
Insights from the Inside:
A View of Botnet Management from Infiltration

Chia Yuan Cho§, Juan Caballero†§, Chris Grier§, Vern Paxson‡§, and Dawn Song§

§UC Berkeley †Carnegie Mellon University ‡ICSI

Abstract

Recent work has leveraged botnet infiltration techniques to track
the activities of bots over time, particularly with regard to
spam campaigns. Building on our previous success in reverse-
engineering C&C protocols, we have conducted a 4-month in-
filtration of the MegaD botnet, beginning in October 2009. Our
infiltration provides us with constant feeds on MegaD’s com-
plex and evolving C&C architecture as well as its spam oper-
ations, and provides an opportunity to analyze the botmasters’
operations. In particular, we collect significant evidence on the
MegaD infrastructure being managed by multiple botmasters.
Further, FireEye’s attempt to shutdown MegaD on Nov. 6, 2009,
which occurred during our infiltration, allows us to gain an in-
side view on the takedown and how MegaD not only survived it
but bounced back with significantly greater vigor.

In addition, we present new techniques for mining informa-
tion about botnet C&C architecture: “Google hacking” to dig out
MegaD C&C servers and “milking” C&C servers to extract not
only the spectrum of commands sent to bots but the C&C’s over-
all structure. The resulting overall picture then gives us insight
into MegaD’s management structure, its complex and evolving
C&C architecture, and its ability to withstand takedown.

1 Introduction

Researchers have recently gained new, detailed insights
into the operation of botnets via infiltration: running ei-
ther live bots in controlled environments [9,14], or custom
programs that mimic bot command-and-control (C&C)
activity [8,13,16]. Such work has primarily aimed at mon-
itoring the instructions issued to bots in order to investi-
gate how botmasters employ their botnets and to assess
botnet population dynamics. Less studied has been the
issue of botnet management: the dynamics of how bot-
masters change their botnets, either in terms of altering
elements of a current “campaign” or reconstructing the
botnet itself in the face of significant disruption, and the
question of whether a botnet infrastructure may have mul-
tiple managers (botmasters).

In this work we undertake such an analysis based on
a 4-month infiltration of the MegaD botnet begun in Oct.

2009. While much of our measurement drew upon our
earlier work in reverse-engineering MegaD’s C&C pro-
tocol [11] and the cryptographic routines that obfuscate
it [12], we also developed additional methods for gath-
ering information about the botnet. We discovered that
we could use “Google hacking” to locate additional C&C
servers based on fingerprinting the web pages they sup-
ply when non-bots visit them. Once found, we can build
milkers that probe the different C&C components to ex-
tract not only the spectrum of commands sent to bots, but
also the C&C’s overall structure. We call them milkers be-
cause they “milk” MegaD C&C components for extensive
information regarding MegaD’s operations, providing an
opportunity to analyze the botmasters’ ongoing activities.

In particular, by monitoring MegaD’s complex and
evolving C&C architecture and its spam operations, we
collect significant evidence of the MegaD infrastruc-
ture being managed by multiple botmasters. MegaD’s
most recent C&C architecture comprises multiple, dis-
joint groups of C&C components with very few elements
shared across groups. Each group exhibits different server
replacement patterns and notable differences in spam op-
erations. Further, our monitoring period spans an at-
tempted takedown of MegaD that resulted in decapitation
of significant C&C components, providing us with an in-
side view on the takedown and how MegaD not only sur-
vived it but bounced back with significantly greater vigor.

We begin in § 2 with an overview of MegaD and a de-
scription of our infiltration methods in § 3. In § 4 we ana-
lyze the architecture and evolution of the botnet’s C&C
infrastructure, and in § 5 we look at how the botmas-
ter varies the makeup of the templates used to control
MegaD’s spam operations. We conclude in § 6.

