertical bars (|). Sentences are pre-
parsed into subject, verb, and object by the user; no
natural language parsing is employed. We call each

3
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such sentence a fact1.
From the base facts above, we can intuit several

other facts, including:

host01 | provides | file service
host02 | provides | dns service
host03 | requires | file service
host03 | requires | dns service
host03 | might depend upon | host01
host03 | might depend upon | host02

The last two are subtle: the fact that a host pro-
vides something does not mean that it provides it to
everyone who requires it.

Suppose that something goes wrong with this net-
work, e.g., host03 stops responding. The main prob-
lem in troubleshooting is to enumerate the entities
that can cause the symptoms, rule out causes, and
thus determine where to look for problems. Obvi-
ously, one symptom is that host03 is broken, which
according to the above can be due to a problem
with host03, a problem with host01, a problem with
host02, or a problem with the network connecting
the hosts. If we know more, e.g., that the network
is functional but that host03 DNS service is bro-
ken, then this rules out host01 and points to either
host02 or host03 as potentially problematic. If we
know as well that DNS is functional and host03’s
configuration for DNS is correct, this points toward
host02. In other words, the more we know, the more
we can eliminate and the narrower the sieve of op-
tions becomes.

What our system does is to suggest possibilities
in order of approximate likelihood, based upon a de-
scription of architecture. For example, in the above it
would first report the dependencies upon host01 and
host02, which are the “closest” possible causes ac-
cording to a notion of distance based upon the num-
ber of logical inferences required to connect two enti-
ties. Then, for each possibility, it can “explain” the
relationship between a probable cause and the symp-
tom, all from a description of architecture.

In this trivial case, one can easily do this by hand.
With systems of thousands of components, however,

1Functionally, these are just like facts in the logic
programming language Prolog, where our fact ‘client
workstation | requires | file service’ becomes the Prolog
fact requires(client workstation, file service).

the problem becomes more complex. In this pa-
per, we describe a mechanism whereby one can rea-
son about very complex architectures and obtain ex-
planations of complex dependencies between subsys-
tems. We verify our thinking via a simple prototype
that serves as a proof of concept. In describing our
ideas, we utilize the notation of the prototype, to en-
courage system administrators to try it out with their
data and see what it can do for them.

4 Entities and relationships

The key to our solution is a description (cached as a
database) describing the architecture of the underly-
ing system. The role of this description is to serve as
a model of locations and interactions. For this, we
appeal to a very old idea: entity-relationship model-
ing2. We describe the network as a graph of named
entities and relationships, either manually or by min-
ing the configuration.

Entities in the network are named by strings and
can be named at any level, including subnet, host,
component, or even software package. Kinds of enti-
ties include:

1. physical machines, e.g., ‘host01’.

2. software, e.g., ‘RHEL5’, ‘Linux’.

3. services, e.g., ‘LDAP’, ‘SMTP’, ‘HTTP’.

4. classes of physical items, e.g., ‘webserver’,
‘mailserver’.

An entity is a noun whose meaning does not change
over time. Nouns can represent classes of things, e.g.
‘client workstation’.

Relationships can be anything, including:

1. Dependencies, including ‘requires’ and
‘provides’.

2. Containment, including ‘is a part of’, ‘is an
instance of’.

2We refer specifically to the ER-diagrams utilized in Soft-
ware Engineering, as opposed to those utilized in database the-
ory. The former describe interactions, while the latter describe
functional dependencies.

4



USENIX Association 	 LISA ’10: 24th Large Installation System Administration Conference	 243

3. Causality, including ‘determines’,
‘influences’.

4. Connectivity, including ‘connected to’.

5. Intent, including ‘promises’, ‘uses’.

While entities are nouns, relationships are (usu-
ally) verbs. Any invariant relationship can be docu-
mented. Verbs can also represent classes of relation-
ships, e.g., ‘determines’, which allows many different
kinds of determination.

Most relationships are directional, i.e., if ‘A | is
a part of | B’ one cannot conclude that ‘B | is a
part of | A’, any more than “A is a part of B” would
imply that “B is a part of A” in English. However,
every relationship corresponds to a unique inverse
relationship that is simply another predefined formal
symbol. If ‘A | is a part of | B’, then ‘B | has
part | A’. The formal symbol ‘has part’ is defined
as the “inverse” of the formal symbol ‘is a part
of’.

5 Relationship to topic maps

One can also think of entities as “topics” and rela-
tionships as “associations” between topics in a topic
map[24, 23]. This is a kind of generalized ER-model
utilized usually in library science3. Unlike our sim-
plified ER-model, a topic map describes relationships
between three kinds of entities[23]:

1. Topics (entities) are analogous to entries in an
index of a book.

2. Associations (relationships) are analogous to
“See also” in a book index.

3. Occurrences are are analogous to page numbers
in an index, and specify “where” a topic is men-
tioned.

3In this paper, we will concentrate on a simple application
of the idea, and not a broader view. While what we do here
can be utilized with a variety of kinds of data, we concentrate
specifically on troubleshooting data and avoid more general
problem statements for clarity.

