
LISA 2004 (1)

What is This Thing Called
“System Configuration”?

What is This Thing Called
“System Configuration”?

Tufts University
Computer Science

PAUL ANDERSON
dcspaul@inf.ed.ac.uk

Alva Couch
couch@cs.tufts.edu

LISA 2004 (2)

OverviewOverview

 The configuration problem

 Configuration specification
• Types of specification

 Some language issues
• Federated configurations
• Autonomics
• The role of theory

 Non-language issues
• Decentralization, …

 Conclusions

If we have no clear
way of stating the
required
configuration, then
we can’t create a
tool to implement
it!

Paul says:

LISA 2004 (3)

ConfigurationHardware

“Fabric”
performing
according to
specification

Software

Specifications
& Policies

The configuration
problem
The configuration
problem

Feedback
(monitoring) and
autonomic
reconfiguration

Paul says:

LISA 2004 (4)

The configuration
problem
The configuration
problem

 Starting with:
• Several hundred new PCs with empty disks
• A Repository of all the necessary software packages
• A specification of the required service

 Load the software and configure the machines to
provide the required functionality

 This involves many internal services –
DNS, LDAP, DHCP, NFS, NIS, SMTP, Web …

 Reconfigure the machines as the required service
specification changes

 Reconfigure as the environment changes

Paul says:

LISA 2004 (5)

Some context on
configuration management
Some context on
configuration management
 “So easy that it’s hard.”

 “Set the same bits on every disk.” – NOT.

 Very dynamic research community: annual LISA
workshop, technical papers, etc.

 Perhaps too dynamic: “religious” controversies
about tools; “Infrastructure Mafia”.

 Goal in this talk: get beyond religion and tools;
understand nature of good practice.

 Key question: what is “good enough practice?”

Alva says:

LISA 2004 (6)

Good enough?Good enough?

 What is “good enough?”

 Inside every hard computer science problem,
there’s an easy one straining to get out.

 Key: “best” _ “good enough”.

 It’s “good enough” if its cost is reasonable given
its value…

Alva says:

LISA 2004 (7)

Are you already doing
configuration management?
Are you already doing
configuration management?
 Common occurrence: “closet” configuration

management
• Provide base services
• Insure consistency
• Cope with scale
• Cope with change
• Automate common algorithms

 Are you doing this and don’t realize it?

 All too common: SAs approach Configuration
Management “through the back door”.

Alva says:

LISA 2004 (8)

Specifying a
configuration
Specifying a
configuration

“Behaviour” or “implementation” ?

“Host-level” or “network-level” ?

“Procedural” or
“declarative” ?

“Complete” or
“partial” ?

Paul says:

LISA 2004 (9)

“Behaviour” or
“implementation”
“Behaviour” or
“implementation”

 At the highest-level we want to be able to specify
the desired behaviour of the system:
• I want an SMTP service on port 25 of mail.foo.com
• I want a response time of 1sec from my web service

 At present, this is normally translated manually
into an implementation specification:
• I want sendmail installed on some machine, etc …

 The correspondence between the behaviour and
the implementation can only be validated by
monitoring and feedback
• Behaviour depends heavily on external events

Paul says:

LISA 2004 (10)

Implementing behaviourImplementing behaviour

 All current tools really take implementation
specifications

 The translation from the required behaviour is
nearly always manual
• Although validation may be automatic

 Automatic tools can use rules to implement
limited variations of behaviour:
• Add an extra web server if the response is too slow

 Could we have something more general?
• Would we want it ?

Paul says:

LISA 2004 (11)

“Host-level” or
“network-level”
“Host-level” or
“network-level”
 Configuring services often requires cooperating

configurations on many different hosts:
• Configure host X as a web server
• Configure the DNS to alias www.foo.com to X
• Configure the firewall to pass http to host X

 A network-level specification allows us to model
the service as an entity and automatically
generate the host-level configuration data
• There is no scope for mismatch between cooperating

hosts parameters
 Note that network-level specifications are

essential for autonomic fault-tolerance

Paul says:

LISA 2004 (12)

“Procedural” or
“declarative”
“Procedural” or
“declarative”

 “Procedural” configurations specify a set of
actions to perform

 Procedural configurations do not capture the
“intent” of the action and cannot be validated
• If the environment changes, the same actions may

have very different consequences
 “Declarative” configurations specify the desired

final state

 Of course, action are required at some point to
physically change a configuration
• Tools can compute the required actions from

declarative specifications of intent

Paul says:

LISA 2004 (13)

A subtle distinctionA subtle distinction

 Declarative: implementation of directives might
be ordered, but order is somehow “obvious” or
“implied” by context.

