
Application-Level Reconnaissance: Timing Channel
Attacks Against Antivirus Software

Mohammed I. Al-Saleh
University of New Mexico

Department of Computer Science
Mail stop: MSC01 1130

1 University of New Mexico
Albuquerque, NM 87131
alsaleh@cs.unm.edu

Jedidiah R. Crandall
University of New Mexico

Department of Computer Science
Mail stop: MSC01 1130

1 University of New Mexico
Albuquerque, NM 87131

crandall@cs.unm.edu

ABSTRACT
Remote attackers use network reconnaissance techniques, such as

port scanning, to gain information about a victim machine and then

use this information to launch an attack. Current network recon-

naissance techniques, that are typically below the application layer,

are limited in the sense that they can only give basic information,

such as what services a victim is running. Furthermore, modern

remote exploits typically come from a server and attack a client

that has connected to it, rather than the attacker connecting directly

to the victim. In this paper, we raise this question and answer it:

Can the attacker go beyond the traditional techniques of network

reconnaissance and gain high-level, detailed information?

We investigate remote timing channel attacks against ClamAV an-

tivirus and show that it is possible, with high accuracy, for the re-

mote attacker to check how up-to-date the victim’s antivirus signa-

ture database is. Because the strings the attacker uses to do this are

benign (i.e., they do not trigger the antivirus) and the attack can be

accomplished through many different APIs, the attacker has a large

amount of flexibility in hiding the attack.

1. INTRODUCTION
Network reconnaissance is a vital step for the remote attacker be-

fore launching an attack. Attacking every reachable host is not de-

sirable to the attacker because only vulnerable hosts can be suc-

cessfully penetrated. Port scanning is a well-known technique that

provides the attacker with very useful information about possible

victims. The attacker wants to know if the victim is running certain

services, and determines this by sending packets to certain ports

the victim might be listening on. The communication between the

attacker and victims could reveal the victims’ specific services and

operating system, and even version information. Port scanning,

while helpful to the attacker, is limited by the kind of information it

can attain and by the ability to reach victims that have contacted the

attacker from behind Network Address Translation (NAT). Stateful

firewalls and intrusion detection systems, if well deployed and con-

figured, are considered strong defense lines against port scanning.

Also, maintaining stealth is important. In this paper, we explore

techniques to remotely gain detailed high-level information about

a victim host that has connected to the attacker’s web server. Our

goal is to better understand how the future network reconnaissance

techniques that network defenders must anticipate will work.

1.1 Application-level reconnaissance
We are particularly interested in the ability of the remote attacker

to learn about victims beyond traditional techniques. The highest

level of information the attacker can obtain is information related

to the victims’ running applications, particularly security-related

applications. Vulnerable applications, firewalls, and antivirus soft-

ware are of interest to the attacker. We take the antivirus application

in our study as a running example and show how the attacker can

stealthily gain information about the victims’ antivirus. In this ex-

ample, the attacker creates a timing channel to infer how up-to-date

the antivirus is. This could be useful in that the attacker could de-

cide to send older versions of malicious code and thereby limit the

exposure of their newest version by only using it when necessary.

In traditional network scanning, the remote attacker scans victims

by the means of being a client who tries to connect to servers and

discover vulnerabilities. In our model, the attacker is modeled as

a server who waits for clients’ connections and then scans them at

the application layer. This model is particularly suited to drive-by-

downloads.

1.2 Threat model
While modern antivirus software employs advanced techniques

such as filtering, algorithmic scanning, and emulation, at its heart

antivirus is still based on pattern matching. Note that the filters

that trigger algorithmic scanning and emulation are still pattern-

based, and advanced techniques also amortize their performance

and therefore offer opportunities for timing channels.

An antivirus scanning engine scans data against its virus signatures.

The antivirus does not compare data to every single signature se-

quentially, but rather it stores the signatures in data structures that

allow for fast scanning that is optimized for the common case (typ-

ical strings of bytes) and amortizes the performance overhead by

having slow code paths that are only taken when a byte string is

close to a signature in the database in some way. Depending on

how the antivirus stores the signatures in the data structures, scan-

ning one piece of data can take a longer time than another based

on the scanning path the antivirus takes to determine if the data

is malicious or benign. Suppose that the attacker knows how the

antivirus scanning works, then they can create special crafted data



that makes the antivirus take a longer time if a certain signature is

in the database, but less time otherwise. In our threat model, the

attacker wants to know if a client’s antivirus database is updated

with a certain signature or not. Although the attacker is modeled

as a server in our threat model, she can be modeled as a malicious

insider as well.

