
Using Syslog Message Sequences for Predicting Disk Failures

R. Wesley Featherstun and Errin W. Fulp

Department of Computer Science

Wake Forest University

August 24, 2010

Abstract

Mitigating the impact of computer failure is possible if
accurate failure predictions are provided. Resources,
and services can be scheduled around predicted failure
and limit the impact. Such strategies are especially
important for multi-computer systems, such as com-
pute clusters, that experience a higher rate of failure
due to the large number of components. However pro-
viding accurate predictions with sufficient lead time
remains a challenging problem.
This research uses a new spectrum-kernel Support

Vector Machine (SVM) approach to predict failure
events based on system log files. These files con-
tain messages that represent a change of system state.
While a single message in the file may not be suffi-
cient for predicting failure, a sequence or pattern of
messages may be. This approach uses a sliding win-
dow (sub-sequence) of messages to predict the likeli-
hood of failure. Then, a frequency representation of
the message sub-sequences observed are used as input
to the SVM. The SVM associates the messages to a
class of failed or non-failed system. Experimental re-
sults using actual system log files from a Linux-based
compute cluster indicate the proposed spectrum-kernel
SVM approach can predict hard disk failure with an
accuracy of 80% about one day in advance.

1 Introduction

Clusters are quickly growing in size in terms of both
computing power and storage space. It is predicted
that by 2018, large systems could have over 800,000

disks. Out of these 800,000 disks, it is possible that
300 of them may be in a failure state at any given
time [13]. Since multicore processors are becom-
ing more prevalent, even one disk being unavailable
means that multiple processors may be unable to per-
form their work. Assuming one could predict these
failure events, the distribution of work on the cluster
could be altered to avoid effected disks before they
failed or jobs could be paused while the necessary
data is backed up.

Much work has been done in the field of hardware
failure predictions. Hammerly et al. [5] used a naive
Bayesian classifier on SMART data and managed to
predict disk failures that would occur in the next 48
hours with 52% accuracy. A team from IBM [8] used
data from a specialized logging system on its Blue-
Gene cluster. While the team achieved high accu-
racy, its data set may be too specialized to be of use
by the general public. Peter Broadwell [2] used a
supervised Bayesian approach to predict SCSI cable
failures. While he was able to create an effective pre-
diction method, the approach presented in the paper
is not scalable. Murray et al [11] compared the ef-
fectiveness of data mining techniques such as SVMs,
clustering, and a rank-sum test for failure predictions
using SMART data. Finally, Turnbull et al [16] pro-
posed an approach similar to the one presented in
this paper. However, Turnbull focused on predicting
system board failures instead of disk failures.

The prediction process in this paper uses the
syslog event logging service as data to predict failure
events. The syslog facility is common to all Linux
distributions as well as Unix variants. Using blocks

1



of syslog entry tag and message strings, a Support
Vector Machine [3] creates a model of the data which
isolates patterns of log information that indicate fu-
ture disk failures. The main focus of this approach
is to predict disk failures at least one day before the
failure. One day’s notice gives administrators enough
time to make any necessary changes to the scheduling
process or ensure that they can obtain another hard
drive of the correct model [4].

The remainder of this paper is organized as follows.
Section 2 provides a description of the Unix syslog

facility and SMART messages. Section 3 describes
the approach to failure predictions proposed in this
paper. Section 4 describes the Support Vector Ma-
chine data mining technique while section 5 discusses
experimental results. Finally, section 6 summarizes
this paper and discusses some areas for future work.

2 System Log Facilities and

Messages

Syslog is a standard Unix logging facility, which
means that every computer running Linux is able to
use syslog [9]. The ubiquity of syslog means that
performing an analysis on syslog data allows for the
creation of a failure prediction approach which can
be used by anyone using a Linux or Unix system.
Syslog records any change of system state, such as
a login or a program failure.