While this work was inspired by initial work in topic
maps, the results presented here are more broadly
applicable to any ER-model.

The most important thing we draw from topic
maps is the semantics of our representations. Our
ER-diagrams, like topic maps, are intended to define
entities through their relationships with other enti-
ties. Throughout this paper, we will make design
decisions that preserve “definition-like” qualities for
both entities and relationships. Notably:

1. Entities are static and do not change over time
(from the point of view of the reasoning system,
inside the formal model).

2. Relationships are static and do not change over
time.

3. Definitions are additive and define facets of a
thing. The total definition of a thing is the union
of partial definitions (just as in a dictionary).

Our definition of inverses as verb phrases is con-
sistent with the Cfengine-3 notion of inverse rela-
tionships, but differs from the more refined notion
of inverses in topic maps. In a topic map, a rela-
tionship is a noun phrase, and the meanings of sides
of the relationship are clarified via what are called
“roles”. For example, our statement ‘cat food’ ‘is
manufactured by’ ‘pet food companies’ would be
written in a topic map as “cat food” in role of “prod-
uct” has relationship “manufacture” to “pet food
companies” in role of “manufacturer”. We do not
need this extra complexity, so we sidestep it. What
we lose from this is that our prototype is only compat-
ible with “subject-verb-object” (SVO) natural lan-
guages (e.g., like English, French, etc.), as opposed
to “subject-object-verb” (SOV) languages (e.g., Ara-
bic, Japanese, etc.). The topic map mechanism han-
dles both SVO and SOV languages, by translating
relationships into foreign languages after processing.

6 Facts

The first step in utilizing our system is to create (or
transform) an appropriate database of suitable facts.

5
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Each fact is a subject-verb-object triple, where sub-
ject and object are system entities (or classes), and
the verb indicates some kind of relationship between
the two entities. Common kinds of facts include class
membership, e.g.,

couch1 | is an instance of | client workstation

class descriptions, e.g.,

client workstation | requires | file service

and ownership, e.g.,

couch1 | is owned by | Alva L. Couch

There is no checking as to whether facts make sense
in English. The system trusts the user to use rela-
tionships that are transitive verbs, and subject and
object that are nouns. There is no natural language
processing at all in the system. Subject, verb, and
object in the fact are syntactic tokens, and nothing
more.

6.1 Coding and avoiding hierarchy

Note that the way we specify facts looks very simi-
lar to object-oriented modeling, but there is an im-
portant difference. Our encoding method is non-
hierarchical, in the sense that there is no need to
place each host into a hierarchy of relationships. One
can do this when convenient, but it is not necessary
to the reasoning method. Thus one need not become
subject to the “tyranny of classification”, in which hi-
erarchy impedes information encoding[22]. Instead,
one can freely classify objects into several convenient
hierarchies, without contradiction. A machine can be
a kind of server, a member of an ownership hierarchy,
and a kind of client, with no confusion.

Hierarchy is not absent from our system; it is sim-
ply not essential. Complex entities with many parts
are easily modeled via part and subclass relation-
ships, e.g.,

dns server | has part | dns local zone information
dns server | has part | dns configuration file
dns server | is an instance of | server

with the obvious meanings. Users and privilege can
be modeled straightforwardly by thinking of the user
as a primary key:

Alva | refers to person | Alva L. Couch
Alva | uses shell | /bin/bash
Alva | administers | couch1
Alva | administers | couch2

to describe an entity ‘Alva’ who administers two ma-
chines ‘couch1’ and ‘couch2’.

As in the preceding example, one describes multi-
ple relationships by listing instances:

Mark | administers | couch1
Alva | administers | couch1

means that both administer ‘couch1’. Sets of facts
are treated as if all are true, i.e., listing two facts
implicitly connects them with logical ‘and’.

There is no equivalent to logical ‘or’ in the calculus,
nor is there any equivalent to negation. To express
that something is one thing or another, one can con-
struct a (synthetic) class ‘admin1’ with more than
one instance:

Mark | is an instance of | admin1
Alva | is an instance of | admin1
admin1 | administers | couch1

to denote that some instance of the class ‘admin1’
administers ‘couch1’.

Note that when a class is used in a fact, an instance
is implied; no class can “administer” anything. How-
ever, this form of disjunction is not exclusive and
thus does not preclude that both ‘Mark’ and ‘Alva’
administer ‘couch1’.

6.2 Modal facts

In our reasoning system, there are very precise mean-
ings of modal expressions in English such as ‘X |
can serve | Y’ or ‘X | might serve | Y’. The qual-
ifier ‘can’ implies capability but not intent: ‘X | can
serve | Y’ means that X is capable of serving Y but
not that X is actually serving Y. The qualifier ‘might’
means that there is some (as yet unknown) possibil-
ity of a thing. If we say ‘X | might serve | Y’, this
means that in some worlds, X serves Y and in others, X
is not known to serve Y. These are strength indicators
for one’s confidence that something is true: ‘might’
is stronger than ‘can’. Neither of these is a tempo-
ral distinction; if something might serve something
else, it still does or does not serve it, i.e., either ‘X |
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serves | Y’ is a fact, or not. The modal fact encodes
the possibility that the non-modal fact is present.
Later we will see that modal constructions have a
complex interaction with class membership (‘is an
instance of’) and structural (‘is a part of’) re-
lationships.

