
Bridging the Host-Network Divide:
Survey, Taxonomy, and Solution

Glenn A. Fink and Vyas Duggirala – Virginia Polytechnic Institute and State University
Ricardo Correa – University of Pennsylvania

Chris North – Virginia Polytechnic Institute and State University

ABSTRACT
This paper presents a new direction in security awareness tools for system administration-the

Host-Network (HoNe) Visualizer. Our requirements for the HoNe Visualizer come from needs
system administrators expressed in interviews, from reviewing the literature, and from conducting
usability studies with prototypes. We present a tool taxonomy that serves as a framework for our
literature review, and we use the taxonomy to show what is missing in the administrator’s arsenal.
Then we unveil our tool and its supporting infrastructure that we believe will fill the empty niche.

We found that most security tools provide either an internal view of a host or an external
view of traffic on a network. Our interviewees revealed how they must construct a mental end-to-
end view from separate tools that individually give an incomplete view, expending valuable time
and mental effort. Because of limitations designed into TCP/IP [RFC-791, RFC-793], no tool can
effectively correlate host and network data into an end-to-end view without kernel modifications.
Currently, no other visualization exists to support end-to-end analysis. But HoNe’s infrastructure
overcomes TCP/IP’s limitations bridging the network and transport layers in the network stack and
making end-to-end correlation possible.

The capstone is the HoNe Visualizer that amplifies the users’ cognitive power and reduces
their mental workload by illustrating the correlated data graphically. Users said HoNe would be
particularly good for discovering day-zero exploits. Our usability study revealed that users
performed better on intrusion detection tasks using our visualization than with tools they were
accustomed to using regardless of their experience level.

Defining the Problem

We believe that information visualization [Card,
et al., 1999] technology can help system administra-
tors wade through the tremendous amount of data they
must review to ensure their systems are secure. At Vir-
ginia Tech alone, an estimated seven terabytes of
packet data crosses our networks every day. If this
data were printed out 66 lines and 80 columns to a
page, double-sided, the daily stack would be 42 miles
high. We interviewed 24 system administrators
(selected by recommendation and happenstance) from
two universities to determine if information visualiza-
tion approaches could help them ensure the security of
their systems and networks. Next we surveyed the litera-
ture to find out if existing tools fulfilled the require-
ments expressed by system administrators. Finally, we
conducted usability evaluations on our own tools to
make sure that we were offering what system adminis-
trators truly needed.

Interviewing System Administrators

We used a semi-structured interview protocol
that covered the same general topics with each subject
but did not always ask identical questions of everyone.
Thus our results have given us insights that are proba-
bly accurate but are not easily quantifiable.

Four interviewees were our pilot group who
helped us develop the interview protocol we used to
interview the other twenty. Eleven of the interviewees
also helped us with expert reviews of prototypes we
had developed. We asked them for their biographical
information, security-related duties, intrusion detec-
tion experience, tools they used in security monitor-
ing, and what challenges they faced in keeping their
organizations secure. A demographic summary of the
interviewees appears as Table 1.

Interview Results

While the results of our prototype tests are pre-
sented in earlier papers [Ball, et al., 2004, Fink, et al.,
2005], our interviews demonstrated that system admin-
istrators are not as homogeneous a group as we had ini-
tially thought. There were large differences in duties,
tools, and techniques between those who primarily
administrate servers and those whose main job is to
assist users. There are also security officers, network
analysts, and operations center specialists whose duties
had much in common with other types of system
administrators, but who had different areas of emphasis
and different tool support needs. We would describe our
‘‘ a v e r a g e ’’ subject as a male with 14 years of experi-
ence (mean 13.39, stdev 5.25), charged with the care of
ten or more servers with UNIX-like operating systems.

20th Large Installation System Administration Conference (LISA ’06) 247

Bridging the Host-Network Divide: Survey, Taxonomy, and Solution Fink, et al.

We learned that the single most important indica-
tor of intrusions was aberrant communication patterns
seen on the network or in host log files. The second
largest indicator of problems was the appearance of sus-
picious processes on a host machine. We identified three
kinds of analysis that subjects used to detect security
problems, each at a different time relative to an incident:

Area (# Sub) Job Description Scope of Responsibilities

Servers (9) Manages web, file, mail, compute, etc.
servers with little or no user contact.

Average of 23 servers and 3 users.

Users (7) Manages end-user workstations for
individuals or labs; lots of user contact.

Average of 4 servers and 75 users.

Security (2) Receives data from SAU/SAS, sets security
policy, coordinates response to security
incidents, forensic investigation, risk
analysis, law enforcement liaison.

Indirectly responsible for entire university
estimated at 300 servers and 40,000 users.

Network (2) Monitors health and welfare of enterprise
network; investigates ways to improve
performance.

Responsible for network infrastructure,
usage, and planning.

Table 1: Demographic summary.

1. Informative: When the administrator has no
suspicion of malicious activity, she may use
tools to periodically check the security state of
her machines.

2. Investigative: When the administrator suspects
malicious activity and is seeking to confirm it
(e.g., after an IDS alert), she may use tools to
gain a mental picture of the overall situation to
focus further detailed search.

3. Forensic: When the user has confirmed the mali-
cious activity and is seeking to locate the pro-
cesses, files, etc., responsible for the behavior.

Interview subjects reported many types of analy-
sis that we have grouped into four categories based on
what data is being viewed:

1. Process Analysis: Looking for unusual names
or numbers of processes on a suspect host

2. File System Analysis: Looking for unusual or
modified files, especially executables, dynami-
cally linked libraries, kernel modules, and ser-
vice configuration files

3. Activity (log) Analysis: Using the log files to
piece together what may have happened to a
host in the recent past

4. Vulnerability Analysis: Using common or
recent exploits and vulnerability reports as
heuristics to find intrusions

Considering the times and types of analysis
together, we can see when a particular analysis method
is most and least applicable. Within each analysis
time, we ranked the relative importance of each type
of analysis to our interview subjects (Table 2). We
decided to concentrate on Activity and Process analy-
sis because they are the most applicable overall.

We were surprised that most of the interviewees
preferred text-based tools to visualizations and other

high-end tools. This preference may reflect a popula-
tion tendency toward low-level data analysis, but sub-
sequent studies (especially [Fink, et al., 2005]) have
demonstrated that our user community actually prefers
visual solutions but has not yet found satisfactory
ones. They typically did not trust tools that give an
overview without showing the supporting details.

Analysis Time
Informative Investigative Forensic Avg. Rank

An
aly

sis
 Ty

pe Process

File System

Activity (log)

Vulnerability

3
4
2
1

1
2
3
4

3

2
1

4

2.33
2.67

2
3

Legend: Moderately Important Least ImportantMost Important

Table 2: Relationship of times and types of diagnosis.

The administrators described how they identify
suspicious communication patterns on the network
(Activity analysis) and then manually trace those pat-
terns back to a set of suspect hosts. On these hosts
they would look at the processes running for suspi-
cious activity (Process analysis). The users were deter-
mining whether communications were malicious based
on what processes were initiating them. We realized
that our users could save considerable time and mental
effort if they could automatically trace packets seen on
the network to processes running on their monitored
hosts. While there are many tools in the literature and
practice that claim to correlate host and network
events, we were quite surprised to find that none actu-
ally did this packet-process correlation that was so
fundamental to the work our users reported doing.