The fundamental principle the antivirus software utilizes is making

the common case fast. However, this introduces the possibility of

timing channel attacks.

1.3 Why antivirus?
Having antivirus software is considered essential for typical com-

puters today. According to a study [4], 81 percent of users use

antivirus on their computers. Antivirus signature databases vary

widely in terms of how up-to-date they are, due to both users who

have not updated recently and scaled releases of updates. An at-

tacker need not use a more recent malicious code, and thereby in-

crease the exposure of the more recent code, if a user’s antivirus

signatures are not up-to-date and an older malicious code will suf-

fice.

We chose ClamAV antivirus in our study because it is an open

source antivirus.

1.4 Why timing channels?
The benefit of a timing channel attack is flexibility and stealth.

Even though the attacker might be able to directly check how up-

to-date the antivirus’ database files are through ActiveX controls

or other APIs that allow direct checking of directories, files, and

processes, this suspicious behavior will have a distinct behavioral

signature that is difficult for the attacker to obfuscate (e.g., opening

the antivirus’ signature database). Also, the database files could be

hidden or not allowed to be reached by the attacker in the first place.

So, indirectly inferring how up to date the database is is preferable

from the attacker’s point of view.

1.5 Paper structure
This paper is organized as follows. First, we give a background

of how ClamAV signature scanning works in Section 2. This is

followed by Section 3 that explains our evaluation methodology,

and then our results in Section 4. A discussion and future work are

in Section 5. Then related works and the conclusion follow.

2. BACKGROUND

2.1 On-access vs. on-demand scanning
On-access scanning is triggered upon file system operations, such

as open, create, or close system calls. To be scanned with the on-

access scanner, a virus should be read from or written to the disk.

On-access scanners run as daemons and hook into the file system

APIs or are implemented as device drivers that are attached to the

file system [21]. On-demand scanning starts only if the user asks

the scanner to scan some files.

2.2 ClamAV antivirus
ClamAV [2] is a well-known, open source antivirus program. Cla-

mAV consists of a main library and a set of command line programs

that make use of the APIs provided by the library. On-access scan-

ning in Windows is possible via Clam Sentinel (see below).

2.2.1 File type filtering
The ClamAV scanning engine has 10 different roots which cor-

respond to 10 different file types. These are GENERIC, PE,

OLE2, HTML, MAIL, GRAPHICS, ELF, ASCII, NOT USED, and

MACH-O. ClamAV signatures are loaded into the data structures of

those roots depending on what kind of files a virus can infect. For

example, if virus X infects PE files and a signature X’ is generated

for X, then X’ will be loaded into the data structures of the PE root.

When ClamAV scans a file, it checks the file type first to determine

which root’s signatures will be used to scan that file against. File

type filtering speeds up the scanning process by optimizing scans

for file types where the entire file need not be scanned.

2.2.2 Filtering step
To make scanning even faster, ClamAV implements an additional

filtering step prior to scanning. Every type root has its own filter.

The filter can determine if a file is benign before scanning it. The

most important feature of these filters is that they do not have

false negatives but do have false positive. In other words, the filter

will not let a file containing a virus pass without being scanned,

but if it can prove that the file is benign then no further scanning

is needed for that file. However, some other benign files might

cause a hit in the filter and thus will need to be scanned further.

ClamAV implements a bit-level state-machine to match characters

in the filter. The state machine has 8 states where each state is

represented by 1 bit. The state machine might have multiple active

states at the same time and thus multiple transitions might be

taking place in parallel. Because ClamAV checks input against

the filter, any character can be good to start checking from. Thus,

ClamAV activates state 1 at each transition. An active state 1 is

represented by 11111110. The filter is an array, called B, of length

65536, where each element is 8 bits long. Figure 1 illustrates this.