 Procedural: specific ordering is the only way to
get it to work; no “obvious” ordering other than
the one given.

 Example: RPMs: Implicit order determined by
dependencies _ list is declarative.

 Example: scripts: must keep lines in order _
script is procedural.

Alva says:

LISA 2004 (14)

A declarative exampleA declarative example

 Declarative (requirement)
• Host X uses host M as the mail server

 Non-declarative (implementation)
• “Run this script on host X to edit the sendmail.cf

file”

 If we have only the implementation, then the
intent is not clear
• We cannot reason about the desired configuration
• We cannot validate security policy, for example
• And many other problems, such as order-sensitivity!

Paul says:

LISA 2004 (15)

Why declarative? Why declarative?

 Make specifications simpler.

 Leave implementation to a tool.

 More portable.

 Allows flexible response.

 Easier to compose differing requirements.

Alva says:

LISA 2004 (16)

Why procedural?Why procedural?

 Closer to normal manual configuration.

 Short learning curve for automating procedure.

 Intuitive mechanism for specifying what to do.

 Interoperable with many existing management
tools (rpm, make, rdist, rsync, etc)

Alva says:

LISA 2004 (17)

Evolution of management
strategies
Evolution of management
strategies

Unstructured changes

Scripting/documentation

Declarative recipes for one host

Declarative recipes for a fabric

Perl, bash

Cfengine,lcfg,bcfg2,psgconf,…

Lcfg,pan,tivoli,…

Pikt, isconf

Manual commands

Alva says:

Script management systems

LISA 2004 (18)

A common myth
dispelled
A common myth
dispelled
 Many people seem to believe that the choice of

tool determines ease of configuration
management.

 In fact, it’s the practice of using the tool that
determines how well the tool works.

 Choice of tool makes little difference; discipline
of use is everything.

Alva says:

LISA 2004 (19)

“Complete” or “partial”“Complete” or “partial”

 A “complete” specification ties down all the
parameters about which we are interested

 A “partial” specification assumes that some of
the configuration parameters are controlled from
elsewhere
• Sometimes, this is necessary – e.g. DHCP

 There is a great danger with partial specifications
of creating configurations with unpredictable
values for important parameters
• If we don’t specify it, then we have to be sure that

someone else is managing it, or that we don’t care!

LISA 2004 (20)

Perhaps better nomenclature:
proscriptive or incremental
Perhaps better nomenclature:
proscriptive or incremental
 Proscriptive: somehow specify everything

about the configuration of a host or network.

 Incremental: specify some aspects of systems;
leave others to other management processes.

 Example: build from bare metal: proscriptive

 Example: take over a legacy machine without a
rebuild: incremental.

LISA 2004 (21)

Common beginners’ mistake:
not being proscriptive enough
Common beginners’ mistake:
not being proscriptive enough
 Game of configuration management: make a lot

of stations and/or servers cooperate and work
similarly.

 Enemy of configuration management: “latent
preconditions” differ among hosts, and are
unmanaged by any process.

 Example: half the hosts don’t contain an entry in
/etc/hosts for foo.bar.com
• OK if you don’t need services from that host.
• Bad when it somehow becomes your master

fileserver!

LISA 2004 (22)

Evolution of proscriptionEvolution of proscription

Ad-hoc: control whatever’s convenient

Incremental: control a few things

Bare metal: rebuild from scratch

Can repeat a build
with exact same effect

Can recover from
unforeseen developments. “convergent”

Alva says:

“abuse of cfengine”

“reproducible”

“deterministic”

LISA 2004 (23)

Typical current
practice
Typical current
practice

 Behavioural specifications are translated manually into
implementations
• Apart from a few limited special cases

 Most configuration specifications are host-level, rather
than fabric-level
• The best tools are capable of some fabric-level specification

 Complete configuration specifications are possible (and
desirable!)
• But not used widely, due to the learning curve of the tools

 Declarative (to some degree) specifications are common
and widely accepted as a “good thing”

Paul says:

LISA 2004 (24)

A little mysteryA little mystery

 Paul:
• uses “fabric” management.
• Declarative language.
• Autonomic reconfiguration.
• Rather complex learning curve.