2 MegaD Overview

MegaD is a mass spamming botnet first observed in 2007,
credited at its peak with responsibility for sending a third
of the world’s spam [3]. MegaD is striking for its re-
silience, having survived two major attempts at disrup-
tion: the McColo shutdown of Dec. 2008 [4], and a take-



down effort coordinated by FireEye in Nov. 2009 [2], dur-
ing the period of our study. In both cases MegaD ini-
tially ground to a halt [5], but then quickly bounced back
with greater vigor. In the week prior to FireEye’s Nov. 6
takedown effort, MegaD contributed about 4% of spam,
and the botnet initially showed little signs of life after the
attack. However, its activity soon increased, exceeding
pre-takedown levels by Nov. 22, and constituting 17% of
worldwide spam by Dec. 13 [6].

MegaD C&C Servers. A MegaD bot interacts during its
lifetime with four types of C&C servers: Master Servers
(MS), Drop Servers (DS), Template Servers (TS), and
SMTP Servers (SS).

The botmaster uses the master servers to distribute
commands to the bots. Bots locate a master server using a
rendezvous algorithm, based on domain names hardcoded
in the bot binaries. Upon locating a master server, a bot
employs pull-based communication using MegaD’s cus-
tom C&C protocol. The bot periodically probes the mas-
ter via request messages to which the server replies with
both authentication information and a general command.
The bot performs the requested action and returns the re-
sults to the master server.

Drop servers distribute new binaries. A bot locates a
drop server by receiving a special command from its mas-
ter server containing a URL specifying a file to download
through regular HTTP.

Template servers distribute the spam templates that bots
use to construct spam. A bot locates a template server via
a directive from the master server specifying the address
and port to contact. Again, communication proceeds in a
pull-based fashion using MegaD’s custom C&C protocol.

SMTP servers play two distinct roles. First, bots check
their spam-sending capabilities by sending a test email
to them. A bot locates the server for this testing via a
command from the master server specifying the server’s
hostname. Second, bots notify an SMTP server after
downloading a new spam template and prior to com-
mencing to spam. A bot locates the SMTP server used
for template download notification via a PTR RSL con-
trol parameter in the spam template, which specifies the
SMTP server’s hostname. The notification protocol is
non-standard SMTP. Instead of sending the usual SMTP
“HELO <hostname>” message, the bot sends a special
“HELO 1” message and closes the connection.

MegaD dialogs. Throughout our monitoring, we have ob-
served only two different sequences of commands (i.e.,
dialogs) issued by master servers, as depicted in Figure 1.
In the spam dialog, bots are first ordered to test their abil-
ity to send spam using a given SMTP server. If the test
succeeds, the master server engages the bot in an elabo-
rate preparation phase to obtain information about the in-

Figure 1: MegaD Dialogs: (a) Spam dialog and (b) Binary
download dialog

fected host, followed by sending a GetTemplate command
that reveals the identity of a template server from which
the bot fetches a spam template. The bot acknowledges re-
ception to both the template server and the SMTP server,
after which it starts sending spam. When it finishes, it
re-initiates the spam dialog with the master server.

The download dialog also starts with the master server
ordering a test of the bot’s ability to send spam. However,
rather than then proceeding to the preparation phase, the
master server orders the bot to download a new binary
from a drop server and execute it.

We empirically determined that master servers special-
ize in supervising either spam or download dialogs, but
not both. However, both operations are conducted using
the same C&C protocol.

3 Infiltrating MegaD

We aim for our MegaD infiltration to extract information
about both the complete C&C architecture as well as the
malicious activities of the botnet as these evolve through
time. In this section we present the main two techniques
we use for our infiltration: 1) creating milkers, i.e., pro-
grams that mimic a bot’s network interactions but without
the malicious side effects (e.g., without sending spam) and
Google hacking techniques to discover C&C servers. In
addition, we also run MegaD binaries in a controlled en-
vironment to monitor their externally visible activity.