As seen in Table 1, the standard syslog message
contains six fields [9]. However, the approach in this
paper uses only the timestamp, tag number, and mes-
sage fields. The tag is a numerical representation of
the importance of the message. The tag number is
an integer, where a lower number indicates a higher
importance. For example, a message with a tag num-
ber of 1 is more urgent than a tag number of 20. The
tag number field corresponds to the priority field in
the actual syslog packet, whose value is determined
by multiplying the facility by 8 and then adding the
level. Therefore, it provides a numerical representa-
tion of both the facility which posted the message
and how important the message is. The time field
records the time at which the message was posted,

commonly in Linux epoch time. The final field is the
message field, which consists of a plain text string of
varying length. The message is an explicit descrip-
tion of the associated event. While the other fields
only indicate how important the event was and when
it took place, the message field tells an observer that
the event was, for example, a login attempt or a disk
failure [9].

SMART messages record and report information
that relates solely to hard disks, such as their current
health and performance and is deployed with most
modern ATA and SCSI drives [1]. Since SMART
disks monitor health and performance information,
they are able to report and possibly predict hard
drive problems. Some of the attributes monitored
by SMART are the current temperature, the number
of scan errors, and the number of hours for which a
disk has been online. SMART checks the disk’s status
every 30 minutes and passes along any information
regarding the possibility of an upcoming failure to
syslog. Pinheiro et al. have shown that using indi-
vidual SMART messages to build a prediction model
is ineffective [12]. Therefore, the approach in this pa-
per uses all syslog data, including, but not limited
to, SMART data.

3 Approach

3.1 Sequential Data

As described by Pinheiro et al., single messages are
not sufficient for predicting failure [12]. However, ex-
amining sequences of messages may be a more effec-
tive means of failure predictions. Instead of consider-
ing messages in isolation, the approach in this paper
analyzes sequences of messages, which provides con-
text for individual messages.

A sliding window approach is used to isolate se-
quential data. In this method, a window of fixed
length, n, is placed at the beginning of the list of
data. All of the data that fall in that window is con-
sidered to be one sequence. Then, the sliding window
is moved forward one item and the next n items are
made into a sequence.

The type of information being examined alters how

2



Host Facility Level Tag Time Message

node226 daemon info 30 1205054912 ntpd 2555 synchronized to 198.129.149.215, stratum 3

node226 local4 info 166 1205124722 xinetd 2221 START: auth pid=23899 from=130.20.248.51

node165 local3 notice 157 1205308925 OSLevel Linux m165 2.6.9-42.3sp.JD4smp

node165 syslog info 46 1205308925 syslogd restart.

Table 1: Example entries from a syslog file

the window moves across message boundaries. When
classifying based on tag numbers, each tag num-
ber represents one message. Therefore, the sliding
window indicates the criticality of the last n mes-
sages. However, this paper also examines the use
of keystrings to predict disk failures. In the case of
keystrings, there may be zero, one, or more keystrings
in a given message. Since the keystrings are arranged
by order of appearance in the logs, a given window
can provide context either within a single message or
two or more messages.
The spectrum kernel technique was devised by

Leslie et al. [7] to leverage sequences of data for use
with a classifier. For any k ≥ 1, the k-spectrum of
a given input sequence is defined as all of the subse-
quences of length k that the sequence contains. Given
a sequence length k, an alphabet size b and a single
member of the alphabet, e, the spectrum kernel rep-
resentation of a given sequence can be obtained using
Equation 1 [15]. The equation must be applied for
each letter in the input.

f(t) = mod(b ∗ f(t− 1), bk) + e (1)

3.2 Tag-Based Features

Consider the tag numbers that occur within a mes-
sage window. The order in which these messages ap-
pear forms a list of tag numbers. From this list of
tag numbers, one can create a feature vector which
combines two types of features: a count of the num-
ber of times each tag number and sequence number
appears in a window. For example, the sequence of
tag numbers shown in Table 2 correspond to a tag
count vector of {40:1, 88:1, 148:2, 158:3, 188:3}.
At first, the size of the alphabet is the number of

unique tag numbers in syslog, which is 191. How-

ever, as the maximum tag number seen in the experi-
mental data set is 189, the alphabet size is considered
to be 189. Using sequences of length 5, the list of pos-
sible features is 1895, which equates to over 241 bil-
lion unique combinations. Computing sequence num-
bers for all of these combinations will take an exces-
sively long time. Therefore, the alphabet is reduced
by assigning multiple tag numbers to a number of 0,
1, or 2 based on the tag’s criticality [4].

