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Abstract

Writing data within user or operating system memory

often encounters the classic read-before-write problem

whereby the page written to must first be read from the

backing store, effectively blocking the writing process

before modifications are made. Unfortunately, the large

gap between memory and storage access performance

adversely affects workloads that require substantial read-

before-write operations when accessing memory. In this

paper, we present techniques that make writes to memory

truly non-blocking. The basic approach involves absorb-

ing writes immediately in temporary buffer pages and

asynchronously merging the updates after reading in the

on-disk version of the page. Doing so improves system

performance by first, reducing blocking of processes and

second, improving the parallelism of data retrieval from

the backing store leading to better throughput for read-

before-write operations. We analyze the potential ben-

efits of our approach using full-system memory access

traces for several benchmarkworkloads and present tech-

niques that commodity operating systems can employ to

implement non-blocking writes.

1 Introduction

Writing data to main memory is extremely fast.

Well, ... most of the time. When using demand-paged vir-

tual memory and file systems, the main memory caches

a subset of the data contained within a backing store,

typically a hard disk or SSD (array) device. However,

memory references are done at a much smaller granular-

ity (32 or 64 bit words) than is possible in backing stores.

When data not present in memory is read or modified

by the process, the operating system (OS) must fetch an

entire page, typically 4KB or 8KB in commodity OSes,

that contain the few bytes referenced by the processor.

Page fetches occur in two scenarios: (1) a page mapped

to the process address space (anonymous or file system

page cache page) not resident in physical memory gets

accessed by a machine instruction (e.g., LOAD or STORE)

causing a page fault, or (2) a system call accesses the OS

page cache (e.g. OPEN, READ, or WRITE). Since a page
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Figure 1: A non-blocking write in action. The first step,

a write reference, fails because the page is not yet in memory.

The dashed boxes are non-active entities.

fetch blocks the process, the performance of the running

process during that time is limited by the performance of

the backing store.

For read references, such blocking cannot be avoided

since there is no other provision to correctly generate the

data being read. Interestingly, the same blocking ap-

proach has been applied to handle write references in

commodity operating systems and hypervisors till today

(e.g., see recent Linux 2.6.34.5 and Xen 4.1.0 kernels).

These include write references to swap-backed process

memory or disk-backed file system pages, either directly

(for anonymous and memory mapped pages) or via sys-

tem calls (for OS cached pages). Thus, the writing pro-

cess blocks in case the page being referenced is not in

core memory until the referenced page is synchronously

read from the backing store, leading to a read-before-

write requirement [11]. This paper demonstrates that

writes can and should be handled differently and pro-

poses an approach to eliminate blocking for all write ref-

erences to memory. We observe that in case of write ref-

erences, instead of blocking the process to read in the

page, the operating system can absorb such writes in tem-

porary buffer pages and allow the process to continue ex-

ecuting immediately. The operating system can issue the

page read I/O to the backing store asynchronously and

merge the update later when the page has been read into

memory. A graphical representation of this process ap-
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pears in Figure 1.

The proposed approach improves system performance

in two ways. First, it immediately unblocks the process

which is then free to execute subsequent instructions and

make progress; the originally blocking page fetch opera-

tion can now overlap with useful computation. Second, it

improves the parallelism of data retrieval from the back-

ing store by creating the ability to keep many outstand-

ing I/O (OIO) operations to handle multiple page fetches

by a single process at the same time. Doing so leads

to better throughput for both SSD and hard disk based

backing stores, both of which offer better I/O throughput

with multiple outstanding I/O operations. For example,

we found an almost 5x increase in IOPS for a PCIe OCZ

Revodrive 160GB SSD when the number of OIO were

increased from 1 to 16.

In the next section, we motivate the need for non-

blocking writes in commodity systems. We then present

our approach to make all memory write references non-

blocking (§3). We quantify the potential benefits of our

approach using full system memory access traces for a

variety of workloads (§4). Finally, we summarize our

work and point to future directions.

2 Motivating Non-blocking Writes

In this section, we identify technology trends and work-

load behaviors that motivate non-blocking writes.

2.1 Trends in Page Fault Rates

Two trends point to the likelihood of increasing page

fault rates in systems. First, multi-core systems and

virtualization are changing memory footprints funda-

mentally. Higher application tenancy ratios and corre-

sponding increase in in-memory working sets demand

ever-increasing amounts of DRAM, a resource that in-

curs high cost and energy consumption. A second trend

that is now evident is that the memory hierarchy is also

changing fundamentally. High-performance flash-based

SSDs are becoming mainstream as backing store devices

and now vendors are introducing SSDs in servers as

well [5, 6]. Researchers have already begun designing

hybrid memory systems and flash-based virtual memory

and file system caching systems that are motivated by

these trends [13, 9]. Thus, we can expect an increasing

off-loading of the traditionally DRAM-resident working

set data to this additional high-performance SSD layer in

the storage stack, indicating a move to higher page fault

rates in future systems.