Key Conclusion: Packet-process correlation
directly supports work typically done by our users, but
no tools exist to automate this activity.
A Taxonomy of Available Tools

We reviewed the literature and current practice
and organized the known tools by the context of the
data they use and the way they present it. Figure 1
illustrates the resulting taxonomy that we use to com-
pare tools. The fraction in the lower right corner of

248 20th Large Installation System Administration Conference (LISA ’06)

Fink, et al. Bridging the Host-Network Divide: Survey, Taxonomy, and Solution

each category in the figure shows the number of inter-
viewed system administrators who mentioned using a
tool from that category.

The abscissa (x-axis) of the taxonomy diagram
has four views of communication context that security
awareness tools typically employ:

1. The internal host view (IH) that presents data
internal to monitored host(s) without regard to
network connections.

2. The networked host view (NH) that displays data
that concerns only the monitored machines, but
includes the broader context of their network con-
nections.

3. The network view (NW) that presents traffic
data in the context of a network or internet-
work.

4. The end-to-end view (EE) presents entire com-
munications by interpreting process communica-
tion data on a networked host in the larger context
of the network or internetwork where it resides.

Figure 1: Taxonomy of security awareness tools.

Each of these communication context views is
important, and none can substitute for the others.
However, the networked host and the end-to-end
views are seriously under-represented in the literature.
The ordinate (y-axis) of the taxonomy diagram con-
tains four ways security awareness tools may display
information:

1. Text-based displays (TB) may have graphical
user interfaces, but the information presented is
pure text.

2. Dashboard-style displays (DA) present mostly
text data, but use simple preattentive features
like color and motion (blinking) to draw the
user ’s attention to critical items.

3. Summary charts and graphs (CG) present
abstract quantities like throughput pictorially
via statistical graphs, etc.

4. Visualizations (VZ) convey the state of some
object (a machine, a service, or an alert, for
example) via an abstract marker or icon.

Although there are many other ways one could
classify security awareness tools, this taxonomy clearly
shows what is missing from the system administrator’s
tool chest. Our tool (the HoNe Visualizer) is the only
known visualization of the end-to-end view and the
only networked host visualization that is suited to secu-
rity requirements.

The Need for Visualization Across the Host/Net-
work Boundary
Our discussions with system administrators

regarding security incidents and common problems
gave rise to several usage scenarios where visual
packet-process correlation would be beneficial. For
example:

• Detecting Covert Communications: When we
see network traffic for TCP port 80, we often
assume that it is web-related, but with visual
packet-process correlation, we could see
whether the clients and servers are really web
browsers and web servers.

20th Large Installation System Administration Conference (LISA ’06) 249

Bridging the Host-Network Divide: Survey, Taxonomy, and Solution Fink, et al.

• Spyware and Adware: Rather than running
tedious system scans to locate spyware, a user
could have ambient awareness of his machine’s
network activities and communicating processes.

• Fine Tuning Firewalls: Testing for vulnerabili-
ties becomes more complex when one or more
firewalls are between the tester and the target
host. It would be helpful to be able to observe
the effects of traffic on the target host via visual
packet-process correlation.

• Cluster Computing: Administrators who main-
tain large cluster computers could use visual
packet-process correlation to see communicating
processes in the cluster and monitor for mali-
cious activity.

In each case, visualization of packet-process cor-
relation would benefit the administrator and user by
complementing existing tools and enabling quicker
diagnosis of problems. Even automated intrusion pre-
vention systems could make better decisions if they
could take the process names into account.
But Where are the Tools?

We surveyed tools of all kinds, free and commer-
cial, and found our approach was unique. Here, we
have only included a brief discussion of a few tools
that are closest in apparent function.

Programs like Zone Lab’s firewall, ZoneAlarm
[ZoneAlarm], can tell a user which process a packet is
emanating from on Windows machines, but it does not
enable the same visibility from the network side.
ZoneAlarm is more powerful than netstat because it
enables the user to control connections. However,
ZoneAlarm provides no visualization, nor can it pro-
vide remote monitoring of another machine. Found-
stone’s tools Fport and Vision [Foundstone] map open
network ports to the applications, services, and drivers
that opened them, but they cannot trace packets across
the network, nor can they show this information about
the open ports from the network side of the host/net-
work divide. In contrast, tcpdump and other programs
based on network sniffers, can catch and record every
packet that a machine sees on the network but cannot
tell the user whether the packets were seen or used by
processes running on the receiving machine.

The lsof utility (http://freshmeat.net/projects/lsof/),
created by Vic Abell of Purdue University, lists all
open files related to processes running on UNIX
machines. Because communication mechanisms such
as pipes and sockets are considered files on UNIX,
lsof can provide a very effective, if difficult to under-
stand, view of communications on the local host. For
instance, typing ‘‘lsof -i -U’’ lists all the processes
with open Internet sockets and UNIX pipes. Lsof can
report the process IDs, the file control block informa-
tion, command names, and many other pieces of infor-
mation that an expert can piece together into a very
complete view of host communication activities. One
important limitation of lsof is that it works by polling

rather than by continuously watching the file system.
Thus, lsof may not show connections that are created
and destroyed between polling intervals. Although
polling intervals can be shortened to a single second,
data collection takes a relatively long time and may
block at certain system calls.

The netstat utility first appeared in BSD UNIX
version 4.2 and has subsequently been added to DOS,
Wi n d o w s , and other operating systems. The netstat
command textually displays the contents of various net-
work-related data structures. There are a number of out-
put formats of the command, including: a list of active
sockets for each protocol, protocol traffic statistics,
remote endpoints, and routing information. While lsof
can display what files are open due to network activity,
netstat can show the state of TCP and UDP sockets. On
some UNIX-like operating systems and Windows, net-
stat can also tell what process the socket belongs to.
Adding the process makes netstat comparable to Sysin-
ternal’s TCPview Pro [Sysinternals2]. Both lsof and net-
stat show communications from the host’s point of view
and both use polling. Thus, they may miss very short
connections or communications that do not use sockets
such as ICMP. Sysinternal’s ProcessExplorer [Sysinter-
nals1] is a Windows equivalent of a netstat/lsof amal-
gam, but does no more than either of these can.

The eHealth suite of network management tools
from Computer Associates [eHealth] provides a multi-
ple internal host view of medium and large networks
of hosts using SNMP traps and queries. The product
uses changes in its source data coupled with architec-
tural configuration details of the network (provided by
the user) to perform ‘‘root cause analysis’’ when traf-
fic congestion problems occur. This analysis provides
an overview of the management state of the system.
The eHealth tools do not monitor traffic flows and
relate them to host activities; rather they analyze host
performance data and then use artificial intelligence to
infer causes of potential network outages. Thus
EHealth tools are essentially loosely correlated inter-
nal host views rather than networked host views or
end-to-end views.

A staggering amount of effort is required to mon-
itor computer activities for security. Most administra-
tors we have interviewed care only about a few hun-
dred machines they are personally responsible to main-
tain. But even with relatively few machines, having to
examine anomalous events from one side of the
host/network divide at a time can be time-consuming
and error prone. No other known tool (freeware, aca-
demic, or commercial) at the time of this writing corre-
lates network packets to the machine processes that
generate it and visualizes the result. Some may inte-
grate host information from multiple hosts on a net-
work, and others may present network activity side-by-
side with selected data from host logs, but none actu-
ally correlates each packet to a process on the machine
that sent or received it and provide a visual presenta-
tion of this correlation. Thus, our approach is unique.

