
Towards Automatic Update of Access Control Policy

Jinwei Hu†‡, Yan Zhang†, and Ruixuan Li‡?
†Intelligent Systems Laboratory, School of Computing and Mathematics

University of Western Sydney, Sydney 1797, Australia
‡Intelligent and Distributed Computing Laboratory, School of Computer Science and Technology

Huazhong University of Science and Technology, Wuhan 430074, China
jwhu@hust.edu.cn rxli@hust.edu.cn yan@scm.uws.edu.au

? Corresponding author

Abstract
Role-based access control (RBAC) has significantly

simplified the management of users and permissions in
computing systems. In dynamic environments, systems
are subject to changes, so that the associated configura-
tions need to be updated accordingly in order to reflect
the systems’ evolution. Access control update is com-
plex, especially for large-scale systems; because the up-
dated system is expected to meet necessary constraints.

This paper presents a tool, RoleUpdater, which an-
swers administrators’ high-level update request for role-
based access control systems. RoleUpdater is able to au-
tomatically check whether a required update is achiev-
able and, if so, to construct a reference model. In light
of this model, administrators could fulfill the changes to
RBAC systems. RoleUpdater is able to cope with prac-
tical update requests, e.g., that include role hierarchies
and administrative rules in effect. Moreover, RoleUp-
dater can also provide minimal update in the sense that
no redundant changes are implemented.

1 Introduction

Role-based access control (RBAC) [11, 35] simplifies ac-
cess control management. In an RBAC system, users are
assigned to roles such as manager and employee, and a
role in turn is defined as a set of permissions. The key to
RBAC is that users are assigned to roles and thus ob-
tain roles’ permissions, instead of being assigned per-
missions directly. Essentially, an RBAC configuration
manages three kinds of relations: a user-role relation, a
role-role relation, and a role-permission relation. The
user-role relation assigns users to roles. The role-role
relation describes how roles’ permissions are inherited
by other roles. The role-permission relation describes
which permissions are accorded to each role. An RBAC
system consists of two components, the RBAC config-
uration and the administration configuration. A running

example RBAC system, which is used throughout the pa-
per, is comprised of the RBAC configuration in Figure 1
and the administration configuration in Figure 2.

The role-role relation needs to be a partial order over
roles; usually we refer to the role-role relation as a role
hierarchy. The role hierarchy embodies two inheritance
relationships among roles. Take the RBAC configuration
in Figure 1 for example. (r1, r7) belongs to the hierarchy
and we say r1 is senior to r7; it means that r1 inherits all
permissions of r7 (i.e., p3 and p4) and that all members
of r1 are also members of r7 or in other words, r7 inherits
all users of r1.

RBAC is able to model a wide range of access con-
trol requirements, including discretionary and mandatory
access control policies [30]. Hence, RBAC is widely
supported in commodity operating systems and database
systems [15, 17, 25], and is deployed inside many orga-
nizations [37].

We call a snapshot of an RBAC system an RBAC
state. We denote the current state of the running exam-
ple RBAC system as γ. Administrators can perform ad-
ministrative actions to take an RBAC system from one
RBAC state to another. Usually, the administration con-
figuration is supposed to be static; that is, only the RBAC
configuration may be changed. The actions available to
administrators we consider are two types:

• admin assign p to r, and

• admin revoke p from r.

Administrators’ powers are regulated by the administra-
tion configuration. We support variants of the PRA97
component of the ARBAC97 administrative model for
RBAC [34]. The administrative model is instantiated by
a set of assignment rules and a set of revocation rules.
Figure 2 presents the administration configuration of γ.
An assignment rule is of the form “ar can assign p to r
if p assigned to c”, which means an administrator in role
ar can assign a permission p to r, if p is also assigned to

r1 r2 r3 r4 r5 r6

p1 p2 p3 p4 p5 p6 p7 p8 p9

r8r7

u1 u2 u3 u4

Figure 1: An example RBAC configuration. Users are represented as ellipses, roles as circles, and permissions as
rectangles. Arrows between users and roles denote user-role assignments, arrows between roles and permissions
denote role-permission assignments, and dashed arrows between roles denote role-role relationships (role hierarchy).

c. The expression c is constructed by roles and the con-
nector ∧. For example, consider the rule “ar2 can assign
p to r1 if p assigned to r2 ∧ r3”; then the administrator
admin2 can assign a permission p to r1 if p is assigned
to r2 and r3.1 A revocation rule is of the form “ar can
revoke p from r”, expressing that an administrator in role
ar can revoke a permission p from r.

Update of RBAC systems is complex and challeng-
ing, especially for large-scale RBAC deployments. Ex-
isting tools mainly help administrators analyze and man-
age the RBAC system; they put little emphasis on sug-
gesting to administrators how to configure the system.
As shown in Figure 3a, with existing tools, administra-
tors may have to update the system in a manual way. Fig-
ure 3b shows a typical process of manual update when
one administrator is present. The administrator first de-
termines and specifies, in some language, the update ob-
jective and the constraints that the final resulting system
should satisfy. Usually, an update objective is initially
formulated as high-level objectives (e.g., being able to
assign {p5, p8, p9} to a user) . Arbitrary update may hin-
der the security and availability of the RBAC system. For
example, revocation of a doctor’s permission to write to
a patient’s medical record as a result of updating is not

1Consider, for example, the following situation: an administrator
wants to enable an engineer to release the source code of a piece of
software; however, the administrator can not do so unless the product
manager and the quality manager are authorized to release the source
code.

assignment rules:
ar1 can assign p to r6

if p assigned to r1 ∧ r2;
ar2 can assign p to r1

if p assigned to r2 ∧ r3;
ar2 can assign p to r1

if p assigned to r2 ∧ r4;

ar0 can assign p to r1;
· · ·

ar0 can assign p to r6;

revocation rules:
ar1 can revoke p from r4;
ar1 can revoke p from r6;
ar2 can revoke p from r1;
ar2 can revoke p from r2;
ar2 can revoke p from r3;
ar3 can revoke p from r5;
ar3 can revoke p from r6;

ar0 can revoke p from r1;
· · ·

ar0 can revoke p from r6;

administrative role assignments:
admin0 in ar0; admin1 in ar1;
admin2 in ar2; admin3 in ar3;

Figure 2: An example administration configuration.

2

acceptable.
To modify system configurations, an administrator

needs to observe the system and the constraints, and de-
vises an update plan, which consists of a sequence of ad-
ministrative actions. The administrator implements those
actions, which take the system to a new state. There is
no guarantee that all constraints are met and that this new
state is the desired one. Hence, the administrator pro-
ceeds to check if these two conditions hold. When either
one does not hold, the administrator may need to undo
some previous actions and repeat the process. Roughly
speaking, this is a trial-and-error approach. For large
and complex systems, one can fail to achieve update af-
ter several trials; in this case, the question is whether to
give up or not. Thus there arises a question: is the up-
date achievable at all? An answer to this question helps
the administrator make proper decisions. A positive an-
swer implies that the update can be achieved and that the
administrator should persevere in trying, whereas a neg-
ative one saves the administrator from continuing with
pointless attempts.