2.2 read-before-write: For Real?

How common is read-before-write in reality? Intuitively,

read-before-write occurs when a page in the backing

store is overwritten. Here, it is important to differenti-

ate over-writes from allocation-writes. While the former

modifies an existing page incurring a read-before-write

 0

 20

 40

 60

 80

 100

BT EC FP H
2

JT PD SS
SP

100

SP
20

SP
40

SP
60

SP
80

TC TB TS

%
 N

o
n
-B

lo
c
k
 F

a
u
lt
s

Workload

50%
25%

Figure 2: Fraction of page faults that benefit from non-

blocking writes for various workloads with two memory

sizes: 50% and 25% of each workload’s footprint.

operation, the latter allocates a new page on the fly to

write into and is thus free from read-before-write.

As mentioned before, page over-writes causing read-

before-write can occur for both virtual memory pages

and file system pages. To estimate the occurrence of

read-before-write in real workloads, we analyzed full

system memory access traces for a heterogeneous set of

workloads including server, image processing, and de-

veloper workloads. These workloads are summarized in

Table 1.

We built a memory simulator that reports the number

of page faults, the number of write faults that incur read-

before-write operations, and the number of write faults

that can truly benefit from non-blocking writes. The dis-

tinction between the latter two lies in the consideration

that some non-blocking writes of read-before-write op-

erations are quickly followed by a blocking read fault to

the same page, thereby eliminating any potential benefit

due to the non-blocking write. We provide more details

on how this data was collected and analyzed, and the sim-

ulator we built in Section 4.

Figure 2 shows that with a DRAM provisioned for

storing 50% of the the total memory pages referenced,

there is a substantial fraction – as much as 80% – of the

total page faults (including both read and write faults)

that can benefit from non-blocking writes for a variety of

workloads.

2.3 Alternatives to Non-blocking Writes

To the best of our knowledge, we are not aware of any

prior work that explicitly identifies or addresses the read-

before-write problem. We now consider alternate op-

timizations that can possibly achieve the two goals of

non-blocking writes, i.e., reduce blocking of process ex-

ecution and increase parallelism of access to the backing

store.

One approach to reducing the blocking of processes

is provisioning adequate DRAM to eliminate write page

faults. However, for both process memory and file sys-

tem writes, the footprint of a workload is unpredictable

and potentially unbounded. Moreover, as discussed ear-

lier, technology trends do not support this as a viable so-

lution; faster devices that serve as more cost effective
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and energy-efficient replacement for DRAM to store rel-

atively cold data are becoming available.

Prefetching [14] is an alternative approach that can

reduce blocking by anticipating memory accesses and

prefetching necessary pages to eliminate page faults.

Moreover, it can also increase the efficiency of access to

the storage back-end by issuing multiple page prefetch

requests simultaneously. Prefetching has been demon-

strated as valuable when using an SSD-backed virtual

memory system [13]. Unfortunately, prefetching can in-

cur both false positive and false negative fetches that pol-

lute memory. With non-blocking writes, pages are only

brought to memory when they are accessed. Fortunately,

the two methods are not exclusive and can be used in

conjunction.

3 Solution Approach

Page over-writes can be either supervised or un-

supervised by the OS. Supervised page over-writes occur

via system calls, typically to file system data and meta-

data pages. Un-supervised page over-writes occur in user

pages and memory mapped file pages.

For supervised over-write to an out-of-core page, the

OS has all the information it needs to set up the non-

blocking write. Once the application makes an OS page-

modifying system call, the OS can allocate a buffer to

temporarily store the data. It can then use the offset and

size information from the system call parameters to set

up the asynchronous read of the relevant file pages and

atomically merge these with the saved data after the read

is completed. In case a non-blocking write to the over-

written page is already in progress, the new data is stored

in the same buffer to be merged when the in-progress

asynchronous read completes.

For an un-supervised over-write to an out-of-core

page, the processor would generate a page fault. Com-

modity processors provide the reference address and the

instruction that generated the page fault to the OS. Unfor-

tunately, the number of bytes accessed by the instruction

generating the page fault is usually not available. Mod-

ern processor architectures (e.g., x86) provide complex

instructions that can perform multi-word writes in the

same instruction [7]. In the rest of the section, we present

three approaches to implement non-blocking writes in

case of un-supervised page over-writes.