250 20th Large Installation System Administration Conference (LISA ’06)

Fink, et al. Bridging the Host-Network Divide: Survey, Taxonomy, and Solution

Solution

There are many approaches to fill in the gap left
by existing tools. In this section we present the alter-
natives we considered and the final solution we
arrived at to correlate packets to processes and visual-
ize the result.

Alternative Approaches
On investigating why no packet-process correlat-

ing software existed in the literature or practice we
discovered that the separation between host and net-
work was enshrined in the networking stack inside the
kernel. The problem is illustrated in Figure 2. Given a
modern operating system kernel and network stack
based on a layered networking model [OSIArch,
RFC-1122] (Linux, Solaris, *BSD, Windows, and
MacOSX to name a few), we cannot know both the
source machine and the associated processes for a
given incoming packet at the same time and place.

Figure 2: In network stacks based on the ISO layered
networking model, we cannot simultaneously
know both the source host and destination process
for incoming packets.

This is not an oversight in the kernel design so
much as it is an intentional separation of concerns
characteristic of the layered approach [RFC-1122].
Modern networking models divide the work of a com-
munication protocol into separate layers where each
layer has the property that it only uses the functions of
the layer below, and only exports functionality to the
layer above. The set of layers is called the protocol
stack. The logical separation makes the protocol easier
to understand and allows separate vendors to provide
different layers because they must agree only about
the layer interfaces.

However, the layered model implies that the
transport layer (TCP/UDP) may only call functions of
the network layer (IP), and IP may only provide func-
tions to TCP/UDP. To correlate packets to processes,
TCP would need to call a function in IP that returned
the source and destination address, but no such func-
tion exists in the standard because routing information
is irrelevant to the transport layer. Another possibility
would be for IP to call a function from TCP to find out
what process the packet is destined for, but this
directly violates the layering principle. Thus the nec-
essary correlation could not be obtained in a faithful
rendering of the standard protocol stacks.

For incoming packets, (number (1) in Figure 2)
we know the source host at the IP layer only. When
the packet reaches the transport layer (as in arrow (3)
in Figure 2), this information is no longer available. In
the application layer there is no problem for outgoing
packets (number (2) in Figure 2) since the destination
host is known, but once a packet reaches the network
layer, its source socket (and thus process) is no longer
known. So the correlation engine could not be con-
fined to any single layer in the protocol stack. This
inconvenient fact implied modifying the kernel itself,
something we were loath to do. The following are the
implementation alternatives we tried:

• Integrating process data from tools like netstat
and lsof with packet data from tcpdump into a
single picture

• Modifying GlibC to intercept all socket() calls
and tracking the processes that made the calls

• Using firewall redirection rules and divert sock-
ets to copy all network data to an accounting
process

• Modifying the kernel itself
Integrating netstat And lsof With tcpdump

The first solution is very complete except that
netstat and lsof rely on timed polling and can only
provide snapshots of the machine’s state. Thus,
extremely rapid events like infection by the SQL-
Slammer worm can easily slip by unnoticed. By the
time tcpdump had captured a packet, the socket that
created or received it would be gone and with it any
hope of connecting the packet to a process. Based on
our attempts to detect the nmap port scanner running
on the monitored machine via netstat and lsof, it
appears these tools cannot track incomplete or very
brief connections. Thus, most scanning behavior
(inbound as well as outbound) would be missed. Out-
going packets that were rejected by the firewall also
never created an entry in netstat’s list of sockets,
implying that attempted communications originating
from some unauthorized process on the monitored
host (a very important indication of intrusion) would
be missed. Finally, this approach is unsatisfactory
because the host and network data must be retrieved
separately and thus will have separate timestamps.
Any packets that cannot be matched to a running
process are suspicious, and if the data collection is not

20th Large Installation System Administration Conference (LISA ’06) 251

Bridging the Host-Network Divide: Survey, Taxonomy, and Solution Fink, et al.

truly integrated, mismatches due to the separate data
collection will produce false positives.

To see whether or not netstat could capture all
the information needed, we wrote a script that
retrieved random web pages at normally distributed
random intervals (µ = 5 sec, σ = 1.5 sec). We collected
and examined the netstat data at the maximum fre-
quency while the script was running and found that
whole connections were missed. We then modified the
netstat source code removing the sleep interval to see
if its coverage improved. The resulting program domi-
nated the processor and generated 22 MB of text per
minute when we ran it against only the web surfing
script. The output had very little entropy, evident from
the fact that it could be compressed by greater than
99%. Even with this extremely fast collection rate,
netstat still missed parts of the web conversations and
important socket state transitions. Thus we determined
that netstat was insufficiently accurate even for low
data rates no matter how frequently it collected data.

In contrast, tcpdump catches all packets received
by the machine (unless the kernel drops them because
of overload). So it would be theoretically possible to
use tcpdump packet traces to recreate conversations
that netstat was missing. However, consider that an
attacker could use this knowledge to plant fake
(spoofed) conversations on the network to make it
look like a connection was in a different state than it
truly was. Then when a packet appeared that did not
match any connection seen by netstat or lsof, the tool
would have to choose between believing tcpdump
(subject to spoofing) or netstat (subject to missing
events). The netstat/lsof/tcpdump solution is incom-
plete and too loosely integrated to be useful.
Modifying Socket Libraries

Another approach would be to modify the pro-
gram libraries responsible for creating and maintaining
sockets (particularly GlibC) to maintain a list of all
open sockets and the programs responsible for them.
This approach would work for all executables that
were statically bound to the socket libraries, but it
would not be able to track the activities of processes
whose executables were dynamically bound, nor would
it prevent programs from avoiding our modified library
by using one of their own. In an earlier usability study
we found that bypassing these libraries was a common
tactic used by malware authors to avoid detection.
Firewall Redirection

To ensure that we accounted for all the packets
while the sockets were still active, we needed to move
closer to the kernel. By adding packet redirection rules
into the monitored host’s firewall, we could copy all
traffic to a special ‘‘divert socket’’ owned by an
accounting process and correlate each packet to a run-
ning process or determine that no such process exists.

A shortcoming of this approach is that using cur-
rent firewalls with packet-diversion capability, (e.g.,
NetBSD’s ipfw and Linux’s iptables) one must reinsert

the diverted packet back onto the machine’s networking
stack for processing. Reinserting the packet at the
proper place in the firewall’s rule set without changing
the effective behavior of the firewall is very tricky. This
method also contacts the accounting process for every
packet that enters a monitored interface regardless of
whether the machine is listening on that port. Thus, the
accounting process becomes a performance bottleneck
and makes the monitored machine much more vulnera-
ble to denial of service. Any instability in this process
could tie up the firewall and crash the machine making
the firewall-divert-socket approach inherently unstable.
Kernel Modifications

Because none of the other methods worked, we
were constrained to modifying the kernel itself to
make the required packet-process correlation. The
modified kernel intercepts and tracks each packet that
belongs to a running process. This approach has the
advantage of showing only the data that actually had
an effect on the monitored host. ‘‘Script kiddie’’
attacks and other noise that doesn’t affect a process on
the machine simply don’t appear. We chose an imple-
mentation that had the smallest performance impact on
the kernel. We simply log the header of every packet
associated with a socket and the name of the process
that created the socket to a text file. We then process
the text file into an SQL database and visualize the
data via a Tcl/Tk user interface. The performance
impact to the machine is comparable to running tcp-
dump, and there is no impact when the kernel module
is not loaded.