On the other hand, suppose that the administrator fi-
nally manages to update the system without violating
constraints. In this case, how different is the updated
system from the original one? The less different it is, the
more easier for one to understand and maintain the sys-
tem, and thus the more preferable the update is. In other
words, we may pursue an update that incurs minimal dif-
ferences.

When multiple administrators are involved, the prob-
lem become more complicated. The actions an admin-
istrator can take might depend on others’ actions. That
is, administrators have mutual influence on each other
in terms of administrative power. Cooperation among
administrators is required in this case, which increases
the complexity and cost of manual update. In summary,
manual administration for update is work-intensive, in-
efficient and, when the objective is not achievable at all,
very frustrating.

Access control update is demanded when security re-
quirements are changed. In addition, RBAC systems
may need updating in response to the following devel-
oping situations:

Misconfiguration Repair Misconfigurations in access
control systems can result in severe consequences
[4]. In a health-care situation, for instance, lack of
legal authorization could lead to the delay of treat-
ment. Modern access control systems include hun-
dreds of rules, which are managed by different ad-
ministrators in a distributed manner. The increas-
ing complexity of access control systems gives rise
to more likelihood of misconfigurations [2, 3]. As
such, correcting misconfigurations is essential to
systems’ usability and security. Updating is neces-

administrator administration tools RBAC system

(a)

specify update
constraints

observe the system
and update
constraints

perform some
operations

check system and
constraints

constraints
violated?

update
achieved?

give up?

end

yyQuestion: are all changes necessary?

yes

yesyy

yeszz

no

no

no

update constraints

plans of how to
update the system

system in a
new state

report about the
system and
constraints

undo
operations

information that
administrators view

zzQuestion: is update achievable?

(b) Workflow of manual update.

Figure 3: Illustration of updating without RoleUpdater.

sary when misconfigurations in RBAC systems are
detected.

Task Assignments To accomplish a task, a set of per-
missions should be assigned to a set of users to em-
power them to perform task operations [13]. For
a new task, it is likely that the present RBAC con-
figuration fails to enable exactly the needed user-
permission assignments. In this case, administrators
may resort to adjusting role configurations.

Property satisfaction An RBAC system should ex-

3

hibit various properties, including simple availabil-
ity/safety and containment availability/safety [14,
22, 23, 24]. A simple availability/safety prop-
erty asks whether a user Alice has a permission,
e.g., access to a confidential file. Containment
safety properties encode queries such as whether
any user who can access printers are members of
staff, whereas containment availability properties
may ask whether all students have permission to use
a library.

If an RBAC system was not designed with these
properties in mind, it is unlikely that all properties
would happen to hold. Particularly, for legacy sys-
tems, there is no guarantee of automatic establish-
ment of security properties when they are migrated
to RBAC management. On the other hand, even
if all desired security properties hold currently, re-
quirements are not static. For example, it may be
desired that now only managers, instead of employ-
ees, have access to an internal document. To assure
these properties, one may have to update the RBAC
system.

Updating is a key component of maintenance in the
RBAC life-cycle [18], and accounts for a great propor-
tion of the total cost of maintenance [29]. RoleUpdater
assists administrators with update tasks. As shown in
Figure 4a, prior to updating the system, the administra-
tor first interacts with RoleUpdater, and then manipulates
the system using suggestions from RoleUpdater. Figure
4b shows the workflow of updating with RoleUpdater.
The administrator still needs to specify the update con-
straints, and invoke RoleUpdater with the request. Role-
Updater checks, in an automatic way, whether the request
achievable or not; and if so, a sequence of actions, which
take the system to the expected state, is reported. Role-
Updater can also deal with the case where multiple ad-
ministrators are involved.

RoleUpdater makes novel use of model checking tech-
niques [6]. Figure 5a illustrates the basic idea of model
checking. A model checker takes a description of a sys-
tem and a property as inputs, and examines the system
for the property. If the system exhibits the property, the
checker reports that the property is true. If the system is
found to lack the property, the model checker produces
one counter-example. The counter-example, usually a
sequence of system state transitions, explains how the
system transits to a state where the property fails. Figure
5b illustrates how to use model checking as the basis for
update. We check the property that the requested state is
never reached; when the property does not hold, one is
not only informed of the existence of an update but also
a counter-example that corresponds to the update. Role-
Updater transforms update problems into model check-

administrator administration tools RBAC system

RoleUpdater

③

②

①

(a)

specify update constraints

run RoleUpdater with the
system and constraints

perform operations

end

update constraints

report of update being
un‐achievable or of a
sequence of operations

information that
administrators view

(b) Workflow of update with RoleUpdater.

Figure 4: Illustration of updating with RoleUpdater.

ing problems, where the failure of the model is synony-
mous with existence of a solution:

• if the property is determined to be true, the update
objective is not achievable;

• otherwise, the model checker returns a counter-
example, from which an update is constructed.

RoleUpdater employs NuSMV [5] to perform model
checking. NuMSV is a open-source symbolic model
checker. For better performance, a collection of reduc-
tions and optimization techniques are implemented in
RoleUpdater.

The rest of this paper is structured as follows. Re-
lated works are given in Section 2. We demonstrate the
use of RoleUpdater by showing how it handles a high-
level update request specification in Section 3. Section 4
presents the design and implementation of RoleUpdater.
We show some experimental results of running RoleUp-
dater in Section 5, illustrating its effectiveness and effi-
ciency. Section 6 concludes the paper.

4

Model Checking

Property holds.

Property | {z }| {z }

z }| {z }| {
Property fails;

A counter‐example

is generated.

System

(a) The basic illustration of model checking.

Model Checking

Property holds.

Property:

Requested state is

never reachable.

| {z }| {z }

z }| {z }| {
Property fails;

A counter‐example

is generated.

RBAC

System

No.

Requested state is

never reachable.

update achievable?

Yes.

Requested state is

not never reachable,

and can be

constructed from the

counter‐example.

(b) Update via model checking.

Figure 5: Illustration of model checking and its usage for
updating.

2 Related Work

RBAC administration and analysis Many convenient
RBAC administration models (e.g., [8, 21, 34]) are at

our disposition. They provide significant advantages in
access control management. They define administrative
rules, e.g., specifying which administrator can perform
what operations. However, high-level update is rarely
supported. It is generally difficult and error-prone, be-
cause usually the resulting state is expected to meet var-
ious constraints.