ClamAV chooses 8 characters carefully from each signature to add

it to the filter. Then, it iterates through the 8 characters and reads

q-grams of length 2 at each position. For example, if the 8-byte

string of a signature is 0x001122334455667788, then it changes

the filter as in the following steps1:

1. For position 1 of the string, execute B[0x0011] = B[0x0011]

& 11111110. This says that 0x0011 is satisfactory to start

with.

2. For position 2: B[0x1122] = B[0x1122] & 11111101.

3. It continues in the same way for the following positions until

the 7th position.

4. To mark the end of a string ClamAV has another array called

End. For the previous example, when position 7 is reached,

the End array is changed to be End[0x7788] = End[0x7788]

& 10111111.

After ClamAV determines which type root an input belongs to, it

checks the root’s filter against the input. Searching the filter starts

by setting the bit-level state machine to 1111111 (no active states).

Then, ClamAV iterates through all input characters until it finds

a match or reports a negative result. At each character position,

ClamAV reads 16 bits as q0 (q-gram equals 2) and performs this

statement:

1
<<, |, and & represent shift left, or, and and bitwise operations,

respectively



state = (state << 1) | B[q0], where state << 1 activates state 1

each time, and then it checks if it finds a match by this statement:

match_state_end = state | End[q0], and reports a match if

match_state_end != 0xff. In other words, it reports a match when

reaching a state at which the input can end at while being in an ac-

tive state. Because this filter is created by applying this procedure

to all of the signatures, a string will not pass the filtering step unless

it cannot possibly match any signature.

Figure 1: ClamAV filter. The filter content is based on the sig-

natures. An active position is represented by 0. The right most

bit is the first position.

2.2.3 Aho-Corasick algorithm
ClamAV uses an extended version of Aho-Corasick algorithm [5].

ClamAV usually uses this algorithm for signatures that have wild-

cards. In this case, the signature is divided into patterns that need

to be matched in order to report a match. This algorithm is used to

match an input against many patterns at the same time. ClamAV

uses a tree-like data structure, called a trie, to store patterns. Each

node in this data structure has 256 transition pointers. Each tran-

sition represents an ASCII character. What distinguishes this data

structure is that each node has the same prefix as its predecessor

nodes up to the root node, so that all patterns with the same prefix

will take the same path. Because each node takes a considerable

amount of memory and also because the trie could be very large if

not restricted, ClamAV has put a maximum limit for the depth to

be 3. After reaching the maximum depth, all patterns will be added

to a linked list attached to leaf nodes. Suppose that there is a sig-

nature that starts with the sequence 0x010002. Figure 2 shows the

transitions in the ClamAV trie structure that this sequence would

take. Once the leaf node is reached, the pattern will be added to the

linked list of patterns which have the same prefix. Also, fail tran-

sitions are established, so that instead of returning back to the root

at every mismatch, a fail transition is made to the proper node. For

example, if the next input at node 2 is 0x01, then the fail transition

is set to go back to node 2 instead of re-matching starting again

from node 1.

2.2.4 Boyer-Moore Algorithm
An extended version of Boyer-Moore algorithm [10] is used in

ClamAV. This algorithm is usually used for signatures which do

not have wildcards. The original Boyer-Moore algorithm scans

patterns against input from right to left. Two tables are used to

determine how many characters the pattern needs to be shifted by.

Figure 2: ClamAV Aho-Corasick trie structure with arbitrary

success transitions and one fail transition. Each transition rep-

resents an ASCII character. The maximum depth is 3. Patterns

are added to linked lists after bypassing the maximum depth.

The two tables are built based on two roles, the bad character shift

role and the good suffix shift role. For this algorithm, ClamAV

uses an array of linked lists to distribute the signatures among. To

determine a location for a signature in the array, ClamAV hashes

3 characters of the signature using a hashing function. ClamAV

tries to evenly distribute signatures in the array by trying the next

3-character sequence of the signature if the first 3 collides, and so

on.

2.3 ClamWin and Clam Sentinel
ClamWin is a free antivirus for Microsoft Windows and used by

more than 600,000 users worldwide on a daily basis [3]. It is

based on the ClamAV scanning engine. ClamWin only supports

on-demand scanning. Clam Sentinel is a free program that works

with ClamWin to support on-access scanning.

