PAUL ANDERSON = Alva Couch
dcsaul@inf.ed.ac.uk i couch@cs‘ruf’rs edu

Whét s ThlS ?hlng1

“SystemConf1QUratgon”

© School of Y E%'j _ TUftS UﬂlVérSIty
lnformahcs Computer Science

Overview

The configuration problem

Configuration specification
- Types of specification
Some language issues

- Federated configurations
- Autonomics
* The role of theory

Non-language issues

- Decentralization, ...

Conclusions

N

If we have no clear
way of stating the
required
configuration, then
we can't create a
tool to implement
th

LISA 2004 (2)

The configuration

problem

@ 2
289

Hardware

"Fabric"
performing
according to
specification

LISA 2004 (3)

(monitoring) and

Speaﬁca’ruons autonomic
& Policies reconfiguration

The configuration

problem

Starting with:

- Several hundred new PCs with empty disks
- A Repository of all the necessary software packages
» A specification of the required service

Load the software and configure the machines to
provide the required functionality

This involves many internal services —
DNS, LDAP, DHCP, NFS, NIS, SMTP, Web ...

Reconfigure the machines as the required service
specification changes

Reconfigure as the environment changes =

Some; context on
configuration management

“So easy that it's hard.”
“Set the same bits on every disk.” — NOT.

T
T
-~ !
i
.

Very dynamic research community: annual LISA
workshop, technical papers, etc.

Perhaps too dynamic: “religious” controversies
about tools; “Infrastructure Mafia”.

Goal in this talk: get beyond religion and tools;
understand nature of good practice.

Key question: what is “good enough practice?”

LISA 2004 (5)

Good enough?

What is “"good enough?”

Inside every hard computer science problem,
there’s an easy one straining to get out.

Key: "best” “good enough”.

It's "good enough” if its cost is reasonable given
its value...

LISA 2004 (6)

Are you already doing

configuration management?

Common occurrence: “closet” configuration
Mmanagement

* Provide base services

* Insure consistency

» Cope with scale

» Cope with change

- Automate common algorithms

Are you doing this and don't realize it?

All too common: SAs approach Configuration
Management “through the back door”.

LISA 2004 (7)

Specifying a =
eonriguration

L e

o
R B
(o

"Host-level” or “network-level" ?

"Complete” or
“partial” ?

"Procedural” or
“"declarative"” ?

“Behaviour” or

“implementation”

At the highest-level we want to be able to specify
the desired behaviour of the system:

» T want an SMTP service on port 25 of mail.foo.com
* T want a response time of 1sec from my web service

At present, this is normally translated manually
into an implementation specification:

- T want sendmail installed on some machine, etc ...

The correspondence between the behaviour and
the implementation can only be validated by
monitoring and feedback

- Behaviour depends heavily on external events

LISA 2004 (9)

Implementing behaviour r

All current tools really take implementation
specifications

The translation from the required behaviour is

nearly always manual
- Although validation may be automatic

Automatic tools can use rules to implement
limited variations of behaviour:

- Add an extra web server if the response is too slow

Could we have something more general?
- Would we want it ? LISA 2004 (10)

“Host-level” or

Ynetwork-level”

Configuring services often requires cooperating
configurations on many different hosts:

- Configure host X as a web server
» Configure the DNS to alias www.foo.com to X
» Configure the firewall to pass http to host X

A network-level specification allows us to model
the service as an entity and automatically
generate the host-level configuration data

* There is no scope for mismatch between cooperating
hosts parameters

Note that network-level specifications are
essential for autonomic fault-tolerance

LISA 2004 (11)

YProcedural” or

Ydeclarative”

“Procedural” configurations specify a set of
actions to perform

Procedural configurations do not capture the
“intent” of the action and cannot be validated

+ If the environment changes, the same actions may
have very different consequences

“Declarative” configurations specify the desired
final state

Of course, action are required at some point to
physically change a configuration

» Tools can compute the required actions from
declarative specifications of intent

LISA 2004 (12)

A subtle distinction Alva says: S5

Declarative: implementation of directives might
be ordered, but order is somehow “obvious” or
“implied” by context.

