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ABSTRACT 

Existing Virtual Machine (VM) management 

systems rely on host resource utilization metrics to 

allocate and schedule VMs. Many management 

systems only consolidate and migrate VMs based on 

hosts’ CPU utilizations. However, the performance of 

delay-sensitive workloads, such as web services and 

online transaction processing, can be severely 

degraded by contention on numerous of the hosts’ 

components. Current VM management systems 

typically use threshold based rules to decide when to 

migrate VMs, rather than using application-level 

performance. This means that they cannot easily 

provide application-level service level objective 

(SLO) guarantees. Providing SLO guarantees is even 

more difficult when considering that today’s 

enterprise applications often consist of multiple VM 

tiers. 

In this paper we show how the performance of a 

multi-tiered VM application can be empirically 

captured, modeled and scaled. This allows our 

management system to guarantee application-level 

performance, despite variable host utilization and 

VM workload levels. Additionally, it can predict the 

performance of an application at host utilization 

levels that have not been previously observed. This is 

achieved by performing regression analysis on the 

previously observed values and scaling the 

applications performance model. This allows the 

performance of a VM to be predicted before it is 

migrated to or from a new host. We have found that 

by dynamically, rather than statically, allocating 

resources, average response time can be improved by 

30%. Additionally, we found that resource 

allocations can be reduced by 20%, with no 

degradation in response time. 

1. INTRODUCTION 

Modern data centers contain a large number of 

virtual machines (VMs). Additionally, internet Cloud 

services use VMs to run multiple applications across 

multiple physical servers, under the premise that the 

Cloud is a single resource pool. While hypervisor 

vendors such as VMware [1], Citrix [2] and 

Microsoft [3] tout the potential benefits of VMs, 

these benefits are not always fully realized. This is 

typically due to increased overheads and resource 

contention cause by other VMs. In this paper we 

show how application-level performance can be 

guaranteed for multi-tier VM applications. 

Additionally, we show how hardware utilization can 

be increased over current VM management systems 

by more densely packing VMs than threshold based 

systems. Finally, we show that the overall 

performance of the applications in a datacenter can 

be improved by dynamically setting resource 

allocation levels. 

VMs were originally deployed as a way to 

increase resource utilization levels. This is achieved 

by consolidating multiple machines that have low 

resource utilization levels onto a single physical host, 

saving both hardware capital and energy costs. This 

is possible as VMs are isolated from each other by 

the hypervisor, allowing them to share the same 

physical resources. Additionally, modern VMs can be 

live-migrated [21] and will run on heterogeneous 

hardware. While consolidating under-utilized 

applications is easy, consolidating even moderately 

used applications can be difficult. This is because 

VMs are not entirely isolated from each other, and 

virtualization adds additional overhead. Thus, two 

VMs running on the same physical host can have an 

impact on each other's performance; as shown in [12] 

and [13]. 

To achieve the greatest amount of capital and 

energy savings, VMs must be placed to minimize the 

number of physical hosts required. However, a 

placement scheme must also ensure that the 

applications' performances remain at an acceptable 

level. To achieve this, VMs must be placed in such a 

way as to minimize the performance impact they 

have on each other. Current placement schemes 



primarily focus on setting utilization threshold levels. 

However, resource utilization levels can be a poor 

indicator of application level performance. This 

suggests that VM placement schemes should not be 

solely based on the idea of bin-packing resource 

utilization levels. 

Commercial VM placement technologies, such as 

VMware Distributed Resource Scheduler (DRS)[4], 

place VMs based on resource utilization levels. DRS 

uses the VMs' CPU utilization level and RAM usage 

commitment to automatically decide which VMs 

should be placed on which physical hosts. VMs are 

then migrated between hosts as resource utilization 

levels change. Placement schemes such as this rely 

on the assumption that resource utilization levels 

reflect application-level performance. However, as 

resource utilization levels do not always reflect 

application level performance, such a scheme cannot 

easily guarantee application-level SLO. 

