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Abstract

Attacks that use side channels, such as sound and elec-
tromagnetic emanation, to infer keystrokes on physical
keyboards are ineffective on smartphones without physi-
cal keyboards. We describe a new side channel, motion,
on touch screen smartphones with only soft keyboards.
Since typing on different locations on the screen causes
different vibrations, motion data can be used to infer the
keys being typed. To demonstrate this attack, we devel-
oped TouchLogger, an Android application that extracts
features from device orientation data to infer keystrokes.
TouchLogger correctly inferred more than 70% of the
keys typed on a number-only soft keyboard on a smart-
phone. We hope to raise the awareness of motion as a
significant side channel that may leak confidential data.

1 Introduction

Keyboard is perhaps the most common human input de-
vice. We use keyboard to input a variety of information,
some of which are highly valuable, such as passwords,
PINs, social security numbers, and credit card numbers.
It came as no surprise that keystroke logging is a favorite
tool of trade by attackers. The attacker can install a Tro-
jan program on the victim computer to log keystrokes,
or use out of band channels to infer keystrokes. Acous-
tic key logger, for example, can infer keystroks from
acoustic frequency signatures[2], timings between two
keystroks[4], or language models[11]. Electromaganetic
emanations of keyboards are also studied for keylog-
ging [8].

Touch screen smartphones have changed the paradigm
of user interaction. Most touch screen smartphones have
no physical keyboard. Instead, the user types on the soft-
ware keyboard on the screen. Since there is neither sound
nor electromagnetic emanation from a virtual keyboard,
the attacker can no longer infer keystrokes based on these
signals. Moreover, many smartphone operating systems,
such as Android and iOS, restricts privileges granted to
applications. In most cases, an application cannot read
keystrokes unless it is active and receives the focus on
the screen. It seems that key loggers, at least the tradi-

tional ones described above, are facing severe obstacles
on touch screen smartphones.

In this paper, we investigate a new avenue for
keystroke logging on touch screen smartphones. Most of
these phones are equipped with a variety of sensors for
detecting sound, image, location, and motion. Our in-
sight is that motion sensors, such as accelerometers and
gyroscopes, may be used to infer keystrokes. When the
user types on the soft keyboard on her smartphone (espe-
cially when she holds her phone by hand rather than plac-
ing it on a fixed surface), the phone vibrates. We discover
that keystroke vibration on touch screens are highly cor-
related to the keys being typed. In our preliminary eval-
uation, we were able to infer correctly more than 70%
of the keys typed on a number-only soft keyboard on a
smartphone.

1.1 Threat model

Currently, to read from the motion sensors, the key
logging application needs to be installed on the victim
smartphone. Given the increasing number of malware
applications on the smartphone market [5] and the preva-
lence of potentially untrusted third-party ad code incor-
porated in applications, we do not believe that this as-
sumption is over-optimistic. The user also needs to grant
the key logging application the privilege to read from
motion sensors. We believe that most users would have
no qualm of granting this privilege, as it seems much
less risky than other sensor privileges, such as the mi-
crophone or camera.

The assumption that most users would not treat motion
data as highly sensitive is not just our wishful thinking.
W3C has recently publishedDeviceOrientation Event
Specification[6] to allow web applications to access ac-
celerometer and gyroscope sensors through Javascript,
which both Android 3.0 and iOS4.2 will support. This
suggests that our motion-based key logger can be deliv-
ered from a website, without requiring the user to install
any application.



1.2 TouchLogger

The primary goal of this paper is to raise the aware-
ness of the sensitivity of motion sensor data. To demon-
strate the attack, we introduce TouchLogger, which in-
fers keystrokes on touch screen smartphones with motion
sensors. Once the user installs TouchLogger and grants it
the motion sensor privilege, it starts to monitor motions
and infer keystrokes.

2 Modeling and capturing typing-induced
smartphone motion

2.1 Modeling typing-induced motion

Since the commercial success of the iPhone, typing on
the soft keyboard on smartphones’ touch screen has be-
come the most prevalent means of input. Compared to
an earlier input method that uses a stylus to touch the
screen, typing with a finger causes stronger motion of the
smartphone. When we type, we observe that the reflec-
tion of distant objects on the screen shifts, and the shift is
consistent for each key. This suggests that we may infer
keystrokes by the motion of smartphones.