Procedural: specific ordering is the only way to
get it to work; no “obvious” ordering other than
the one given.

Example: RPMs: Implicit order determined by
dependencies list is declarative.

Example: scripts: must keep lines in order _
script is procedural.

LISA 2004 (13)

A declarative example

Declarative (requirement)
- Host X uses host M as the mail server

Non-declarative (implementation)

* "Run this script on host X to edit the sendmail.cf
file"

If we have only the implementation, then the

intent is not clear

+ We cannot reason about the desired configuration
* We cannot validate security policy, for example
» And many other problems, such as order-sensitivity!

LISA 2004 (14)

Why: declarative?

Make specifications simpler.
Leave implementation to a tool.
More portable.

Allows flexible response.

Easier to compose differing requirements.

LISA 2004 (15)

Why: procedural®?

Closer to normal manual configuration.

Short learning curve for automating procedure.
Intuitive mechanism for specifying what to do.

Interoperable with many existing management
tools (rpm, make, rdist, rsync, etc)

LISA 2004 (16)

Evolution of management 'Alva says: B8

strategies

Unstructured changes

|

Scripting/documentation

|

Script management systems

|

Declarative recipes for one host

|

Declarative recipes for a fabric

Manual commands

Perl, bash

Pikt, isconf

Cfengine,lcfg,bcfg2,psgcont,...

Lcfg,pan,tivoli,...

LISA 2004 (17)

A common myth

dispelled

Many people seem to believe that the choice of
tool determines ease of configuration
management.

In fact, it's the practice of using the tool that
determines how well the tool works.

Choice of tool makes little difference; discipline
of use is everything.

LISA 2004 (18)

“Complete” or "“partial”

A “complete” specification ties down all the
parameters about which we are interested

A “partial” specification assumes that some of
the configuration parameters are controlled from
elsewhere

-+ Sometimes, this is necessary - e.g. DHCP

There is a great danger with partial specifications
of creating configurations with unpredictable
values for important parameters

+ If we don't specify it, then we have to be sure that
someone else is managing it, or that we don't careh o

Perhaps better nomenclature:

proscriptive or incremental

Proscriptive: somehow specify everything
about the configuration of a host or network.

Incremental: specify some aspects of systems;
leave others to other management processes.

Example: build from bare metal: proscriptive

Example: take over a legacy machine without a
rebuild: iIncremental.

LISA 2004 (20)

Common beginners’ mistake:

not being proscriptive enough

Game of configuration management: make a lot

of stations and/or servers cooperate and work
similarly.

Enemy of configuration management: “latent
preconditions” differ among hosts, and are
unmanaged by any process.

Example: half the hosts don’t contain an entry in
/etc/hosts for foo.bar.com

+ OK if you don't need services from that host.

- Bad when it somehow becomes your master
fileserver!

LISA 2004 (21)

b T

Evolution of proscriptionm b

Ad-hoc: control whatever’s convenient

l

Incremental: control a few things “abuse of cfengine”

|

Bare metal: rebuild from scratch “deterministic”
Can repeat a build “reproducib|e”

with exact same effect

|

Can recover from

“convergent”
unforeseen developments.

LISA 2004 (22)

Typical current

practice

Behavioural specifications are translated manually into
implementations

+ Apart from a few limited special cases
Most configuration specifications are host-level, rather
than fabric-level

*+ The best tools are capable of some fabric-level specification
Complete configuration specifications are possible (and
desirable!)

* But not used widely, due to the learning curve of the tools

Declarative (to some degree) specifications are common
and widely accepted as a “good thing”

LISA 2004 (23)

A little mystery

Paul:

» uses "fabric" management.

- Declarative language.