In this paper we show that a VM management 

system can model multi-tiered applications to 

guarantee application-level SLO. This would allow 

system administrators to choose performance 

guarantees, such as response time < 500ms, without 

having to manually configure resource allocations. 

We show how the applications’ model can be scaled 

to unobserved utilization levels, to allow SLO 

guarantees despite varied host workloads. 

Additionally, scaling the applications’ model can 

predict the performance impact on an application 

before migrating VMs to or from a host where one of 

the application’s tiers resides. Lastly, we show that 

modeling applications can help to more effectively 

and flexibly place VMs over a threshold based 

approach. For example, an application’s VMs tiers 

can be placed to minimize power usage, or to 

minimize the risk of a certain response time being 

exceeded. 

The paper is organized as follows: In Section 2 we 

discuss related works. In Section 3 we describe our 

system. In Section 4 we describe our experimental 

setup. In Section 5 we evaluate our results, followed 

by our conclusion in Section 6. 

2. RELATED WORKS 

There are many works on maximizing resource 

utilization levels and increasing efficiency in the 

virtual environment [5], [6], [7]. Existing commercial 

products are also available to facilitate the task of 

managing and relocating VMs. For example, 

VMware DRS [4] monitors the CPU and memory 

usage of VMs and migrates them to balance 

utilization levels. Similarly, VMware Distributed 

Power Management [4] minimizes the power usage 

of a data center by migrating VMs from lowly-

utilized hosts and powers them off. Both systems 

focus on maintaining CPU and memory usage. Our 

work focuses on service level performance. 

Recent efforts such as [8], [14], [15] and [16]  

have attempted to further increase resource utilization 

levels by migrating VMs. Each VM's resource 

utilization level is monitored and VMs are migrated 

to new hosts such that host resource utilization is 

maximized, and no host is overloaded. Kochut et. al 

[14] consider both autocorrelation and a periodogram 

to decide which VMs are best candidates to be placed 

together. Ideally, colocated VMs should have a low 

probability of overloading the host. Hermenier et. al. 

[15] consider the order that the migrations occur in 

addition to which VMs to migrate to minimize the 

impact of the migrations on system performance. 

Another method to maximize resource utilization 

levels is overbooking resources. Urgaonkar et. al. [9] 

shows that a 500% increase in utility can be achieved 

by overbooking hosts by 5% of their peak load 

values. This only causes a 4.6% decrease in overall 

throughput. However, the study focuses on a shared 

hosting environment, not a virtual one, and considers 

neither contention nor the overhead caused by a 

virtual environment. 

To maintain end-to-end service level 

performance, Stewart et.al [11] offers a response time 

prediction model. The model is based on an identified 

trait model for multi-tier applications. Their work 

focuses on predicting the service response time, 

based on pre-identified trait model relationships 

between processor properties and observed response 

time. Liu et. al. [18] use an autoregressive model to 

control CPU allocation. This allows VMs to be 

assigned a certain resource level as to normalize 

multiple applications' performance. Padala et. al. [19] 

and [20] have further used an autoregressive moving 

average to assign VM multiple resources. 

3. MOTIVATION 

The motivation behind our work is to remove the 

need for administrators to perform resource 

allocation in the virtual environment. Our system 

aims to achieve SLOs by automatically allocating 

resources when they are required by a VM. 

Resources are then taken away and reallocated to 

other VMs as resource needs change. In a non-

virtualized datacenter, applications avoid 

performance degradations by being isolated and run 

on dedicated hardware. However, this typically 

means low resource utilization levels, resulting in 

high hardware and energy costs. It is therefore 

attractive to place applications within VMs to reduce 



these costs. However, once applications are placed in 

a virtual environment, they must contest for resources 

as they are no longer entirely isolated. This can cause 

applications to suffer from performance degradations. 

To ensure applications perform satisfactorily, 

Virtual Machine Monitors can be set to allocate a 

certain amount of hardware resources to each VM. 

There are however, a number of problems with 

current VM management systems. Firstly, 

administrators typically need to set the resource 

allocation levels manually. This requires 

administrators to monitor their applications’ 

performances, and set each VMs’ resource allocation 

and priority in the VM management system. This task 

can be made more difficult if the VMs’ resource 

requirements frequently change. Secondly, the 

resource allocation levels only guarantee that a VM 

will receive a certain share of a resource. They do not 

provide any application-level performance guarantee. 