An alternative to the modified kernel that we did
not try would be an instrumented kernel, where certain
actions such as receiving a packet triggered handler
routines. These handler routines could be used to do
the packet-process correlation. A script using Sun’s
DTrace [Cantrill, 2004] may be capable of such kernel
instrumentation without modifying the kernel at all. At
the time we created the bridging architecture, we were
unaware of DTrace, but using it instead of custom ker-
nel modifications could be an excellent direction for
future research.
HoNe’s Architecture

We used Linux as our development platform
because it is open-source and its kernel is relatively
well documented. We planned for HoNe to be able to
remotely visualize data from other machines by sepa-
rating the user interface, data collection engines, and
database functions into distributable components. Fig-
ure 3 shows a block diagram of the overall architecture.

The HoNe Visualizer is the key control compo-
nent of HoNe. The user can use it to load and unload
the loadable kernel module and to run the database
builder to update the connection database from the
connection log file or external data sources.

When the kernel module is loaded, it registers
handlers for Netfilter hooks for all incoming and out-
going packets. Each incoming packet triggers the

252 20th Large Installation System Administration Conference (LISA ’06)

Fink, et al. Bridging the Host-Network Divide: Survey, Taxonomy, and Solution

Local_In handler. If the packet is a TCP or UDP (IPv4
only) packet the handler copies the IP header plus the
first 20 bytes of the TCP or UDP packet to a log
buffer, records a high granularity timestamp (via get-
timeofday()), retrieves the process identifier (PID) of
the socket owner, and queues the message for logging
to the connection log file. The module performs simi-
lar work when an outgoing packet triggers the
Local_Out handler.

Figure 3: A block diagram of the HoNe architecture. The shaded blocks in kernel space indicate changes to the ker-
nel itself beyond the loadable kernel module. Solid arrows indicate data flows and dashed arrows indicate con-
trol flows.

Part of the difficulty with this approach is that
Netfilter exists in the IP layer of the communication
stack, while the information about the process that
owns this socket is in the TCP layer. Thus, for incom-
ing packets, we had to expose a private TCP function
in the kernel dv_ip_v4_lookup() which retrieves a
pointer to the TCP socket data structure. This pointer
is readily available for outgoing packets. We added to
the socket data structure a reference to the socket’s
owning process (actually its creator) that we fill in
when the socket is created. We do the same for UDP,
but we do not handle other protocols.

Whenever the kernel module is called, it checks
to see whether there are any log records to write. If
there are, it formats these and writes them to the log
file. As part of the formatting process, the kernel mod-
ule converts the socket owner’s process identifier
(PID) to the filename of the process’s executable. This
makes it possible to the user to locate executable files
that are causing problems. The log records contain a
timestamp, the PID and name of the owner process,
the socket state, the packet size, and the packet header.

We convert the packet header to a hexadecimal text
string so the log file can be a text file. We could also
log to an offsite analysis server via a socket, but we
have not yet implemented this. When the kernel mod-
ule is unloaded, it records the number of packets it
processed and how many it dropped.

Description of a Successful Hack
In this section, we introduce HoNe by showing

what happened on a monitored machine as it was
hacked. This was a real incident, not a simulation. Fig-
ure 4 shows the state of the machine during the critical
first 20 minutes of the intrusion.

In Figure 4, the user has opened a connection
database for monitored host 128.173.54.204 and
focused on the area of interest using the Day, Hour,
and 5-minute overview histograms on the right. On the
left is the detailed view of what happened in the criti-
cal first minutes of the hack. The events are roughly in
time order from top to bottom, so we can trace the
progression. First the intruder logged in from remote
host 81.196.144.243 using a password he had broken
earlier. We know he already had the password because
there is only one login attempt. Next he started ftp to
download files (probably his toolkit) from a remote
machine. Finally, he started up his exploit program
(evidently an Internet Relay Chat (IRC) ’bot) to allow
other users to make connections to this machine.
Using the IRC bot, the intruder later attempted to gain
root control of the machine and use it to attack other
machines. However, at that point the machine crashed
and we stopped the experiment. Because we can see

20th Large Installation System Administration Conference (LISA ’06) 253

Bridging the Host-Network Divide: Survey, Taxonomy, and Solution Fink, et al.

how the communication flows connect to processes,
we get a clear picture of what is happening as a
machine is being hacked. We see that the machine is
talking to a remote server on port 8000 and that a non-
standard ‘‘sshd:’’ process is running. But more than
this, we see how these facts relate: that the fake sshd
process is the one responsible for this communication.
Thus, we can classify the communication as malicious
with a greater degree of certainty.

Figure 4: Snapshot of a successful hack: (1) Login, (2) downloading a toolkit, (3) starting the IRC ’bot, (4) suspi-
cious, 23-hour connection, (5) Romanian IRC server contacted.

The HoNe Visualizer
This section presents the HoNe Visualizer ’s user

interface and explains its operation. The main window
layout shown in Figure 5 is divided into two halves:
the left half is the detailed view (numbers 1 to 4), and
the right is the control pane (numbers 5-8). The
detailed view is subdivided into four trust regions: 1)
Enterprise Managed, 2) Enterprise Unmanaged, 3)
Foreign Managed, and 4) Foreign Unmanaged.
Machine icons appear in the upper (Enterprise)
regions when they belong to the user’s company. In
the lower regions are the Foreign hosts. Machines that
are administered and monitored by the user are con-
sidered Managed and appear on the left side. A
machine should be considered managed if it is running
the kernel module and is providing reports to the user.
Machines on the right are considered Unmanaged, and
appear in the lower regions. In the figure, there is only

Figure 5: General layout of the HoNe main window.

one enterprise-managed host, 128.173.54.204. The
other hosts are foreign-unmanaged machines. The user
is responsible for entering the IP addresses and ranges
of machines used for this classification into the con-
figuration files prior to running the visualization.

The right-hand pane shown in Figure 5 contains
three histogram windows at different time scales, 5) a
daily view, 6) an hourly view, and 7) a five minute view.
These overviews show the traffic levels and connections
using a histogram for which each bar represents a day,

254 20th Large Installation System Administration Conference (LISA ’06)

Fink, et al. Bridging the Host-Network Divide: Survey, Taxonomy, and Solution

hour, or five-minute period of time. Item 8 is a tabbed
pane with the more information window in one tab and
a list of SQL filters in the other. All these items will be
explained in later paragraphs.

Figure 6: A screenshot of HoNe’s visualization. The visualization displays connection data from an SQL database
generated by the modified Linux kernel to visually correlate each packet to a running process.

In the following description of the visualizer’s
user interface, we will refer to another intrusion inci-
dent we captured using HoNe. Figure 6 shows an
internal system (128.173.54.204, the virtual machine)
as it is being hacked by several cooperating external
machines. The status line at the top on the right side
indicates the events shown occurred on 12 Jan 2006
from 02:43:50 to 02:57:30 in the morning. Note:
These events appear in the detailed view slightly out
of time sequence looking top to bottom. This is
because a connection to one machine on the left occurs
in the middle of several connections with another
machine. We have elected to keep the machine icons
together rather than to keep the time sequence intact.

First we see a barrage of SSH login attempts
(highlighted points on the time window panes on the
right) from foreign host 200.32.73.15. This barrage
continued for 23 minutes. There had been similar bar-
rages during the previous evening and four days prior.
Because this SSH barrage continues after the actual
hack has started and from a different IP address than
the attacker who gets in, we assume it is an attempt at

covering the actual intrusion. The attacker has already
guessed the password, probably from an earlier SSH
login attack. The intrusion happens when the attacker
logs in from 82.77.200.63. Next we see the attacker
using wget to download a toolkit from 66.218.77.68,
and a few seconds later, the machine is hacked, having
opened up an IRC server (unnamed process 2232) and
client (innocuously named ‘‘ntpd’’ but making foreign
connections to port 6667. Because the entire intrusion
took place within three minutes, including download-
ing and starting the IRC bot, we believe this attack was
automated. Full forensic analysis was not performed
for this incident, so this is not a definitive analysis.

