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Abstract. We introduce the notion ofimplicit authentication
– the ability to authenticate mobile users based on actions they
would carry out anyway. We develop a model for how to per-
form implicit authentication, and describe experiments aimed
at assessing the benefits of our techniques. Our preliminary
findings support that this is a meaningful approach, whether
used to increase usability or increase security.

1 Introduction

Mobile commerce (M-commerce) is experiencing rapid
growth, and there is a trend toward hosting of applica-
tions and services on the web. This results in increased
demand for authentication – whether of computers or
users. In particular, higher-assurance authentication,
such as through augmenting passwords with SecurID-
like devices, has become standard in the enterprise and
is beginning to penetrate high-value consumer markets,
such as banking. The concern with these second-factor
authentication devices has been their usability and cost.
Another factor in the new authentication landscape is the
greater market penetration of Mobile Internet Devices
(MIDs), which complicate password entry due to the lim-
itations of their input interfaces. We conducted a survey
of 50 iPhone, BlackBerry, and gPhone users. The survey
showed that 40% of users enter a password on a daily ba-
sis, and that 56% mistype a password at least one time in
ten. Users find password entry on MIDs more annoying
than lack of coverage, small screen size, or poor voice
quality. Therefore, MIDs give rise to a need for authen-
tication techniques without active user involvement, or
with very limited user involvement.

In this paper we propose using observed user behav-
ior to authenticate users, an approach we refer to as
implicit authentication. Implicit authentication can be
used to meet the following general authentication needs:
1) Used as a secondary factor for authentication, im-
plicit authentication can augment passwords to achieve
higher-assurance authentication in a cost-effective and
user-friendly manner. 2) Used as a primary method of

authentication, implicit authentication can replace pass-
words altogether, relieving users from the burden of en-
tering passwords. 3) A third use of the technology is to
provide additional assurance for credit card transactions,
based on the security posture of the device owner. (We
note that it is not necessary for the payment transactions
in question to involve the device used to collect user data,
or even to involve the user when collecting the data; they
would also not need to be put on the critical path for per-
forming the payment, but simply be used as an auxiliary
fraud indicator.)

Implicit authentication can be implemented for any
kind of computer, but is particularly suitable for portable
computers – these are often characterized by a combi-
nation of text input constraints and access to rich infor-
mation. For example, for MIDs the input data typically
includes location, motion, phone activity, and other ap-
plication activity. Medical devices often have input con-
straints similar to MIDs and are used to access and ma-
nipulate centrally maintained patient records. In spite of
HIPAA requirements, password and account sharing is
common for such devices. The ability to authenticate a
person implicitly – and to log a person out due to a failed
implicit authentication – can help maintain high security
and privacy of patient records even under stressful con-
ditions where account sharing would otherwise be very
tempting. Implicit authentication finds applications to
secure military equipment as well, where usability is as
important as securing devices against enemy take-over.
Finally, out-of-band transaction verification is another
natural application. For example, when a consumer pays
for an item with a credit card, his phone location history
can be queried silently to see whether the recent use of
the phone is consistent with the card use, including, of
course, whether it is near the point-of-purchase or – for
online transactions – at a location consistent with the ob-
served IP address. For the sake of concreteness, we focus
our study on MIDs herein.

We introduce and evaluate techniques to compute and



maintain anauthentication score for each user, based on
the recent activities of the user. This is based on identi-
fying positive events, such as common habits, and boost-
ing the score when a habitual event is observed; and on
detecting negative events and degrading the score when
these are observed. A negative event is one that is not
commonly seen for a user, or which is associated with
a common type of attack.Time is also a negative event
in the sense that scores degrade over time. When the
score falls below an event-specific threshold, that event
can no longer be performed without the user first having
to explicitly authenticate herself, e.g., by giving a pass-
word. Correct explicit authentication is a highly positive
event, and a failed explicit authentication is a negative
event. We describe an architecture that supports implicit
authentication, and report on findings from preliminary
experiments. Our findings support that this is an ap-
proach with great potential for use with devices with rich
inputs.

Related work. Single Sign-On (SSO) addresses the
problem of much-too-frequent authentication require-
ments, but – after a first password entry – only vouches
for the identity of thedevice, and not its user. There-
fore, SSO does not defend against theft and compromise
of devices well, and does not address voluntary account
sharing at all.

In a study of users’ perceptions of authentication on
mobile devices, Furnell et al. [5] showed that users want
a solution to authentication that increases security, pro-
vides transparent authentication and “authenticates the
user continuously/periodically throughout the day in or-
der to maintain confidence in the identity of the user”.
The study found users receptive to the use of biometrics
and other behavioral indicators, but not receptive to se-
curity tokens.