To help administrators understand RBAC policies,
various RBAC policy analysis tools (RPATs) have been
invented [4, 14, 23, 38, 39, 44]. RPATs usually answer
if an RBAC system satisfies a property. However, little
effort has been devoted to answering the question: what
if the RBAC system fails to meet the property? When
administrators find abnormalities with RPATs, RoleUp-
dater can assist in correcting them.

Most security analysis problems in literature basically
can be stated as: given the current state γ, a query q (e.g.,
whether accesses to internal documents are only avail-
able to employees), and a state-change rule ϕ, can γ be
taken to a state γ′ where q evaluates to true? If this is
the case, the steps taking γ to γ′ may also be reported
to administrators so that they can follow them to make
γ′. However, as the objectives are different, we believe
this kind of reporting could hardly be considered suffi-
cient for the role updating problem. RPATs’ objective is
to analyze the system. So, their input is just the property
to be examined. By contrast, RoleUpdater aims to up-
date the system; the input is the update request. RPATs
explore every possible sequence of actions, as long as
they are allowed by ϕ, to test if there is such a γ′ where
q is true. In this case, administrators do not have any
control of the resulting state. By contrast, RoleUpdater
seeks a resulting state that complies with administrators’
request. In addition, most RPATs focus on user-role as-
signments. Although it is argued that the role-permission
relation might be treated similarly to the user-role rela-
tion, the role-permission relation also deserves its own
attention [29], especially in terms of role updating.

Various access control properties are proposed and
verification schemes are devised to check the satisfia-
bility of properties. In [23], authors propose a tool to
answer a set of interesting properties, including sim-
ple availability/safety, bounded safety and containment
availability/safety. The tool provides a means to guaran-
tee that security requirements are always met as long as
trusted users abide by certain behavior patterns [22, 23].
However, an assumption is needed for the usage of se-
curity analysis: the properties hold in the current RBAC
state [22, 23]. As mentioned above, this is not always
the case. Role updating can be used to adjust the cur-
rent RBAC state so as to exhibit desired properties, while
keeping the changes to the customized extent.

5

1 update
2 make P = {p5, p8, p9} available via T = {r1, r2, r3, r4, r5, r6}
3 with
4 administrators admin1, admin2;
5 user-permission constraints
6 (u1, no-less-than {p1}, no-more-than {p1, p3, p4}),
7 (u2, no-less-than {p1, p3, p4, p5}, no-more-than {p1, p3, p4, p5}),
8 (u3, no-less-than {p3, p4, p5}, no-more-than {p3, p4, p5, p6, p8}),
9 (u4, no-less-than {p7, p8, p9}, no-more-than {p3, p5, p6, p7, p8, p9});

10 restricted-role constraints
11 (r4, no-less-than {p6, p7}, no-more-than {p6, p7, p8, p9}),
12 (r8, no-less-than {p5, p6}, no-more-than {p5, p6});
13 role-hierarchy = {(r2, r8), (r3, r7)};
14 minimal;

Figure 6: An example high-level update request specification.

Role engineering Role engineering attracts much re-
search effort [7, 10, 26, 40, 41, 45]. Existing role
engineering tools (eRETs) take user-permission assign-
ments as input and output user-role assignments and role-
permission assignments. eRETs may take into account
some other information such as business meanings, se-
mantics, and users’ attributes. Taxonomically, RoleUp-
dater can be viewed as a role engineering tool. How-
ever, role updating works when RBAC states have been
defined and possibly deployed, whereas eRETs usually
define roles from scratch. The focuses are also different.
Role updating aims to answer administrators’ question
whether an update is achievable with respect to update
constraints and how to generate one, if any. By contrast,
eRETs put more emphasis on how to define an appro-
priate set of roles. In the context of a role life cycle,
RoleUpdater is for role maintenance, while eRETs help
with role design. Thus, one may consider RoleUpdater
as a complement to eRETs; RoleUpdater can be used to
fine-tune the ideal state generated by eRETs.

RBAC udpate Ni et al. [29] studied the role adjust-
ment problem (RAP) in the context of role-based provi-
sioning via machine-learning algorithms. Though sim-
ilar, the role updating problem differs from the RAP
in several aspects. First, customized constraints on up-
dates are enforced in RoleUpdater, whereas it is unclear
if these constraints could be supported in RAP. Second,
our role updating is request-driven, whereas RAP is a
learning process. RAP and RoleUpdater are both assis-
tant tools for administrators but with different usage and
orientation.

Fisler et al. [16] investigated the semantic difference
of two XACML policies and the related properties. How-
ever, they do not consider how to make a different de-
sired state from the current one. Ray [32] studied the

admin2 assign p8 to r1;
admin2 assign p8 to r2;
admin1 assign p8 to r6;
admin2 revoke p8 from r1;
admin2 revoke p8 from r2;
admin1 revoke p6 from r6;
admin2 assign p5 to r1;
admin1 assign p5 to r6;
admin2 revoke p5 from r1;

Figure 7: The update returned by RoleUpdater when run-
ning with the request in Figure 6.

real-time update of access control policies, in the context
of database systems. They focused on transaction prop-
erties, instead of RBAC policies.

3 High-Level Update Request Specifica-
tions

We do not consider the update of user-role assignments,
because users’ role memberships are determined by their
attributes, jobs, titles, etc. When this information is re-
newed, administrators can accomplish user-role assign-
ments straightforwardly.

Suppose the administrators want to update the RBAC
configuration in Figure 1. Suppose further that the ad-
ministrators specify the update request as in Figure 6.
This specification expresses the customized conditions
on the potential updated system. In the rest of this sec-
tion, we illustrate the use of RoleUpdater through this ex-
ample. Running with this example, RoleUpdater returns
the steps, as shown in Figure 7, that the administrators
can follow to make the changes; in the updated state, the
administrators can assign {p5, p8, p9} to users via r6.

6

Administrative power Line 4 specifies which admin-
istrators are going to update the system. As mentioned
before, it is common for administrative rules to regulate
administrators’ operations; that is, administrators have
limited administrative power. A proposed update does
not make sense unless the needed changes lie within ad-
ministrators’ capabilities.

RoleUpdater appears more useful when multiple ad-
ministrators are involved. Observe the five actions by
admin1 and admin2: admin2 assigns p8 to r1 and r2,
admin1 assigns p8 to r6, and admin2 revokes p8 from
r1 and r2. These interleaving operations require close
cooperation between admin1 and admin2 and careful
examination. By contrast, RoleUpdater takes the cooper-
ation among administrators into account automatically.

Suppose that we replace Line 4 with the following.

administrators admin3;

That is, the administrator admin3, instead of admin1

and admin2, wants to update the system. Then RoleUp-
dater suggests an alternative: first revoke p6 from r5 and
then revoke p6 from r6. However, admin1 and admin2

are not authorized to perform this alternative. Note that
administrators’ powers are configured in Figure 2.