The motion of a smartphone during typing depends on
several factors: 1) the striking force of the typing fin-
ger; 2) the resistance force of the supporting hand; 3) the
landing location of the typing finger; and 4) the location
of the supporting hand on the smartphone. The first two
factors mainly affect the shift of the phone, while the lat-
ter two mainly affect the rotation. We observe that the
first two factors likely depend on the user, while the lat-
ter two are likely to be user-independent because (1) on
each soft keyboard configuration, each key is at a fixed
location, and (2) a user typically holds her smartphone in
a consistent way. Therefore, we would like to extract the
rotation components while filtering out the shift compo-
nents from motion sensor data.

Most modern smartphone operating systems fire at
least two types of events when certain motion is detected:
accelerometer event and orientation event1. Initially we
focused on the accelerometer event because it has higher
frequency than orientation event. However, we discov-
ered that data in accelerometer event reflect both shift
and rotation, while data in orientation event reflect only
rotation. Since we observe that typing-induced rotation
is more user independent than shift, we have been using
data in orientation events for the rest of our study.

2.2 Device orientation

Data in device orientation measure angles of the device
along three axes. On Android, a change in the device

1Data in orientation events are mainly derived from the accelerom-
eter sensor output and are different from the data in gyroscope events.

orientation triggers an orientation event, which reports a
set of intrinsic Tait-Bryan angles (α-β -γ) and the event
time t [1].

• α: When the device rotates along the Z-axis (per-
pendicular to the screen plane),α (azimuthangle)
changes in[0,360).

• β : When the device rotates along the X-axis (usu-
ally parallel to the shorter side of the screen),β
(pitchangle) changes in[−180,180).

• γ: When the device rotates along the Y-axis (usu-
ally parallel to the longer side of the screen),γ (roll
angle) changes in[−90,90).

On Android, an application reads the motion data by
registering a motion sensor event listener, so motion data
do not arrive at a constant interval. Both Android and
iOS provide three accuracy levels based on event fre-
quencies. The intervals of the motion data also depend
on the hardware. For example, at the highest accuracy
level, the average interval of device orientation events on
an HTC Evo 4G phone is about 30ms, while that on a
Motorola Droid phone is about 110ms.

3 Inferring keystrokes via device orienta-
tion

We designed and implemented TouchLogger, an Android
tool to infer keystrokes on the soft keyboard of smart-
phones from the device orientation. More precisely,
TouchLogger infers the landing locations of the typing
finger based on the device orientation and then looks up
the corresponding keys based on the current soft key-
board configuration.

3.1 Set up

TouchLogger collects device orientation data when user
types on the soft keyboard. The raw device orientation
data consists of tuples(ti ,α ′

i ,β ′
i ,γ ′i ), i = 1. . .N, whereti

is the time of the orientation event, andα ′
i , β ′

i andγ ′i are
the azimath, pitch and roll angles of the device, respec-
tively, andN is the number of orientation events in the
entire typing session.

For training and testing, we also developed an appli-
cation to collect key touch events. They consist of tuples
(Li , ts

i , t
e
i ), i = 1. . .M, whereLi is the label of the key,ts

i
andte

i are the starting and ending time of the touch event,
respectively, andM is the number of keystrokes in the
session.

3.2 Preprocessing

TouchLogger preprocesses the raw device orientation
data before it infers keystrokes. First, it discards the az-
imath angle (α) since rotation caused by typing mainly



affects pitch (β ) and roll (γ) angles. Second, it normal-
izes the angles by eliminating the average angles (β̄ ′ and
γ̄ ′), which represent the initial orientation of the device
and are therefore irrelevant to the keystrokes. Finally,
to identify the starting and ending time of keystrokes,
TouchLogger calculates the Peak-to-Average ratios of
theβ andγ angles, as these ratios are much larger during
typing. Then, during each keystroke (TouchLogger de-
tects the duration of each keystroke based on orientation
events rather than keystroke events), TouchLogger con-
verts the raw device orientation data into to a series of
tuples(ti ,βi = β ′

i − β̄ ′,γi = γ ′i − γ̄ ′). We call each tuple
themotion signalof a keystroke.

3.3 Basic feature extraction

TouchLogger infers keystrokes based onfeaturesin mo-
tion signals. A good feature should be consistent among
motion signals caused by the same keystroke while be-
ing distinctive between motion signals caused by differ-
ent keystrokes.

Because we observed that keystrokes affect the rota-
tion angle of the screen, a naive feature would be the
ratio of maximum pitch angle over the maximum roll an-
gle max(β )/max(γ). However, our experiments showed
that this feature is inconsistent among motion signals for
the same keystroke. We found that pitch angle and roll
angle do not reach their peaks simultaneously. Figure 1
illustrates the paths of the pitch and roll angles as the de-
vice vibrates during typing. Each path exhibits a pattern
with two lobes, each on one side of the horizontal axis.
During a keystroke, the pitch and roll angles move from
the center of the pattern to the vertex (max(

√

β 2 + γ2))
on the upper lobe (β > 0) through one path, then to the
vertex on the lower lobe (β < 0) via another path, and
finally back to the center of the pattern.