To create the milkers we leverage our previous results
in extracting MegaD’s protocol grammar [11] and the en-
cryption/decryption functions MegaD uses to obfuscate
its C&C protocol [12]. Using milkers has several advan-
tages over running bots in a controlled environment. First,
the milkers are more lightweight and do not require con-
tainment. More generally, they allow us to readily modify
the bot interaction behavior to more aggressively probe
the C&C servers at higher rates; impersonate multiple
bots by changing bot communication identifiers; and di-
rectly interact with template, download or SMTP servers
without having first received a corresponding command
from a master server. This latter allows us to probe servers

2



in situations for which a live binary would not. In par-
ticular, this capability enabled us to continue probing the
C&C architecture during FireEye’s disruption of MegaD,
as detailed in § 4.

3.1 Monitoring MegaD’s Spam Operations

A MegaD bot only carries out the spam operations. It is
the botmaster that decides all details by creating a spam
template that describes the structure of the spam message,
the data to use for the different fields, and the parameters
that control the bot’s spam engine. Thus, templates fully
describe the botnet’s spam operations.

To obtain information about MegaD’s spam operations
over time we constructed a template milker, i.e., a pro-
gram that periodically queries a template server for tem-
plates. We run one milker per known server. The milkers
directly and continually extract templates, giving us over
time access to the full set of templates employed by the
botnet. Such a technique was previously employed for the
Storm botnet by the authors of Stormdrain [10].

Our template milker probes a template server at a con-
figurable average rate, with some added jitter to help mask
its artificial nature. A single milker can impersonate mul-
tiple bots by changing the bot identifiers in the payload of
the messages it sends. In addition we operate our milkers
through Tor [7], which provides some IP address diversity.
Thus, if the template server distributes templates based on
the bot’s identifier or its IP addresses, we can still collect
a comprehensive set of templates.

Ignoring the master server. When communicating with
a template server, bots include a 16-byte bot identifier is-
sued from the master server. Template servers could vali-
date the identifier as indeed having been previously issued
by a master server, but they do not do so: templates are
still served on any 16-byte identifier, indicating that either
master servers do not communicate the bot identifiers to
template servers or template servers do not check them.
Thus, our milkers can communicate directly with a given
template server, completely bypassing the master server.

Rate-limiting bypass. We discovered that template
servers rate limit the communication of templates to bots
based on the 16-byte bot identifier, sending a given bot
no more than 16 templates per half-hour period. Thus, by
selecting random identifiers, our milker can bypass this
limit and harvest templates at an arbitrary rate.

3.2 MegaD’s Complete C&C Architecture

A MegaD bot obtains only a partial view of the whole
C&C architecture. The bot communicates with a single
master server that it discovers through its rendezvous al-
gorithm and thus only interacts with other C&C servers

as directed by that master server. To understand the com-
plete architecture we need to go beyond the perspective
as seen by a single bot. For example, probing a mas-
ter server can lead us to previously unknown template
and drop servers. In addition, the dropped binary from
a new drop server can in turn lead us to additional master
servers, from which we can repeat the process.

To this end, we construct a C&C milker that periodi-
cally queries a master server for commands. Every time
the C&C milker receives the identity of a new template
server, we start running a new template milker for that
template server. Similar to template milkers, because
our C&C milkers are not actual MegaD bots, we can in-
crease their probing rate and impersonate multiple bots by
changing IP addresses and bot identifiers.

Google hacking for locating master servers. One way to
locate master servers is to analyze the connections of live
MegaD binaries. We can find such binaries by rummaging
through online repositories or requesting specimens from
other researchers. However, this proves to be a painful
process, requiring many hours to locate and then set up
the binaries to run properly in the contained environment.

To locate more master servers, we devise a trick that
leverages the ubiquity of search engines locating web
servers around the Internet. Each MegaD master server
runs the (TCP) C&C protocol on either port 80 or 443.
Master servers running on port 80 expect to receive
queries using regular HTTP, and if so camouflage them-
selves as follows to appear as normal web servers: for
a request beginning with “GET”, rather than replying
with a response from the encrypted C&C protocol, they
fake an HTTP “success” response with a small, crafted
HTML content. The content renders in a browser as an
innocuous-looking “Microsoft test page”.