3. EXPERIMENTAL METHODOLOGY
Our experimental methodology was designed to answer the follow-

ing two questions:

Question #1: Is there an exploitable timing channel based on

how new signatures are added to ClamAV database? The basic

idea behind the timing channel we demonstrate is to make the scan-

ning engine hit in the place in which a signature is added over and

over again to add a measurable delay to the scan. If the signature

is there, then more work will take place and this means more scan-

ning time. Three things are involved to make this happen. First,

for any input to be scanned against database signatures, it needs to

pass the filtering step. We extracted the exact 8 characters from

each signature that are added to the filter, see Section 2.2.2 for

more details about how the filtering works. When scanning files,

ClamAV divides files into buffers of length 128KB. We need to

make sure to plant the extracted characters in a buffer size basis

rather than a file size basis. Second, for signatures that are added

to the Boyer-Moore linked list, we extracted the characters from

each Boyer-Moore signature that is used in the hashing function

to add the signature to the linked lists, see Section 2.2.4 for more



details about how the Boyer-Moore algorithm works. Third, for

signatures that are added to the Aho-Corasick trie structure, we ex-

tracted the characters from each Aho-Corasick signature that will

cause the scanner to go all the way down to the leaf nodes. See Sec-

tion 2.2.3 for more details about how the Aho-Corasick algorithm

works.

To demonstrate a possible timing channel, we collected the names

of all of the viruses added since the first available ClamAV release,

which was 17 April 2004. ClamAV maintains a virus database

mailing list through which it reports virus addition or update. We

downloaded and parsed all the HTML files since that date and put

the results in a name-date list. Then, we unpacked the ClamAV

database and removed from it all of the signatures of viruses that

have their names on our list. This step makes the database as if

it is the database from 17 April 2004. We made two kinds of ex-

periments: the day-basis experiment and the signature-basis exper-

iment. For the day-basis experiment, we wrote a script that creates

files per date/day. For example, if in date D S signatures are added

to the database, then the script will create the Directory D. Inside

D the script creates S directories each one corresponds to a virus

signature. In each directory of S directories, the script creates 10

files each of which is 1MB. See Figure 3. The number and size

of the files are below the default ClamAV limits to scan files. The

10 files’ contents are identical. To create a file, we concatenate the

extracted Boyer-Moore or Aho-Corasick characters from the corre-

sponding signature until it reaches 1MB size. Meanwhile, we plant

the filter characters of the signature every time we reach the buffer

size. The initial content of the file depends on the file type a signa-

ture is taken from, see Section 2.2.1. The test begins by scanning

the oldest date directory we have, then we add the signatures of

that date to the database and scan it again. Then we scan the next

date directory before and after adding that date’s signatures, and so

on. For the signature-basis experiment, we tested to see the effect

of adding single signatures rather than the signatures for the whole

day. For this experiment, ClamAV is asked to scan the 10 files,

which consist of a signature’s extracted characters, before and after

adding that signature to the database.

Question #2: If the first question is confirmed, is it possible to

exploit the timing channel in a real attack? Figure 4 illustrates

a real-world scenario. A victim, who has ClamWin antivirus and

Clam Sentinel installed, connects, through Internet Explorer, to a

web server which is controlled by the attacker. Once connected,

the victim is asked to download an ActiveX component that looks

necessary to accomplish a certain task. Once downloaded, the Ac-

tiveX is started by JavaScript code. Then the ActiveX component

creates a file that will be scanned by the antivirus and measures the

CPU usage for a certain amount of time to determine the busy pe-

riod the CPU experienced. We used the PDH (Performance Data

Helper) library to query the processor time performance counter.

This experiment starts when the CPU is almost idle. To determine

the busy period of the CPU, we need a way to make sure that the

CPU is busy with the antivirus rather than any other process which

might be woken up or started at some time and then compute for

a small amount of time. So, the attacker can repeat the process

to separate signal from noise coming from the CPU running other

processes. What distinguishes the antivirus scanning process is that

it keeps the CPU busy until it is done. This feature makes differ-

entiating the start and the end time of the busy period easier. We

determine the busy period in two stages: in the first stage, we start

collecting all CPU usage samples (1 data point every 15 millisec-

onds) for 35 seconds, which is more than enough for the antivirus to

scan a file, starting right after we close the file (the on-access scan-

ner starts scanning right after closing the file). In the second stage,

we take the averages of every contiguous 10-data-point sequence

of the collected data from the first stage. We take the higher-than-

normal averages (a threshold is set empirically) as start and end

points and compute the elapsed scanning time based on this differ-

ence. After getting the total time the antivirus spent scanning the

file, the ActiveX component triggers an event that will be received

by a JavaScript function which, in turn, will send the results to the

remote attacker.