The detailed display (enlarged in Figure 7)
shows each host by IP address (and DNS name if
known). In Figure 7, the host icons are items (1) and
(6). Item (1) is the monitored host and it is in the
enterprise-managed zone. The host icons pointed to by
item (6) are foreign-unmanaged machines. For man-
aged hosts, HoNe shows the processes involved in the
communications displayed inside the host box (icons
pointed to by item (2) in Figure 7). Processes contain
the executable name and PID if known.

Bristling from the inside edges of the processes
or machines are the ports the machines are using to
communicate (pointed to by items (3) and (5) in

20th Large Installation System Administration Conference (LISA ’06) 255

Bridging the Host-Network Divide: Survey, Taxonomy, and Solution Fink, et al.

Figure 7). Ports are shaped like arrows with listening
(server) ports pointing toward their machine and initi-
ating (client) ports pointing away. Item (3) in Figure 7
is a server port attached to the SSH service on the
monitored host. Item (5) is a client port used by some
unknown process on the foreign-unmanaged host,
82.77.200.163. The arrow shapes help users to clearly
see who initiated each communication.

Figure 7: An enlargement of the detailed view of the HoNe visualizer.

Communication lines (as pointed to by item (4)
of Figure 7) join the client and server ports. Item (4) in
Figure 7 points to a connection between an ephemeral
port on the client side and the managed host’s SSH
server port on the server side of the connection. The
arrow-shaped port icons point away from the client
and toward the server. Communication lines and icons
for ports, processes, and hosts may be colored manu-
ally or by some user-defined filtering expression. In
this case, the user has elected to highlight any success-
ful incoming SSH sessions initiated on the monitored
machine by a host in the foreign-unmanaged zone
with the ‘‘Known Danger’’ color scheme (white text
on a bright red background).

HoNe provides multiple levels of drill-down so
the user can keep the detailed view uncluttered. How-
ever, the nature of Internet activity makes it possible
for thousands of activities to happen within a fraction
of a second. Thus we enable users to zoom or shrink
the icons in each region independently to fit them into
a single screen.

The right pane of the main window primarily
contains controls that determine what the detailed
view shows. The top section shows three histogram

timelines that form the connection overview (see the
close-up in Figure 8). The bottom section is a tabbed
area where the Connection Filters and ‘‘More Infor-
mation’’ panes reside.

The connection overview (Figure 8) shows the
entire database file at a glance on three separate
scales. The reason for separate scales is that users
stated that they needed to distinguish events at the
microsecond level, but when asked how much data
they might look at to investigate intrusions, they said
they might want two or more months’ worth. These
viewing levels cover about 13 orders of magnitude
(from 10-6 to 107 sec). The tri-level overview plus the
detailed view is how we chose to span this large mag-
nitude range.

The overview was inspired by histogram sliders
[Li and North, 2003], a new widget designed to give
instant feedback to help the user locate where on the
slider scale the most relevant information lies. The
timelines represent the passage of time from left to
right with earlier events placed closer to the left. The
relative number of connections within the time period
the bar represents determines the height of each his-
togram bar. We multiply height in pixels of the timeline
by the number of connections within the time period of
the bar divided by the total number of connections dis-
played in the whole histogram to derive line height of
each bar. So the top histogram in Figure 8 has one bar
that contains most of the connections for the whole
four day period. Placing the mouse over a histogram
bar shows a ‘‘tool tip’’ window with start time of the
bar and the number of connections within its duration.

256 20th Large Installation System Administration Conference (LISA ’06)

Fink, et al. Bridging the Host-Network Divide: Survey, Taxonomy, and Solution

Figure 8: Detail of the connection overview his-
tograms. Connection lines are brown but high-
lighted in cyan when selected. Selecting any con-
nection highlights it in all views.

The pale yellow area bounded on the left and right
by bright yellow bars is the area of interest for each
timeline. Users can move the whole area of interest or
slide just the left or right bars. The width of the area of
interest is a focal area that determines the amount of
time that will be displayed in the next lower view.

The topmost timeline’s histogram bars each rep-
resent one day’s worth of data. Fifty or more days’
worth of data can be shown here concisely. When the
user selects an area of interest in this histogram (of no
more than 1.5 days in duration), HoNe displays that
area in the second histogram, where each bar stands
for an hour of data. Similarly, selecting an area of
interest (no longer than six hours in duration) here
brings up the bottom histogram with a bar for each
five minutes of data. When the user selects an area of
interest in this lowest histogram, the detailed view
pane shows the hosts, processes, ports, and communi-
cation lines in that time window. The information line
above the histograms tells the extent of the finest-
granularity area of interest that the user has selected
and the number of connections it contains.

The histograms are overlaid with horizontal dark
brown lines that represent individual connections. The
horizontal length of the connection line represents the
duration of the connection. Because the scale may force
many connection lines to zero length, we have con-
strained all lines to at least two pixels length. The
longer duration a connection has, the nearer it is placed

to the bottom of the histogram. The metaphor we use is
‘‘ l o n g e r connections are heavier and they sink to the
bottom.’’ Placing the mouse over a connection line
shows a ‘‘tool tip’’ with the source and destination IP
addresses and ports and the measured connection dura-
tion in seconds.

When a user selects a connection or executes a
search, the selected or matching connections are high-
lighted with a cyan border. In Figure 8, the user has
executed a search to highlight all SSH connections ini-
tiated by foreign-unmanaged hosts to any managed
host. The matching connections are highlighted in
every view (detailed and all three histograms) where
they appear.

The bottom section of the controls pane has
tabbed windows with ‘‘More Information’’ (Figure 9)
and Connection Filters (Figure 10) tabs. The ‘‘More
Information’’ tab is not a control but a message box
containing detailed information on the current selec-
tion. When users double-click connection lines, all the
packets associated with that connection are displayed
in this window. Double-clicking a host icon spawns a
‘‘ w h o i s ’’ command to find information on the host’s IP
address. An example of this output appears in Figure 9.

Figure 9: The More Information tab.

Figure 10: The Connection Filters tab.

Double-clicking on a port retrieves the informa-
tion from the machine’s /etc/services file that tells
what protocols have registered the use of that port. In
the future, this action might retrieve current informa-
tion about what malicious programs are known to use
that port number to communicate. Another future
expansion of the ‘‘more information’’ tab would be to
show what files a communicating process had open
over its lifetime when the user double-clicks its icon.
Our users expressly requested each of these ‘‘more
information’’ features during the pilot study.

The second tab of this section contains connec-
tion filters (Figure 10). Filters are SQL expressions the

20th Large Installation System Administration Conference (LISA ’06) 257

Bridging the Host-Network Divide: Survey, Taxonomy, and Solution Fink, et al.

user can employ to remove extraneous display items
from the detailed view showing only what is impor-
tant. Filters may have other actions besides removing
items from display. Filters may omit or stylize any dis-
play item (host, process, port, or connection) in the
detailed view using the full matching power of
SQL-92 queries. Additionally, one can use ‘‘filter-in’’
filters to display any items that would have been
removed by a ‘‘filter-out’’ filter. This lets the user fil-
ter out, for instance, all Secure Shell traffic broadly,
and then perhaps filter back in traffic that comes from
a particular range of IP addresses. Users may also cre-
ate a filter from something that is already displayed
using a query-by-example technique.