Tag numbers which are less than or equal to a 10
are considered to be high priority. Tag numbers be-
tween 11 and 140 are considered medium priority and
tag numbers above 140 are considered low priority.
The size of the reduced alphabet and cutoff values
are determined by examining the distribution of tag
numbers as seen in Figure 2(a). Using an alphabet
of size 3 reduces the possible number of features to
243.

Table 2 illustrates the process of assigning criti-
cality scores to each tag number and then determin-
ing sequence numbers where k = 5. The left hand
column contains a list of tag numbers. The mid-
dle column shows the sequence of the most recent
5 criticality scores, which are obtained by using the
sliding window method and criticality cutoff values
described earlier. The criticality score of the cur-
rent tag number is placed on the righthand side of
the criticality sequence. Finally, the righthand col-
umn shows the sequence number for the current se-
quence of criticality scores. The sequence number
is determined using Equation 1. While intermediate
sequence numbers are calculated for the first k − 1
sequences, sequence numbers are not recorded until
a full k-length sequence has passed. In this example,
sequence numbers are only recorded starting at the
fifth tag number.

3



0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

tag value

pe
rc

en
t o

f a
ll 

m
es

sa
ge

s

Distribution of Tag Values

(a) A histogram which indicates the percentages of messages
in the data set which contained a given tag number. For
example, about 60% of all messages in the data set had a
tag number of 149.

1.1778 1.1779 1.178 1.1781 1.1782 1.1783 1.1784 1.1785

x 10
9

0

50

100

150

200

time (seconds) 

ta
g 

nu
m

be
r 

h198.129.146.158 

(b) An example of the tag number distribution on a given
host across time. Each circle represents the tag number for a
single syslog message.

Figure 1: Illustrations of tag number distribution in the experimental data set

Tag Translated Sequence Number
148 2
148 22
158 222
40 2221
158 22212 239
188 22122 233
188 21222 215
88 12221 160
158 22212 239
188 22122 233

Table 2: An example of a tag list being translated into se-
quences of criticality scores and then assigned sequence num-
bers using these criticality scores. For this example, k = 5.

3.3 Tags With Timing Information

Timing information is another feature that may help
improve failure predictions. The purpose of examin-
ing timing information is to discern whether or not
a change in message rate can be used to predict fail-
ures. During the creation of the sequence numbers,

the difference between time of the first message in the
sequence and the time of the last message in the se-
quence is recorded. Doing so provides an indication
of how quickly or how slowly those messages were
posted. The differences in time are recorded in the
same format as the tag and sequence numbers. This
information has not been considered in previous work
using this method [4].

3.4 Keystring-based Features

The myriad possible syslog configurations allow for
a set up in which tag numbers are not present [9].
One thing an administrator is unlikely to remove is
the message field itself. A string is defined as any
space-delineated collection of characters in the mes-
sage field. For example, a string can be an English
word, an IP address, or a number. Tag numbers are
not factored into this approach. The goal of this
method is to discover some pattern of actual strings
which will allow for failure prediction.

Unfortunately, the list of possible strings can be
quite large. For example, the syslog data set used in

4



this paper contains over 2 billion unique strings, de-
spite the fact that the English language only consists
of about 1 million words [14]. Consider a message
which posts the temperature of a disk drive. Even if
the temperature only fluctuated by ten degrees across
all log files, those ten values (assuming the message
only posts integer values) are assigned unique iden-
tifiers in the alphabet. This alphabet results in a
feature space of over 8× 1027 when k = 3.

In an effort to reduce the number of strings, it is
possible to isolate only the strings that the SVM finds
useful in creating a model. To do this, the SVM is
trained on the entire data set, using only the number
of times each string appears. Once the SVM builds
a model of the data, the feature space is examined
to determine the most important strings. Any string
which the classifier finds useful will henceforth be re-
ferred to as a keystring.
Now that there is a list of the most important

strings, these strings are used to create the message
list. A count of each string is used as well as a count
of each sequence of strings. When building a se-
quence number, message boundaries are ignored. For
example, if keystrings 0 and 29 are in one message,
keystring 10 in the next message, and keystring 1 in
the third message, the keystring sequence when k = 4
is {0, 29, 10, 1}.
Many keystrings may represent similar items. For

example, each computer may have a unique ID num-
ber. While each of these keystrings is unique, they all
fall under the general label of an ID number. In the
interest of reducing the alphabet further, keystrings
are grouped into general types, such as computer ID
number, and a number is assigned to each type.
Timing information can also be included when us-

ing the keystring approach. As with the tag ap-
proach, a count is taken of the differences between
the time at which the first message in a sequence is
posted and that of the final message in a sequence.