6.3 Pitfalls in declaring facts

The main trap in representing a fact is to represent
“too much”, so that the implications of a fact far
exceed what is intended. Representing “too much”
costs the administrator time in sifting through im-
possible alternatives, while representing “too little”
does not depict valid alternatives. Thus, the best
practical advice is “when in doubt, specify too lit-
tle.”.

Another way to say this is that one should adopt a
“maximum entropy principle” that what is not known
for sure is not considered to be known at all.

For example, suppose you do not really know that
a client workstation utilizes a specific file server. It
would be bad to declare that it uses something that
it might not, but fairly harmless to declare that it
uses some file server, identity unknown. The former
will misdirect the reasoning system, while the latter
will point out to the reasoning system that this par-
ticular facet of configuration is unknown, leading to
possibility rather than hard fact. This is what hap-
pened in the inferences in the first example, where
the relationship ‘might depend upon’ indicates that
uncertainty.

Another pitfall of encoding facts might best be
called the “tyranny of naming”. A system entity is
often best described by its attributes rather than its
name. The name of an object is – at best – nothing
more than a (hopefully) unique key. Obviously, it is
very bad to use the same name for two distinct things.
It might be best, therefore, to use automatically gen-
erated unique names for entities, e.g., ‘id29394510’,
and let attributes of the objects define their physical
identities, e.g.,

id29394510 | has hostname | couch1
id29394510 | has manufacturer | dell
id29394510 | has serial | 000-123-4567
id29394510 | is owned by | Alva

The unique key ‘id29394510’ need not be central to a
query; one can ask the system what entities influence
the (human) ‘Alva’, and it can respond with, e.g.,
hostnames.

A third pitfall of encoding facts is that – because
of the simplicity of our representation – relationships
often imply the types of their arguments. For exam-
ple, if one has the fact:

host01 | provides | dns service

then it is implicit in the relationship ‘provides’ that
‘host01’ is either a machine or a class of machines.
Saying, e.g., that:

Alva L. Couch | provides | dns service

is thus made somewhat nonsensical – a person can’t
be a machine or instance of a machine.

In topic maps, this ambiguity is resolved via the
concept of roles, which determine the types of the
subject and object of a relationship. Thus, notating
roles as subscripts, one might write:

host01 | machineprovidesservice | dns service

to encode the fact that ‘host01’ is an instance of
the generic class ‘machine’ and ‘dns service’ is an
instance of the generic class ‘service’. In this case,
the relationship between ‘host01’ and ‘dns service’
is the ternary symbol machineprovidesservice,
where roles are listed on the side to which they apply.
In the interest of simplicity, for this paper, roles will
remain implicit, but in general, roles can be useful
to disambiguate between relationships that are, in
fact, different: e.g., machineprovidesservice ver-
sus personprovidesservice.

7 Rules

We reason about troubleshooting using a simple cal-
culus of facts and rules that is inspired by – but
somewhat different from – ontological reasoning in
the semantic web. During ontological reasoning, one
connects two entities by looking at how they inter-
act with other entities. Two entities are “similar” if
they interact with nearly the same other entities. By
contrast, our rules do not concern similarity between

7
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entities, but instead derive relationships from rela-
tionships, without considering how entities are sim-
ilar or dissimilar. Rules suggest new facts in sev-
eral ways, including canonicalization, inverse rela-
tionships, transitive relationships, and implications.

7.1 Canonicalization

The purpose of canonicalization is to both save typ-
ing and ensure that representations of facts are suf-
ficiently precise to be useful. The relationship ‘is a’
is ambiguous; X | is a | Y could mean that X is an
instance of Y, or that X is a kind of Y. The canoni-
calization:

is a => is an instance of

disambiguates between these two alternatives (and
more). Canonicalizations are always denoted by
“=>”, and allow one to utilize a shorthand when
writing rules that is expanded later. In the prototype
implementation, we employ the following canonical-
izations:

is a superclass of => has subclass
has superclass => is a subclass of

to ensure that we only talk about subclass relation-
ships rather than the equivalent superclass relation-
ships. This is so all class relationships will be com-
parable.

7.2 Inverses

Inverses allow one to reverse a relationship so that
the object switches positions with the subject. The
inverse rule

is an instance of <> has instance

means that for every X and Y, if ‘X | is
an instance of | Y’, then ‘Y | has instance | X’
(and vice-versa). The inverse for a relationship is the
English phrase that – in English – represents the re-
versed relationship. Inverses are syntactic, and not
semantic. They are always defined, and never in-
ferred.

A few relationships are self-inverse, i.e., ‘is
a peer of <> is a peer of’, because ‘A | is a
peer of | B’ exactly when ‘B | is a peer of | A’.