» Autonomic reconfiguration.

* Rather complex learning curve.

Alva:

- uses "host" management.

- RPM-based solution (non-declarative).
» Scheduled wipe-and-rebuild.

- Very simple tools.

Why?

LISA 2004 (24)

configuration management

ad-hoc -~ | federated

Cost per unit time

NS

incremental proscriptive —»

Time and Scale

LISA 2004 (25)

Slamming; intoe cost and m

implementation barriers

Retraining Loss of ownership

Cost per unit time

Loss of “memory”

Time and Scale

LISA 2004 (26)

Cost per unit time

Backing into
process maturity
A

documentability | | interchangeability

reproducibility >
Time and Scale

LISA 2004 (27)

Alva says:

T federated

proscriptive N g > _
i;m;;%;;;ﬁ;ﬁ;@ +_ Slope is

/|

ad-hoc iIncremental —
Time and Scale

------ unit cos
Where are the

crossings?

Lifecycle cost

LISA 2004 (28)

A

@

Lifecycle cost

R

A little mystery solved m

é } differenc:

ECINCON e

Time and Scale

In cost!

LISA 2004 (29)

Flrom whence come costs?

A B means “cost of A drives cost of B”

s plannlng

. ——installation

expectations X adoptlon
A \ test;ng /
scale ——» maintenance ;g
TN raining
policy ><A l Ilfecycle

heterogenelty§’”<bleih00tm9 Insurance

requests —>changes downtime < incidents

/

threats > risks

LISA 2004 (30)

Manual management

A B means “cost of A drives cost of B”

s plannlng
. ——installation
expectations X adoptlon
A \ test;ng /
scale —» maintenance ;g
a8 raining
policy X l Ilfecycle
}tervogenfutywsgtmg lr;Jrance
requests ——changes downtime < incidents

/

threats > risks

LISA 2004 (31)

Incremental management Alva says: 28

A B means “cost of A drives cost of B”

s plannlng
. ——installation
expectations X adoptlon
A \ test;ng /
scale ——» maintenance ;g
Tl ralnlng
policy X l Ilfecycle
}tervogenfutywsgtmg lr?rance
requests —>changes downtime < incidents

/

threats > risks

LISA 2004 (32)

Proscriptive management Alva says: 28 -

A B means “cost of A drives cost of B”

> plannlng

. ——installation

expectations X adoptlon
A \ test;ng /
scale ——» maintenance ;g
TN raining
policy ><A l Ilfecycle

heterogenelty§’”<bleih00tm9 Insurance

requests —>changes downtime < incidents

/

threats > risks

LISA 2004 (33)

Federated management m b

A B means “cost of A drives cost of B”

> plannlng

. ——installation

expectations X adoptlon
A \ test;ng /
scale ——» maintenance ;o g
i raining
policy ><A l Ilfecycle

heterogenelty§’”<bleih00tm9 Insurance

requests —>changes downtime < incidents

/

threats > risks

LISA 2004 (34)

Soe language 1ssues

Ak TR LD

Configuration languages

Configuration languages are essentially “data
description” languages

» I.e. declarative languages which determine the
contents of the configuration files

Configuration languages are different from
programming languages

* Which usually describe algorithms (as well as data)

Structuring and managing the configuration
information is one of the major current problems

+ We have 1000 hosts x 5000 parameters
Some example problems follow ...

LISA 2004 (36)

Federated configurations

Existing configuration languages provide
mechanisms such as hierarchical prototypes, or
host “classes” for structuring the configuration

data

These are insufficient for modern “federated”
installations where many people are responsible
for different “aspects” of the same system

» Classes (aspects) overlap
* Real, or apparent, conflicts arise frequently

Languages need better features to support this

LISA 2004 (37)

Aspect composition

The language forces
explicit values to be
specified:

Aspect A

« Use server Y

Aspect B
« Use server X

This conflict is
irreconcilable without
human intervention
because we don’t know
the intention

The user really only wants
to say ...