4 Support Vector Machines

Each disk can be separated into one of two classes:
a disk which failed or a disk which did not fail. The
research in this paper uses an SVM to build a model

of the two classes based on past syslog events.

 

 

Figure 2: An illustration of the optimal 2-D hyperplane

An SVM is a classification method that takes a
set of labeled training examples. Each training ex-
ample is labeled to indicate which class the example
belongs to. Since an SVM is a binary classifier [6],
each training example must be in one of two, and only
two, classes. The binary nature of the SVM makes
it an ideal choice for predicting disk failures, as each
example must either fail within the given window or
not fail within the given window.

4.1 Optimal Hyperplane

Using an input set of labeled data points, the SVM
attempts to find an optimal hyperplane to separate
the data. Consider Figure 1, which provides an illus-
tration of the optimal hyperplane between the class
of circles and the class of crosses. The optimal hy-
perplane is the plane which maximizes the distance
between the two classes. In the case of the figure, the
optimal hyperplane is represented by the solid line.

To calculate the optimal hyperplane, one finds the
planes that separate the data which are located clos-
est to each class. In Figure 1, these hyperplanes are
represented by dashed lines. Since these hyperplanes
are defined by the points closest to the optimal hy-
perplane, only these few examples are needed to cal-
culate the optimal hyperplane. These data points are
called support vectors.

5



0 100 200 300 400 500 600
50

55

60

65

70

75

80

85

90

95

100

Lead Time

P
er

ce
nt

ag
e

The Effect of Lead Time On SVM Performance

 

 
Accuracy
Precision
Recall

(a) The accuracy, precision and recall of tag-based methods as
lead time before an event changes while window size remains con-
stant

200 300 400 500 600 700 800 900 1000 1100
50

55

60

65

70

75

80

85

90

95

100
The Effect of Window Size On SVM Performance

Window Size

P
er

ce
nt

ag
e

 

 
Accuracy
Precision
Recall

(b) The accuracy, precision, and recall of tag-based methods as
the window size changes while lead time remains constant

Figure 3: The change in performance metrics as window size and lead time vary

5 Experimental Results

The syslog data used in these experiments is from
a 1024 node Linux-based cluster managed by the Pa-
cific Northwest National Laboratory. Each system
contained multiple processors and disks. There were
an average of 3.24 messages per machine per hour,
which results in about 78 messages per system per
day. There were 61 unique tag values, the distribu-
tion of which is shown in Figure 2(a). There were over
120 disk failures during the 24 months over which the
data was collected.

To train the SVM, blocks of syslog messages from
each system must first be isolated. The size of the
message window specifies the number of messages to
isolate prior to a failure. For example, if the win-
dow size is 500, then the 500 messages immediately
preceding the failure message are isolated. However,
if there are not enough messages before the failure,
then that window of messages is not used. If a given
failure comes within twenty four hours of a previ-
ous failure, then the failure is removed from the data
set to keep any patterns or events which lead to the

first failure from affecting predictions for subsequent
failures. The removal of these failures result in 100
useable disk failures. If there are no failures on a
given system, then a random window of 500 sequen-
tial messages is chosen.

Once all of the message windows are created, they
have to be trimmed. To simulate lead time before a
failure, a specified number of messages at the end of
the window is removed. By deleting messages at the
end of the window, there is a gap between the end of
the message list and the event to be predicted. As an
example, consider a window size of 1,200 messages. If
the window is then trimmed by 200 messages, there
are 1,000 messages left to classify on. By eliminating
the last 200 messages, there is a gap of a little over
two days between the final message in the block and
the failure or non-failure.