A simpler model could be an insider threat which does not need a

connection to a remote server.

Figure 3: Test file hierarchy per date D. The higher level direc-

tory D contains the files created for all signatures which were

released on that day. Each V directory contains files created for

only one signature.

Figure 4: A scenario for a real-world attack. The client uses

Internet Explorer to connect to the server. Then, the client is

asked to download an ActiveX component which a JavaScript

script can control. The component creates a file and returns

the CPU busy period, which will be considered as the scanning

time, to the JavaScript as an event. The JavaScript sends the

result back to the server.

4. RESULTS



In this section, we present results to answer the two questions we

asked in Section 3. The results show that an attacker can exploit

a timing channel from newly added signatures and that this attack

can be implemented in a real-world scenario. We ran the first two

experiments in Linux 2.6, on an Intel Core 2 Quad CPU at 2.66

GHz, and 8 GB RAM. Also, we ran the ActiveX experiments in

Windows 7 OS, on an Intel Dual Core Atom CPU at 1.66 GHz,

with 4 GB RAM.

4.1 Day-by-day experiment
In this experiment, we scanned a number of files that were created

for each day, before and after adding the signatures of the day. See

Section 3 for more details about the setup. The clamscan com-

mand line program was used to initiate the scan. The averages were

taken over 10 runs for each day. We take the differences between

the scanning time averages after and before adding signatures (i.e.,

the time to scan files after adding the signatures minus the time to

scan files before adding the signatures).

Figure 5 shows a histogram of the differences represented by the

ranges. For an x-axis value v, the corresponding y-axis value w is

the number of occurrences that are in this range: (v − 0.025: v].

As expected, there are only 10 instances where the scanning times

before and after adding signatures are almost the same. For all

other instances, adding new signatures creates timing differences.

4.2 Single signatures experiment
In this experiment, we scan a number of files that are created to

exploit only one signature each time. The clamscan command line

program was used to initiate the scan. The averages were taken

over 4 runs for each experiment. We take the differences between

the scanning time averages after and before adding a signature. Fig-

ure 6 shows that a timing channel for one signature can be deter-

mined with high probability. For an x-axis value v, the correspond-

ing y-axis value is the number of occurrences that are in this range:

(v - 0.025: v].

4.3 ActiveX experiment for GENERIC type

files
In this experiment, the ActiveX component creates 5 MB files and

measures the time that the antivirus (ClamWin and Clam Centinal)

spends on the CPU while scanning the files. Each run represents

the creation and measurement time for only one file. This file is

created by concatenating a randomly generated benign sequence of

characters (i.e., sequence of characters which has no effect in how a

signature is inserted into Aho-Corasick tries or Boyer-Moore linked

lists) or by concatenating a randomly chosen extracted sequence

of characters (i.e., sequence of characters which affects the shape

of the Aho-Corasick tries or Boyer-Moore linked lists). The files

considered are of type GENERIC. Each run is repeated 5 times to

ensure that the results are consistent. Figure 7 presents the averages

over 5 runs for each file for both benign and extracted cases. Figure

8 zooms out on the area where both get closer. The results show

that the scanning time for the extracted characters are always higher

than that of the benign characters except for one data point (data

point 2 in the case of extracted and 9 in case of benign), where both

are equal.

In Figure 9, we present the worst case scenario where we compare

the minimum runs in the case of the extracted characters to the

maximum runs in the case of benign files. The results still show

that the scanning time for the extracted characters are always higher

than that of the benign ones except for two data points (data points 2

and 3 in the case of extracted and 9 in the case of benign). Figure 10

zooms out on the area where both get closer.