Aspect A

- Use any server on my
Ethernet segment

Aspect B

- Use one of the servers XY
or Z

These constraints can be
satisfied to

- Use server Y
(assuming Y is on the right
segment)

LISA 2004 (38)

Autonomics

To create systems from higher-level
specifications, we need “autonomic” behaviour

»+ Add more web servers if the response is slow
» Configure a new DNS server if an existing one dies

To do this in a declarative way, the language
needs to support much “looser” specifications
+ T.e. The user should specify no more than is

necessary, so that the system has freedom to assign
other values

* E.g. "I want two DHCP servers on each Ethernet
segment”

This is a similar requirement to the loose
constraints required for aspect composition “***

A fault tolerance example

Traditional “fault-tolerance” systems are usually
based on event-action rules. For example:

A declarative configuration:
* Hosts X, Y and Z are my web servers

An event-action rule:

+ If a web server goes down ...
» Then configure the backup server S as a web server

Note that the procedural rule has broken the
declarative nature of the original specification

- This is ho Ionger‘ true LISA 2004 (40)

The role of theory

Basic CS theory has helped to develop better
programming languages which are easier to use and
more likely to produce “correct” programs

Corresponding theories for configuration languages are
only in their infancy

* What is a "configuration” ?

* What is the effect of some fragment of configuration
specification in some language?

* We can look at the formal semantics of configuration languages
The two previous problems suggest that constraint-
based languages may be useful

» But general-purpose constraint solvers are not viable at every
I evel LISA 2004 (41)

Programming language

development

Unstructured programming
is very hard to relate to
the outcome of the
program:

» 1. blah blah
- 2. if X then goto 4

- 3:if Y then goto 1

Most current configuration
specifications are
comparable to this level!

The structured equivalent
relates more closely to the
declarative purpose of the
code:

+ While (condition) do

- End
Providing that the loop
terminates, we can be sure

that the condition is false
at the end

LISA 2004 (42)

Non-language 1issues

Decentralization
+ Centralized generation and distribution of configurations is
becoming less feasible

+ Centralized control of the specification seems likely to become
an unreasonable assumption

Decentralization complicates all the following issues
Autonomics

Dealing with uncertainty
* Monitoring and feedback
* Recovery strategies

Security and trust are major unsolved problems

Planning and sequencing of complex, related
configuration changes

Lack of standards for configuration APIs and models. .o

Conclusions

Increases in scale and complexity require more formal,
higher-level approaches to system configuration

- Autonomics, federation, decentralization, ...

Best current practice involves fabric-level, complete,
declarative specifications

Behavioural specifications cannot yet be translated
automatically into implementations

For many people, this involves a significant change in
practice, complicated because ...

» Current tools involve steep learning curves

* It must be possible to trust the tool to make significant
decisions automatically

* There are no widely useful standards LISA 2004 (44)

Conclusions (cont’d)

Concentrate on appropriate practice, not
appropriate tools:

+ Avoid “closet” configuration management: face the

problem and take control.

- Be proscriptive rather than incremental.

+ Evolve toward declarative specification.

» Evolve toward federated management.

* Plan based upon lifecycle cost rather than unit cost.

Consider the cost of not applying configuration
management.

LISA 2004 (45)

References

| ssconf - An informal research collaboration

- Annual LISA workshops & mailing list
* http://lhomepages.informatics.ed.ac.uk/group/lssconf/

The LCFG Project

+ The configuration tool developed in the School of
Informatics at Edinburgh University

 http:/lwww.Icfg.org

LISA 2004 (46)

PAUL ANDERSON o | Alva Couch
dcsaul@inf.ed.ac.uk - i couch@cs ’ruf’rs edu

Whét l§TThlS

“Systém.Ccnflguratlon”

@ f School of Y E%’? et TUftS UﬂlVérSIty
informatics : Computer Science