All experiments are performed using hold out and
10-fold cross validation. Hold out means that for
both the training and testing stages, an equal number
of failure and non-failure examples are in the data set
[17]. When using 10-fold cross validation, the data is
broken up into ten sets of equal size. The classifier is

6



then trained on nine of these sets and tested on the
final set. A different test set is then chosen from the
ten groups, while the previous test set is added to
the training set, so each of the ten slices eventually
is used for testing [17].

The experiments performed in this paper use three
metrics to determine the effectiveness of a model: ac-
curacy, precision and recall [10]. Accuracy is the
total number of predictions which the model made
correctly. Precision is the true positive rate, which
indicates the number of disks which were predicted
to fail within the given window that actually did fail
within that window. Finally, recall is the percent-
age of actual disk failures that the model successfully
predicted.

5.1 Optimal Lead Time and Window

Size

The following experiment uses tag sequences of length
5 and a window size of 1,200 messages [4]. The
amount of lead time is varied to examine whether
or not attempting to predict a failure closer to the
failure event improves classification performance.

Figure 3(a) shows the accuracy, precision, and re-
call of varying the lead time for predictions. The
x-axis indicates the lead time in number of mes-
sages before a failure event. A failure event occurs
where x = 0. Each experiment uses a fixed window
size of 1,200 messages; therefore, a smaller lead time
means that the number of messages used to classify
increases, while the time between the final message
in the block and the failure event decreases. All three
metrics peak with a lead time of 100 messages, which
translates to a little over one day.

The recall dips as lead time increases beyond 300
messages due to the widening gap between the end
of the window and the failure event. By adding
more lead time before a failure, fewer of the messages
and patterns which lead up to a disk failure may be
present. While some disks might operate in a reduced
state for a few days before failure, some start show-
ing signs only a few hours or a day before the failure.
By increasing lead time, the model is unable to pre-
dict the failure of disks which only provide warning

signs closer to the failure event, as those events are
no longer in the training or test set.

5.1.1 The Effect of Window Size Using Tag-

Based Features

Figure 3(b) illustrates the effect of increasing the win-
dow size. Since the results of the previous experiment
suggest that a lead time of 100 messages is the most
effective, this experiment also uses a lead time of 100
messages. All three metrics increase until the win-
dow size hits 800 messages. After a window size of
800 messages, just like the previous experiment, re-
call begins declining. Recall declines because, as the
window size increases, the SVM must classify using
more and more information. The increased informa-
tion can make the two classes begin to look similar.
In the case of disk failures, the disks only produce
warning signs for a certain period of time. Before
these warning signs appear, they operate as normal
disks. By adding information from before the disks
start to fail, that disk acts more like a working disk
than a failing disk.

5.2 Tag-Based Features Without

Timing Information

The previous experiments all use sequences of length
5. This experiment varies the sequence length be-
tween sequences of length 3 and sequences of length
8. While increasing the sequence length may increase
the effectiveness of the model, the increase will also
exponentially increase the feature space. As such, the
time required to train and classify the data will in-
crease. Therefore, a balance must be struck between
the effectiveness of the model and the time required
to train. Table 3 compares the accuracy, precision,
and recall of training using each sequence length. All
experiments used a window size of 800 messages and
a lead time of 100 messages. The recall is maximized
using sequences of length 6. On the other hand, the
precision jumps to 85% at a sequence length of 7. The
recall plummets using sequences of length 8. Hence-
forth, sequences of length 5 are used because they
provide fewer false positives compared to a sequence
of length 6 while achieving similar recall while using a

7



smaller feature space than either sequences of length
6 or of length 7.

Sequence Length Accuracy Precision Recall
3 73.166 74.9003 75.0011
4 75.6666 80.8341 72.6681
5 79.9993 82.8838 79.0012
6 79.4994 80.5503 80.6674
7 80.999 85.4837 78.668
8 78.4992 85.7335 73.3339

Table 3: A comparison of sequence lengths when using tag-
based features

5.3 Tag-Based Features With Timing

Information

The performance of classification using timing infor-
mation is compared to the performance without tim-
ing information in Tables 4 and 5. In neither case did
the addition of time differentials significantly increase
any of the three metrics. In the case of length 5 se-
quences, the recall actually gets substantially worse.
When using sequences of length 7, the results with
and without time are almost identical, as seen in Ta-
ble 5. In both cases, the recall may dip because the
message logging rate of nodes on a which a failure is
going to occur within the next 100 messages is sim-
ilar to the message logging rate of nodes which are
not predicted to fail. Since the two rates are similar,
the inclusion of timing information makes the two
classes look more similar than when no timing infor-
mation is included. Therefore, the addition of timing
information not only does not provide improvement
over tag sequences without timing information, but
it also increases the feature space. As a result, tag
based features are best when used without timing in-
formation.

