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Abstract

Literature is rife with compelling ideas on simplify-
ing storage management using service-level objectives
(SLOs). However, very few of these ideas have actually
been productized, despite the fact that many of the orig-
inal ideas came from industry and were developed more
than a decade ago. While many good research ideas do
not become products, in this case, we believe that there
are important reasons why adoption has been slow. This
paper investigates the reasons for slow adoption and dis-
cusses ideas that can truly simplify storage management
using SLOs.

1 Introduction

Consolidating and virtualizing hardware resources has
been the mantra for constructing cloud services, both
public and private [3, 4]. The benefits of consolida-
tion in large data centers include reduced costs of hard-
ware, power, and cooling. In such a multiplexed envi-
ronment, applications are in competition for data-center
resources, such as, CPU, memory, and I/O bandwidth.
At the same time, the cloud service is still required to
meet per-application goals for performance, data pro-
tection, etc. Recent research [19] has extended and ex-
plored automated management using service-level objec-
tives (SLOs) [17, 30, 36] to meet application goals in the
cloud while keeping management costs low.

SLOs are a specification of an application’s require-
ments, primarily in technology-independent terms. The
term SLO may refer to application needs at different lev-
els of the software stack; we focus on storage. To satisfy
business needs, an application may specify performance
(e.g., average I/O latency), capacity, reliability, and secu-
rity needs for its data. SLOs have also been referred to

∗The title is a nod to research by Wilkes et al. on SLO-based man-
agement for storage systems, summarized as “Traveling to Rome” [36].
Our paper is about the important next steps.

as “service-level requirements” or “service-level agree-
ments” or “quality of service” (ignoring some differ-
ences). With SLOs, administrators can focus more on
what they need from storage than on how it is achieved.

SLO-based management is attractive in principle and
a series of research efforts, many of them from indus-
try [17, 36], have developed various techniques that
cover the entire spectrum of activities: monitoring work-
loads and systems, analyzing the interaction of work-
loads with configurations and with each other, planning
remedial actions when SLOs are not met, and executing
the actions in an efficient fashion. However, very few of
these ideas have been productized, especially in the con-
text of storage systems. Unless we first address producti-
zation, we may not be solving the real problems, whether
for the cloud or elsewhere.

In this paper, we analyze why SLO-based manage-
ment, despite having a compelling vision, suffers from
poor adoption in products and what we can do to better
enable such adoption. Our analysis shows that (a) SLOs
are not as simple to specify as we would like, (b) system
models, which proactively assess system behavior, have
considerable error relative to manual approaches, and (c)
the cost of remedying a modeling error is too high.

In order to address these issues, we offer the following
research directions:

• We should focus on process, not product; processes
that limit the scope of SLO-based management to
a pre-defined, well-known set of SLOs (“qualified
SLOs”) will greatly improve (i) the ability of users to
select SLOs, (ii) the accuracy of models, and (iii) the
ability of vendors to support systems.

• We should leverage the similarity of workload in-
stances across the data center or even the entire cus-
tomer base to gather data on workloads and continu-
ally update system models and support workflows.

• We should develop lightweight dynamic reconfigura-
tion techniques to mitigate the cost of modeling errors.
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SLO-Based Management Research Products

SLO SPECIFICATION: Simple-to-use, technology-agnostic representation; attributes form one atomic unit.

Capacity GBs of user data (deduplication [38] not han-
dled), quotas

Typically, GBs of actual storage and quotas

Performance latency, IOPs, bandwidth, shares, I/O priorities Primarily, shares and I/O priorities; latency and
IOPs in some cases

Reliability and availability 9s of availability, recovery point and time ob-
jectives, cost of data loss or unavailability [16]

Only technology-dependent: RAID level,
backup and mirroring relationships

Security and compliance Encryption, retention, secure deletion, audit Encryption, retention, secure deletion, audit
Multidimensional specification Combined performance and reliability [30],

language for all attributes [36]
Attributes are independently specified

MONITORING AND REPORTING: End-to-end (app, hypervisor, network, storage) monitoring, statistics reported in SLO terms.

In SLO terms, end-to-end (for perfor-
mance) [31]

Often, technology-dependent SLO terms, end-
to-end (for performance) [1, 7, 15]

IMPACT ANALYSIS: Analysis for: provisioning a workload or removing a workload on a system; dynamically changing the configuration.