Most inverses are simply other ways of stating
the same relationship, such as ‘is an instance of
<> has instance’, which means that ‘A | is an
instance of | B’ exactly when ‘B | has instance
| A’.

The meaning of an inverse in English is inciden-
tal to its use. E.g., if you define ‘foo <> bar’, then
these relationships are inverses, regardless of what
they might mean in English; this rule means that if
‘Alva | foo | Mark’, then ‘Mark | bar | Alva’.

7.3 Weak transitive rules

Weak transitive rules make connections between pre-
viously unconnected objects.

In mathematics, a transitive relation is a set of
ordered pairs R where for any A, B, and C, if
(A, B) ∈ R and (B, C) ∈ R, then (A, C) ∈ R. In
our context, a transitive relation is represented by a
verb phrase R where for any nouns A, B, C, if A | R|
B and B | R | C, then A | R | C. For example, ‘is a
part of’ is transitive: if A is a part of B, and B is a
part of C, then A is always a part of C. Examples of
some transitive relations are shown in Table 1.

Each of these relations corresponds to a transitive
rule in our reasoning system. The relations in the
table correspond to the rules

is larger than ˆ is larger than ˆ is larger than
is caused by ˆ is caused by ˆ is caused by
is the same as ˆ is the same as ˆ is the same as
depends upon ˆ depends upon ˆ depends upon
is a part of ˆ is a part of ˆ is a part of
is the same as ˆ is the same as ˆ is the same as

where “ˆ” delimits relationships.
However, in our system, there are rules that look

somewhat like the former, but whose antecedent and
consequent relationships differ from one another. We
call these weak transitive rules, because they look
somewhat like transitive rules but are not. For ex-
ample, if A is an instance of B and B provides C,
then A provides C, meaning that if something is a
member of a class that does something, the instance
does it too. Some examples of weak transitive rules
are listed in Table 2. We notate weak transitive rules
in the same way as transitive rules; the rules in the
table are notated as
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Fact 1 Fact 2 Implies...
A is larger than B B is larger than C A is larger than C
A is caused by B B is caused by C A is caused by C
A is the same as B B is the same as C A is the same as C
A depends upon B B depends upon C A depends upon C
A is a part of B B is a part of C A is a part of C
A is the same as B B is the same as C A is the same as C

Table 1: Transitive relationships correspond to transitive rules.

Fact 1 Fact 2 Implies...
A is an instance of B B provides C A provides C
A is an instance of B B requires C A requires C
A is larger than B B might be larger than C A might be larger than C
A might be larger than B B is larger than C A might be larger than C
A depends upon B B might be influenced by C A might be influenced by C

Table 2: Weak transitive rules look like transitive rules except that antecedents and consequent differ in
some way.
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Figure 1: One useful depiction of architecture is a graph in which nodes are entities and arrows represent
relationships. Base facts are depicted as solid lines, while two inferred facts are depicted as dashed lines.
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is an instance of ˆ provides ˆ provides
is an instance of ˆ requires ˆ requires
is larger than ˆ might be larger than ˆ might be

larger than
might be larger than ˆ is larger than ˆ might be

larger than
depends upon ˆ might be influenced by ˆ might be

influenced by

The point of weak transitive rules is to allow us to
codify all ways in which two entities can be connected
to one another. Each rule provides one form of con-
nection, and these are the only rules in our system
that make new connections.

While transitive rules often result in strong con-
nections (e.g., ‘determines’), weak transitive rules
often result in weaker connections (e.g., ‘might
influence’) that say less about the relationship be-
tween the two entities. The point of weak connec-
tions is that, even when strong connections do not
exist, weaker relationships can guide humans in find-
ing problems. Weak transitivity, as we define it here,
offers a simple and measured approach for enumerat-
ing possibilities.

7.4 Implications

Implication rules allow one to change the level of ab-
straction at which reasoning occurs. The implication
rule

provides -> determines

means that for every pair of entities ‘X’ and ‘Y’, if ‘X |
provides | Y’ then ‘X | determines | Y’. The pur-
pose of implication in our system is to allow one to
raise the level of abstraction to a level at which rea-
soning can occur. If ‘Z -> W’, then Z is more specific
than W, and W is more abstract (generic) than Z.
Specific facts may have no obvious inter-relationship,
while their generic equivalents may be obviously re-
lated.

For example, consider the facts:
host01 | is a file server for | host02
host02 | provides | print service

On the surface, these do not have any relationship to
each other. But if we translate to a higher level of
abstraction via the implications:

is a file server for -> influences
provides -> influences

then we get the higher-level facts
host01 | influences | host02
host02 | influences | print service

Then, by the transitive rule:
influences ˆ influences ˆ influences

we obtain the new fact
host01 | influences | print service

which might be quite important to know. In this
example – and many others – raising the level of ab-
straction exposes relationships that are not apparent
at lower levels.

7.5 An example of reasoning

Consider the example in Figure 1. A user is unable
to log on to a given host, so a diagnostician points
the prototype at the entity ‘User login’. The proto-
type invokes our algorithm to enumerate possibilities.
These possibilities are relationships between entities,
and not obviously anything that can be logically con-
nected with faults. The human user must evaluate
the possibilities.