 Alva:
• uses “host” management.
• RPM-based solution (non-declarative).
• Scheduled wipe-and-rebuild.
• Very simple tools.

 Why?

Alva says:

LISA 2004 (25)

Backing into
configuration management
Backing into
configuration management

Alva says:

Time and Scale

incremental proscriptive

federatedad-hoc

Co
st

 p
er

 u
ni

t t
im

e

LISA 2004 (26)

Slamming into cost and
implementation barriers
Slamming into cost and
implementation barriers

Time and Scale

Co
st

 p
er

 u
ni

t t
im

e

Retraining

Loss of “memory”

Loss of ownership

Alva says:

LISA 2004 (27)

Backing into
process maturity
Backing into
process maturity

Time and Scale

Co
st

 p
er

 u
ni

t t
im

e

 documentability interchangeability

reproducibility

Alva says:

LISA 2004 (28)

Lifecycle cost is
a sum of unit costs
Lifecycle cost is
a sum of unit costs

Time and Scale

Li
fe

cy
cl

e
co

st

ad-hoc incremental

proscriptive

federated

Where are the
crossings?

Alva says:

Slope is
unit cost

LISA 2004 (29)

Alva says:A little mystery solvedA little mystery solved

Time and Scale

Li
fe

cy
cl

e
co

st
Alva says:

Pa
ul

Al
va

} difference
 in cost!

LISA 2004 (30)

From whence come costs?From whence come costs? Alva says:

lifecycle
maintenance

planning
installation

troubleshooting

risksthreats

insurance

changesrequests downtime incidents

adoption

training

heterogeneity

scale

expectations

policy

A _ B means “cost of A drives cost of B”

testing

LISA 2004 (31)

Manual managementManual management Alva says:

lifecycle
maintenance

planning
installation

troubleshooting

risksthreats

insurance

changesrequests downtime incidents

adoption

training

heterogeneity

scale

expectations

policy

A _ B means “cost of A drives cost of B”

testing

LISA 2004 (32)

Incremental managementIncremental management Alva says:

lifecycle
maintenance

planning
installation

troubleshooting

risksthreats

insurance

changesrequests downtime incidents

adoption

training

heterogeneity

scale

expectations

policy

A _ B means “cost of A drives cost of B”

testing

LISA 2004 (33)

Proscriptive managementProscriptive management Alva says:

lifecycle
maintenance

planning
installation

troubleshooting

risksthreats

insurance

changesrequests downtime incidents

adoption

training

heterogeneity

scale

expectations

policy

A _ B means “cost of A drives cost of B”

testing

LISA 2004 (34)

Federated managementFederated management Alva says:

lifecycle
maintenance

planning
installation

troubleshooting

risksthreats

insurance

changesrequests downtime incidents

adoption

training

heterogeneity

scale

expectations

policy

A _ B means “cost of A drives cost of B”

testing

LISA 2004 (35)

Some language issuesSome language issues

Federated configurations

Autonomics
Theory

Special-purpose languages

Paul says:

LISA 2004 (36)

Configuration languagesConfiguration languages

 Configuration languages are essentially “data
description” languages
• I.e. declarative languages which determine the

contents of the configuration files
 Configuration languages are different from

programming languages
• Which usually describe algorithms (as well as data)

 Structuring and managing the configuration
information is one of the major current problems
• We have 1000 hosts x 5000 parameters

 Some example problems follow …

LISA 2004 (37)

Federated configurationsFederated configurations

 Existing configuration languages provide
mechanisms such as hierarchical prototypes, or
host “classes” for structuring the configuration
data

 These are insufficient for modern “federated”
installations where many people are responsible
for different “aspects” of the same system
• Classes (aspects) overlap
• Real, or apparent, conflicts arise frequently

 Languages need better features to support this

LISA 2004 (38)

Aspect compositionAspect composition
 The language forces

explicit values to be
specified:

 Aspect A
• Use server Y

 Aspect B
• Use server X

 This conflict is
irreconcilable without
human intervention
because we don’t know
the intention