Analysis for workload provisioning Black-box [36, 20], white-box [36] models that
analyze impact of adding workloads

Not available

Analysis for dynamic reconfiguration Not available Not available

REMEDIAL ACTIONS: Wide spectrum of remedial actions from low-cost to high-cost; planner for automatically examining the cost of
different actions and selecting the appropriate one; cooperation between layers of software stack.

Range of actions Limited range: I/O prioritization [13, 34], cache
partitioning [29, 33], coarse-grained data mi-
gration [12], hardware change [2]

Limited range: I/O prioritization [6, 32], cache
partitioning [27], coarse-grained data migra-
tion, hardware change

Action selection Selection techniques available [2, 36] Not available
Cooperative planning Not available Not available

Table 1: Survey: We reviewed research papers [12, 13, 16, 20, 29, 30, 31, 33, 34, 36] and products [1, 7, 9, 14, 15, 24, 27, 32] to determine the
extent to which research has been productized as well as how well they match with an ideal system.

2 Is Adoption Really Slow?

We perform a survey of research papers and products
available in the market to evaluate the extent of SLO-
based management proposed as research ideas and its
adoption in products.

For a long time, the primary method for implement-
ing service levels has been creating a silo for each ap-
plication (i.e., independent allocation of resources, of-
ten entire storage systems) and using different “tiers” of
storage depending on the application’s needs. While the
degree of SLO-based management available in products
has increased (in order to handle multi-tenant sharing),
many of them have not moved past the tiering approach,
and the differences are evident in our comparison.

As shown in Table 1, we compare research systems
and products against the ideal case along multiple axes:
(i) SLO specification, (ii) monitoring and reporting, (iii)
dynamic analysis of a system’s ability to support a new
workload (beyond simple thresholds), and (iv) tech-
niques to handle SLO violations and ability to compare
multiple remedial actions.

We find that while research systems are not quite ideal,
products are significantly lacking in SLO-based manage-
ment features. The crucial differences are seen in the
technology-dependent nature of SLO specification for
many attributes, the lack of multidimensional SLO spec-
ification, the lack of system models for impact analysis,

and the lack of an automated planner for selecting re-
medial actions for SLO violations. Neither research nor
products have adequate solutions for end-to-end man-
agement (monitoring, reporting, and action coordination)
across multiple layers of the software stack.

3 Reasons for Non-Adoption
John Wilkes [36] believes that the greatest barrier to
adoption is the developers’ ability to convince admin-
istrators that the system can be trusted; he suggests
that these systems be simple-to-use, more predictable,
and open about the decision-making process. While we
agree, we believe that there are additional important is-
sues to be addressed in order to improve adoption, and
we detail them in this section.

3.1 SLO Specification
While specifying workload requirements are signifi-
cantly simpler than specifying the storage-system con-
figuration for a workload, many administrators may not
know precise workload characteristics and requirements
either. Complicating the problem is that the administra-
tor needs to take into account multiple dimensions – that
is, understand the impact of performance, protection, se-
curity, cost, etc. in a holistic manner – to provide the final
specification to the storage system. Thus, the real goal of
simplifying storage management is not addressed simply
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by introducing SLO-based management. This observa-
tion is borne out in I/O prioritization techniques being
productized [6, 32]. It is significantly easier for the ad-
ministrator to say that one workload is more important
than the other (or specify a share of the total capacity),
than to specify each workload’s requirements. However,
I/O prioritization may not help in actually satisfying the
applications’ requirements.

Some prior work has examined ways to simplify SLO
specification [36, 30]. The easiest specification is none
at all, as exemplified by techniques to iteratively derive
these requirements [36] instead of having administra-
tors specify them. However, such an approach works
primarily only for performance attributes and can also
make support much harder for vendors; imagine a sup-
port scenario where the requirements are determined dy-
namically and SLO violations still occur. With respect to
reliability requirements, Keeton et al. [16] suggest a sim-
pler abstraction for users based on the dollar cost of data
loss or unavailability (as compared to metrics such as re-
covery time objectives). However, other service-level at-
tributes do not lend themselves easily to such a model.