This can lead to lower hardware utilization levels, as 

administrators will typically over-provision resource 

allocations to ensure satisfactory performance. 

Lastly, administrators must manually set the 

utilization levels at which VMs will be migrated to 

and from hosts. This can again lead to lower 

hardware utilization as migration thresholds must be 

set low enough to ensure application-level 

performance does not suffer due to high resource 

contention. 

To address these problems, our system monitors 

application-level performance and automatically 

allocates VMs the minimum level of resources they 

need to meet an application-level SLO guarantee. 

Our system works by monitoring the applications’ 

performances at various user, resource allocation, and 

resource contention levels. Resource contention 

occurs on a host when multiple VMs require the use 

of the same resource. Once our system has multiple 

readings at different values, it can interpolate the 

minimum resource allocations needed to achieve a 

certain response time. 

Figure 1 shows the basic flow of information in 

the management system. The process starts by an 

application reporting its response time and the level 

of resource contention on each host where one of its 

VMs resides. The management system then chooses 

the model that best describes the application's 

response time based on the current resource 

contention levels. Initially, this model will be empty 

as the management system does not have any data 

about the application. The model is then stretched 

based on how far the readings in the model are from 

the current resource contention levels. The missing 

data points in the model are then interpolated from 

the data that is available. The minimum resource 

allocation levels that allow the application to meet its 

response time target are then found in the 

interpolated model. Finally, the resource allocations 

are set on the hosts, and the hosts wait to take a new 

reading to report to the management system. 

The applications’ performance models are created 

automatically by analyzing the performance achieved 

at the various resource allocation levels. Although 

such models could contain millions of potential data 

points, we have found that a model can be 

constructed with only 10’s of data points. Although 

each application will have a unique model, in future 

work it may be possible to apply a generic model to 

different types of applications, and then quickly tailor 

them with even fewer data points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to interpolating the minimum resource 

allocations needed to achieve a certain response time, 

our system can also interpolate a response time value 

for a given resource contention level. This can help 

predict the performance of a VM before it is migrated 

to or from a host. This allows migration decisions to 

be made more flexibly, as they can be based on VM 

performance, rather than occurring at a fixed 

threshold. 

As many of today’s datacenter applications rely 

on multiple tiers, our system allows for this. Our 

system sets the resource allocations at each tier, such 

that the total response time experienced by the end 

user is below the SLO target. This allows an 

administrator to configure a single SLO value for an 
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Figure 1: Management system flow 



entire application stack. This is in contrast to current 

management systems, where the resource allocation 

must be configured individually for each tier. 

3.1 Monitoring 

To collect the data we need for our system we 

record the application’s response time at its first tier; 

as shown in Figure 2. Throughput based applications 

can be monitored in a similar fashion, with 

throughput per time period recorded rather than 

response time. While monitoring response times at 

each individual tier could possibly provide a more 

accurate model, such monitoring would incur a 

significant overhead. Additionally, monitoring at 

intermediate tiers does not always reflect the overall 

performance characteristics experienced by the end-

users.  

 

 

 

 

 

 

 

 

 

The data we capture are the applications’ average 

total response time, CPU utilization, and storage and 

network throughput. All of the data are captured 

outside of the VMs, thereby not requiring a client to 

be inside the VMs. To allow our system to react 

quickly to changes, we take a reading every 10 

seconds. This period could be increased or decreased 

as needed, depending on the system being controlled. 

After the data is captured, it is passed to a server 

and added to our model. The model then interpolates 

the resource allocations that each VM should receive 

to meet a specified response time and chooses the 

minimum value. These resource allocations are then 

set on each host so that each VM receives the amount 

of resources calculated by the model, as shown in 

Figure 3. 