For instance, if ‘User login’ is enabled by the
file ‘/etc/passwd’, then it ‘is influenced by’ it.
If ‘/etc/passwd’ can be changed by an opera-
tor, then it ‘can be influenced by’ the operator.
If ‘/etc/passwd’ is stored on the ‘disk’, then it
‘is influenced by’ the disk. If ‘/etc/passwd’ is
a kind of ‘database’ and databases are managed
by ‘Mark’, then ‘/etc/passwd | can be influenced
by | Mark’.

But often, more subtle and hidden connections are
the real cause of the problem. Here is a problem
we have experienced in real practice. A possible but
less than obvious cause of a missing user entry in
‘/etc/passwd’ is that the file is being managed by
an agent (like Cfengine), whose policy applies only
to a certain operating system type. That operating
system type is only detected in the prescribed man-
ner if the package ‘Linux Standard Base’ (LSB) is
installed. This in turn depends on the default set-
tings for the package manager in use. In other words,
the default settings of the package manager influence
user login.
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What we see in this example is the power of lat-
eral thinking. The system generates alternatives and
the administrator rules out each one in turn. The
system does not perform logical elimination to find
the cause of a fault, but rather the opposite: it enu-
merates possibilities the administrator may not have
considered.

7.6 Rules as shorthands

One purpose of rules in our system is to shorten nota-
tion and to allow automatic inference of related facts.
We could– in principle – simply enumerate all facts,
but this would be a laborious process. One rule suf-
fices as a substitute for writing down many facts.

For example, suppose that there are entities ‘LDAP’,
‘login privileges’, and ‘shell access’, where

LDAP ˆ can determine ˆ login privileges
login privileges ˆ can determine ˆ shell access

Note that these relationships describe potential for
interaction, rather than assurance of interaction.

Implications allow us to avoid writing down obvi-
ous outcomes. The rather obvious rule

can determine -> might determine

denotes that the capability to do a thing is necessary
in order for the possibility to do a thing. This rule
means that we do not have to write down the facts:

LDAP | might determine | login privileges
login privileges | might determine | shell access

because these are implied by the facts above and the
implication.

Likewise, if there is a transitive rule

can determine ˆ can determine ˆ can determine

then we do not have to write down the fact

LDAP | can determine | shell access

because the latter is a result of that rule and the base
facts above.

Rules can also interact with each other to produce
new rules. The implication

can determine -> might determine

and the transitive rule

can determine ˆ can determine ˆ can determine

together imply the rule

can determine ˆ can determine ˆ might determine

because possibility is weaker than capability. The rule
still applies if the consequent of the rule is weakened.

Moreover, if we have the obvious implication and
transitive laws

determines -> can determine
can determine ˆ can determine ˆ can determine

then we also can infer the rules

determines ˆ determines ˆ can determine
can determine ˆ determines ˆ can determine
determines ˆ can determine ˆ can determine

because the rule still applies if either of the an-
tecedents are strengthened, and ‘determines’ is
stronger than ‘can determine’. Also, from

determines -> can determine
determines ˆ determines ˆ determines

we can infer that

determines ˆ determines ˆ can determine

In general, any rule remains valid if we strengthen
the antecedents and/or weaken the consequent. This
is how the prototype actually works internally, and is
part of the reason it is efficient.

7.7 Rules as meaning

Another unique aspect of our system is how mean-
ing is imparted to symbols. In most logical sys-
tems there is some external model that defines what
symbols mean. In our system, the meaning is the
rules. The interactions between the relationship
‘influences’ and other relationships comprise its
meaning, and two different tokens (e.g., ‘influences’
and ‘coerces’) are identical whenever their interac-
tions with the other tokens are the same. In other
words, ontological equivalence between relationships
implies that the relationships have the exact same
meaning (with respect to all other relationships con-
sidered in the rules).

To understand this (rather subtle) idea, consider
the rules

11
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determines -> influences
determines -> can determine
can determine -> might determine
influences -> can influence
can influence -> might influence
influences ˆ is a part of ˆ influences
is a part of ˆ influences ˆ influences
determines ˆ is a part of ˆ influences
is a part of ˆ determines ˆ determines
influences ˆ is an instance of ˆ might influence
is an instance of ˆ influences ˆ influences
determines ˆ is an instance of ˆ might determine
is an instance of ˆ determines ˆ determines

These rules – in a nutshell – encode the princi-
pal semantic differences between ‘influences’ and
‘determines’ with respect to ‘is a part of’ and ‘is
an instance of’. Note that if one influences an in-
stance of a thing, then one might influence all in-
stances (the containing class), or not. If one deter-
mines a thing, then one determines its part, but if one
determines a thing that is a part of another, one only
influences the larger thing. We consider this interac-
tion to be part of the definition of the relationships
‘determines’ and ‘influences’.

7.8 Classes and structures

The rules for classes and structures deserve special
comment. As in object-oriented modeling, a class of
things shares some common attributes and has in-
stances that have those attributes. Likewise, a struc-
ture has parts.