Feature Space Accuracy Precision Recall
Sequences Using Tags 79.9993 82.8838 79.0012
Sequences Using Tags and Time 77.8329 82.2338 71.667

Table 4: Comparing performance between features using only
tags and features including time information using sequences
of length 5

Feature Space Accuracy Precision Recall
Sequences Using Tags 80.999 85.4837 78.668
Sequences Using Tags and Time 81.1661 86.9337 76.005

Table 5: Comparing performance between features using only
tags and features including time information using sequences
of length 7

5.4 Keystring Based Features With-

out Timing Information

The initial dictionary contains 54-keystrings. How-
ever, 25 of the strings in this dictionary are the names
of nodes on the cluster. To see whether or not the
SVM is learning what nodes tend to fail instead of
actual patterns which lead to failures, another dic-
tionary is tested. The second dictionary, made up of
24-keystrings, assigns all keystrings of a given type
to a single number. For example, all node names are
assigned a 0 and all number strings are assigned a 23.
In the 24-keystring dictionary, all node names, even
those not in the original 54-keystring dictionary, are
included. The results of these experiments using a
window size of 800 messages, lead time of 100 mes-
sages and sequences of length 3 are recorded in Table
6. The fact that the 54-keystring and 24-keystring
dictionaries perform similarly well suggests that the
SVM is not training on specific node names. In-
stead, the SVM is learning that the appearance of
any node name is useful for predicting failures. The
24-keystring dictionary has the benefit of reducing
the alphabet size dramatically when compared to the
54-keystring dictionary. As a result, all keystring ex-
periments henceforth use the 24-keystring dictionary.

Dictionary Accuracy Precision Recall
54 77.6661 81.8171 76.0008
24 77.6659 79.1004 78.6676

Table 6: A comparison of keystring dictionaries

Table 7 shows the change in performance as the se-
quence length increases when using the 24-keystring
dictionary. Sequence of length 4 perform significantly
better across the board than those of length 3. While
length 5 sequences perform slightly better than those

8



of length 4, the improvement is not significant with
respect to recall, although the false positive rate dips
slightly. Since length 5 sequences significantly in-
crease the feature space with marginal benefit, the
24-keystring dictionary performs best when using se-
quences of length 4.

Sequence Length Accuracy Precision Recall
3 77.6659 79.1004 78.6676
4 79.4996 82.9838 80.6676
5 82.1428 85.0008 80.9543

Table 7: Performance of the 24-keystring dictionary as se-
quence length increases

5.5 Keystring Based Features With

Timing Information

Despite the ineffectiveness of combining timing in-
formation with tag sequences, the usefulness of tim-
ing with regards to the keystring based approach is
tested. Table 8 compares the performance of the
24-keystring approach both with and without tim-
ing information. The sequence length used for both
experiments is 4. The accuracy and recall values
of both approaches are essentially the same. How-
ever, when using time information, there is a slightly
lower false positive rate. Since a lower false positive
rate means fewer instances when a node goes into a
preemptive maintenance stage, minimizing the false
positives is a worthy goal. While the feature space
increases, a system administrator may be willing to
endure the longer training and classification time if
it results in fewer false positives. Thus, time infor-
mation keystring sequences are added to the final ex-
periment.

Experiment Accuracy Precision Recall
Without Time Info 79.4996 82.9838 80.6676
With Time Info 80.1657 85.567 78.6679

Table 8: A comparison of the 24-keystring dictionary with
and without the addition of time information

5.6 Combination Results

Classifying works almost identically well when us-
ing tag number sequences of length 5 as when using
keystring sequences of length 4. The use of tag num-
ber sequences achieves a slightly higher true positive
rate while keeping a similar accuracy and recall. If
the tag-based approach and the keystring-based ap-
proach are learning on different patterns, then per-
haps combining the two approaches will result in bet-
ter classifications.