3.2 Modeling Errors
Without SLO-based management, users are expected to
manually model the impact (performance, etc.) of work-
load additions or system-configuration changes based on
their expertise in examining system utilization levels.
With SLO-based management, this burden shifts to ven-
dor’s knowledge of internal workings of the system (i.e.,
white-box models [36]) or to statistical machine-learning
techniques (i.e., black-box performance models [20]).

In particular, the modeling errors occur because, for
white-box models, the model builders usually trail the
product feature release cycle as it takes longer for them
to capture the complex interplay between the various fea-
tures. Similarly, it is not possible to train black-box mod-
els for all the permutations and the lack of this training
data gives large errors in the extrapolation region. Irre-
spective of the approach, errors occur.

Modeling errors can also be expected to increase with
increasing system complexity. We believe that given
lower complexity – one application per system, model-
ing primarily RAID latency/bandwidth, only a few in-
frastructure layers – many users in the past may have
been better at modeling than computer counterparts (al-
though Alvarez et al. show otherwise in one specific
experiment [2]). However, current storage systems are
highly complex and modeling the interactions between
various sub-systems is non-trivial.

3.3 Reconfiguration Cost
More important than modeling errors per se, is the impact
of modeling errors. The penalty for an incorrect model

is often an SLO violation that requires heavy-weight cor-
rective actions, such as migrating the dataset or purchas-
ing a new system. Thus, administrators leave systems
underutilized to minimize SLO violations; i.e., keeping
storage administration simpler by spending more.

In order for administrators to embrace system-
managed complexity, the impact of a mistake has to be
lowered. This improvement is essential even when mod-
els are highly accurate; when workloads are inherently
very dynamic, one can provision storage for either the
peak load or the average load, but not both, thus causing
poor utilization or periodic SLO violations respectively.
Thus, a lack of dynamic low-cost techniques to handle
modeling errors and also counter the dynamic nature of
workloads, results in poor adoption of automated SLO-
based management.

4 Why SLOs Now?
This section looks at the recent technical trends that
make automated management essential, showing why we
should be concerned about poor adoption of SLOs.

4.1 Configuration Complexity
Prior work [36] uses configuration complexity as moti-
vation, focusing on the number and type of disk drives
needed to support a given workload. The complexity to-
day is significantly higher due to a plethora of new fea-
tures like deduplication [38], use of flash memory [22],
use of multiple levels of caches [22, 23], striping of data
across nodes [28], etc. It is hard to predict properties like
performance when different features are combined. To
make things worse, system properties change over time
forcing administrators to keep up with all of the changes
in the products of multiple vendors. This resulting in-
crease in complexity may favor computer-based models;
their errors will increase as complexity increases but at
a lower rate than manual modeling, thus encouraging
adoption.

4.2 Multi-Tenant Sharing
In a multi-tenant environment, applications with poten-
tially different requirements may share the same storage
system. The availability of flash, as well as the pervasive
use of caches, permit the same system to support differ-
ent “tiers” of storage depending on requirements [11];
e.g., data with high performance requirements can make
greater use of flash than data with lower requirements.
The availability of a large number of workloads to pro-
vision allows service providers to “thin-provision” re-
sources, assuming that not all workloads will require
peak performance at the same time.

While consolidation has great benefits, it makes
storage-management difficult. Specifically, with flash
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and hard disks in one array, administrators need to con-
trol the amount of flash provided to each application. As
flash technology changes or application needs change,
the flash allocation should be changed as well. Thus,
these tasks should be automated using SLOs.

4.3 Scale and Dynamism
In cloud storage environments, two important problems
are much worse as compared to that in prior work [36]:
scale and dynamism. The increase in the amount of data
stored as well as the number of storage devices, objects,
users, policies, and sites that need to be managed in an in-
tegrated manner make storage management particularly
challenging. Further, new applications are provisioned
at a fast rate and their requirements may change sig-
nificantly over time. Therefore, administrators should
ideally not be involved in processing every provisioning
request or in managing the load on individual systems.
Again, these tasks should be automated using SLOs.

5 Research Directions
The lessons of the past give us insights on how to ease
the adoption of SLOs.

5.1 Process, Not Product
Much of the focus on SLO-based management has been
on developing a better storage-management product.
Less time has been devoted to research on improving
processes, including requirement specification by users,
building and updating of system models by the vendor,
and post-sales support for products and SLOs.