MegaD master servers do not appear to check whether
the request comes from a search engine. Thus, their
camouflage content gets added to the search engine’s
database. However, we discovered that the camouflage
content contains sufficiently distinguishable elements to
enable fingerprinting it as distinct from other Internet
HTTP servers. We therefore can construct a Google
query that returns only pages provided by MegaD’s master
servers that run on port 80, a technique commonly known
as “Google hacking”. We can in addition verify which
of the returned results correspond to MegaD servers by
attempting to contact the server using the MegaD C&C
protocol rather than HTTP.

Our query returns exactly 4 results on 4 unique host-
names with no false positives. Two of those servers are
already known to us, and another we verify by connecting
to it using our C&C milker. To date the last one has been
unreachable, but independent reports confirm that it was

3



Figure 2: Our evolving view of MegaD’s C&C architecture over the infiltration. Each node represents an element of MegaD’s
infrastructure and C&C servers are labeled with their role and port numbers. Directed arcs represent the points-to relationships
between members. The final achitecture reconstructed by the infiltration is shown in (d), where we note the two distinct C&C
server groups, and the SMTP server that provides a central point for monitoring.

indeed a MegaD C&C server in the past [3].

4 Discovery of C&C Architecture

We now turn to our findings on MegaD’s C&C architec-
ture and how our 4-month infiltration using milkers and
Google hacking techniques throws light on MegaD’s com-
plex and evolving C&C architecture. Our goal to obtain
the overall picture of the C&C architecture is complicated
by two problems. First, we start with a partial view of the
C&C architecture and we need to evolve our view over
time by discovering new C&C elements using our C&C
milkers and Google hacking techniques. Second, our in-
filtration coincides with FireEye’s attempt to shut down
MegaD, which removed part of MegaD’s C&C architec-
ture. Thus, both the C&C architecture and our view of it
evolves over time.

4.1 Takedown and Reconstruction

In this section we first present our insights from inside
FireEye’s takedown and then show how our C&C milk-
ers and Google hacking techniques enabled us to evolve
our view of MegaD’s C&C architecture. Figure 2 shows
our evolving view of MegaD’s C&C architecture over the
infiltration period. Figure 3 shows the chronology and
significant events of our MegaD infiltration.

Our infiltration begins on Oct. 27, 2009 with the knowl-
edge of 3 C&C servers: one master server (MS-S1), one
template server (TS1), and one SMTP server (SS1), which
we had identified a priori by running a MegaD bot in our
contained environment. Our view of MegaD’s C&C ar-
chitecture on that day is shown in Figure 2(a) and we start

our infiltration by running a template milker on TS1.

An inside view of FireEye’s takedown. On Nov. 6,
2009, FireEye launched a coordinated effort to take down
MegaD. The takedown was widely lauded as successful
since MegaD’s spam trickled to a halt. However, 16 days
later its share of the world’s spam exceeded its 4% pre-
takedown level and by Dec. 13 it had climbed to 17% [6].

The takedown included both MS-S1 and SS1, thus our
captive MegaD binary stopped working that day. How-
ever, the takedown did not affect TS1, which surprisingly
continued handing out spam templates to our milker like
nothing had happened. Our template feeds reveal that the
templates distributed by TS1 remained unchanged for one
week after the takedown. The first sign of a recovery
was on Nov. 13, when the PTR RSL control parameter in
the template was updated to point to a new SMTP server
SS2. That update also allowed us to discover a new master
server (MS-S2) on the same domain.

From our privileged vantage point we can establish two
key findings about the botmaster’s takedown response.
First, the botmaster did not have backup domains and ISPs
ready when the takedown happened, since for a whole
week the templates in TS1 pointed to a dead domain. Sec-
ond, it took the botmaster a week to find a new ISP to host
their infrastructure and set up the new C&C servers.