Controllable effects Administrators should be able to
confine the effects of an update. With RoleUpdater, ad-
ministrators can specify a certain set of users U and de-
fine what changes could happen to users’ permissions.
For example, Alice at least has access to files under
“/foo/bar1” but at most “/foo/bar1” and “/foo/bar2”. Line
5 to Line 9 are constraints on users’ permissions after up-
date. For example, by Line 6, administrators requires that
u1 have at least permission p1, but at most p1, p3, and p4

in the potential new state. Note that users still obtain per-
missions via roles and even that users’ role assignments
remain the same.

For another example, Line 7 prescribes that u2’s per-
missions are exactly {p1, p3, p4, p5}. Consider the solu-
tion in Figure 7; administrators have to revoke p8 from
r1, for u2 is assigned to r1 and cannot have permission
p8, as required by Line 7.

By properly specifying constraints, administrators
guarantee the tasks associated with users in U progress
smoothly. Suppose that u2 and u4 cooperate to finish
a task t, which requires that u2 and u4 are entitled to
privileges {p1, p3, p4, p5} and {p7, p8, p9}, respectively.
Then Line 7 and Line 9 guarantee that the updated state,
if any, would not disable t.

When administrators are specifying U, U often con-
tains those users for whom the administrators are not
responsible so that they have to ensure that the poten-
tial update does not affect such users, and/or those users

whose permissions are designated by the administrators
and vary within a range. For users outside the set U,
their current role assignments and permissions in γ are
neglected by RoleUpdater; that is, updates may change
their role-assignments and permission-assignments.

Restricted update The principle of least privilege is
important in computer security and well supported by
RBAC. Users activate only the roles necessary to finish
the underlying work, but not all assigned roles. For ex-
ample, a user Alice may activate the role manager when
she wants to evaluate an employee under her department,
and activates the employee role for routine works. As a
result, upper bounds should be put on roles’ permission
sets in compliance with the least privilege principle. On
the other hand, some roles are designed with expected
functions; users should be able to perform a particular
job with such a role. If associating with the role a set
of permissions less than necessary, administrators may
make the role useless. Hence, it would be handy if ad-
ministrators are able to set the permission sets of certain
roles within a range.

Line 10 to Line 12 shows constraints on roles’ per-
missions after update. For each selected role (e.g., r4),
administrators can impose a lower bound (e.g., {p6, p7})
and an upper bound (e.g., {p6, p7, p8, p9}) on the role’s
permissions. RoleUpdater assures that the role is as-
signed to permissions no less than those in the lower
bound and also no more than those in the upper bound.

A requirement is that, the upper bound (or the lower
bound) of the range should be a superset (or subset) of
the set of all permissions that r is currently assigned in
γ. This is reasonable, because the permissions r has cur-
rently in γ are enough to make it useful. We also find
that, without this requirement, RoleUpdater’s efficiency
degrades.

Line 12 indicates that r8’s permissions must still be
{p5, p6} after update, because the lower bound equals
the upper bound. We call roles like r8 invariant roles.
Despite the importance of update, it is likely that admin-
istrators demand some roles be invariants in order to, for
example, preserve roles’ intuitions, business meanings or
definitions. In this case, by letting the lower bound of r
be its upper bound, administrators request RoleUpdater
to find an update which does not change r’s permission
assignments. In other words, RoleUpdater may change
those non-invariant roles’ permission assignments in the
hope to find an update. In practice, non-invariant roles
are usually the ones under administrators’ control; oth-
erwise, even though an update is found, administrators
would not be able to implement it and thus the update is
of little value.

If the administrators impose another restricted-role

7

admin2 assign p8 to r1;
admin2 assign p8 to r2;
admin1 assign p8 to r6;
admin2 revoke p8 from r1;
admin2 revoke p8 from r2;
admin1 revoke p6 from r6;
admin2 revoke p3 from r3;
admin2 revoke p4 from r3;

Figure 8: An alternative when the role hierarchy (r3, r7)
is not required.

constraint besides those in Figure 6.

(r6,no-less-than {p6, p9},
no-more-than {p6, p9})

Then RoleUpdater reports that the requested update does
not exist, which is indeed the case.

Role hierarchy Role hierarchy is recognized by the
proposed NIST standard for RBAC as one of the fun-
damental criteria [11]. It further mitigates the burden of
security administration and maintenance. Usually, there
could be a natural mapping between role hierarchy and
organization’s structure. It is imprudent to alter a role hi-
erarchy arbitrarily. Administrators can ask RoleUpdater
to preserve the whole or part of the original role hierar-
chy. Line 13 tells that r2 and r3 are still senior to r8 and
r7, respectively, in the updated system.

The requirement that r3 be senior to r7 stops RoleUp-
dater from suggesting another solution, as shown in Fig-
ure 8. If following this approach, administrators can as-
sign {p5, p8, p9} via r3 and r6; however, r3 is no longer
a senior role of r7.

Minimal update As long as an update is implemented,
some changes are made to the system. When two update
solutions are available, which one is more preferable?
One perspective is to compare the changes they recom-
mend. The fewer changes are needed, the closer the re-
sulting state to the original state. Ideally, we may find an
update such that none of its changes is redundant; that is,
failure to implement any change thereof gives rise to a
disqualified state. We say the update is minimal.

Minimal update is valuable in several ways. First of
all, minimal update causes few difficulties for admin-
istrators to understand the new RBAC state. The ad-
ministrators are responsible for the maintenance of the
RBAC system. It is essential for them to comprehend
the system’s behavior. We can assume that administra-
tors understand the system well before updating. How-
ever, changes to the system configuration have the po-

admin2 assign p8 to r1;
admin2 assign p8 to r2;
admin1 assign p8 to r6;
admin2 revoke p8 from r1;

admin1 revoke p6 from r6;
admin2 assign p5 to r1;
admin1 assign p5 to r6;
admin2 revoke p5 from r1;

Figure 9: Update in response to the request in Figure 6
but without the minimality requirement.

tential to obfuscate the system. Obviously, a smaller gap
between the updated state and the original one usually
means a smaller degree to which administrators have to
re-examine and re-learn the system.

Secondly, minimal update possibly preserves more
previously computed analysis results. It is reasonable to
assume that the current RBAC state satisfies necessary
properties (otherwise, it should have been adjusted). It is
likely that more properties might be preserved with min-
imal update. Finally, minimal update is also desirable
when authorization recycling is deployed in access con-
trol implementation [42, 43].2

In RoleUpdater, administrators can choose to require
each returned update to be minimal in the sense that no
change is redundant. However, there is a tradeoff be-
tween doing this and incurring extra computing over-
head. In Figure 6, Line 14 indicates administrators’ will-
ingness to find a minimal update. If turning the minimal
requirement off, RoleUpdater would possibly not insist
on the revocation of p8 from r2, for p8 being assigned
to r2 does not contradict with the constraints. That is,
RoleUpdater returns the update in Figure 9.