 

 

 

 

 

Figure 3: Control flow  

3.2 Model Interpolation 

Once the data is reported to our management 

system it is added to an application system model. An 

application’s system model describes the previous 

response time values that we have observed for an 

application at various user, resource allocation, and 

hardware contention levels. We then use this model 

to predict the minimum resource allocations an 

application’s VMs require to meet a certain response 

time. 

To predict the required resource allocation levels 

we must first identify trends in the data. Figure 4 

shows the effect of CPU contention on the host 

containing the web tier of TPC-W. The CPU 

contention is the total CPU utilization minus the 

amount used by the VM itself. As shown, the 

response time curve follows an exponential 

distribution. As the data closely fits an exponential 

distribution very few points are needed during run 

time to interpolate estimated resource allocation 

values. 

 

Figure 4: CPU contention and response time 

degradation 

Figure 5 show the response time of TPC-W as the 

web tier has its CPU allocation changed from 10% to 

100%. The resource allocation levels are currently 

capped to a minimum of 10% in our system as we 

have found that response times quickly approach 

infinity (the website crashes) for extremely low 

resource allocation values. Both the proxy and SQL 

tiers were set to 80% CPU allocation. As shown, for 

45%-100% CPU allocation the response time for all 

four contention levels can be roughly predicted by 

the same linear function. For allocation values less 

than 45%, each contention level follows its own 

steeper linear function. This occurs as the web server 

tier is not the bottleneck of the application until it 

receives less than 45% CPU allocation. 
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Figure 2: Response time monitoring 
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Figure 5: TPC-W response time with proxy and 

web server set at 80% CPU allocation 

If the SLO guarantee we are trying to fulfill is 

100ms, for example, Figure 5 would suggest that we 

allocate the web tier 45% of the CPU share if the 

CPU contention on the host is 20% or above. 

However, this only considers a single tier of the 

application. Figure 6 shows the response time curves 

when the web tier’s CPU allocation is changed from 

10% to 100%, but the proxy tier’s allocation has been 

reduced to 30%. In this situation, there is no way to 

meet the 100ms response time goal if the contention 

on the host is more than 10%. This is because the 

proxy tier has become the application’s bottleneck, so 

assigning more resources to the web tier will not 

significantly improve the response time. Because of 

this, it is clear that to minimize the resource 

allocations the model must include every tier of the 

application as a dimension. 

 

Figure 6: TPC-W response time with proxy set at 

80% CPU allocation 

 

 

Figure 7 shows the surface plot for the TPC-W 

proxy and web tiers with 300 active users and 40% 

CPU contention on each host. It should be noted that 

our system uses data from every application tier and 

from multiple hardware components. However, 

displaying graphs with more than three dimensions is 

difficult. 

While Figure 7, 8 and 9 contain hundreds of data 

points to show the complete resource allocation to 

response time model, the runtime model does not 

require this much data. If, for example, the 

administrator has set 150ms as the SLO target, each 

model will contain points around that response time, 

but only a few points for the rest of the model. For 

example, in Figures 8 and 9 the model will mostly 

need to record data points between the dotted lines. 

In addition to having to store less data points, being 

able to characterize the application with fewer data 

points helps the model converge and adapt to changes 

quickly. 

 

Figure 7: Proxy and Web tier CPU allocation 

response times for 40% CPU contention 

 

Figure 8: Proxy and Web tier CPU allocation 

response times for 40%CPU contention 
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Figure 9: Proxy and Web tier CPU allocation 

response times for 30% CPU contention

3.3 Dimensional Reduction  

As there are potentially thousands, or even 

millions, of resource contention combinations, it is 

infeasible to keep a model for every combination we 

encounter. Instead, we keep a subset of models, and 

scale the response time values to fit the current 

contention levels. To achieve this scaling 

same data used in the resource allocation to response 

time models (Figures 7, 8 and 9), but instead 

interpolate contention to response time for a given 

resource allocation level. We use piecewise 

linear regression to estimate the value that each point 

in the model should be scaled by. 

estimating resource allocation values for a resource 

contention level that we do not have a model for, the 

management system needs to choose the model that 

most accurately represents the current resource 

contention levels. The model chosen to be scaled is 

the one with the smallest Euclidean distance 

current resource contention levels. 