Interestingly, the update of the PTR RSL control pa-
rameter in the spam templates on Nov. 13 was not used
for recovery. We tested this by replicating the takedown
and template changes on our captive bot, and found that it
did not recover from the takedown. Similarly, FireEye’s
bots did not recover after the takedown [15]. Thus, we
believe that MegaD did not bounce back using resilience
mechanisms in the bot binary but by pushing out fresh bi-

4



Figure 3: Timeline of significant infiltration events. The bold lines highlight a subtle pattern where template servers emerge and go
offline with overlapping periods of availability to support spam operations.

naries.

MegaD is known to participate in a Pay-Per-Installation
(PPI) service in which a downloader like Piptea drops
other malware (e.g., a MegaD bot) on compromised hosts
for a fee [1]. We believe that the MegaD botmasters paid
the PPI operators to push out fresh bot binaries. What
remains unanswered is how much overlap there is be-
tween the pre-takedown and post-takedown MegaD pop-
ulation and to what extent the downloader was the re-
silience mechanism used for bouncing back.

Evolving our view of the C&C architecture. Due to the
takedown, our view of MegaD’s C&C was reduced to a
single node on Nov. 6 as shown in Figure 2(b). From
Dec. 10, we began the process of evolving our view of
the C&C architecture by starting a C&C milker for MS-
S2, and added our Google hacking technique on Jan. 29.
We leave the interested reader to examine the timeline of
events in Figure 3 for details. Using our techniques we
discovered 6 additional template servers (TS2 to TS7),
2 download dialog master servers (MS-D1 and MS-D2),
an additional spam dialog master server (MS-S3), 2 drop
servers (DS1 and DS2), and different binary variants dis-
tributed by each drop server. The C&C discovery pro-
cess culminated in a rich architectural view of MegaD by
Feb. 18 as shown in Figure 2(d).

4.2 C&C Groups

Figure 2(d) shows the final MegaD C&C architecture that
we have reconstructed through our 4-month infiltration
using our milkers and Google hacking techniques. There
exists two master servers in charge of spam operations

(MS-S2 and MS-S3) and two master servers in charge of
drop/update operations (MS-D1 and MS-D2). Each mas-
ter server that specializes in spam operations is supported
by a set of template servers. The fact that the sets of
template servers are disjoint signals the presence of two
separate groups in the architecture: Group 1 with MS-
S3 supported by a backend of TS1, TS5, and TS6, and
Group 2 with MS-S2 supported by TS4 and TS7 (and pre-
viously TS2 and TS3). Each group is supported by one
master server specialized in update operations as well as
one drop server. The binaries dropped by a drop server
connect only to the spam master server that the drop server
supports. Both groups share a single SMTP server (SS2),
which all bots use to test their spam-sending capabilities
and to report template downloads. The fact that all bots
are aware of SS2 makes it well suited as a central point
for monitoring the spam operations across both groups.

Completeness of discovered architecture. The caveat
is the completeness of our final view on MegaD’s archi-
tecture. However, we can compare our final architectural
view with those from other researchers, the most com-
plete of which is FireEye’s list of 15 active MegaD C&C
IPs prior to the takedown compiled by monitoring near
to a hundred MegaD binaries [2, 15]. We note that the
list is not ideal as it does not differentiate between server
types. Further, FireEye’s snapshot was made before the
takedown, and is itself incomplete, e.g., it does not in-
clude the surviving template server TS1. Nevertheless, if
we assume FireEye’s set of 15 C&C servers plus the miss-
ing TS1 as MegaD’s full architecture at any time, then the
set of 12 active servers in our final view constitutes 75%
of the overall architecture.

5



Server Days # Tmpl. # Addr. Addr./ # Uniq # Uniq
(% uniq) tmpl. subj. URLs

TS1 115 141K 283M (75%) 2,000 156 252
TS2 36 28K 27M (70%) 969 107 9
TS3 42 47K 68M (84%) 1,465 96 41
TS4 26 19K 32M (93%) 1,710 103 38
TS5 21 22K 44M (97%) 2,000 30 43
TS6 15 14K 28M (96%) 2,000 15 25
TS7 2 713 1.3M (97%) 1,859 17 4

Total 257 271K 483M (70%) 1,782 355 330

Table 1: Aggregate Statistics of Template Dataset

Differences in group management. One pattern that
emerged during our infiltration is that for Group 2, a new
template server would be added to the backend of MS-S2
and a few days later the older template server would be
taken offline. For example, TS3 was added on Dec. 22
and on Jan. 14 TS2 went offline. This trend is highlighted
with bold lines in Figure 3. This pattern looks like a server
replacement that guarantees availability of the spam oper-
ations during the replacement. Although we do not know
the reasons behind such replacements, this pattern does
not appear in Group 1, which indicates that both groups
are managed differently.