4 Design and Implementation

Figure 11 shows the architecture of RoleUpdater. Its in-
terface accepts administrators’ input and parses the re-
quest. We say a request is canonical if (1) all administra-
tive operations are available, (2) users’ permissions are
required to remain unchanged, and (3) no role hierarchy
is required to be preserved. Figure 10 shows an example
canonical request, where Pi is the set of permissions that
user ui has prior to updating.

2Authorization decision-making is time-consuming and costly. Au-
thorization recycling caches the authorization decisions that are made
previously and infer decisions for forthcoming authorization requests.
As an important mechanism for access control implementation, autho-
rization recycling makes use of “cache” to enhance performance; there,
policy update is a major concern. For details, readers are referred to
[9, 42, 43].

8

update
make P available via T
with
administrators all-administrators
user-permission constraints

(u1, no-less-than P1,
no-more-than P1),

(u2, no-less-than P2,
no-more-than P2),

· · ·;
restricted-role constraints ∅;
role-hierarchy = ∅;

Figure 10: An example canonical request.

Interface NuSMV
Translator

NuSMV
Controller

Update
Constructor

Update
Transformer

canonical requests

non‐canonical requests

NuSMV
programs

counter‐example

update

canonical
requests

NuSMV

Figure 11: The architecture of RoleUpdater.

If canonical, the request is forwarded to the NuSMV
Translator; otherwise, it is first processed by the Update
Transformer, where non-canonical requests are trans-
formed into canonical ones. Afterwards, the NuSMV
Translator converts requests into NuSMV programs.
The NuSMV Controller invokes NuSMV to execute
those programs. According to the results returned from
NuSMV, the Update Constructor generates an update
report, either a sequence of administrative operations
which lead to desired RBAC system state or a message
that the request is unachievable.

Algorithm 1 presents RoleUpdater’s pseudo-code.
Line 2 belongs to the Interface module. Line 3 repre-
sents the Update Transformer. Line 4 and Line 5 are
the main components of the NuSMV Translator module.
Normally, the NuSMV Translator would create a set G of
NuSMV programs for each canonical request. However,
since the execution of the NuMSV programs translated

directly from the request easily result in state explosions
and memory crashes, some reductions are performed in
advance [12]. The set G has the property: an update is
found, if and only if, the run of NuSMV with at least one
program in G reports a counter-example. As indicated by
Line 6, on receiving the NuSMV programs, the NuSMV
Controller schedules NuSMV programs in increasing or-
der by the number of variables, because NuSMV’s per-
formance highly depends on the number of variables in
the input program. The NuSMV Controller proceeds to
execute each program with NuSMV; if any execution re-
turns a counter-example, it informs the Update Construc-
tor of the counter-example. The Update Constructor gen-
erates the needed update and administrative operations
necessary to institute the changes (Line 10 to Line 12).
If minimal update is required, further processing (Sec-
tion 4.3) will be done. In the rest of this section, we give
details of each component.

4.1 Handling non-canonical requests
We tried to use the model checking approach directly to
evaluate non-canonical update requests. Our experience
is that, an extensive number of variables are needed to
model complex requests, which often gives rise to state
explosions and memory crashes. The reasons are two-
fold. First, non-canonical requests enable much more po-
tential combinations of role-permission assignments than
canonical requests do. Second, some reductions in [12]
are not applicable to non-canonical ones. It is not clear
how to reduce non-canonical requests effectively.

Consider a non-canonical update request issued
against γ in Figure 12. Non-canonical requests are
transformed into canonical ones by adding dummy ele-
ments (e.g., users, roles, user-role assignments, and role-
permission assignments) to γ; these dummy elements
simulate those non-canonical conditions on the update.
Usually, the obtained RBAC state, against which the
canonical request is checked, is more complicated than
γ. Fortunately, the construction is polynomial. We trade
off the simplicity of RBAC states for the ability to cope
with complex updates. By this modeling, we need only
to focus on one unified problem: evaluating canonical
requests.

4.2 NuSMV program generation
NuMSV is the symbolic model checker that RoleUp-
dater employs to perform model checking. The NuSMV
Translator converts update requests into NuSMV pro-
grams. A set of boolean variables are defined to model
the RBAC system. To use NuSMV, let φ denote the state-
ment that a user could acquire exactly the permissions in
P via roles in T ; we ask if ¬φ is always true in all reach-

9

Algorithm 1: Algorithm of RoleUpdater.
Input: High-level update request H , γ, and NuSMV property type: “AG” or “AX AG”
Output: update report
begin1

/* Parse(H ,Q) parses H and reads information into Q; it returns a boolean value
showing if any error happened. */

if !Parse(H , Q) then show error message;2
if Q is non-canonical then Q←TransCanonical(Q);3
/* perform reductions on Q */
Reduce(Q);4
G←TransNuSMV(Q, type);5
/* NuSMV’s performance highly depends on the number of variables in the input

program; so schedule NuSMV programs in increasing order by the number of
variables. */

S G←Schedule(G);6
foreach g ∈ S G do7

Invoke g with NuSMV;8
if a counterexample is returned then9

construct an update γ′ from the counter-example;10
if Minimal update is required then γ′ ←Minimize(Q, γ, γ′);11
/* compute the needed administrative operations that take the RBAC system

from γ to γ′
*/

AdminOp←computeAdminOperation(γ, γ′);12
show AdminOp and γ′;13
return γ′;14

show “update unachievable” report;15
return ε;16

end17

non‐
canonical
update
request

… …

… …

… …

… …

… canonical
update
request

…

transformation

Figure 12: An illustration of the transformation from
non-canonical update requests to canonical ones.

able (NuSMV) states;3 If it evaluates as true, the user
can never obtain exactly all permissions in P via roles
in T , indicating that one cannot fulfill the request with-
out violating the update constraints. Otherwise, NuSMV
will generate a counter-example, from which RoleUp-
dater constructs an update.

In the current implementation of RoleUpdater, only
boolean variables and TRANS declarations are used. An
RBAC state is represented by a valuation of boolean vari-
ables, whereas TRANS declarations capture transitions
among RBAC states. Further explorations of NuSMV
features and other model checking techniques could im-
prove RoleUpdater’s efficiency.

4.3 Minimal Update

Interestingly, the minimal update can be obtained in the
same way we seek an update. Once an update is found,
denote the RBAC state after update as γ′. As illustrated
in Figure 13, if a role-permission assignment appears
in exactly one of γ and γ′, this assignment is changed

3φ is defined over the boolean variables. The checked property is
AG¬φ, where A means always and G means globally; AG¬φ is a
CTL (Computational Tree Logic) formula, which is used to specify
properties in NuSMV.