For classes, note that
is an instance of ˆ has attribute ˆ has attribute

is almost the definition of a class. But, perhaps
counter-intuitively

has attribute ˆ is an instance of ˆ might have
attribute

because the existence of an attribute in an instance
does not mean that it is present in all instances (and
thus the class). An instance might be also an instance
of a subclass.

Causal relationships have some subtleties.
Straightforwardly,

is an instance of ˆ is determined by ˆ is
determined by

because determining all of a class determines its in-
stances. But

is determined by ˆ is an instance of ˆ might be
determined by

because the fact that an instance determines some-
thing does not mean that every instance determines
it.

For structures, note that

determines ˆ has part ˆ determines

because if one determines a thing, one determines all
parts. But rather obviously,

has part ˆ determines ˆ influences

because determining a part does not implicitly deter-
mine the whole thing. Again, some subtleties arise:

influences ˆ has part ˆ might influence
has part ˆ influences ˆ might influence

because if something is a part of something larger,
and we influence the whole thing, we might or might
not touch a specific part. These rules might be con-
sidered the definition of ‘has part’.

8 Philosophical concerns

In using our system, several strongly held philosoph-
ical decisions become immediately obvious. We de-
signed the system around an open model of knowl-
edge, in the sense that no model is considered to
be complete. We also designed the inference sys-
tem so that knowledge is convergent, in the sense
that multiple rounds of inference converge to a fixed-
point knowledge base in a finite number of iterations.
These decisions give the reasoning system both speed
and scalability, but also match the fundamental phi-
losophy of Cfengine upon which the system is based.

8.1 Open knowledge

There are two ways of conceptualizing a knowledge
model. A closed-world model attempts to describe ev-
erything about a system, so that facts that are absent
are assumed to be false. In an open-world model[10],
facts describe only what is known, and leave other
facets to be described later. When a fact is absent,
this does not mean that it is false, but simply that it
is not known to be true (yet). It might become known
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to be true in the future, or not. In other words, open
world models are ambiguous about whether the lack
of a fact implies that it is false.

Like Cfengine, we adhere to an open-world philos-
ophy. We never assume that our knowledge model
is complete (or ‘closed’), and err on the side of try-
ing not to claim anything that is false. This makes
it extremely easy to add information later, once it is
known, while leveraging what is known in the mean-
time. Incompleteness of the architectural model does
not hamper its use if we remember that it is incom-
plete.

8.2 Convergent inference

Another concept we borrow from Cfengine is the no-
tion of convergence[2, 11, 9]. We think of the in-
ference system as creating new facts from old facts,
and new rules from old rules. An inference system is
convergent if – by some finite number of applications
of rules – it achieves a fixed point state in which no
further operations add new facts or rules[3, 6].

The reason for this philosophical stance is compu-
tational. This will allow us (in the future) to code
the inferences on a cloud at massive scale, because
we can compute resultant facts in advance and then
use Map/Reduce to find them[7]. This allows us to
turn a logic problem into a database search problem,
greatly simplifying implementation.

9 Queries

In the process of troubleshooting, the reasoning sys-
tem provides guidance as to possibilities by answering
several kinds of questions. These questions include
what entities are potentially related to a subsystem,
and precisely how two given entities are related to
one another.

9.1 What are nearby entities?

In a complex system, on average, the most closely re-
lated entities to a symptom are most likely to contain
the problem. Given an entity or set of entities with
symptoms, the system can list those entities with

some connection to the set, either via facts or rules.
The ‘closest’ entities are those with some direct con-
nection via a fact or implied fact, while more ‘distant’
entities are connected via weak transitive laws. The
distance between two entities (with respect to some
target relationship) is the number of weak transitive
laws applied to connect them, plus 1. Entities di-
rectly connected by a fact are distance 1 apart, and
every application of a weak transitive law adds 1.

Our concept of distance depends upon adopting
some target relationship as a goal. Typically, the re-
lationship of interest is ‘might influence’, for some
very subtle reasons. First, the reasoning system be-
comes more powerful as the level of abstraction in-
creases. The relationship ‘might influence’ is the
most abstract relationship that is useful in trou-
bleshooting. While we might actually be more in-
terested in ‘determines’, few strong lines of deter-
minism arise in a realistic set of facts. The relation-
ship ‘might influence’ has several more concrete
versions, specified via the implications

determines -> influences
determines -> can determine
can determine -> might determine
influences -> can influence
can influence -> might influence

where ‘can’ implies ‘might’ because capability pre-
cedes possibility. Thus ‘might influence’ is a “more
abstract” relationship than any of ‘determines’, ‘can
determine’, ‘might determine’, ‘influences’, and
‘can influence’, simply because it is more general
and applies to more pairs of entities.

Implications are not counted as distance, because
all they do is to restate a fact in a different and less
specific language, and do not change the nature of the
fact. By contrast, weak transitive rules add new facts
and connections that were never explicit before.

9.2 What is the connection?

The second kind of query explains the connection be-
tween two entities. This gives guidance to the trou-
bleshooter trying to debug that connection.