Although the fact that there is a central SMTP server
to which all bots connect points to the infrastructure be-
ing shared or centrally managed, the question that arises
is whether those differences in group management are due
to multiple botmasters sharing the same botnet infrastruc-
ture, or to other reasons such as Group 2 rebuilding its
infrastructure having incurred greater damage from the
takedown. We address this question in Section 5 by an-
alyzing the differences in spam operations between the 2
groups. Our results show significant evidence on the spam
operations of each group being under separate manage-
ment.

5 Template Milking

In this section we report our analysis of the templates
obtained by the operation of our template milkers from
Oct. 27, 2009 through Feb. 18, 2010. During this pe-
riod we collected 271 K spam templates containing 483 M
email addresses. Table 1 shows aggregate statistics for the
monitored servers. We began our milking operations with
TS1, adding additional milkers every time we discovered
a new template server, for a total of seven, two of which
are no longer active.

Template structure. The MegaD spam template is a
structured document comprising two sections: the tem-
plate and the element database. Figure 4 shows a simpli-
fied spam template where the template section is delimited
by the {TEMPLATE} and {/TEMPLATE} tags and the
element database by the {TEMPLATE DATABASE} and

Figure 4: MegaD spam template sample: structure, polymorphic
elements, and how polymorphic elements are combined to form
an email body

{/TEMPLATE DATABASE} tags. The template section
captures the structure of the email headers and the body
of the message. It contains static text as well as element
tags, which the bot replaces with values from the element
database. The element database contains named data el-
ements and a single control element. The data elements
contain the values that the bot replaces into the tags in the
template section, while the control element specifies the
behavior of the bot’s spam engine using 29 configurable
parameter-value pairs.

Each data element has a set of values in the template.
We call elements with more than one value in their set
polymorphic. Polymorphic elements are fundamental for
the success of the spam operation because the body of
any two spam messages generated from the same template
will differ as different values are selected for each tag.
Such polymorphism is designed to evade spam filters that
look at the body of the email messages.

Changes in template structure. The template structure
is the ordered list of data elements in a spam template.
Throughout the infiltration we observe how the template
structure changes as the botmaster introduces and experi-
ments with new types of elements.

Most notably, the templates from TS1 before the Fire-
Eye takedown used sets of static strings for subjects, as
well as a mostly static HTML body for the spam mes-
sage where the only polymorphic data element was the
URL to spamadvertise. However, after the takedown the
botmaster started experimenting with the template struc-
ture. First, it combined multiple data elements to dy-
namically construct a coherent subject and HTML body,

6



Figure 5: Template structure commonalities across servers.

which makes it more difficult to build spam filters based
on these elements. An example of this highly dynamic
HTML body is shown in Figure 4 using the {mac1} and
{mac2} tags. In addition, it experimented with using im-
age spam, by inserting {IMG} tags in the body of the mes-
sage. The {IMG} tags point to images hosted in Flickr.
These experiments were carried out using TS1 and TS2.
They started on Nov. 18 and lasted less than two weeks.
After this experimentation phase, the botmasters finally
deployed some of those changes.

Evidence of separate management. Interestingly, the fi-
nal deployment falls under the two different management
groups that we introduced in § 4. One month after the
experimentation phase, the {IMG} became a permanent
data element in Group 1, which comprises TS1, TS5, and
TS6. Similarly, the {mac*} and {sb*} elements were de-
ployed in Group 2, which comprised TS2 and TS3 at that
time and were later replaced by TS4 and TS7. Thus, only
Group 1 does image spam and although both groups poly-
morph the subject by using sets of values, only Group 2
has the extra polymorphism provided by constructing the
subject and HTML body using {mac*} and {sb*} tags.