10

(either removed or added); denote the set of all such
changed assignments as CA. Then the minimal update
requirement is to determine if all changes in CA are nec-
essary. The basic idea is to ask if the same goal could
be achieved with a proper subset of CA. To answer
this, we define variables to simulate CA and treat assign-
ments outside CA as constants. This is done by adding
dummy elements and imposing new update constraints.
A new update request is issued against RoleUpdater; this
request is the same as the original one except that new
restricted-role constraints are added.

However, the checked property is whether, starting
from the next state of γ′, all reachable states satisfy ¬φ.4

If so, then γ′ itself is minimal. Otherwise, from the re-
turned counter-example, we could obtain γ′′. This γ′′

is closer to the minimal update than γ′, because only a
proper subset of CA is implemented. Note that this is
a recursive process; and thus a minimal update could be
reached.

Take the request in Figure 6 for example. Figure 14
shows an example calling stack of RoleUpdater. Re-
ceiving a request with the minimality requirement, Role-
Updater first removes this requirement and searches for
an update. Suppose that RoleUpdater finds the up-
date shown in Figure 9; it proceeds to compute CA,
which is CA = {(r6, p8), (r2, p8), (r6, p5), (r6, p6)}.
By composing a new update request, RoleUpdater goes
on checking if there exists such an update that the result-
ing changes are a proper subset of CA. This starts a re-
cursive call. Then the same processes are applied. This
time, an update shown in Figure 7 is found and CA is
computed to be {(r6, p8), (r6, p5), (r6, p6)}. Again, an-
other round commences. This time, RoleUpdater could
not find any update, which implies that the update in Fig-
ure 7 is minimal; RoleUpdater returns this update in re-
sponse to the original request.

5 Experiments

We implemented a prototype of RoleUpdater in
Java. Experiments were performed with randomly-
generated RBAC systems on a machine with an Intel(R)
Core(TM)2 CPU T5500 @ 1.66GHz, and with 2GB of
RAM running Microsoft Windows XP Home Edition
Service Pack 3.

Data generation
To generate each RBAC system, we adapted algorithms
from [41, 45]5; γ is parameterized by noU (the number
of users), noR (the number of roles), noP (the number

4In NuSMV, this is expressed by AXAG¬φ in CTL.
5The latter is accessible via http://ww2.cs.mu.oz.au/

˜zhangd/roledata/.

r

p1 p2

r

p1 p2

° 0 °

(a) (r, p1) ∈ CA

r

p1 p2

r

p1 p2

° 0 °

(b) (r, p1) ∈ CA

r

p1 p2

r

p1 p2

° 0 °

(c) (r, p1) 6∈ CA

r

p1 p2

r

p1 p2

° 0 °

(d) (r, p1) 6∈ CA

Figure 13: Examples of assignments in CA.

input update
request w/
minimality
requirement
(Figure 6)

handle the
request w/t
minimality
requirement

generate
update
(Figure 9)

compute CA,yy
construct new
update request

input update
request w/
minimality
requirement

handle the
request w/t
minimality
requirement

generate
update
(Figure 7)

compute CA,zz
construct new
update request

input update
request w/
minimality
requirement

handle the
request w/t
minimality
requirement

generate
update

(un‐achievable)

return the
latest update

yCA = f(r6; p8); (r2; p8); (r6; p5); (r6; p6)gyCA = f(r6; p8); (r2; p8); (r6; p5); (r6; p6)g
zCA = f(r6; p8); (r6; p5); (r6; p6)gzCA = f(r6; p8); (r6; p5); (r6; p6)g

return the
latest update

return the
latest update

Figure 14: The recursive calling procedure.

11

1 update
2 make P = input available via T = γ.R
3 with
4 administrators all-administrators
5 user-permission constraints
6 (u1, no-less-than P1,
7 no-more-than P1),
8 (u2, no-less-than P2,
9 no-more-than P2),

10 · · ·
11 restricted-role constraints ∅;
12 role-hierarchy = γ.RH;

Figure 15: Experimental update request specification.

of permissions), noUR (the maximum number of roles
that a user may be assigned to), and noRP (the maxi-
mum number of permissions that a role may be assigned
to). γ’s user-role relation (resp. γ’s role-permission re-
lation) is generated by associating a number k of roles
(resp. permissions) with each user (resp. role), where
k is randomly from [1, noUR] (resp. [1, noRP]). With-
out otherwise stated, the parameters used for tests are
“noU = 2000, noR = 500, noP = 2000, noUR = 5,
noRP = 150, noReqps = 200” and the role hierarchy
is empty. One or more parameters are made variable in
each group of tests.

Update requests are parameterized by noReqps (the
number of requested permissions) and is generated by
randomly choosing a number noReqps of permissions
from γ’s permission set. We let T be γ’s role set. Figure
15 shows the experimental update request, lines of which
may be replaced in each group of tests and where Pi is
the set of permissions that user ui has prior to updating.

Results
Figure 16 shows the computing time required for each
test. Since the data set is randomly created, for each con-
figuration of parameters, we ran the test 5 times. The
times in Figure 16 are averaged over the 5 runs.

Administrative rules Figure 16a shows performance
with respect to varying number of administrative rules
(noRules). We let an administrator admin be a mem-
ber of role ar and replace Line 4 of Figure 15 with the
following.

administrators admin

Each assignment rule “ar can assign p with r if p as-
signed to c” is constructed as follows: (1) denote the
number of roles in c as |c| and we let |c| ∈ [1, 4], and
(2) randomly choose roles in c. For revocation rules “ar

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 20 40 60 80 100 120 140 160 180 200

T
im

e
(s

ec
)

number of rules

administrative rules

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

in
)

noR

varying percentage of extra permissions

 10%
 20%
 30%

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

in
)

noR

varying role hierarchies

1:2:3
1:1:1
3:2:1

(c)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 100 200 300 400 500 600

T
im

e
(m

in
)

noR

minimal update

(d)

Figure 16: The computing time for evaluating update re-
quests.

12

can revoke p from r”, r is also randomly chosen. Note
that we guarantee that rules have effects on the roles that
might be changed. The speed of RoleUpdater is quite
good as far as administrative rules are concerned. The
reasons are two-fold: (1) The transformation into canon-
ical requests is fast. (2) During the transformation, Role-
Updater only increases noU and noR but not noUR; for-
tunately, RoleUpdater is scalable to noU and noR [12].

Controllable effects To test RoleUpdater’s perfor-
mance with respect to controllable effects, we generated
a ratio α of extra permissions. For each user ui, we de-
fine the following constraint and substitute it for the cor-
responding line

(ui,no-less-than Pl,i, no-more-than Pm,i)

where Pl,i ⊂ Pi and |Pl,i| = (1 − α) ∗ |Pi|, and
Pm,i ⊃ Pi and |Pm,i| = (1+α)∗|Pi|. Extra permissions
were randomly chosen. Recall that Pi is the set of per-
missions that ui has prior to updating. Figure 16b shows
the results when α takes 10%, 20%, and 30%, respec-
tively. It seems from this experiment that RoleUpdater is
not sensitive to α, especially when noR ≤ 800.

