
In-Flight Mechanics
A Software Package Management Conversion Project

Philip J. Hollenback
Yahoo, Inc.

Overview

Over the course of most of 2009 I acted as the techni-
cal lead on a software package management conversion
project in Yahoo Mail. I was part of a team of six peo-
ple that ultimately reinstalled the software on most of
the core servers and developed a completely new release
management process. This paper documents the process
we used, the problems we found, and the current state of
the system as of mid-2010.

The core of Yahoo Mail is approximately 7000 servers
in datacenters around the world. These servers are
grouped into farms of roughly 15 machines and associ-
ated back-end mail storage. Each farm stores the mail
for a few hundred thousand to a few million users and
acts as the central access point for a user’s Yahoo Mail
experience.

Traditionally these servers have been managed with a
proprietary Yahoo dependency-based packaging system
called yinst. Yinst operates similarly to RedHat rpm or
Debian dpkg (although with more integration with a cen-
tral software repository, so perhaps the best analogy is
with yum or apt-get).

In that system a release was just a list of packages to be
installed on the hosts, with only minimal explicit consid-
erations of dependencies. Any package dependencies not
included in the initial install list would be automatically
downloaded and installed as needed by yinst. The install
process was based on an automated tool which would ssh
to each host and launch yinst to request installation of the
package list.

This mechanism served Yahoo Mail well for a number
of years. As the size of our installation grew, however,
several deficiencies became apparent. Over time the task
of managing our installed software and settings became
more and more difficult. For example, the old system
was completely additive – it was simple to create and in-
stall a new package, but extremely difficult to remove a
package once it had been installed in production. This

eventually led to more than 1300 packages installed on
each server. Yinst includes per-package settings manage-
ment as well as package management, but the existing
system included no easy way to tie settings and packages
together in a coherent release. The idea of rollback to a
previous system state was also not well supported.

To address these issues, a software tools group at
Yahoo had been working for several years to develop
a state-based package and setting management solution
called Igor. Igor sits on top of yinst and enforces the ex-
act package and setting list for a given host, through a
versioned tagging mechanism. In essence this moves de-
pendency checking from runtime to compile time (with
compile time being the creation of the release). Igor had
been in use for several years in other properties at Ya-
hoo and appeared to work well. Thus in early 2009 my
team was given the task of converting to Igor (igorizing)
all the 7000 mail farm hosts. At the highest level this
process included:

• modeling existing server environment in Igor

• converting to ’All Apps All Environments’

• converting all production servers to use Igor

Along the way we learned some useful lessons about
planning and implementing large-scale software conver-
sions.

All Apps All Environments

The core tenet of this conversion was a philosophy we
call ‘All Apps All Environments’. This means that all
systems of a given type must have the same set of pack-
ages installed. Package behavior must be controlled by
the use of yinst settings. We follow this principle to limit
complexity and maximize reproducibility.

This lead to many challenges in the conversion pro-
cess. In particular since yinst made it so easy to create



and publish software packages the natural tendency had
been to encapsulate configuration data inside packages,
and those packages would be installed on certain subsets
of hosts. Since our goal was to install the same packages
everywhere, we were forced to restructure many yinst
packages to remove the configuration data from pack-
ages.

Why These Tools?

Why did we not use existing open source configuration
management tools like Puppet or Cfengine? The main
answer is that those decisions had largely been made by
the company before this project was started. Igor and
yinst were the company-recommended tools for config-
uration management and packaging. Using these tools
meant that we could take advantage of a large repository
of knowledge inside the company, instead of having to
implement a solution from scratch.

Another key consideration for selecting software tools
for this project was the number of servers involved. Re-
member we are managing about 7000 servers on multi-
ple continents. Switching to a different set of tools would
require extensive testing and planning to ensure that the
tools would scale to that level.

Finally, many of our existing software processes make
deeply ingrained assumptions about the available tools.
Changing to different tools would have greatly expanded
the scope of the project, with little practical benefit.

Process

This conversion work went through several distinct steps.
First we had to model the existing environment. Re-
member that the existing package management system
did not allow exact specification of packages and settings
on the individual servers, since it worked via dependen-
cies which could be called in at any package install. For
each unsatisfied dependency, yinst would check the dis-
tribution servers for the version of the package marked as
stable and install that version. The stable flag can be
moved to a new version of a package at any time by the
package maintainers, making it impossible to completely
lock down the packages installed on a set of machines
over time.

Modeling

The first step in the process was to model the existing
environment. We did this by splitting software packages
into logical groups by development area – backend, mid-
dleware, ops and so on. Each development team then had
to vet their package list, which was turned into an Igor
‘application role’. An application role contains packages

and settings for one component of a release. Once we had
this list of packages and settings assembled in Igor we
could then build a release, which consisted of a unique
Igor tag pointing to particular revisions of each applica-
tion role. Thus, one Igor tag precisely defined the collec-
tion of packages and settings in a release, and that was
guaranteed to never change. There are also per-farm igor
set roles which contain settings unique to each farm.