Figure 10 shows the actual response time 

TPC-W and the estimated response time calculated 

using the regression coefficients. The data 

subset of data points where the CPU contention is 

between 10% and 40% for each tier. As can be seen 

in Figure 10, the estimated and actual response times

are highly correlated, as would be expected 

fit of the data shown in Figure 4. 

Figure 11 shows the response time increase

the number of users increase; in this

10% CPU contention on each of the hosts where the 

TPC-W VMs are placed. As can be seen, the 

response time increases exponentially with the 

number of users. This can be accurately 

by linearly scaling three copies of an

resource allocation model. 
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: Proxy and Web tier CPU allocation 

CPU contention 

As there are potentially thousands, or even 

millions, of resource contention combinations, it is 

infeasible to keep a model for every combination we 

encounter. Instead, we keep a subset of models, and 

scale the response time values to fit the current 

scaling we use the 

allocation to response 

time models (Figures 7, 8 and 9), but instead 

interpolate contention to response time for a given 

allocation level. We use piecewise multiple 

to estimate the value that each point 

. When we are 

estimating resource allocation values for a resource 

contention level that we do not have a model for, the 

management system needs to choose the model that 

most accurately represents the current resource 

contention levels. The model chosen to be scaled is 

distance from the 
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and the estimated response time calculated 

using the regression coefficients. The data shown is a 
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Figure 11: Response time increase 

Figure 12 shows the degredation in TPC

responce time at various CPU contention level

responce times shown are when the web tier is 

assigned 50% or 10% CPU allocation. 

share allocation the CPU contention has little affect 

on the response time. This is because the web tier 

recieves CPU cycles very frequently, and is not the

application’s bottleneck. At 10% CPU share 

allocation the response time quickly degrades to 

almost a 50% increase in response time with a 10% 

increase in CPU contention. Even though the CPU 

had over 40% free cycles, the web tier does not 

receive its cycles promply enough, cauing it to 

become the bottleneck tier and causing degraded 

response time. 

1020

 

0

50

100

150

200

250

0

50

100

150

200

250

300

0 50 100 150P
re

d
ic

te
d

 R
es

p
o

n
se

 t
im

e 
(m

s)

Actual Response time (ms)

Estimated vs Actual response time

0

200

400

600

800

1000

1200

1400

10 100 200 300 400

R
es

p
o

n
se

 t
im

e 
(m

s)

Users

Users level and response time

Actual distribution

Model

Linear estimate 

 

: Estimated and Actual TPC-W response 

 

: Response time increase vs. user level 
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Figure 12: Regression values used to stretch a 

model 

To scale an application's performance model, we 

multiply the model from the current contention level 

to the new one for each resource allocation level. For 

example, if we wanted to know the response time at 

20% CPU contention and 50% CPU share allocation 

we would estimate 73 + 1.1 * 20 = 95ms. If our SLO 

target is 100ms, we would know that we could place 

the web tier on a host with 20% CPU contention if it 

could receive 50% of the CPU share allocation. 

However, if the host only had 40% CPU share 

allocation remaining, the estimated response time 

would be 80 + 1.15 * 20 = 103ms. Therefore, we 

would not expect that we could palce the web tier on 

that host. 

4. EXPERIMENTAL SETUP 

4.1 Infrastructure  

Our experiments are setup on a flat local area 

network using commodity hardware. The host 

operating system is Fedora 12 with Linux kernel 

2.6.31. We use KVM as our hypervisor. The VM 

hosts consist of three nodes with tri-core 2.1 GHz 

CPU, 4GB RAM. The test clients consist of two 

nodes with quad-core 2.66 GHz CPU, 4GB RAM. 

The storage node contains a dual-core 2.8 GHz CPU, 

4GB RAM. 

The network topology we use is two flat-networks 

each with one switch: the user data network and the 

management network. Each physical host has two 

network interface cards (NICs). One NIC is 

connected to a user data network using a 24-port 

Gigabit switch. The user network carries all of the 

user workload and benchmark traffic. The other NIC 

is connected to a management network using a 

separate Gigabit switch as shown in Figure 13. The 

management network carries management-related 

commands and network attached storage traffic for 

the VMs' virtual disk images. 