4.4 ActiveX experiment for HTML type files
In this experiment, instead of starting by filling characters into an

empty file, we append characters to a basic HTML file. This would

make the numbers different from the above experiment because the

scanning engine will be directed to scan the files against signatures

in the HTML (rather than GENERIC) root, see Section 2.2.1 for

more information. Figure 11 shows the averages over 5 runs for

each created file while Figure 12 represents the worst case scenario

where we compare the minimum runs in the case of the extracted

characters to the maximum runs in the case of the benign files.

Figure 5: Scanning time differences before and after adding

signatures of a day.

Figure 6: Scanning time differences before and after adding a

single signature.

5. DISCUSSION AND FUTURE WORK
We argue that stealthily scanning clients is powerful because, be-

sides being stealthy, it allows the attacker to gain a higher level of

information. The notion of scanning clients, rather than servers, is

a more fitting threat model for today’s exploits that are based on

“drive-by downloads.” The user makes the initial connection and

thus gives the attacker an opportunity to scan their machine. Web

browsers are well known to be one of the main avenues for modern

attack.

The running example of checking, through a timing channel, how

up-to-date ClamAV is shows that application-level reconnaissance



Figure 7: Scanning time of creating GENERIC type files out

of benign and extracted characters. Each data point represents

an average over 5 runs

Figure 8: The same experiment as in Figure 7 with clear border

between benign and extracted.

attacks are practical and can reveal high-level information about a

user’s system. The same general approach could be used to detect

which antivirus program is installed (if any), the presence of other

security software such as local intrusion detection systems or per-

sonal firewalls, if other malicious code is installed that hooks into

some system behavior, mouse activity, the patch-level of the oper-

ating system, and more. Because all of these can be determined

through timing channels, the attacker has a high degree of flexibil-

ity in the APIs used for scanning and need not have control of the

system before doing reconnaissance.

Although our prototype attack, which was built for testing purposes

to determine the time scales involved, is based on ActiveX the only

three capabilities needed for a real application-level reconnaissance

attack are to create or modify a file, measure the CPU usage, and

keep track of time. Creating or modifying a file is possible even

without APIs, simply by causing a file to be cached or a string

of data to be logged. Furthermore, modern antivirus programs

scan much more than just files and hook into a browser in many

more places, so the surface available to scan them is larger than

that of ClamAV. Measuring CPU usage can often be accomplished

with several different APIs, or the attacker can simply measure the

progress of one or more threads, which can be low priority need not

necessarily consume all cores of the CPU if their timing for giving

up the CPU is carefully orchestrated. Finally, keeping track of time

Figure 9: The same experiment as in Figure 7, but we show the

worst case scenario.

Figure 10: The same experiment as in Figure 9, but we show

the worst case scenario with clear border between benign and

extracted.

is possible with a large variety of APIs, and need not be done on

the client being scanned since the attacker’s server can simply view

events from the client and measure time itself. Crosby et al. [14]

demonstrate that timing attacks can be performed over the internet

with an accuracy of 15-100 microseconds, so in some cases it is not

even necessary to use the clients timekeeping API.

We chose ClamAV for our tests because it is open source, the details

of its core scanning algorithms are documented on the web, and the

developer community for ClamAV is very helpful. We believe that

more advanced antivirus programs, such as the proprietary antivirus

programs that perform advanced filtering, emulation, algorithmic

scanning, and heuristics, offer a lot more information that can be

inferred from timing attacks than ClamAV. Table 1 shows how tim-

ing channel attacks could be possible in modern antivirus software.

In general, the more sophisticated an antivirus program is, the more

tradeoffs between performance and the number of patterns that can

be detected must be traded off by amortizing fast codes paths vs.

slow code paths. So, even though a closed-source, proprietary an-

tivirus program would take a significant amount of more effort to

develop timing attacks for, the opportunities for gaining detailed

high-level information about, for example, how up-to-date the sig-

nature database is will be much greater.