A story is a human-readable explanation of why
some relationship exists. One can think of it as a
“mathematical proof” of the soundness of reasoning.

13
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Figure 2: A chord diagram depicts entities in a story in a circle, while relationships are depicted as chord
lines of the circle. Solid arrows represent facts, while inferred relationships are represented by dashed arrows.
The story explains the dashed horizontal line at the bottom.

One key attribute of our system is its ability to gen-
erate easily readable stories.

As a really simple example, suppose we want to
know the relationship between ‘host01’ and ‘host03’
in the initial example. The system utilizes the facts:

host01 | is an instance of | file server
file server | provides | file service
host03 | is an instance of | client workstation
client workstation | requires | file service

and the weak transitive rules:
is an instance of ˆ requires ˆ requires
is provided by ˆ has instance ˆ is provided by
requires ˆ is provided by ˆ might depend upon

to infer that:
host03 | might depend upon | host01

The difference between our system and other forms of
logical reasoning is that we have crafted the system
so that this inference, once discovered, can be ex-
plained. An explanation of a relationship is a linear
chain of entities and relationships whose combination
via rules results in the relationship in question, e.g.,

host03 | is an instance of
| client workstation | requires
| file service | provided by
| file server | has instance
| host01

We call such an explanation a story of the relationship
between ‘host03’ and ‘host01’. Due to the nature of
our rules, every high-level inference corresponds to at
least one story (with perhaps many alternatives).

In the previous example, we have avoided depicting
one thing, which is the specific set of rule applications
that led to the story. In the example, one cannot sim-
ply apply rules from top to bottom. The series of rule
applications can be depicted in a chord diagram (Fig-
ure 2), in which the entities are depicted in a circle
and the base facts (before reasoning) are depicted as
solid lines. The dashed lines (which are all chords of
the circle) indicate inferred relationships.

9.3 Lifting and grounding

The preceding example was one of the simplest forms
of reasoning of which the system is capable. Often,
more trouble must be taken to make reasoning pos-
sible and understandable. Architectural descriptions
are often incomplete and specified at different levels
of abstraction. To cope with this, our system utilizes
implication to “lift” facts to a common level of ab-
straction or generality at which reasoning can occur,
and then “grounds” that reasoning by expressing the

14
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high-level abstract facts in terms of the low-level facts
that were their basis.

Consider, e.g., the following quandary:

host02 | is an instance of | file server
host03 | is an instance of | client workstation
client workstation | requires | file server

What is the real relationship or dependency between
‘host02’ and ‘host03’?

To answer this question, we must proceed to a
higher level of abstraction:

requires -> is influenced by

after which the facts available also include:

client workstation | is influenced by | file server

and, using the rules

is an instance of ˆ is influenced by ˆ is
influenced by

is influenced by ˆ has instance ˆ might be
influenced by

we infer that

host03 | might be influenced by | host02

from which we infer the story that:

host02 | is an instance of
| client workstation | is influenced by
| file server | has instance
| host03

but this is not good enough. To complete the pic-
ture, we “ground” the lifted relationships by replac-
ing them with the concrete relationships that are
their subclasses:

host02 | is an instance of
| client workstation | requires
| file server | has instance
| host03

which “explains” the abstract reasoning in more con-
crete terms.

10 A prototype

We implemented a prototype reasoning system as a
web-based troubleshooting aid. In a troubleshooting
situation, a user inputs locations at which symptoms
have occurred, and the reasoning system responds

with a likely list of other locations that might be the
source of the problem. Options are listed in order of
inference distance within the reasoning system, i.e.,
how many transitive rules had to be applied; we have
found that this roughly corresponds to the strength of
coupling between entities. Clicking upon a candidate
source “explains” its relationship with the symptoms
as a linear chain of dependences. The prototype is
written in Perl, and the facts and rules are specified
in a text file, using the notation in our examples.
The current prototype does everything online. No
pre-computed state is kept between queries. Thus
the prototype is limited to relatively small examples,
e.g., at most a few hundred entities. By contrast, the
algorithm itself can be run on clouds, and can scale
to arbitrary input sizes.

There are several ways this technology can be used
to solve common troubleshooting problems. It can
be used to remember details that might be otherwise
forgotten, to learn about a new system with which
one is unfamiliar, or even to debug one’s architectural
description of a system. The system does not replace
human thought, but rather, assures that known facts
are not forgotten.

10.1 Remembering details

First, the system aids a troubleshooter in remem-
bering details or dependencies that might be missed.
If one selects a trouble source, the system can re-
spond with those hosts, services, or other entities that
might be interfering with that source. For example,
inputting ‘DNS’ to the system (with relationship ‘can
influence’) gives a list of things that might affect
DNS, in order of distance from DNS.

10.2 Exploring legacy systems

Another typical use case is to learn about legacy
systems. System administrators change jobs more
frequently than we would like to admit. If a prior
administrator has documented the architecture, the
new administrator faced with a new system can uti-
lize the data to learn what dependencies are, and to
get a feel for how things are connected. For example,

15
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one can input two hosts and look for the dependen-
cies between them, or one host and look for the hosts
upon which it depends.