3.1 Full Feature Hardware

This solution assumes that the processor provides all the

information needed to implement non-blocking writes

when interrupted due to a page fault. With such hard-

ware, the OS can use the virtual address as well as the

number of bytes accessed on a page fault and proceed

similarly to the solution for the supervised over-write. In

the future, processor manufacturers could augment CPU
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Figure 3: Non-blocking writes via the page diff-merge

technique. The step numbers match the ones in Figure 1. Rect-

angles refer to pages in memory.

page fault interrupts with such information if not avail-

able. The advantage of this approach is that the hard-

ware provides all the information needed and no addi-

tional time needs to be spent by the OS to determine such

information. If such support is not universal, the solution

described above becomes architecture dependent.

3.2 Opcode Disassembly

A second solution is to disassemble the opcode of the

instruction that generated the page fault to extract the

number of bytes written to the page. Opcode disassem-

bly functionality for several commodity ISAs is imple-

mented in several important systems software projects

that need to perform binary analysis or translation such

as QEMU [2], VMware[15], and the Linux kernel. Al-

though these implementations are highly optimized, dis-

assembly would still increase the computation demand in

the time-critical page fault handler. This solution can be

implemented for any machine architecture.

3.3 Page Diff-Merge

Our last solution uses a page diff-merge technique as il-

lustrated in Figure 3. On a write fault, we write the

modifications in two temporary pages using the available

single-step feature on modern processors: a 0-page ini-

tialized with all zero bits and an 1-page initialized with

all ones. With these two pages available, the OS can con-

struct the new version of the page read asynchronously

using a merge technique that performs bitwise or and

and with the 0-page and 1-page respectively. This ap-

proach is architecture-independent and no special hard-

ware is necessary. Unfortunately, it adds even more time

and space overhead than opcode disassembly because of

the additional data operations and page faults incurred,

one each for writing to the 0-page and 1-page.

4 Quantifying Benefits

In this section, we quantify the potential benefits of non-

blocking writes using several workloads.

4.1 Full System Memory Traces

We modified the QEMU machine emulator [2] to collect

full system memory traces for the x86 architecture. We

modified the software-MMU version of QEMU and in-

serted tracing code at binary translation points. Specifi-

cally, each time a translation block (i.e., binary blocks
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Workload ID Footprint Exec. Time # References

(MB) (secs) (×10
6)

batik BT 149 17.60 25

eclipse EC 223 7.20 11

fop FP 144 11.16 32

h2 H2 722 44.19 386

jython JT 540 49.68 128

pmd PD 170 20.86 60

tomcat TC 215 33.39 118

tradebeans TB 337 23.84 87

tradesoap TS 335 31.56 84

postmark SS 256 9.9 69

specpower-20 SP20 218 22 44

specpower-40 SP40 224 22 48

specpower-60 SP60 214 22 53

specpower-80 SP80 214 22 60

specpower-100 SP100 211 22 63

Table 1: Workloads include a mix of DaCapo benchmark

suite 9.12 [3], PostMark [8], and SPECpower [10]. SPX

X indicates the percentage of load in the system. PM is set to

the small-small configuration used by Riska et al.[12].

between jumps and jump return points) is sent to the

inline compiler, we insert code for recording each load

and store instruction. Since the addresses used by loads

and stores may be unknown at translation block com-

pile time, the appropriate register values are recorded at

run time. Guest virtual address to guest physical address

translation is obtained via a custom extension to the soft-

ware TLB managed by QEMU.

The memory accesses go through a cache simulator

(code borrowed from valgrind [1]) at runtime. The

caches used were a 64KB I1 instruction cache, a 64KB
D1 data cache and a 4MB L2 data cache, all using lines

of 64 bytes. Timestamps were assigned by mapping in-

struction counts to wall-clock time based on execution

times observed in real hardware. We ran Linux on the

modified QEMU emulator configured with 1GB of phys-

ical memory and trace the workloads detailed in Table 1.

The emulator itself ran on a 2.93 GHz Intel Xeon X7350

processor. The traces we collected included both user-

level and kernel memory references and included the fol-

lowing information: emulator time-stamp, instruction-

count, process CR3, virtual address, physical address,

access-mode (R/W), machine-mode (kernel/user), page

access privileges.

4.2 Virtual Memory Simulation

We built a virtual memory simulator that given a mem-

ory size and a memory trace, simulates hits, misses, and

evictions of memory pages. On every memory reference,

it reports the timestamp, operation mode (read or write),

and event (hit, miss, or evict). More importantly, the sim-

ulator is designed to report the number of write faults that

can benefit from non-blocking writes. To do so, the sim-

ulator must (i) be able to distinguish over-writes from

allocation-writes, and (ii) determine which write faults

can really benefit from non-blocking writes.

As discussed previously, allocation-writes do not trig-

ger I/O operations while over-writes may. Unfortunately,

we do not have sufficient information in our traces to en-

tirely distinguish one from the other. In order to min-

imize the occurrence of false positives when detecting

over-writes, we use two heuristics. First, we consider the

first write access to every page in the trace conservatively

as an allocation write by default. Second, we use both

the virtual and physical addresses to uniquely identify a

page, instead of just the virtual address or the physical

address alone. This eliminates false positives in detect-

ing overwrites when the same virtual address is reused to

map to a different physical address or vice-versa.