The storage system is hosted on two-spindle 

RAID-0, 2TB, 7200rpm hard disks. The storage 

server exports an NFS share. All virtual machine 

images are served from this location. To ensure 

network storage was not the bottleneck in our system, 

we benchmarked the network storage and found it 

more than capable of handling all of the VMs' disk 

traffic.  

 

 

 

4.2 Workloads 

To test our system we use the TPC-W benchmark 

suit [22]. We use TPC-W as a test of a real-world 

delay-sensitive application. TPC-W mimics an 

online-bookstore application. It consists of an Apache 

web proxy front-end, a Tomcat application server, 

and a MySQL database back-end. There are 15 types 

of page requests. The benchmark client is a closed-

loop client which simulates multiple users 

concurrently accessing the server. TPC-W's 

performance is measured based on response time for 

each action performed. 

5. RESULTS 

In this section we discuss the results from our 

system. We test our system by running the TPC-W 

benchmark with each of the application’s tiers on a 

separate host. Each host also contains another VM 

running an Apache web server hosting 

computationally intensive web pages. The additional 

VMs are used to create resource contention on the 

hosts. They represent other applications that would 

undoubtedly also be running in a shared virtual 

environment.   The number of requests per second to 

each Apache server was varied throughout the 

experiments to change the resource contention levels. 
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5.1 Meeting SLO target  

Figure 14 shows the resulting response times of 

TPC-W when the resource allocation levels are set 

manually and when they are controlled by our 

system. When the resource allocations are set 

manually, each tier receives the same resource 

allocation on each host. For example, in the 50% 

resource allocation experiment, each tier has a fixed 

50% resource allocation throughout the experiment. 

As can be seen in Figure 14, when using our 

system TPC-W’s response time closely follows the 

SLO target that is set. It is expected that the response 

time will oscillate above and below the SLO target as 

our system attempts to make the median response 

time equal to the SLO target. It is also evident from 

Figure 14 that the response time when using our 

system is usually faster, rather than slower, than the 

SLO target, and therefore averages to faster than the 

required SLO value. This is due to the resource 

allocation optimizer being cautious in its estimates. 

This is a conscious design decision, as a system that 

constantly over performs is more useful than a 

system that constantly under performs. 

It can also be seen in Figure 14 that setting the 

resource allocation levels manually does not always 

produce a consistent response time. This is because 

resource contentions may increase over time, but the 

resource allocations do not. When the resource 

allocation is set to 50%, TPC-W’s response time is 

faster for a longer period of time than when the SLO 

target is set to 150ms. However, at time period 480, a 

50% resource allocation is no longer sufficient to 

continue providing that fast response time. However, 

with a dynamically set resource allocation our system 

can keep providing the same response time despite 

the CPU contention increase. 

 

 

 

Test RT average Resource 

allocation 

average 

Apache VM 

average 

SLO = 100ms 89ms 48% 125ms 

SLO = 150ms 127ms 35% 107ms 

50% resource 

allocation 

150ms 50% 120ms 

10% resource 

allocation 

355ms 10% 83ms 

Table 1: Response time for TPC-W and 

contention workload 

As can be seen in Table 1, despite the 50% 

resource allocation test having a faster response time 

for a longer period of time than the SLO 150ms test, 

its final average response time is greater. 

Additionally, the SLO 150ms test uses on average 

15% less resources to achieve this faster average 

response time. As TPC-W uses less resources in the 

SLO 150ms test, the Apache workload on the host 

receives a greater share of resources; thus reducing 

its average response time from 120ms to 107ms. This 

is because the optimizer does not needlessly 

overprovision TPC-W, allowing the host scheduler to 

allocate remaining resources as needed.  This shows 

that dynamically setting the resource allocation levels 

can not only guarantee a specified response time, but 

is also a more efficient use of resources. In this case, 

both applications have benefited from faster response 

times, despite our system only guaranteeing one of 

them.  