In terms of mitigation strategies to help ameliorate the type of high-

level reconnaissance attacks we present in this paper, strategies are



Technique Description Fast Scanning Slow Scanning Example

Algorithmic Scanning Essential part of modern

AV architecture. Imple-

mented as java-like p-

code (portable code) us-

ing a virtual machine

The input file does not

trigger the algorithmic

scanning

The file triggers the al-

gorithmic scanning to

run portable code (p-

code) and its virtual ma-

chine which is hundreds

of times slower than na-

tive machine code

When triggered, the al-

gorithm to detect Zmist

virus needs to execute at

least 2 million p-code-

based iterations [21]

Code Emulation Powerful technique that

emulates the execution

through the CPU and the

memory

The input file has no

kind of encryption or

suspicious patterns to

trigger the emulation

Certain encrypted files

can trigger the emula-

tion

Fabi.9608 encrypted

virus puts itself at the

entry point of PE in-

fected files. Although

emulating the entry

point of the infected file

would expose the virus,

it will significantly slow

things down [21]

Heuristics The structures of pro-

grams could trigger

heuristics detection if

they look suspicious

Programs’ shapes look

normal

Inconsistency between

meta data and actual

data in programs, or

abnormality in the

organization of program

sections

Heuristic scanning is

triggered when a PE

program has an entry

point pointing not to any

of the sections but to

an area after the header

and before raw data

(CIH-style viruses) [21]

Table 1: Modern antivirus techniques still make timing channels possible.

Figure 11: Scanning time of creating HTML type files out of

benign and extracted characters. Each data point represents

an average over 5 runs.

needed that still allow for performance tradeoffs to be made for

common cases. Predictive black-box mitigation [6] is a promising

approach, and could potentially be applied by the antivirus program

to maintain good performance while also minimizing the impact of

timing channels attacks.

6. RELATED WORK

6.1 Network discovery
Network reconnaissance is very important first step in launching an

attack. vPort scanning is a well known technique to probe networks

and discover information about remote systems and the services

they run. The threat model in port scanning is that the attacker, as a

client, initiates the scanning victims who are servers that are reach-

Figure 12: The same experiment as in Figure 11, but we show

the worst case scenario.

able on the network. Nmap [18] is a well known tool to discover

open, closed, and filtered ports, operating systems, services, and

version information. All information that Nmap can get, however,

is limited because it can only use raw packets and exposed services

to discover information about networked hosts. Also, stateful and

well configured firewalls and intrusion detection systems can stop

many port scanning techniques. In our approach, the threat model

is different. The attacker, who acts a server, waits for connections

from victims, who are clients. Once connected, the attacker seeks

to learn about the victim from the application layer, where a richer

amount of information is available.

6.2 Timing channel attacks



Timing channel attacks are based on measuring the time it takes for

a program to perform a task [7, 17, 22]. Timing channels have been

exploited to reveal the secret keys in cryptographic systems [8, 19,

11], reveal SSH user passwords [20], breach users privacy [15], or

detect virtual machines [16]. In this paper, we exploited a timing

channel attack in ClamAV antivirus by noticing the affect of adding

a signature to the database on the scanning engine algorithm.

The work closest to our own is Bortz et al. [9]. Using timing at-

tacks on web applications, they were able to find out private infor-

mation about a user’s web activity, such as the status and result of

logins and login attempts, the number of objects on a page, and so

forth. Our work extends timing attacks through the browser beyond

web applications and shows that it is possible to find out security-

relevant information about a potential victim machine’s configura-

tion.

6.3 Antivirus research
Attacking antivirus software is possible because antivirus is just

software that could have vulnerabilities [1]. Because antivirus pro-

grams match data against a signature database, evading detection

is possible using obfuscation transformations [12]. New signatures

for obfuscated versions of viruses are generated based on samples

of the newly obfuscated versions of that virus that are found in the

wild. By measuring how up-to-date a potential victim’s antivirus

signature database is before attacking, an attacker can use older

versions of their malicious code when possible and greatly reduce

the exposure of their newest malicious codes.

Christodorescu et al. [13] shows that it is possible to extract the

signature for a specific virus that the antivirus is using to detect that

virus.

7. CONCLUSION
We showed that application-level reconnaissance through timing

channels has the potential to reveal detailed, high-level information

about a system to an attacker. The running example we used for

the experimental results given in this paper was based on checking

how up-to-date the ClamAV antivirus on a given machine is. The

results show that the attacker, with high accuracy, can determine if

the database has been updated with certain signatures or not. Al-

though most research concentrates on the potential of clients scan-

ning servers, we concentrated in this paper on the possibility of

scans that a server might perform on a client. Also, the scans we

considered occur at the application layer and can reveal much more

information than, for example, port scanning. We believe that this

type of reconnaissance will become increasingly important to study

in the near future.