Role hierarchy Figure 16c gives the test results when
the RBAC state involves role hierarchies. Role hierar-
chies were created in the following way. We created
three sets of roles R1, R2, and R3 such that Ri ∩Rj = ∅
for i, j ∈ [1, 3] and i 6= j; we randomly created γ.RH ⊂
(R1×R2)∪(R2×R3) (where γ.RH denotes γ’s role hi-
erarchy) such that each role may have only a number h of
junior roles where h ∈ [1, 3]. This two-level layered role
hierarchy is common in practical systems [19, 27, 31].
The x-axis is |R1| + |R2| + |R3|. We tested three con-
figurations by varying |R1| : |R2| : |R3|. As the RBAC
configuration needs to be flattened, noUR is increased
by 2 on average. This results in notable overhead. How-
ever, the time taken was sensitive to the structures of role
hierarchies: almost all runs with 1 : 2 : 3 were much
faster than 3 : 2 : 1. That is, the less senior roles there
were, the faster RoleUpdater dealt with role hierarchies.

Minimal update To evaluate how well RoleUpdater
treats minimal update, the minimality requirement is in-
serted into the specification in Figure 15. Figure 16d re-
ports the computing time when minimal update is pur-
sued. Note that the time was averaged over 5 achievable
requests. When noR = 600, the computing time could
be almost 18 times greater than the case without the min-
imal update requirement. This is because RoleUpdater
has to compute a number of intermediate updates, with
the number depending on |CA|. It would be interesting

and useful to investigate how to reduce the number of
intermediate steps.

In real-world large-scale RBAC systems, we expect
that only a small portion of users have a number noUR
of roles and that the number of roles that are under spec-
ified administrators’ control will be small. Hence, we
conjecture RoleUpdater will be able to handle update re-
quests in these RBAC systems, especially with the ad-
vances in model checking.

6 Conclusion

To update an access control system, we have presented
a tool RoleUpdater, which accepts and answers high-
level update requests. Experiments confirm the effective-
ness and efficiency of RoleUpdater. We have reported
the theoretical results of RoleUpdater in [12], including
the computational complexity, the formal transformation
into model checking problem, and the reductions. How-
ever, the full-fledged RoleUpdater is first reported here.
RoleUpdater is still experimental and we regret that it is
not yet available to the public.

There are several avenues for future work. RoleUp-
dater becomes awkward when dealing with administra-
tive rules with negations, e.g., “ar can assign p if p as-
signed to r1 but not r2”. The problem with more so-
phisticated administrative models, where negative con-
ditions are allowed, deserves further investigation. In ad-
dition, separation-of-duty (SoD) policies are important
in RBAC systems; however, enforcing SoD policies is
difficult by itself [20]. The interaction between updat-
ing and SoD policies poses new challenges. On the other
hand, if a series of update requests are issued, the final
updated RBAC state may depend on the order of the re-
quests. These composite requests may take place in dis-
tributed RBAC systems. We plan to investigate proper-
ties of composite update requests and extend RoleUp-
dater to address this problem.

7 Acknowledgment

We would like to thank Dr. Alva L. Couch for shep-
herding this paper and the anonymous reviewers for
their helpful comments. This work is supported by Na-
tional Natural Science Foundation of China under Grant
60873225, 60773191, 70771043, National High Tech-
nology Research and Development Program of China un-
der Grant 2007AA01Z403, and Natural Science Founda-
tion of Hubei Province under Grant 2009CDB298. This
research is supported in part by an Australian Research
Council Discovery Grant (DP0988396). This publication
was made possible by a grant from the Qatar National
Research Fund under its NPRP Grant No. 09-079-1-013.

13

Its contents are solely the responsibility of the authors
and do not necessarily represent the official views of the
Qatar National Research Fund.

Author Biographies

Jinwei Hu is a PhD student in School of Computer Sci-
ence and Technology at Huazhong University of Science
and Technology, when submitting this paper. His cur-
rent interests are the specification and analysis of access
control policies.

Yan Zhang is a professor of School of Computing and
Mathematics at University of Western Sydney. His re-
search interests are in the areas of knowledge represen-
tation, logic, and model checking.

Ruixuan Li is an associate professor of School of
Computer Science and Technology at Huazhong Univer-
sity of Science and Technology. His research interests
are in the areas of distributed computing and distributed
system security.

References

[1] AHMED, T., AND TRIPATHI, A. R. Static verification
of security requirements in role based cscw systems. In
SACMAT’03, pp. 196–203.

[2] AL-SHAER, E., MARRERO, W., EL-ATAWY, A., AND

ELBADAWI, K. Network configuration in a box: Towards
end-to-end verification of network reachability and secu-
rity. In ICNP (2009), pp. 123–132.

[3] ALIMI, R., WANG, Y., AND YANG, Y. R. Shadow con-
figuration as a network management primitive. In SIG-
COMM (2008), pp. 111–122.

[4] BAUER, L., GARRISS, S., AND REITER, M. K. De-
tecting and resolving policy misconfigurations in access-
control systems. In SACMAT’08, pp. 185–194.

[5] CIMATTI, A., CLARKE, E., GIUNCHIGLIA, E.,
GIUNCHIGLIA, F., PISTORE, M., ROVERI, M., SEBAS-
TIANI, R., AND TACCHELLA, A. NuSMV Version 2:
An OpenSource Tool for Symbolic Model Checking. In
Proc. International Conference on Computer-Aided Veri-
fication (CAV 2002) (2002), LNCS, pp. 359–364.

[6] CLARKE, E. M., GRUMBERG, O., AND PELED, D. A.
Model Checking. MIT Press, 1999.

[7] COLANTONIO, A., PIETRO, R. D., OCELLO, A., AND

VERDE, N. V. A formal framework to elicit roles
with business meaning in rbac systems. In SACMAT’09,
pp. 85–94.

[8] CRAMPTON, J. Understanding and developing role-
based administrative models. In CCS (Alexandria, VA,
USA, Nov. 2005), pp. 158 – 167. CCS’05.

[9] CRAMPTON, J., LEUNG, W., AND BEZNOSOV, K. The
secondary and approximate authorization model and its

application to bell-lapadula policies. In ACM Sympo-
sium on Access Control Models and Technologies (2006),
pp. 111–120.

[10] ENE, A., HORNE, W. G., MILOSAVLJEVIC, N., RAO,
P., SCHREIBER, R., AND TARJAN, R. E. Fast exact
and heuristic methods for role minimization problems. In
SACMAT’08, pp. 1–10.