The window size for this experiment is 800 mes-
sages and the lead time is 100 messages. Tag se-
quences of length 5 are used, while keystring se-
quences are 4 keystrings long. Since the addition of
temporal features is useful with keystring based fea-
tures, time differences are calculated for sequences of
length 4.

Approach Accuracy Precision Recall
Tags Without Time 80.999 85.4837 78.668
Keystrings With Time 80.1657 85.567 78.6679
Combination Without Time 77.9995 82.317 74.334
Combination With Time 80.6664 88.567 74.6673

Table 9: A comparison of tag based, keystring based, and
combination methods

Table 9 provides a comparison among the best per-
forming tag based approach, the best keystring ap-
proach, and a combination approach both with and
without time information. Neither a combination of
tag and keystring features with or without additional
timing information offers any substantial increase in
accuracy and both see a dip in recall, which means
the combination model predicts fewer of the failures
that occur. The recall dips because the message rate
does not provide a good indicator of a failure. As a re-
sult, the inclusion of time information makes the two
classes look more similar. However, this increased
similarity results in higher precision. The precision
increases because disks which were predicted to fail
with low confidence when omitting timing informa-
tion are now predicted to continue working. There-
fore, only disks that have a high confidence score for
failure are still predicted to fail. With the combina-
tion of approaches and time information, the decrease
in the number of failures predicted is balanced by

9



an increased true positive rate, meaning that almost
89% of the disk failures predicted by this approach
do fail within the next 30 hours. In fact, this model
has the highest true positive rate of any of the exper-
iments, which means that the combination approach
in conjunction with timing information provides a
useful improvement over other models. Whether or
not it is the best model depends on whether a higher
recall rate or fewer false positives is the most desired
trait in a given situation.

6 Conclusions and Future

Work

To determine the overall best method, this section
considers the true positive rate as well as the recall.
In addition, this section proposes an event logging
system which requires less storage space than the cur-
rent syslog utility.

If a high recall is the more important goal, the best
approach is to use either tag sequences without tim-
ing information or keystring sequences using the 24-
keystring dictionary with timing information. Both
approaches hit almost 80% recall. In addition, both
had very few misclassified failures. If a high true pos-
itive rate is the most desired classification trait for a
given situation, then there is only one choice: com-
bining tag sequences with keystring sequences and
timing information, as this approach has a true pos-
itive rate of 89% while still predicting 75% of disk
failures.

The PNNL data set used for this experiment con-
tained, on average, 78 syslog messages an hour for
each node. As a result, there are approximately
699,678,720 messages on the cluster every year, which
requires 41.7 GB to store.

Now consider that using only keywords or tag num-
bers to predict failures is rather effective. If one can
predict events using only tag numbers or keywords,
then perhaps one could keep only the fields required
for these predictions.

While the approach which marries tag numbers
and timing information is the best combination of
speed and accuracy, combining the keywords with

timing information performs the best overall. Keep-
ing keywords provides another benefit over just keep-
ing tags: some amount of semantic data is retained.
Assume all words are kept. Keeping all of the words
allows the same data to be broken up using a different
set of keywords if a user is trying to predict another
type of event or if a more effective keyword list for the
current problem is found. In this case, the only fields
that are necessary are the timing information and the
message itself, as the level, facility, and tag numbers
add nothing to this prediction approach. As a result,
each message will be 31 bytes on average, which will
take up 20.2 GB per year for a 51.563% reduction on
the overall storage space needed.

Maximizing precision requires that one keep the
tag numbers as well. Keeping tag numbers as well as
timestamps and the message field uses 22.8 GB per
year. Therefore, one would need to keep about 2.6
more GB per year than when using only keystrings
to maximize recall. However, this still represents a
marked improvement over the space required by stan-
dard syslog and is the best choice if one wishes to
minimize the false positive rate.

There are two branches this research can take im-
mediately. The first direction is to try different classi-
fication methods. This research only examines the ef-
fectiveness of the SVM approach to classifying nodes
as likely to fail. Future work can explore the effec-
tiveness of both unsupervised learning methods and
other supervised learning methods.