8. ACKNOWLEDGMENTS
We would like to thank Török Edwin, a ClamAV developer, for his

help in reading and understanding the ClamAV code. We would

also like to thank the LEET reviewers for their very helpful com-

ments. This work was supported in part by the U.S. National Sci-

ence Foundation (CNS-0905177). Any opinions, findings, conclu-

sions, or recommendations expressed in this publication are those

of the authors and do not necessarily reflect the views of the Na-

tional Science Foundation.

9. REFERENCES
[1] Attacking antivirus. http:

//www.blackhat.com/presentations/bh-europe-08/

Feng-Xue/Whitepaper/bh-eu-08-xue-WP.pdf.

[2] Clam antivirus. http://www.clamav.net.

[3] Free antivirus for windows. http://www.clamwin.com.

[4] Internet security threats will affect u.s. consumers holiday

shopping online. http://www.bsacybersafety.com/

news/2005-Holiday-Online-Shopping.cfm.

[5] A. V. Aho and M. J. Corasick. Efficient string matching: an

aid to bibliographic search. Commun. ACM, 18(6):333–340,

1975.

[6] A. Askarov, A. C. Myers, and D. Zhang. Predictive

black-box mitigation of timing channels. In CCS ’10:

Proceedings of the 17th ACM conference on Computer and

communications security, New York, NY, USA, 2010. ACM.

[7] H. Bar-El. Introduction to side channel attacks.

[8] D. J. Bernstein. Cache-timing attacks on aes. Technical

report, 2005.

[9] A. Bortz, D. Boneh, and P. Nandy. Exposing private

information by timing web applications. In WWW ’07:

Proceedings of the 16th international conference on World

Wide Web, pages 621–628, New York, NY, USA, 2007.

ACM.

[10] R. S. Boyer and J. S. Moore. A fast string searching

algorithm. Commun. ACM, 20(10):762–772, 1977.

[11] D. Brumley and D. Boneh. Remote timing attacks are

practical. In In Proceedings of the 12th USENIX Security

Symposium, pages 1–14, 2003.

[12] M. Christodorescu and S. Jha. Static analysis of executables

to detect malicious patterns. In SSYM’03: Proceedings of the

12th conference on USENIX Security Symposium, pages

12–12, Berkeley, CA, USA, 2003. USENIX Association.

[13] M. Christodorescu and S. Jha. Testing malware detectors.

SIGSOFT Softw. Eng. Notes, 29(4):34–44, 2004.

[14] S. A. Crosby, D. S. Wallach, and R. H. Riedi. Opportunities

and limits of remote timing attacks. ACM Trans. Inf. Syst.

Secur., 12(3):1–29, 2009.

[15] E. W. Felten and M. A. Schneider. Timing attacks on web

privacy. In CCS ’00: Proceedings of the 7th ACM conference

on Computer and Communications Security, pages 25–32,

New York, NY, USA, 2000. ACM.

[16] J. Franklin, M. Luk, J. M. McCune, A. Seshadri, A. Perrig,

and L. van Doorn. Remote detection of virtual machine

monitors with fuzzy benchmarking. SIGOPS Oper. Syst.

Rev., 42(3):83–92, 2008.

[17] B. W. Lampson. A note on the confinement problem.

Communications of the ACM, 16(10):613–615, 1973.

[18] G. F. Lyon. Nmap Network Scanning. Insecure.Com LLC,

2008.

[19] W. Schindler. A timing attack against rsa with the chinese

remainder theorem. In CHES ’00: Proceedings of the Second

International Workshop on Cryptographic Hardware and

Embedded Systems, pages 109–124, London, UK, 2000.

Springer-Verlag.

[20] D. X. Song, D. Wagner, and X. Tian. Timing analysis of

keystrokes and timing attacks on ssh. In SSYM’01:

Proceedings of the 10th conference on USENIX Security

Symposium, pages 25–25, Berkeley, CA, USA, 2001.

USENIX Association.

[21] P. Szor. The Art of Computer Virus Research and Defense.

Addison-Wesley Professional, 2005.

[22] J. C. Wray. An analysis of covert timing channels. In IEEE

Symposium on Security and Privacy, pages 2–7, 1991.