An important use of filters is to highlight in all
views the connections that either match or do not
match the filter’s SQL. This capability allows users to
quickly find features that match a search criterion.
When the user selects a filter and presses the ‘‘Find’’
button, all connections that match the filter are high-
lighted in any views they appear in. Conversely, press-
ing the ‘‘-Find’’ button performs an inverse find, high-
lighting all the connections that do not match the SQL
expression.

In practice, we found that users who employed
the ‘‘Find’’ and ‘‘-Find’’ capabilities were able to hone
in on an area of interest fastest. For instance, if a user
believed that long-duration SSH connections were an
indicator of a break-in, he might make a filter that
contained the expression:
svPort = 22 AND (lastSeen - firstSeen) > 20

This expression would match all connections
where the server port number was 22 (SSH) and the
connection duration was greater than 20 seconds. The
user could then find all connections that matched this
criterion and zoom in on that area.

Users may define arbitrarily complex filters, but
the best practice seems to be using a series of simple
filters in succession. Filters are applied from top to
bottom with later filters acting on the output of former
filters. Thus a user may filter out all short SSH con-
nections and then color all remaining SSH connections
red with a separate filter. After filtering out whole
classes of connections, a user may use a subsequent
filter to restore a subset of the previously removed
connections that match certain criteria.

The user may define filter to change the display
of any matching item to any of eight predefined styles:
Default, Highlighted, Safe, Low-Risk, Medium-Risk,
High-Risk, Known Danger, and Unknown. The user
may change colors, fonts, and line thicknesses for
each of the predefined styles as desired. Additionally,
users can style individual items manually, apart from
filters, to mark items of interest. The intention is for
users to highlight items of special interest with visual
characteristics that are meaningful to them. We found
the combination of powerful data filters and user-
definable visual styles very useful for analysis.

Evaluation

Our objective for developing HoNe was to show
that integrating host and network data into a single
visual display provided useful insight for experienced
system administrators trying to investigate anomalous
behavior. After building HoNe, we rigorously evalu-
ated it to find out how well our objectives were met
and what remained to be done. We designed the evalu-
ation to answer the following questions:

• Does visual packet-process correlation enhance
intrusion-detection insight over tools currently
in use?

• What are the benefits and pitfalls of visual vs.
textual presentations?

• What are the benefits and pitfalls of packet-
process correlated vs. noncorrelated presenta-
tions?

We were also curious to a lesser degree to find
out what level of experience users needed to benefit
most from HoNe. This section discusses the two-phase
usability evaluation: pilot interviews and summative
usability evaluation. The purpose of the pilot inter-
views was twofold: (1) to bring to light missing parts
of the visualization, and (2) to determine how much
intervention would be needed during the summative
usability evaluation. The purpose of the summative
usability evaluation was to quantitatively answer the
research questions.

Pilot Interviews
We conducted a pilot study with six expert com-

puter security professionals and two information visu-
alization experts. We selected subjects based on their
known expertise and their helpfulness in prior inter-
views. We asked the pilot study subjects to honestly
evaluate the visualization while using it to discover a
real hacking incident in data collected using our kernel
modifications. Their valuable insight helped us deter-
mine what pieces were still missing from the visual-
ization and how much intervention would be neces-
sary for less experienced users in the study to be able
to use HoNe productively.

From the pilot study, we learned that HoNe had
great potential but needed a little refinement. There
were 26 enhancement requests, six areas where inter-
vention would be needed, eight negative comments,
and 11 positive comments. We used this feedback to
refine the user interactions and to add options to pro-
vide more information about hosts, processes, and
ports as the experts requested.

We found that the area needing the most inter-
vention was constructing SQL queries for filters. Our
interviews made it clear that our initial implementa-
tion of time windows based on slider widgets was
unusable, so we replaced it with a more graphical
approach that employs histograms, connection lines,
and direct manipulation. We added the ‘‘Find’’ and
‘‘Inverse Find’’ buttons to help users rapidly locate

258 20th Large Installation System Administration Conference (LISA ’06)

Fink, et al. Bridging the Host-Network Divide: Survey, Taxonomy, and Solution

information of interest within huge files. The pilot
interviewees told us that HoNe would be an effective
tool for intrusion detection with powerful filtering and
graphical capabilities that would be most effective for
discovering zero-day (previously unknown) exploits.
They also told us that our correlated data was a new
and unique source of information that could be used in
automated intrusion prevention systems.

Summative Usability Experiment
We designed a two-factor experiment, with the

primary factors being visualization – at two levels (on
or off), and correlation – at two levels (on or off). The
four experimental conditions were:

1. No-Visualization/No-Correlation (NVNC):
User has no visualization and only the uncorre-
lated text output of tcpdump, netstat, and lsof to
work from (Control condition).

2. No-Visualization/Correlation (NVC): User has
a human-readable text version of the correlated
data from the kernel modifications plus the
control data.

3. Visualization/No-Correlation (VNC): User has
separate visualization windows for netstat and
tcpdump data. All the textual control data is
available, but the correlated data is not.

4. Visualization/Correlation (VC): User has all the
data from the previous conditions along with a
visualization of the correlated data.

We collected data for four scenarios using our
modified Linux kernel. For each scenario, we simulta-
neously collected data from netstat, lsof, tcpdump, sys-
log, and our kernel modifications. The netstat polling
period was set to 1 sec, the lsof polling period was 60
sec, and all other data collection was continuous. The
scenarios were each between 12 and 120 hours long.
The following is a description of each scenario

1. Control: Linux RedHat Fedora Core 3 system
running only an SSH server, no engineered
attacks.

2. Engineered Hack: We hacked the machine by
logging into an unprivileged account under
cover of an SSH scan, downloading a rootkit
from a remote server, and starting a new Inter-
net service.

3. Normal: As control, but with attacks that do not
result in intrusions.

4. Uncontrolled Hack: Similar to the engineered
hack but real, not engineered by us.

There were 16 possible (condition, scenario) treatment
combinations. We had each subject perform four runs
under different treatment combinations such that each
subject experienced every condition and scenario
exactly once. We perturbed the order of treatment
combinations to counter learning effects. Statisticians
from an independent statistical consulting group veri-
fied that the experiment was balanced.

We recruited 27 subjects, about half of whom
had more than a year of professional experience as a

system administrator. We provided help and training
on all needed skills (e.g., writing SQL queries or tcp-
dump packet filters), and told each subject the limita-
tions of how much we would help them. The interven-
tion and training brought all the subjects up to a cer-
tain minimum skill level to allow them to complete the
scenarios. We were interested not in how well people
used basic tools such as tcpdump and grep, but in how
well various viewing conditions helped them see what
was happening in a dataset.

In each run, we asked the subjects to identify
intrusions or any other security-related features of the
data. We established our ‘‘ground truth’’ about scenario
events using a priori knowledge and the judgment of
security experts who were given all the captured data
(including data not available to the experimental sub-
jects) at their disposal. We assigned each security-rele-
vant feature a unique identifier and a value using a
seven-point scale (Table 3). Subjects gained points for
noticing and correctly diagnosing features but lost
points for incorrectly diagnosing a noticed feature. Sub-
jects had approximately 15 minutes to diagnose features
for each of their four runs.