Comparing the two tests with the closest resource 

allocation levels, we find that dynamic resource 

allocation helps achieve a faster average response 

time while using overall fewer hardware resources. 

Even excluding the final 120 readings, where the 

50% allocation test performed poorly, dynamic 

allocation still performs faster, with an average 

response time of 89ms vs. the static allocation 

average of 106ms. 

 

 



 

 

 

5.2 Resource Allocation 

Figure 15 shows the resource allocation levels that 

TPC-W received for the SLO 100ms and 150ms tests. 

The other two tests remain at 50% and 10% 

allocation throughout and are not shown. 

At time period 200 it can be seen that the CPU 

contention on the SQL VM's host jumps 40%; 

however, the resource allocation only increases 

roughly 10%. This shows an advantage of modeling 

and predicting the application’s performance over a 

more simple resource control scheme, such as 

increasing the resource allocation by a fixed factor of 

CPU contention. The regression analysis identifies 

that the CPU contention on the SQL VM's host does 

not cause large increases in response time. Therefore, 

when a model is used to predict the resource 

allocations for the new contention level, the scaling 

factor is low. This is in contrast to time period 110, 

when the CPU contention on the web server VM's 

host increases by 10%. In this case, the resource 

allocation increases by 20% in the SLO 150ms test 

and by 30% in the SLO 100ms test. This is because 

the model has correctly predicted that increased CPU 

contention on the web server VM’s host will cause an 

increase in response time and has scaled the resource 

allocation model accordingly. We can see that the 

system predicted the correct resource allocation 

increases in both cases, as the response times for the 

SLO tests in Figure 14 both change to the configured 

SLO level at time period 110. 

5.3 Change in user levels 

Figure 16 shows the TPC-W response time when 

the number of users is varied during the experiment. 

We again configure our system to meet either a 

100ms or 150ms response time SLO. We also 

experiment with the VMs resource allocations set 

statically to either 50% or 10%. 

It can be seen from Figure 16 that our system can 

dynamically adjust resource allocations to meet an 

SLO despite a varying user level. Our system keeps 

the response time near the SLO target, whereas the 

static resource allocation causes response time to 

vary from 100ms-400ms. 
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Figure 16: Response time results for dynamic and static resource allocations, changing user level 

Experiment period (10s) 



6. CONCLUSION AND FUTURE WORK 

In this work we have shown that applications 

comprised of multiple VM tiers can meet SLOs by 

dynamically allocating host resources. We show that 

by capturing an application’s previous performance, 

we can model and predict the minimum amount of 

resources it needs to meet an SLO. Additionally, we 

show that these models can be stretched to changes in 

host utilization levels. This allows the resource 

allocation to be quickly altered when resource 

utilization levels change. 

We evaluate our system using TPC-W and setting 

response time SLO targets. The host utilization is 

then varied throughout the experiments. Our system 

adapts to the changes in host utilization levels, and 

helps maintain TPC-W’s response time within the 

SLO target. Our system also assigns the minimum 

amount of resources required to meet the SLO, 

allowing the other application running on the same 

hosts to improve its performance. 

Although our system allows applications to meet 

SLOs, minimizing the total amount of resources used 

by each application may not be the most desirable 

goal in a data center. As VM migration causes both 

performance degradation and increased utilization, 

assigning resources in such a way as to lower the 

number of migrations may achieve lower global 

resource utilization than attempting to minimize 

resource allocation alone. Additional study would be 

needed to analyze the application specific 

performance degradation caused by migration. 

While our current control scheme ensures that 

VMs receive the correct amount of resources to meet 

an SLO, it does not actually provide a hard guarantee 

about the number of violations. In future work we 

will bound the number and severity of SLO 

violations to provide administrators with hard 

guarantees about application level performance. 

Additionally, rather than starting with a blank 

slate for each application, we hope to identify 

common traits between applications. This will allow 

performance models to be created and adapted more 

quickly, and could allow for different modes of 

control for different application types. This could 

potentially make the task of bounding the number of 

SLO violations easier.  
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