Some biometric authentication methods, notably
keystroke dynamics and typing patterns (e.g., [10–12])
areimplicit in the sense that they continually observe the
user behavior and make authentication decisions based
on the observations. Recently, Chang et al. used ac-
celerometers in television remote controls to identify in-
dividuals [3]. Kale et al. [9] and Gafurov et al. [6] used
gait recognition to detect whether a device is being used
by the owner. There has also been a lot of work in com-
bining several biometric inputs to produce an aggregate
authentication score [1, 2]. In location-based authenti-
cation and access control [4, 14], the subject’s location
is used to decide whether the subject should be allowed
to access a certain resource. Greendstadt and Beale [7]
noted the need for “cognitive security” for personal de-
vices. Specifically, they proposed a multi-modal ap-
proach “in which many different low-fidelity streams of
biometric information are combined to produce an ongo-
ing positive recognition of a user”. Our efforts are a step

in the direction of realizing the vision laid out in [7].
Centralized analysis of data collected on resource-

constrained devices is also beneficial in the context of
defending against malware [8, 13], and it is likely that
there will be functional overlap between an implicit au-
thentication engine and a centralized anti-virus compo-
nent. Whereas both security technologies benefit from
collection and centralized analysis of data from mobile
devices, and some of this data could be obtained from
carriers and service providers, it is important to note that
they do not in any sense require a departure from net
neutrality. In other words, the technologies can be im-
plemented in a way that makes them independent of the
selection of provider of connectivity, software, and hard-
ware.

2 Adversarial Model
We consider adversaries that acquire physical access to
the device, such as a family member or co-worker at-
tempting to access the device or associated resources, or
a stranger who steals or finds the device and tries to mon-
etize it and its information.

Malware can also pose a threat. One potential attack
by malware is the cloning attack: the malware sends all
information on the infected device to a colluding host
on the network, and then – remotely, and with no further
access to recent information – attempts to create an event
to be accepted. We can defend against cloning attacks
by having packets signed by a SIM card which is hard
to clone. Persistent malware on a device can perform
more powerful attacks, as it is able to control and observe
all events, and is able to mimick the user’s behavioral
patterns. By logging keystrokes, malware can also obtain
a user’s password tobank.com and thus acquire access
to the user’s online banking account. Malware defense is
outside the scope of this paper, and should be seen as an
orthogonal issue. We refer readers to [8] for a treatment
of mobile malware defenses.

3 Data and Architecture
The data sources used to make authentication decisions
can be grouped into three classes:data primarily avail-
able on the device, data available to the carrier, anddata
available from other providers. Some data may belong to
more than one class; and some data are device specific,
depending on the type of hardware and the type of use.

Device data. Modern mobile devices provide rich
sources of data for implicit authentication: 1) Lo-
cation and co-location data from GPS coordinates
possibly augmented by accelerometer measurements.
WiFi/Bluetooth connections and USB connections indi-
cate co-location. Moreover, successful authentication to
a known access point or sync with a known PC is a strong
positive indicator. 2) Application usage, such as brows-



ing patterns and software installations. 3) Biometric-
style measurements, such as keyboard typing patterns
and voice data. Touch-screen devices might also be able
to fingerprint users, or at least measure the size and shape
of any portion of fingers in contact with the screen. Fu-
ture devices may also have user-configured auxiliary sen-
sors, e.g., to monitor the user’s pulse, temperature and
blood pressure. 4) Contextual data, such as the contents
of calendar entries, the current time of day, day of week,
etc.

Carrier data. Carriers know users’ approximate loca-
tion, as identified by the selection of cellular tower. Car-
riers also know the users’ phone call patterns and may
also have voice data. For users who access the Internet
through the cellular network, the carrier may also know
their Internet access patterns, for example, by examining
their DNS requests and network packets in general.

Cloud data. An increasing number of applications are
hosted on the network, and have usage information of
relevance – whether this amounts simply to what appli-
cations were used and when, or the data content, such as
calendar entries.

System architecture. We now explain possible architec-
ture choices and discuss their pros and cons. The authen-
tication decision may be made by the mobile device, by
the carrier or by another trusted third party. Consumers
of the authentication decision (or score) include 1) the
mobile device (e.g., to decide whether a password is nec-
essary to unlock the device or use a certain application);
2) a service provider that wishes to authenticate the user
(e.g., an online banking website or a cashier’s register if
the device is used as an electronic credit card.)

The mobile device can make authentication decisions
locally to decide whether a password is necessary to un-
lock the device or use a certain application. The device’s
SIM card can also sign the authentication decision (or
score) and send it to a service provider. This approach
protects the user’s privacy This approach protects the
user’s privacy against cheating servers, but not theft and
corruption of devices. Namely, if the device is captured,
an attacker may be able to obtain the data stored in the
memory and learn the user’s behavioral patterns. As mo-
bile devices are battery-constrained, we also need to en-
sure that the authentication score is fast to compute.

Carriers are well-suited to be the trusted third party in
charge of making authentication inferences and commu-
nicating trust statements to qualified service providers.
However, it is also possible for carriers simply to pro-
vide data to third parties entrusted with the analysis of
data and the making of authentication decisions. In either
case, participation of carriers is simplified by the fact that
they already have established a trust relationship with the
consumer, and because of their natural ability to commu-

nicate with the consumer devices. It is possible to enroll
devices that cannot be used to sense or report events by
relying on carrier data, and – based on consumer opt-in
– on data from network service providers.