Points Meaning

-3 Diagnosing a benign feature as a
malicious penetration or Missing a
major malicious penetration

-2 Diagnosing a malicious nonpenetration
as a malicious penetration or Missing
an apparent penetration (given the
condition) or Missing additional major
malicious, nonpenetrating features
beyond the first

-1 Diagnosing a benign feature as a
malicious nonpenetration or Missing a
major malicious nonpenetration

0 Noticing a benign feature
+1 Properly diagnosing a malicious

nonpenetration or Properly diagnosing
a malicious penetration without
supporting reasoning (guessing)

+2 Properly diagnosing a malicious
penetration

+3 Properly diagnosing and assessing the
impact of a malicious feature (real or
apparent) or Properly noting the
relationship of two or more malicious
features together

Table 3: Seven-point Insight Score scale.

For each scenario and viewing condition, we
totaled the positive and negative scores separately.
Larger absolute score values indicate more features
were noticed. Higher positive scores indicate that the
subject more often correctly diagnosed features he/she

20th Large Installation System Administration Conference (LISA ’06) 259

Bridging the Host-Network Divide: Survey, Taxonomy, and Solution Fink, et al.

noticed while higher (absolute) negative values indi-
cate he/she tended to misdiagnose features. Scores
closer to zero indicate fewer features were noticed.

We normalized the positive and negative scores
by dividing the subjects’ positive scores by the maxi-
mum possible score for the scenario used and dividing
the negative scores by the minimum possible score.
We used the normalized scores to compare scores
across different scenarios. Then we subtracted the nor-
malized negative score from the normalized positive
score to obtain the insight score (Figure 11). We used
the insight score to award prizes among other things.
This approach prevents a user from attempting to
increase his score by reporting lots of inconsequential
features and reduces the likelihood of guessing. Accu-
racy is the most important characteristic of the kind of
work we are studying. If administrators quickly reach
an incorrect conclusion the consequences could be
more costly than if they reach a correct conclusion
more slowly than desired.

Insight =
Noticed

||Noticed||
−

⎪
⎪
⎪

Misdiagnosed

||Misdiagnosed||

⎪
⎪
⎪

Figure 11: Formula for Insight Score.

Data Collection
We wanted interviewees to see real data from

actual break-ins, so we set up a sacrificial host on the
campus LAN and outfitted it with Snort and Tripwire
(two freely available intrusion detection systems). Then
we created a User Mode Linux (UML) [UML] virtual
machine equipped with the modified kernel running in a
process on the real machine. We bridged the real and
virtual machines’ Ethernet interfaces so that they looked
like separate machines on the same LAN segment.

A defect in our kernel modifications caused the
machine to crash when attackers attempted to subvert
the machine in certain ways. Kernel-level rootkits
such as Adore [Adore] and LRK5 [LRK5] caused the
machine to crash when they were activated. Thus,
after the attacker initially penetrated the machine, his
attempts to install a rootkit would crash often the vir-
tual machine. A positive result of this ‘‘feature’’ was
that hackers were unable to use the machine to exploit
other machines on the campus network. Unfortunately,
the defect often prevented us from collecting data
beyond the initial breakin.
Summative Study Findings

Users preferred the correlated visualization (VC)
and felt they got the most insight from it of any of the
conditions. The VC treatment resulted in better insight
scores than the NVNC (control) at better than the 0.01
level of significance, and that the NVC treatment
resulted in better scores than NVNC at the 0.1 level of
significance. Additionally, we showed that VC was
better than NVC with marginal statistical significance.
From these findings, we infer that our visual correla-
tion of packets to processes does help administrators

perform certain intrusion detection tasks better than
text data alone could.

The VC condition garnered a large number of
unsolicited positive comments about the visualization
tool. We believe that users would have performed
even better and had a more satisfying experience if not
for some implementation bugs in the visualization and
its suboptimal responsiveness.

The NVC condition provided the critical element
of packet-process correlation without providing a
means of visualizing the data. The correlated data was
compact and contained in a single data file so users did
not get lost nearly as easily as in the NVNC condition.
Users who had high skills with text manipulation tools
were often very adept at diagnosing problems in the
NVC data. TCP conversation reconstruction (separat-
ing out individual pair-wise conversations from a larger
set of many simultaneous conversations) was part of
the correlation process that made reading packet traces
easier for our users. The correlated data would have
been much more useful to humans if we had put a start
time and duration instead of start and end times that the
users had to mentally subtract to get duration. NVC
users mentioned many times that they were looking for
long sessions in the text. Those who had performed a
run with the visualization previously often said that
they most missed the visual indication of duration.

The VNC condition turned out to be very trou-
blesome both to users and to us. Users chafed at hav-
ing two similar visualizations that told them slightly
different aspects of the same data. Some of the confu-
sion users had was due to the similar appearance but
different meaning of the VC and VNC conditions. A
better approach might have been to choose two sepa-
rate visualizations, one tailored to displaying tcpdump
data, and another tuned to show netstat data visually.
In any case, it was more difficult than expected to test
visualization and packet-process correlation as truly
independent concepts.

Although some more experienced users did very
well with the NVNC condition, it was the least pre-
ferred and resulted in the lowest scores on average.
Most users found this condition confusing and error-
fraught. Novices performed very poorly with the stag-
gering amount of data this condition presented. Many
times novices would painstakingly try to understand
each packet or connection attempt often covering no
more than the first 1% of the data during the whole
15-minute run. We encouraged these users to look at
other data, but many novices seemed to be unable to
draw high-level, evidence-based conclusions, preferring
instead to interpret small findings deep in the details.

The user’s reactions highlight an important general
function of visualization, especially for novice users:
visualizations present information compactly, allowing
users to think about the data globally. In fact, both visu-
alization and packet-process correlation have the effect

260 20th Large Installation System Administration Conference (LISA ’06)

Fink, et al. Bridging the Host-Network Divide: Survey, Taxonomy, and Solution

of compacting and simplifying the data for human per-
ception, although the effect of visualization seems to be
more pronounced. In the future, other studies could be
conducted in the user’s actual work environments to see
whether these conclusions hold in practice.

Conclusions

We have noted how the literature is divided
between display of host data versus display of network
data. We have shown that this disconnect is inherent to
the TCP/IP networking model [RFC-791, RFC-793] and
is codified into the kernels of all modern operating sys-
tems. Thus, automatic process-packet correlation has
been impossible and was overlooked as an approach to
security awareness in both literature and practice. But we
have presented a solution that bridges the gap between
the network and transport layers, enabling correlation of
incoming packets with the processes that accept them.
We have created the HoNe Visualizer as a user interface
to this new correlated data and demonstrated that both
experts and novices perform better on intrusion detection
tasks with it than with text-based tools alone. Our
research has advanced the science of computer security
in several significant ways. To recapitulate what we
believe are the most important contributions of our work:

• We have interviewed system administrators and
identified areas where HCI research could
improve their tools.

• We have identified the host/network divide,
shown its causes, and examined its effects on
computer security both technologically and
cognitively.

• With HoNe, we have bridged the technical
aspects of the host/network divide and laid the
groundwork for bridging the cognitive aspects
as well.

• We have created a visualization of packet-
process correlation, making it possible for
humans to make better diagnoses about the
nature of connections.

• We have demonstrated the advantages of packet
to process correlation via quantitative usability
evaluations.

• We have created a new source of correlated
data that will be useful to automated security
monitoring tools as well as humans.