Another direction this research could move in is to
try to predict other events. Perhaps this same ap-
proach could be used to predict whether or not an
entire node is going to go offline or if a RAID con-
troller is going to fail. One would simply need to
find these events in the logs and label each feature
vector appropriately before training. Otherwise, the
approach, as far as finding sequence numbers or key-
words, is exactly the same.

The generalizability of this approach should also
be examined by applying the approach to different
data sets. For example, a cluster may have a differ-
ent syslog configuration, average message rate, or
applications which are installed than those seen in
the data set used for this thesis. Perhaps these fluc-
tuations in configuration also affect the usefulness of

10



the proposed approach. As another example, perhaps
the tag number distribution in a given set up is dif-
ferent than that of the PNNL data set. In this case,
it may be necessary to alter either the alphabet size
or the cutoff values for each criticality score.

References

[1] Bruce Allen. Monitoring hard
disks with smart. Linux Journal,
1(117), January 2004. Available at:
http://www.linuxjournal.com/magazine/monitoring-
hard-disks-smart. Accessed on April 19, 2010.

[2] Peter Broadwell. Component failure pre-
diction using supervised naive bayesian
classification, December 2002. Available at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.3.4641. Accessed on April 19, 2010.

[3] Corinna Cortes and Vladimir Vapnik. Support-
vector networks. Machine Learning, 20:273–297,
1995.

[4] Errin W. Fulp, Glenn A. Fink, and Jereme N.
Haack. Predicting computer system failures us-
ing support vector machines. In First USENIX
Workshop on the Analysis of Logs (WASL),
2008.

[5] Greg Hamerly and Charles Elkan. Bayesian ap-
proaches to failure prediction for disk drives.
In Proceedings of the Eighteenth International
Conference on Machine Learning (ICLM), June
2001.

[6] Andrew Karode. Support vector machine clas-
sification of network streams using a spectrum
kernel encoding. Master’s thesis, Wake Forest
University, December 2008.

[7] Christina Leslie, Eleazar Eskin, and
William Stafford Noble. The spectrum kernel:
A string kernel for svm protein classification.
In Proceedings of the Pacific Symposium on
Biocomputing 7, January 2002.

[8] Yinglung Liang, Yanyong Zhang, Hui Xiong,
and Ramendra Sahoo. Failure prediction in ibm
bluegene/l event logs. In Proceedings of the
Sevent IEEE International Conference on Data
Mining, 2007.

[9] C. Lonvick. The bsd syslog
protocol, 2001. Available at:
http://www.faqs.org/rfcs/rfc3164.html. Ac-
cessed on: April 19, 2010.

[10] John Makhoul, Francis Kubala, Richard
Schwartz, and Ralph Weischedel. Performance
measures for information extraction. In Pro-
ceedings of DARPA Broadcast News Workshop,
pages 249–252, 1999.

[11] Joseph F. Murray, Gordon F. Hughes, and Ken-
neth Kreutz-Delgado. Hard drive failure predic-
tion using non-parametric statistical methods.
In Proceedings of ICANN/ICONIP, June 2003.

[12] E. Pinheiro, W.D. Webe, and L.A. Barroso.
Failure trends in a large disk drive population.
In Proceedings of the 5th USENIX Symposium
on File and Storage Technologies (FAST ’07),
February 2007.

[13] Bianca Schroeder and Garth A Gibson. Under-
standing failures in petascale computers. Jour-
nal of Physics: Conference Series, 28, 2007.

[14] John Simpson and Edmund Weiner, editors. Ox-
ford English Dictionary, volume 1. Oxford Uni-
versity Press, second edition, 1989.

[15] William H. Turkett, Andrew V. Karode, and
Errin W. Fulp. In-the-dark network traffic classi-
fication using support vector machines. In Pro-
ceedings of the AAAI Conference on Artificial
Intelligence, 2008.

[16] Doug Turnbull and Neil Alldrin. Fail-
ure prediction in hardware systems, 2003.
Available at: http://www.cs.ucsd.edu/ dturn-
bul/Papers/ServerPrediction.pdf. Accessed on:
April 19, 2010.

11



[17] Ian H. Witten and Eibe Frank. Data Mining:
Practical Machine Learning Tools and Tech-
niques. Morgan Kauffman, second edition, 2005.

12