We observed that the lobes of the patterns produced by
the same key point to similar directions, while the angles
of the lobes vary for different keys. Figure 1 shows that
the upper lobes of the patterns point up left for keys1, 4,
and7, straight up for keys2, 5, and8, and up right for
keys3, 6, and9. This observation is consistent with the
position of these keys on the soft keyboard (Figure 3).
The directions of the lower lobes also demonstrate simi-
lar patterns. Therefore, we use lobe direction as the fea-
ture for inferring keystrokes.

Each lobe consists of two path segments, one from the
horizontal axis up to the vertex, and the other one from
the vertex down to the horizontal axis. To measure the
direction of a lobe, TouchLogger searches for thedom-
inating edgeon each path, and the direction of the lobe
is the bisector of the angle between the two dominating
edges.

For each pattern, we extract two features: the angle
between the direction of the upper lobe and the x-axis

(AUB, or Angle of Upper Bisector), and the angle be-
tween the direction of the lower lobe and the x-axis (ALB,
or Angle of Lower Bisector) as shown in Figure 1.

3.4 Classification

We use supervised learning to infer keystrokes from fea-
tures extracted in Section 3.3.

Training During the training phase, we provide
TouchLogger with a data set that consists of motion sig-
nals with their corresponding keys. Assuming that the
features of the same key have a Gaussian distribution,
TouchLogger calculates the mean (µk

AUB, µk
ALB) and stan-

dard deviation (σk
AUB, σk

ALB) for each keyk.

Classification During classification, TouchLogger ex-
tractsAUB andALB from each motion signal and calcu-
lates the probabilities that the signal corresponds to each
key using theprobability density functionfor Gaussian
distribution:

pk
AUB =

1

σk
AUB

√
2π

exp(−
(AUB−µk

AUB)
2

2σk
AUB

2 ) (1)

pk
ALB =

1

σk
ALB

√
2π

exp(−
(ALB−µk

ALB)
2

2σk
ALB

2 ) (2)

pk = pk
AUB× pk

ALB (3)

TouchLogger determines the key as argmax
k

pk. Our

evaluation shows an accuracy rate of 50.6%.

3.5 Advanced feature extraction

Beside lobe direction, we observed that the width of the
lobes can also be used to distinguish keystrokes. There-
fore we added two more pairs of features to improve the
accuracy of keystroke inference.

The first pair of features are the angles of the two dom-
inating edges (AU andAL in Figure 1). We calculate the
means (µk

AU, µk
AL) and standard deviations (σ i

AU, σk
AL) in

the training phase. During classification, TouchLogger
determines the key as argmax

k
Pk where

Pk = pk
AUB× pk

ALB× pk
AU × pk

AL (4)

Our evaluation shows that these features increase the
classification accuracy to 64.8%.

The second pair of features are the average width of
the upper (and lower) lobe, defined as the area of the
polygon formed by the upper (and lower) lobe and the
horizontal axis divided by the pitch angle (y-axis value)
of the upper (or lower) vertex. Combining all these three
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Figure 1: Typical patterns of patch angles and roll angles when different digit keys are pressed. We extract features
from these patterns.

pairs of features (two from this section and one from Sec-
tion 3.3), TouchLogger successfully inferred 71.5% of
all keystrokes.

Figure 2 shows the means and standard deviations of
all three pairs of features. The x-axis represents features
associated with the upper lobe while the y-axis represents
features associated with the lower lobe. The boxes rep-
resent the range of features in the training data, where
the horizontal and vertical centers of each box represent
the means of each feature pair while the width and height
represent half of the standard deviations. The distances
between the boxes reflect the quality of the features. For
example, Figure 2 shows that the first pair of features are
a good discriminator between keys1, 2 and3 or keys
4, 5 and6, but not between keys1 and4 or keys3 and
9. The other two pairs of features are inferior to the first
pair on most keys (because the boxes are much closer to
each other), but they complement the first feature pair as
they can distinguish keys1 and4 or keys3 and9 better.

4 Evaluation

We conducted a preliminary evaluation of TouchLogger
on an HTC Evo 4G smartphone. Figure 3 shows the
user interface of the data collection application. We col-
lected three datasets of keystrokes on a number-only soft
keyboard in the landscape mode. Each dataset includes
multiple sessions containing from 4 to 25 consecutive
keystrokes. The datasets cover all the 16 keys on the
soft keyboard, but we used only the digit keys (0 · · · 9) to
train and evaluate TouchLogger.