We propose that the vendors identify SLOs for pop-
ular workloads ahead of time by (a) leveraging the ex-
pertise of select customers and partners, (b) developing
tools to translate between requirements specified at the
application and storage levels, and (c) developing tools
to resolve differences in specification derived from vari-
ous sources. The starting point for this approach would
be to obtain information such as application name and its
configuration, e.g., Microsoft R© Exchange with N mail-
boxes, as used in best-practices documents [25]. We term
SLOs generated thus as “qualified SLOs.” Thus, most
users would select a qualified SLO based on the applica-
tion name or type or even the stack being deployed. The
SLO that users select is also an atomic unit (e.g., perfor-
mance is not independent of security); systems should
prevent the specification of inconsistent goals [17].

We believe that the process defined above would make
SLO specification (selection) easier for users, reduce the
burden on the storage vendor in creating models of the
storage systems as well as in supporting both the stor-
age systems and their models; there are fewer, but im-
portant, workloads to focus on when creating models;

and when a support request is made, the support engi-
neers always have prior workload-based training as well
as current context (expected SLO, delivered service, ex-
pected workload, actual workload) to troubleshoot with.

5.2 Dynamic Low-Impact Reconfiguration
For users to trust automated management, the impact of
errors needs to be lowered. These systems should be
nimble in handling dynamism of workloads when the
original provisioning is aggressive (for non-peak load).

Systems should include low-time and low-cost mech-
anisms to handle SLO violations, including automati-
cally and non-disruptively reconfiguring resources or mi-
grating small amounts of data based on current applica-
tion needs and resource usage. The HP AutoRAID sys-
tem [37] is an early example. Recent efforts have ex-
plored dynamic data layouts that take advantage of flash
storage [11]. Mechanisms that separate namespace and
location [10, 28] enable object-granular migration.

Further research could focus on taking advantage of
hardware fluidity. Specifically, caching could be man-
aged throughout the storage stack dynamically with
techniques for deciding whether to create new caches,
grow/shrink existing caches, etc.

5.3 Community Wisdom
While the large scale of operation is typically problem-
atic from a management viewpoint, we believe that it can
also be leveraged to reduce the difficulty of management.

First, many instances of the same application may be
provisioned in a single data center (especially in a cloud
service). A phenomenal amount of data is now avail-
able for training system models and for comparing ac-
tual workloads against those the models are trained with.
Second, since storage systems have various degrees of
reporting back to vendors [5], modeling data from the
large customer base can be leveraged to improve in-
house models further. Third, scalable data analytics is
available through new computing paradigms [8]. Com-
binations of the above techniques have been developed
in the context of handling misconfigurations [35] and
bugs [18]. We propose that the techniques be extended
to improve system models, construct support workflows,
and guide customers towards best practices.

5.4 End-to-End Management
This research direction is prompted less by the failings
of the past than by the need to avoid emerging pitfalls.
Specifically, the number of infrastructure layers has in-
creased significantly: hypervisors, caches, etc. As a re-
sult, an application’s performance and reliability depend
on multiple pieces of infrastructure, managed by differ-
ent people or tools, making it hard to derive guarantees.
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SLO-based management should move towards a more
end-to-end approach. First, we need protocols that can be
used to specify SLOs throughout the stack and to aggre-
gate information from all monitoring stations. Orches-
tration tools [7] aid in such monitoring to a limited ex-
tent. Second, we need mechanisms to coordinate control.
For example, data migration can be performed at differ-
ent layers – storage-level [26] and hypervisor-level [12]
– to handle SLO violations. When these tools work inde-
pendently, they may expend more resources than needed
to address SLO needs; worse, they would lead to many
more SLO violations, more useless work, and potentially,
unavailability. Thus, without cooperation, even bug-free
components can cause the system as a whole to be unsta-
ble – an example of emergent “mis”behavior [21].

6 Conclusion
“Simplicity, simplicity, simplicity! I say, let
your affairs be as two or three, and not a hun-
dred or a thousand;” Henry David Thoreau

As we research the new directions proposed herein and
develop ways to make storage management simpler for
users, we should strive to keep it simple enough for our-
selves (i.e., the developers). Methods (e.g., building sys-
tem models) that require constant or hard, manual refine-
ment may break down because development or support
for SLOs cannot keep up with products.
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