 The user really only wants
to say …

 Aspect A
• Use any server on my

Ethernet segment

 Aspect B
• Use one of the servers X,Y

or Z

 These constraints can be
satisfied to
• Use server Y

(assuming Y is on the right
segment)

Paul says:

LISA 2004 (39)

AutonomicsAutonomics

 To create systems from higher-level
specifications, we need “autonomic” behaviour
• Add more web servers if the response is slow
• Configure a new DNS server if an existing one dies

 To do this in a declarative way, the language
needs to support much “looser” specifications
• I.e. The user should specify no more than is

necessary, so that the system has freedom to assign
other values

• E.g. “I want two DHCP servers on each Ethernet
segment”

 This is a similar requirement to the loose
constraints required for aspect composition

Paul says:

LISA 2004 (40)

A fault tolerance exampleA fault tolerance example

 Traditional “fault-tolerance” systems are usually
based on event-action rules. For example:

 A declarative configuration:
• Hosts X, Y and Z are my web servers

 An event-action rule:
• If a web server goes down …
• Then configure the backup server S as a web server

 Note that the procedural rule has broken the
declarative nature of the original specification
• This is no longer true

LISA 2004 (41)

The role of theoryThe role of theory

 Basic CS theory has helped to develop better
programming languages which are easier to use and
more likely to produce “correct” programs

 Corresponding theories for configuration languages are
only in their infancy
• What is a “configuration” ?
• What is the effect of some fragment of configuration

specification in some language?
• We can look at the formal semantics of configuration languages

 The two previous problems suggest that constraint-
based languages may be useful
• But general-purpose constraint solvers are not viable at every

level

Paul says:

LISA 2004 (42)

Programming language
development
Programming language
development

 Unstructured programming
is very hard to relate to
the outcome of the
program:
• 1: blah blah
• …
• 2: if X then goto 4
• …
• 3: if Y then goto 1
• …

 Most current configuration
specifications are
comparable to this level!

 The structured equivalent
relates more closely to the
declarative purpose of the
code:
• While (condition) do
• …
• End

 Providing that the loop
terminates, we can be sure
that the condition is false
at the end

Paul says:

LISA 2004 (43)

Non-language issuesNon-language issues
 Decentralization

• Centralized generation and distribution of configurations is
becoming less feasible

• Centralized control of the specification seems likely to become
an unreasonable assumption

• Decentralization complicates all the following issues

 Autonomics
• Dealing with uncertainty
• Monitoring and feedback
• Recovery strategies

 Security and trust are major unsolved problems

 Planning and sequencing of complex, related
configuration changes

 Lack of standards for configuration APIs and models
• Is a problem for tool development and collaboration

Paul says:

LISA 2004 (44)

ConclusionsConclusions

 Increases in scale and complexity require more formal,
higher-level approaches to system configuration
• Autonomics, federation, decentralization, …

 Best current practice involves fabric-level, complete,
declarative specifications
• Behavioural specifications cannot yet be translated

automatically into implementations

 For many people, this involves a significant change in
practice, complicated because …
• Current tools involve steep learning curves
• It must be possible to trust the tool to make significant

decisions automatically
• There are no widely useful standards

Paul says:

LISA 2004 (45)

Conclusions (cont’d)Conclusions (cont’d)

 Concentrate on appropriate practice, not
appropriate tools:
• Avoid “closet” configuration management: face the

problem and take control.
• Be proscriptive rather than incremental.
• Evolve toward declarative specification.
• Evolve toward federated management.
• Plan based upon lifecycle cost rather than unit cost.

 Consider the cost of not applying configuration
management.

Alva says:

LISA 2004 (46)

ReferencesReferences

 Lssconf - An informal research collaboration

• Annual LISA workshops & mailing list
• http://homepages.informatics.ed.ac.uk/group/lssconf/

 The LCFG Project
• The configuration tool developed in the School of

Informatics at Edinburgh University
• http://www.lcfg.org

Paul says:

LISA 2004 (47)

What is This Thing Called
“System Configuration”?

What is This Thing Called
“System Configuration”?

PAUL ANDERSON
dcspaul@inf.ed.ac.uk

Alva Couch
couch@cs.tufts.edu

Tufts University
Computer Science