Figure 5 summarizes the commonalities in template
structure by plotting occurrences of unique data elements
across all template servers, starting on Dec. 9, once the
experimentation phase on TS1 and TS2 was over. It shows
that {TS1, TS5, TS6} (Group 1) and {TS2, TS3, TS4}
(Group 2) have similar template structures. We only have
two days of template data for TS7, which explains why
some unique elements from the group have not appeared.

Changes in polymorphic data elements. Here we an-
alyze how often the botmaster changes the set of values
associated with a polymorphic data element. There are
three cases. A single-set-polymorphic data element uses a
set of values that never changes, that is, all templates have
the same set of values over time. For example, MegaD’s
spam messages fake Outlook Express (OE) email signa-
tures using an element that captures the OE version. The
set of OE version values stays constant across templates
over time.

A multi-set-polymorphic data element uses the same set
of values across all templates at any point of time. The

set of values are updated by the botmaster and stay con-
stant across all templates until the next update. Multi-
set-polymorphic elements are updated by the botmaster
to evade spam filters. For example, the {URLS} ele-
ment, representing the spamvertised sites, is multi-set-
polymorphic because the botmaster refreshes the set of
URL values at a low average rate (once every 2 days) in
reponse to URL blacklisting and new spam campaigns be-
ing launched. Other multi-set-polymorphic elements in
Figure 4 are the subject ({DIKSBJ}), the HTML body
({BODY HTML}), and the tags used to form the HTML
body ({mac1}, {mac2}).

A every-set-polymorphic data element uses a dynami-
cally generated set of values on each template sent by the
template server. The set of values is chosen as a subset
of a larger value set only known to the template server.
For example, the {DOMAINS} element, which contains
the set of target email addresses to spam, is an every-
set-polymorphic element because the template server se-
lects a small subset of the complete email list for each re-
quested template. Other every-set-polymorphic element
are {LINK} and {IMG}.

Every-set-polymorphic elements are most convenient
for the botmaster because they provide automated poly-
morphism without requiring manual intervention. One
would expect skilled botmasters to convert as many
multi-set-polymorphic elements as possible into every-
set-polymorphic elements to improve the efficiency of
their spam operations.

Figure 6 illustrates multi-set-polymorphic and every-
set-polymorphic elements in the TS1 templates and how
they are updated over time. We see differences in up-
date rates between every-set-polymorphic elements such
as {IMG} and {LINK}, whose value sets are dynamically
generated for each template, compared to manually up-
dated multi-set-polymorphic elements such as {DIKSBJ},
{BODY HTML}, and {URLS}.

Evidence of separate management. We find the update
rates for multi-set-polymorphic elements particularly in-
teresting because they require sustained effort from the
botmaster on continual updates, which provides important
information about how the botmaster manages the tem-
plate servers. We examine the update rates across tem-
plate servers, focusing on the subject ({DIKSBJ}) due to
its use across all template servers. The results are shown
in Table 2. We observe the template servers in Group 1
having similar update rates, i.e., approximately every 3
days, and the template servers in Group 2 significantly
slower update rates. This provides more evidence on the
fact that both C&C server groups are managed separately.

Implications of separate management. The clear dis-
tinction in update rates between the two C&C server

7



Figure 6: Changes in multi-set and every-set polymorphic data
elements in TS1. The vertical axis is the cumulative unique set
identifier for each element.