Tag

App
role

App
role

Set
role

Release

Note that in an igorized context, yinst no longer at-
tempts to install dependencies - all packages and setting
must be explicitly defined in the igor roles. Dependency
information in yinst packages is only used for determin-
ing the order of package installs in the igorized context.

VM Installs

Following the modeling work we did server installs on
virtual machines using the resulting package and setting
lists. This was a several month iterative process, dur-
ing which we discovered many hidden problems. One
of the largest issues was that since we had previously
used an additive software install process, packages were
not rigorous in their dependency information. For ex-
ample, many packages did not list Perl as a dependency,
since Perl is such a low-level package that an additive in-
stall process can generally assume some other package
installed it as a dependency.

In addition, yinst can auto-compute only a subset of
dependencies orderings. If a package actually uses Perl
after it is installed, yinst can detect that and make sure
Perl is installed. However, this fails when the only use
of Perl is in a package install script. Consider an in-
stall script which calls a perl library via a Use directive.
yinst has no way to detect that this perl library must be
installed before the install script runs. In the additive
install environment, this is again not an issue as most
perl libraries get installed on hosts very early in the in-
stall process. In the igorized environment, this leads to
random unpredictable install failures, depending on what
packages were added to or removed from a particular re-
lease.

Using virtual machines allowed us to quickly test
many of these situations by doing repeated system in-

2



stalls. This allowed us over the course of several months
to converge on a set of packages which could be installed
as a group with no missing dependencies and result in
what appeared to be a running system.

The Importance of QA

At this point in the process we had what appeared to be
a working software release – it would install on a test
server and respond to requests as expected. However,
given the complexity of the software running on our mail
servers this was not sufficient to guarantee a working re-
lease. Thus it was important that QA rigorously test the
proposed release, which they did through running their
large manual and automated test process against the re-
lease in QA. This step was absolutely critical because
we needed as much certainty as possible that the release
worked the same as existing software installs before we
put it in production.

In Flight Mechanics

The massive scope of this project meant that a stag-
gered rollout was the only option, as it would take mul-
tiple months to complete the deployment to all the ma-
chines. This presented the immediate complication that
we would have to maintain parallel software releases in
both the old and new system for the entire duration. This
proved to be a huge administrative burden in situations
like emergency software patches. The overhead of track-
ing which mail farms were and were not igorized was
also substantial.

Initially we had hoped to complete the work in at
most three months, based on the assumption that we
could igorize a machine (set it to a known state by
adding/removing packages and settings via igor) with
our existing software installed. However we quickly re-
alized this was impossible due to badly formed pack-
ages already installed on machines. In particular circu-
lar package dependencies and buggy package stop scripts
made this completely impossible.

As a result we were forced to switch to recloning every
machine to the base OS as the first step. This did have
the advantage of setting every machine to the same OS
release and known software state. However, it also ex-
tended the completion of the project by several months.

We also found while igorizing the first production
farm that yinst settings were not consistent between
the hosts on the farm. This could cause production-
impacting outages as some of those settings were tied
to external data sources which had been set on a per-host
level. For example, half the hosts on a farm would com-
municate with (and were authorized for) one set of user

database servers, while the other half were connected to
a different set of user database servers.

This issue caused us to rethink our deployment model
and realize the importance of auditing tools. The Mail
Tools team took on the task of defining and developing
our main auditing tool. This tool would log on to ev-
ery host in a mail farm and collect the yinst package and
setting list. Then it would compare these lists between
all hosts to ensure they were the same. Any differences
would be flagged in the output.

This tool was partially automated in that it could col-
lect the data itself, but this still required human inter-
vention to decide if the differences were meaningful or
not. For example, had an extra package been installed
on one host for testing? If so that discrepancy could be
ignored as the system reclone would erase it. However if
half of the machines were connected to one user database
server and half to another, that was a critical difference
that would have to be corrected before igorization could
continue, or else an outage would result.

Because of this need for extensive auditing, we
switched to a scout model, where one team member
would run audits ahead of the rest of the team doing the
igorization work. This way we always had a supply of
audited farms ready for conversion as the project pro-
gressed.

A Long Slog

After the first few farms were igorized we had a defined
process for attacking the problem. Thus the work became
a long process of attacking farms every week until we
were done. Our team of six people igorized the first farm
in May 2009 and the last one in November of that year.
This meant we had many months of parallel releases in
both the old and new release systems.