10.3 Debugging architectural descrip-
tions

A final and not-so-typical use of the system is to de-
bug architectural descriptions by examining the con-
sequences of those descriptions. This occurs natu-
rally as a result of using the system. When a rela-
tionship is explained, the chain of reasoning is pre-
sented in terms of the input facts. If an inference
is incorrect, the cause must be an invalid input fact,
and these are shown for every inference.

11 Critique

This method is not a panacea. It requires careful
coding of relationships in order to avoid erroneous
conclusions and wasted time. The “inference dis-
tance” metric used to determine “most likely” causes
could use some refinement. Clearly, there are many
shades of ‘influences’, from ‘greatly influences’
to ‘slightly influences’. The current calculus
does not account for shades of meaning.

11.1 Sensitivity to definitions

On a related note, the core causal relationships must
be rather rigorously defined in order for the system
to work well. Our system “defines” relationships via
their interactions with others. Our rules in some
sense embody the definitions of our relationships.
One must understand the core calculus of meaning
in detail in order to properly write new rules.

This means – in turn – that the topics one utilizes
to describe the network must be sufficiently under-
stood by the describer to avoid confusion.

11.2 Lack of contradictions

One specific limitation – due to the need to scale
to large data sizes – is that contradictions cannot be
expressed in the logical system. There is no provision

for any equivalent to the statement that “X is not
like Y”. One can assert similarity, but not difference.
Since the associations are purely syntactic, there is
no reason – within the system – that data cannot
become contradictory by, e.g., asserting two mutually
exclusive relationships for an entity.

11.3 Opportunities for further work

Several key questions remain:

1. Is inference distance the best metric of how re-
lated two entities are? Are there other better
metrics? Is there a concept of relationship that
could aid in measuring distance.

2. How should we handle ternary and n-ary rela-
tionships?

3. How can we automatically translate common
CMDBs (other than Cfknowledge) into a useful
form?

4. How can we relate this work to probabilistic
methods for discovering connections?

The search will continue for answers to these ques-
tions.

12 Lessons learned

Perhaps the most important lesson learned in this
work is that naive approaches to making connections
between components do not work properly. This pa-
per describes the 14th prototype. Prototypes 1-13
suffered from a variety of serious problems.

First, tracing connections without considering
their meaning gives many false positives where the
discovered connection is not useful or relevant. For
example, one might naively infer from

ubuntu | has part | kernel
ubuntu | has part | contributed software

that somehow the kernel is related to the contributed
software, but that is not particularly useful in trou-
bleshooting.
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Second, anything short of real computer logic re-
sults in false negatives. We tried, e.g., to build con-
nections from known connected components to new
ones, breadth-first. This resulted in lost relation-
ships, because some causal relationships are inferred
from non-causal ones. For example, consider

client workstation | contains | compiler
compiler | has instance | gcc compiler
gcc compiler | requires | linker

Because containment is not guaranteed to be causal,
starting a walk at ‘client workstation’ and looking
for causal relationships will never get to ‘linker’,
even though the inference is that

client workstation | can require | linker

just because of the choice of starting point for the
walk and the fact that there are two non-causal links
in the sequence. If we start at ‘linker’ instead, then
the link will be made, but then other connections
may be lost. We were unable to “simplify” the logic
without losing connections in this manner.

Third, it is extremely important to keep that logic
as simple as possible, so that a human can under-
stand it. The simplest representation seems to be a
linear chain of components, with their low-level re-
lationships, where the logic is not represented in the
chain. In the uses we have developed so far, it is the
connections themselves – and not the logic by which
they are proven to be connected – that is useful to
the end-user.

Fourth, the least specific and most abstract
forms of causation are the most useful to rea-
son about. The reason for this is somewhat sub-
tle. In the prototype, one specifies a “pivot” rela-
tionship, e.g., ‘determines’ or ‘can determine’ or
‘might determine’, and requests the identities of all
components having that relationship to the compo-
nents that exhibit symptoms. This reasoning works
best when that pivot is least specific (e.g., ‘might
determine’), because our prototypical architecture
specification is always incomplete (just like real ar-
chitectural specifications).

Our prototype and strategy are not “the solution”
to troubleshooting, but rather, utilizes a part of avail-
able information that was previously ignored. It
is not a replacement for discovering causal links or

remembering relationships, but makes relationships
more difficult to forget.

It is our hope that this demonstration of the utility
of this kind of information will encourage people to
collect more of it, and in turn encourage all system
administrators to utilize configuration management
systems (either Cfengine or any other) to define con-
figuration in terms of similar high-level architectural
models. The ability of system administrators to think
in terms of architectural models – and not this work
in particular – is what will actually advance the state
of the art.

13 Availability

The prototype is freely available from
http://www.cs.tufts.edu/∼couch/topics .
We encourage you to try it with your configuration
data and share your experiences with us. Your
feedback is important and will help to shape the
next generation of these tools and approaches.
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