Finally, the simulator also employs a model to pre-

dict I/O latency for various values of OIO which is then

used to determine when an asynchronous read related

to a non-blocking write would complete. Using an ap-

proximation proposed by Gulati et al. that latency varies

linearly with OIO [4] and training this model on a few

points with a real SSD (PCIe OCZ Revodrive 160GB),

we were able to predict the latency of the device for any

arbitrary OIO value.

4.3 Fraction of Non-blocking Write Faults

We measured the fraction of page faults that benefit from

non-blocking writes for all workloads in Table 1. Fig-

ure 2 shows these results. When the provisioned DRAM

is half of the total memory footprint (total size of mem-

ory referenced) for each workload, 2-88% of the faults

are write faults that benefit from non-blocking writes.

When the provisioned DRAM is reduced to a fourth

of the memory footprints, the fraction of non-blocking

write faults is 7-42%. This implies that there is sub-

stantial potential for improving the overall performance

of page fault related work for many of these workloads.

For some workloads, a reduction in memory size causes

a reduction in the percentage of non-blocking writes.

For these workloads, higher page fault rates (as reduced

memory sizes) lead to more of the pages involved in

non-blocking writes being selected for eviction. Our

simulator correctly revokes the non-blocking write sta-

tus for such pages given that they must now block for the

completion of the background read before they can be

evicted.

4.4 Outstanding Write Faults

While the fraction of non-blocking write faults are par-

tially indicative, they do not suggest how the absolute

number of simultaneous non-blocking writes vary over

time. To address this consideration, we define the out-

standing write faults (OWF) as the number of write faults

that can still benefit from non-blockingwrites at any time

during the execution of a process. OWF gets incremented

each time there is a write to an out-of-core page. An

asynchronous read to the page is also initiated at that time
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Figure 4: Expected OWF for various workloads with two

different memory sizes: 50% and 25% of workload foot-

print.

and the page is marked as in-io. When there is a read ref-

erence by the process to an in-io page, or an in-io page is

evicted, or if the simulated asynchronous read due to an

in-io page completes, the OWF value gets decremented.

Figure 4 reports the expected value (time-weighted av-

erage) of the OWF for each of the workloads when the

DRAM size is configured to be 50% or 25% of the to-

tal memory footprint. First, we note that all workloads

show values greater than zero, indicating that each can

benefit from non-blocking writes. For most workloads,

the OWF ranges from 2 to 33, indicating a healthy op-

portunity for parallelizing the asynchronous reads due to

non-blocking writes. The two exceptions are EC, which

has the lowest OWF value (0.005), and H2, which has an

exceptionally high OWF value (1259.07).

4.5 Estimating Overall Savings

To estimate how non-blocking writes would impact ex-

ecution times, we revisit the percentage of page faults

that can benefit from non-blockingwrites (discussed ear-

lier in Figure 2). This gives an upper bound on the sav-

ings in running time that our set of benchmarks could

have with non-blocking writes. With 50% DRAM pro-

visioning relative to memory footprint size, half of the

workloads show 20% or less page faults that benefit from

non-blocking writes. However, the range is 30% to 80%

for the remaining half which incur more paging activity.

Combining this finding with those from previous studies

which show that applications using paging and are heav-

ily optimized spend more than 40% on disk I/O [13], we

could estimate an overall reduction of 12% to 32% in ap-

plication execution times for these workloads.

4.6 Overhead

Non-blocking writes are not free from overhead. The

temporary buffer pages that hold modifications while

the asynchronous read is in progress consume additional

memory resources. The average memory overhead of the

system is proportional to the E[OWF] of the application
since the system must buffer data for each outstanding

write fault. This number, as shown in Figure 4, is usually

low. On average, we see an E[OWF] close to 10. If we

assume a conservative 8KB (two pages) for each OWF

as per the page diff-merge technique, we would use 80

KB of memory, representing a nominal overhead. Our

worst case, H2, has an E[OWF] of less than 1300, which
results in roughly 10MB of overhead using the same cal-

culation as above.

5 Conclusions and Future Work

We presented non-blocking writes, a technique that elim-

inates the blocking read-before-write requirement in-

curred in handling write page faults. Non-blocking

writes absorb modifications to out-of-core pages in tem-

porary buffer pages allowing the process to continue

immediately, while reading-in the page and merging

changes later asynchronously. We quantified the benefits

of non-blocking writes and estimated a savings in execu-

tion time of 12-32% across a variety of workloads. The

natural next step for our work will involve an actual op-

erating system implementation of non-blocking writes to

accurately quantify its benefits for real workloads.
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