Lessons Learned

Any large software project generates a long list of lessons
learned and this was no exception. Here are some things
I wish I’d known or thought about more when we began
the process:

Software Tools Are Critical

We had assumed when we started that software packages
and settings were at least consistent between servers on
a given farm. This was not true in production, which
forced us to develop an extensive farm auditing mecha-
nism as detailed above. Our partial automation of this
process was useful, but we should have automated it
more fully and spent more time making the audit process
more seamless. A result of the need for auditing was that

3



one person on the project could do little else besides au-
diting full time. If we had automated the auditing earlier
in the process it would have sped things up considerably.

Don’t Assume Developers Can Fix Packages

Most software developers have very little knowledge of
(or interest in) how software installs work. This creates
an immediate conflict because developers are expected to
write their own software installation scripts. Our num-
ber one problem during this process (which continues
to this day) is poorly assembled software packages and
poorly written package installation and removal scripts.
In retrospect we should have worked much harder to en-
sure these were fixed before we started the conversion.
We should have much more clearly communicated to de-
velopment groups about our standards for package qual-
ity. More best practices documents would have helped
tremendously in this regard.

Configuration Packages Are Deadly

In a dependency-based package management system,
packages which contain nothing but configuration infor-
mation for other packages are acceptable (or at least tol-
erable). If you want to change the system configuration,
simply write a new configuration package and push it to
hosts. The design of the yinst package system made this
particularly easy to do, since creating and distributing a
new package is trivial.

This is completely untenable in a state-based package
management system, because you are committing to cre-
ating and testing a complete release before rolling out
to production. If you find a problem in a configuration
package, your only choice is to create and test a new re-
lease with a new version of the package. There are al-
ternatives such as pushing a special configuration pack-
age to some hosts, but then you are breaking the release
model and the ’All Apps All Environments’ philosophy.

In retrospect we should have demanded that all con-
figuration packages be rewritten to expose their settings
as yinst settings (which can be manipulated outside the
context of a release) or to pull configuration from a cen-
tral server. This has been the cause of many patches to
our software releases and we continue to work with de-
velopment groups to eliminate these packages.

Future Work

As of August 2010 we have assembled and pushed to
production 25 igorized mail farm software releases. We
have successfully proven the usefulness our state-based
package management system. Outages due to software
change have been reduced significantly, and we can now

push software to production much more reliably. How-
ever, a tremendous amount of work remains to be done.
Several highlights:

Continue Perfecting Rollback

If you specify the system state exactly, rollback should
be a simple matter of moving the system back to a pre-
vious set of packages and settings. We have successfully
rolled back releases in production, however the process
is an extreme measure. To make this work we have had
to invest significant amounts of time in package cleanup
and rollback testing for each release.

One fundamental limitation with rollback of an entire
release is that it rolls back all packages in a release, and
that list invariably includes a multitude of fixes. It is very
difficult to separate feature additions and bugfixes in a
monolithic release.

Note that emergency rollback works very well in our
system. If a release is deployed to a particular farm and
that causes a problem, our pushmasters can quickly roll
the farm back to the previous release to restore service.
Our extensive QA of each release includes rollback and
roll-forward testing to guarantee this always works.

Fully Implement Sync Monitoring

Once you have the state of all machines specified, you
need to monitor all machines and validate that they are
all in sync. If a machine is out of sync, either the host is
not running the proper release or someone has manually
changed it. Implementing a system to monitor this on all
mail hosts has proven troublesome both because of the
load it imposes on the state servers and because of the
various ways systems can be out of sync. Sometimes it is
necessary to temporarily change the packages or settings
installed on a host, and this leads to low-level churn in
the sync monitoring.

Continuous Integration

We are actively pursuing using continuous integration to
build releases and to build other parts of our release sys-
tem such as the templating mechanism we use to define
per-farm settings. Our goal is to eventually be building
and testing releases continuously with Hudson.

Conclusion

The purpose of this project was to explicitly define the
state of Yahoo Mail as an entity, by exactly defining the
state of all hosts. We have generally succeeded in this
goal, as we now roll out state-based releases on a reg-
ular schedule, and we do rollbacks as necessary. How-

4



ever, much work remains to be done in areas such as
monitoring and general package quality. In conclusion,
state-based software package management does work on
a large scale, but it requires a significant investment in
planning and labor to be successful.

Acknowledgments

This project would not have been possible without the
incredible dedication of everyone involved. In particu-
lar, thanks to the entire Release Management team: Jen
Draper, Shajeeb Muhammad, Jerrod Kensil, Brian McN-
eff, Tisha Emmanuel and Prem Anand Ramnath.

A special thanks to Nic Harteau and the Mail Tools
team, who created many of the tools that made this work
possible. Nic also codified the ’All Apps All Environ-
ments’ philosophy.

5