Group 1 1 1 2 2 2 2
Server TS1 TS5 TS6 TS2 TS3 TS4 TS7
Ave. # Days 6.8 5.3 15.0 2.0 2.8 1.7 2.0

Table 2: Average number of days between updates of subject
elements ({DIKSBJ}) across template servers, indicating sig-
nificant faster updates in template servers from Group 2.

groups aligns with the evidence we previously collected
from the C&C architecture and the changes to template
structure. A final piece of evidence comes from the dif-
ferences between the groups in terms of spam campaigns.
We find that Group 1 focuses exclusively on Viagra cam-
paigns, while Group 2 runs multiple and diverse cam-
paigns, including Viagra, job scams and money mule re-
cruitment. One might attribute the differences in update
rates and spam campaigns between the two groups to prof-
itability, i.e. the spam campaigns in Group 2 may simply
be more profitable to justify the more frequent updates.
However, this does not explain the need for greater ar-
chitectural changes as seen in § 4.2. We therefore arrive
at the conclusion that the day-to-day activities of MegaD
falls under two separate management groups (botmasters).
In addition, the subject update rates, as well as the server
replacement pattern shown in Section 4 also indicate that
the managers of Group 2 are significantly more dynamic
than the managers of Group 1 in its operations.

6 Conclusion

We have presented a 4-month longitudinal assessment of
the control architecture and management of the MegaD
botnet by employing our C&C milking, template milking
and Google hacking techniques. Our infiltration has cul-
minated in a rich architectural view of MegaD’s C&C and
provided significant evidence on the MegaD infrastructure
being managed by multiple botmasters. Our inside view
of the attempted takedown offers new insights on how bot-
nets actually recover from takedowns: instead of relying

on reslience mechanisms to recover bots, the botmasters
simply push out new binaries.

7 Acknowledgements

We would like to thank FireEye and in particular Atif
Mushtaq for help in understanding the events around the
MegaD takedown. We also thank Matt Williamson and
the anonymous reviewers for their insightful comments.

This material is based upon work partially sup-
ported by the NSF under Grants 0311808, 0448452,
0627511, 0433702, CNS-0905631, CNS-0831535, and
CCF-0424422, by the USAF Office of Scientific Re-
search under grant 22178970-4170, by ARO under grant
DAAD19-02-1-0389, and by ONR under MURI Grant
N000140911081. Opinions expressed in this material are
those of the authors and do not necessarily reflect the
views of the sponsors.

References
[1] Botnetweb. http://blog.fireeye.com/research/

2009/04/botnetweb.htm.
[2] Killing the beast...part 4 (ozdok). http://

blog.fireeye.com/research/2009/11/
killing-the-beastpart-4.html.

[3] Mega-d. http://www.m86security.com/trace/i/
Mega-D,spambot.896.asp.

[4] Mega-d botnet returns after mccolo shutdown. http:
//www.darkreading.com/security/attacks/
showArticle.jhtml?articleID=212300170.

[5] Mega-d botnet takes a hit. http://www.m86security.
com/labs/traceitem.asp?article=1161.

[6] Tracking spam botnets. http://www.m86security.com/
labs/bot_statistics.asp.

[7] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. In Proc. USENIX Security, 2004.

[8] Chris Kanich et al. The Heisenbot uncertainty problem: Chal-
lenges in separating bots from chaff. In Proc. LEET, 2008.

[9] Chris Kanich et al. Spamalytics: An empirical analysis of spam
marketing conversion. In ACM CCS, October 2008.

[10] Christian Kreibich et al. Spamcraft: An inside look at spam cam-
paign orchestration. In Proc. LEET, 2009.

[11] Juan Caballero et al. Dispatcher: Enabling active botnet infiltration
using automatic protocol reverse-engineering. In ACM CCS, 2009.

[12] Juan Caballero et al. Binary code extraction and interface identifi-
cation for security applications. In Proc. NDSS, February 2010.

[13] Thorsten Holz et al. Measurements and mitigation of peer-to-peer-
based botnets: A case study on Storm worm. In Proc. LEET, 2008.

[14] John P. John, Alexander Moshchuk, Steven D. Gribble, and Arvind
Krishnamurthy. Studying spamming botnets using Botlab. In Proc.
USENIX NSDI, 2009.

[15] Atif Mushtaq. Personal communication, March 2010.
[16] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas

Terzis. A multifaceted approach to understanding the botnet phe-
nomenon. In Internet Measurement Conference, October 2006.

8