TouchLogger achieves an accuracy rate of over 70%
on each dataset. On the largest data set with 449 strokes
of digit keys, TouchLogger correctly inferred 71.5% of
them. Table 1 shows the inference results on each key.
The keys with the highest inference accuracy are digits1

and9, both located on a corner of the soft keyboard. This
is consistent with Figure 2, which shows that the feature
boxes for keys1 and9 are separated further than those
for the other keys. Among all the 90 false inference rates
(all the rates not on the diagonal in Table 1), 12 of them
are larger than or equal to 10%. Out of these 12 worse
cases, in 9 cases the inferred key is in the same column
as the actual key, and in 7 cases the inferred key is next
to the actual key in the same column. This suggests that
physical proximity decreases inference accuracy.

Size of training dataset The smaller the required
training dataset, the easier it is for the attacker. We exam-
ined the convergence of the mean and standard deviation
of the features used in classification as the training set
size increases. Figure 4 shows thatAUB and ALB for
one key converge decently after 5 keystrokes.

5 Discussions

Factors affecting inference accuracy The motion of
the smartphone during a keystroke is affected by many
factors, such as the typing force, the resistance force
of the holding hand, the original orientation of the de-
vice, and the location where the supporting hand holds
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Figure 2: The distribution of three pairs of features extracted from the device orientation data over different digit keys.
Each pair has one value for the upper lobe of the pattern and one for the lower lobe. The horizontal and vertical centers
of each box represent the means of one feature pair while its width and length represent the standard deviations. The
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Figure 3: User interface of the data collection applica-
tion.

the device. Among these factors, only the last one may
have significant impact on TouchLogger, because it may
change the pivot points of the device. However, our
evaluation suggests that a user usually holds his smart-
phone at the same location. The datasets presented in
Section 4 were collected from the same user on different
days, when the user held his device in his naturally way
each time rather than striving to be consistent.

Application to other devices We believe that
TouchLogger can be applied to other devices. Particu-
larly, we expect TouchLogger to perform even better on
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Figure 4: The relationship between the means of signa-
tures and the size of the training set.

devices with larger screens, such as tablet computers, as
soft keys are separated farther apart there.

Other motion sensors TouchLogger uses data in de-
vice orientation events, which are mainly derived from
the accelerometer. We could try other sensors that cap-
ture motion. Gyroscope, for instance, measures the rate
of rotation around the X,Y and Z axes, and its output



Actual Key Inferred Key

0 1 2 3 4 5 6 7 8 9
0 64% - 6% 10% - 12% - - 8% -
1 - 86.3% - - 13.7% - - - - -
2 8.3% 4.2% 68.8% 4.2% - 2.1% 3.1% 4.2% 6.2% -
3 18% - - 70% - - 6% - - 6%
4 - 10% 8% - 72% 2% - 8% - -
5 8% 4% 4% 8% - 60% - 4% 12% -
6 - - 1.9% 7.5% - 1.9% 77.4% - - 11.3%
7 2% - 4% - 16% 14% - 56% 8% -
8 - - 10% - - 15% - - 75% -
9 - - - 3.8% - 3.8% 11.5% - - 80.8%

Table 1: Distribution of inferred keys. 321 out of 449 keystrokes (71.5%) were correctly inferred.

can be easily converted to device orientation through in-
tegral. Camera could also be used to detect motion.

6 Related works

Key logging based on side channelsResearchers have
studied keystroke inference based on side channels, such
as sound [2, 11], electromaganetic wave [8], and tim-
ing [7, 4]. Since these attacks exploit characteristics of
physical keyboards, they become ineffective on smart-
phones with soft keyboards.

Attacks using sensors on smartphone [3] raises the
awareness of privacy attacks on smartphone sensors. Be-
sides the obvious privacy concern over the GPS sensor,
researchers have shown attacks using the camera [9] and
microphone [10]. To the best of our knowledge, this pa-
per is the first to show the privacy risks of motion sensors.

7 Conclusion

We investigated the use of motion as a side channel to
infer keystrokes on soft keyboard on smartphones. We
observed that, due to the locations of keys on a soft key-
board, typing different keys causes different motions of
the smartphone. We developed TouchLogger, a smart-
phone application that extracts features from the device
orientation data to infer the keys being typed. Our eval-
uation shows that TouchLogger can correctly infer more
than 70% of the keystrokes on a number-only keyboard
in the landscape mode. We have demonstrated that mo-
tion is a significant side channel, which may leak confi-
dential information on smartphones.
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