[11] FERRAIOLO, D. F., SANDHU, R. S., GAVRILA, S. I.,
KUHN, D. R., AND CHANDRAMOULI, R. Proposed
NIST standard for role-based access control. ACM Trans.
Inf. Syst. Secur. 4, 3 (2001), 224–274.

[12] HU, J., ZHANG, Y., LI, R., AND LU, Z. Role updat-
ing for assignments. In Proceedings of 15th ACM sym-
posium on access control models and technologies (SAC-
MAT 2010) (Pittsburgh, USA, June 9-11 2010), pp. 89–
98.

[13] IRWIN, K., YU, T., AND WINSBOROUGH, W. H. En-
forcing security properties in task-based systems. In SAC-
MAT’08, pp. 41–50.

[14] JHA, S., LI, N., TRIPUNITARA, M., WANG, Q., AND

WINSBOROUGH, W. Towards formal verification of role-
based access control policies. IEEE Trans. Dependable
Secur. Comput. 5, 4 (2008), 242–255.

[15] KARJOTH, G. The authorization service of tivoli pol-
icy director. In ACSAC ’01: Proceedings of the 17th An-
nual Computer Security Applications Conference (Wash-
ington, DC, USA, 2001), IEEE Computer Society, p. 319.

[16] KATHI FISLER, SHRIRAM KRISHNAMURTHI, L. M.,
AND TSCHANTZ, M. Verification and change impact
analysis of access-control policies. In ICSE (May 2005).

[17] KERN, A. Advanced features for enterprise-wide role-
based access control. In ACSAC ’02: Proceedings of the
18th Annual Computer Security Applications Conference
(Washington, DC, USA, 2002), IEEE Computer Society,
p. 333.

[18] KERN, A., KUHLMANN, M., SCHAAD, A., AND MOF-
FETT, J. D. Observations on the role life-cycle in the
context of enterprise security management. In SACMAT
(2002), pp. 43–51.

[19] KERN, A., SCHAAD, A., AND MOFFETT, J. D. An ad-
ministration concept for the enterprise role-based access
control model. In SACMAT (2003), pp. 3–11.

[20] LI, N., BIZRI, Z., AND TRIPUNITARA, M. V. On
mutually-exclusive roles and separation of duty. In CCS
(2004), pp. 42–51.

[21] LI, N., AND MAO, Z. Administration in role-based ac-
cess control. In ASIACCS (2007), pp. 127–138.

[22] LI, N., MITCHELL, J. C., AND WINSBOROUGH, W. H.
Beyond proof-of-compliance: security analysis in trust
management. J. ACM 52, 3 (2005), 474–514.

[23] LI, N., AND TRIPUNITARA, M. V. Security analysis in
role-based access control. In SACMAT (2004), pp. 126–
135.

14

[24] LI, N., TRIPUNITARA, M. V., AND WANG, Q. Re-
siliency policies in access control. In CCS (2006),
pp. 113–123.

[25] MCPHERSON, D. Role-based access con-
trol for multi-tier applications using authoriza-
tion manager: http://technet.microsoft.com/en-
us/library/cc780256(WS.10).aspx.

[26] MOLLOY, I., CHEN, H., LI, T., WANG, Q., LI, N.,
BERTINO, E., CALO, S. B., AND LOBO, J. Mining roles
with semantic meanings. In SACMAT (2008), pp. 21–30.

[27] MOLLOY, I., LI, N., LI, T., MAO, Z., WANG, Q., AND

LOBO, J. Evaluating role mining algorithms. In SACMAT
(2009), pp. 95–104.

[28] MONDAL, S., SURAL, S., AND ATLURI, V. Towards
formal security analysis of gtrbac using timed automata.
In SACMAT’09, pp. 33–42.

[29] NI, Q., LOBO, J., CALO, S. B., ROHATGI, P., AND

BERTINO, E. Automating role-based provisioning by
learning from examples. In SACMAT (2009), pp. 75–84.

[30] OSBORN, S. L., SANDHU, R. S., AND MUNAWER, Q.
Configuring role-based access control to enforce manda-
tory and discretionary access control policies. ACM
Trans. Inf. Syst. Secur. 3, 2 (2000), 85–106.

[31] PARK, J. S., COSTELLO, K. P., NEVEN, T. M., AND

DIOSOMITO, J. A. A composite rbac approach for large,
complex organizations. In SACMAT (2004), pp. 163–172.

[32] RAY, I. Applying semantic knowledge to real-time up-
date of access control policies. IEEE Trans. Knowl. Data
Eng. 17, 6 (2005), 844–858.

[33] REITH, M., NIU, J., AND WINSBOROUGH, W. H. To-
ward practical analysis for trust management policy. In
ASIACCS ’09, ACM, pp. 310–321.

[34] SANDHU, R. S., BHAMIDIPATI, V., AND MUNAWER,
Q. The ARBAC97 model for role-based administration
of roles. TISSEC 2, 1 (1999), 105–135.

[35] SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L.,
AND YOUMAN, C. E. Role-based access control mod-
els. IEEE Computer 29, 2 (February 1996), 38–47.

[36] SCHAAD, A., LOTZ, V., AND SOHR, K. A model-
checking approach to analysing organisational controls in
a loan origination process. In SACMAT’06, pp. 139–149.

[37] SCHAAD, A., MOFFETT, J. D., AND JACOB, J. The
role-based access control system of a european bank: a
case study and discussion. In SACMAT (2001), pp. 3–9.

[38] SOHR, K., DROUINEAUD, M., AHN, G.-J., AND

GOGOLLA, M. Analyzing and managing role-based ac-
cess control policies. Knowledge and Data Engineering,
IEEE Transactions on 20, 7 (July 2008), 924–939.

[39] STOLLER, S. D., YANG, P., RAMAKRISHNAN, C., AND

GOFMAN, M. I. Efficient policy analysis for administra-
tive role based access control. In CCS’07.

[40] VAIDYA, J., ATLURI, V., AND GUO, Q. The role mining
problem: Finding a minimal descriptive set of roles. In
SACMAT (2007), pp. 175–184.

[41] VAIDYA, J., ATLURI, V., AND WARNER, J. Roleminer:
mining roles using subset enumeration. In CCS (2006),
pp. 144–153.

[42] WEI, Q., CRAMPTON, J., BEZNOSOV, K., AND RI-
PEANU, M. Authorization recycling in rbac systems. In
SACMAT (2008).

[43] WEI, Q., RIPEANU, M., AND BEZNOSOV, K. Coopera-
tive secondary authorization recycling. In HPDC (2007).

[44] XU, W., SHEHAB, M., AND AHN, G.-J. Visualization
based policy analysis: case study in selinux. In SAC-
MAT’08, pp. 165–174.

[45] ZHANG, D., RAMAMOHANARAO, K., EBRINGER, T.,
AND YANN, T. Permission set mining: Discovering prac-
tical and useful roles. In ACSAC (2008), pp. 247–256.

15