• We have generated new tools for system admin-
istrators via participatory design and performed
usability evaluations to quantify their utility.

Future Plans
In the future we plan to replace the kernel modifi-

cations with a set of DTrace scripts. This will make gath-
ering the correlated data safer and more portable. We
plan on improving our visualization and making it more
efficient, but other visualizations or back-end process
could use this rich new source of data to increase the
security of monitored machines and inform rapid and
accurate responses to communications problems.

We believe our host/network bridge and visual-
ization will be a valuable asset to system administra-
tors. This type of visualization will amplify the
insights and abilities of system administrators, com-
plement the existing tools they use, reduce monitoring
costs, and increase the security posture of organiza-
tions that use it.

Impact

HoNe has demonstrated how helpful packet-
process correlation and visualization are for detecting
and diagnosing potentially malicious activity on com-
puters. We have also shown that the layered model,
while effective in many ways, has problems caused by
lack of visibility across software layers within the ker-
nel. As Cantrill [Cantrill, 2006] noted, the main prob-
lem with layered systems of today is a profound lack of
software observability. The only way to see what soft-
ware is doing, especially system software, is to modify
it. This is what we have done with HoNe: we modified
the kernel to gain visibility into how packets relate to
processes and created a visualization of the information
we gathered. Since lack of observability is a huge
problem in today’s system software, we expect to see
efforts such as DTrace [Cantrill, 2004] gain broader
acceptance and become available on more platforms.
But these programs only dump more text at the user.
What we hope HoNe will show is how important it is
to present computer security data to users in the way
they can process it most rapidly, via visualization.

Much work remains to be done for system
administrators, but it is our hope that HoNe will lay
the groundwork for a positive change in the way secu-
rity professionals go about their work. If kernel
designers accept our conclusions and incorporate
greater observability of the packet-process relationship
into their work, much better security monitoring will
be possible in the future than today. System adminis-
trators will be able to interrogate their systems for
security problems more directly and then visualize the
results. This kind of progress will make it much harder
for malicious persons to hide their activities, making
the entire Internet safer for its users.

Finally, we hope that the success of our work can
demonstrate how important it is to talk to system
administrators and involve them as co- designers in
any work that purports to meet a need. Tools must
adapt to their user’s needs to be truly useful. The
important thing is to find out what the users need
(even if it is not what they actually asked for) and then
design tools to fit the need. HoNe is one such tool-
may many others follow it.

Acknowledgments

The authors would like to thank Virginia Tech’s
security officer and the system administrators we inter-
viewed for their patience, enthusiasm, and guidance as
we shaped this product to fit their needs. This research

20th Large Installation System Administration Conference (LISA ’06) 261

Bridging the Host-Network Divide: Survey, Taxonomy, and Solution Fink, et al.

was supported in part by a National Science Foundation
Integrated Graduate Education and Research Training
(IGERT) grant (award DGE-9987586).

Author Biographies

Dr. Chris North, Associate Professor of Com-
puter Science at Virginia Polytechnic Institute and
State University, is head of the Laboratory for Infor-
mation Visualization and Evaluation and member of
the Center for Human-Computer Interaction. He
received his Ph.D. at the University of Maryland, Col-
lege Park. He co-led the establishment of Virginia
Tech as an NSA National Center of Academic Excel-
lence in Information Assurance Education. His current
research interests are information visualization, high-
resolution displays, and visualization evaluation meth-
ods. Contact at north@vt.edu, http://infovis.cs.vt.edu/ .

Glenn Fink recently completed his Ph.D. at Vir-
ginia Tech where his dissertation was on visual corre-
lation of network traffic and host processes for com-
puter security. At this writing he is moving out to
Washington state to accept a job at Pacific Northwest
National Labs where he will work on more visualiza-
tion technologies for computer security applications.
Reach him via email at finkga@vt.edu .

Ricardo Correa received his BS in Computer Sci-
ence from the University of Texas at El Paso. He
worked for the University’s IT department managing
the campus-wide network infrastructure. He is cur-
rently pursuing an MS in Network Engineering at the
University of Pennsylvania. Reach him electronically
at ricm@seas.upenn.edu .

Ve d a v y a s Duggirala is a currently pursuing his
Ph.D at Virginia Tech. His work is in the area of large
scale network emulation. He can be reached via
vduggira@vt.edu .

References

[Adore] Adore kernel-level rootkit, http://www.packet
stormsecurity.org/groups/teso/ , last accessed July
2006.

[Cantrill, 2004] Cantrill, B., M. Shapiro, and A. Lev-
enthal, ‘‘Dynamic Instrumentation of Production
Systems,’’ Proceedings of the 2004 Usenix
Annual Technical Conference, 2004.

[Cantrill, 2006] Cantrill, B., ‘‘Hidden in Plain Sight,’’
Queue, Vol. 4, Num. 1, pp. 26-36, http://doi.acm.
org/10.1145/1117389.1117401, Feb., 2006.

[Card, et al., 1999] Card, S. K., J. D. Mackinlay, and
B. Shneiderman, ‘‘Information Visualization,’’ in
Card, S. K., J. D. Mackinlay, and B. Shneider-
man, eds. Readings in information visualization:
Using vision to think, Morgan Kaufmann Pub-
lishers, San Francisco, Calif., pp. 1-34, 1999.

[eHealth] eHealth, A network management tool owned
by Computer Associates, Inc., http://www.concord.
com/products/network_mgt.shtml , Last accessed
July, 2006.

[Fink, et al., 2005] Fink, G. A., P. Muessig, and C.
North, Visual Simultaneous Correlation of Host
Processes and Network Traffic.

[Foundstone] Foundstone, Inc.’s free forensic tools,
http://www.foundstone.com/resources/freetools.
htm , Last accessed July, 2006.

[Li and North, 2003] Li, Q. and C. North, ‘‘Empirical
Comparison of Dynamic Query Sliders and
Brushing Histograms,’’ Proceedings of IEEE
Symposium on Information Visualization 2003,
pp. 147-154, 2003.

[LRK5] LRK5 kernel-level rootkit, http://packetstorm
security.org/UNIX/penetration/rootkits/lrk5.src.
tar.gz , Last accessed July, 2006.

[OSIArch] Zimmermann, Hubert, ‘‘OSI Reference
Model – The ISO Model of Architecture for
Open Systems Interconnection,’’ IEEE Transac-
tions on Communications, Vol. 28, Num. 4, pp.
425-432, April, 1980.

[RFC-1122] RFC 1122, ‘‘Requirements for Internet
Hosts – Communication Layers,’’ http://tools.ietf.
org/html?rfc=1122 , Last accessed July, 2006.

[RFC-791] RFC 791, ‘‘Internet Protocol,’’ September,
1981 (See also: MIL-STD-1777).

[RFC-793] RFC 793, Transmission Control Protocol,
September, 1981 (See also: MIL-STD-1778).

[Sysinternals1] ProcessExplorer, http://www.sysinternals.
com/Utilities/ProcessExplorer.html , Last accessed
September, 2006.

[Sysinternals2] TCPViewPro, http://www.sysinternals.
com/Utilities/TcpView.html , Last accessed Sep.,
2006.

[UML] User Mode Linux, http://user-mode-linux.
sourceforge.net/ , Last accessed July, 2006.

[ZoneAlarm] Zone Alarm Pro, Zone Labs, Inc., San
Francisco, CA 94107, USA, 2003, http://www.
zonelabs.com/ , Last accessed August, 2005.

262 20th Large Installation System Administration Conference (LISA ’06)