Network service providers are not only producers of
data, but also consumers of trust statements. They would
make decisions on whether to require an explicit authen-
tication or not based on such statements, and – in the case
when an explicit authentication session is required – feed
back the outcome of this step to the trusted third party. It
is possible for a network service provider to play the role
of the trusted third party, given client-side software that
reports information, using the carrier simply as a conduit
of information.

Privacy. If we adopt an approach where data is re-
ported to a trusted-third party, users’ privacy will be a
concern. The following approaches are possible for en-
hancing user privacy: 1) removing identifying informa-
tion (such as names or phone numbers) from the data
being reported; 2) using a pseudonym approach, e.g.,
“phone number A, location B, area code D”; 3) using
coarse-grained or aggregate data, e.g., reporting a rough
geographic location rather than precise GPS coordinates,
and reporting aggregate statistics rather than full traces.

4 Learning Framework
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Learning

Algorithm
Scoring

Algorithm

Behavior
Past Recent

Behavior

Score

User

Figure 1: Architecture.

Figure 1 outlines the framework of the machine learn-
ing algorithm. We first learn auser model from a user’s
past behavior which characterizes an individual’s behav-
ioral patterns. To make an authentication decision in
real-time, ascoring algorithm examines the user model
and the user’s recent behavior, and outputs a score in-
dicating the likelihood that the correct user is using the
device. The score is used to make an authentication deci-
sion: typically, we can use a threshold to decide whether
to accept or reject the user, and the threshold can vary for
different applications, depending on whether the applica-
tion is security sensitive. The score may also be used as a
second-factor indicator to augment traditional password-
based authentication.

4.1 Modelling the User

The user model should characterize the user’s behavioral
patterns. For example, how frequently the user typically
makes phone calls to numbers in the phone book, where
the user typically spends time, etc. The user model may



also consider combinations of different indicators. For
example, given that the user is in her office and has re-
ceived a call from number A, then with 90% probability,
she will send an email to address B within the next 10
minutes.

First step: an independent feature model. We now
describe a naive model where we assume independence
between different categories of activities. In other words,
we assume that the user’s phone call pattern is indepen-
dent from her location, browser usage, and other activi-
ties. We assume that the user’s behavior depends on the
time of day and day of week. For example, one user
might place and receive frequent phone calls in the after-
noon, but might not place any phone calls between 6 pm
and 10 pm, and only receive phone calls for the first half
of that interval.

Let V1, V2, . . . , Vk denotek independent random vari-
ables, also referred to asfeatures. Example of fea-
tures include: V1 = time elapsed since last good call,
V2 = inter-arrival time between bad calls, V3 =
GPS coordinates, etc. In the above, a good call is one
made to a number in the phone book or a number that
has been called in the past, and a bad call is one made to
a number that has never been seen before.

A user model is the product ofk probability density
functions conditioned on the variableT = (time of day,
day of week):

user model:=
[

p(V1|T ), p(V2|T ), . . . , p(Vk|T )
]

The learning algorithm in Figure 1 basically estimates
these density functions, thereby forming a user model.

4.2 Scoring Algorithm

Given a user model and reported recent behavior, the
scoring algorithm outputs a score indicating the likeli-
hood that the device is in the hands of the rightful owner.

Scoring independent features. We now describe a po-
tential way to design the scoring function under the inde-
pendent feature model.

A user’s recent behavior may be described by a tu-
ple (t, v1, v2, . . . , vk), wheret denotes the current time,
andv1, . . . vk denote the values of variables(V1, . . . , Vk)
at time t. The idea is to compute a separate score for
each feature, and then use a functionf to combine these
separate scores into a final score. Basically, we will
havek scoring functions denotedS1, S2, . . . , Sk. Let
1 ≤ i ≤ k. Given the probability density distribution
p(Vi|T ) and an observed valuevi, thei-th scoring func-
tion Si outputs a scoresi for this feature.

As an example, consider how one might design a scor-
ing function forV1 = time elapsed since last good call.
The idea is that the score should decay over time dur-
ing periods of inactivity. However, the rate of decay de-
pends on the time of day and day of week. If a user typ-

ically makes frequent phone calls in the afternoon, then
the score should decrease faster in the afternoon during
periods of inactivity. By contrast, if the user typically
makes no phone calls between 12am and 8am, then the
score should decrease more slowly over this period of
time. One potential candidate for the scoring function is
as follows. Letv1 denote the lapse since the last call at
timet. LetF (x|T = t) = Pr(V1 ≤ x|T = t) denote the
cumulative distribution of variableV1 for time t. Define
the score to be the probability that a lapse ofv1 or longer
is seen at timet:

S1(v1) = 1 − F (v1|T = t) (1)

The scoring function for user location may assign to
a location visited at a certain time of day a score which
is inversely proportional to the distance to the nearest lo-
cation cluster associated with this time of day. For ex-
ample, a user who is typically at a “work” cluster during
working hours and at a “home” cluster at night would re-
ceive the highest score for being located at the expected
cluster at the expected time. Locations near expected
clusters would receive partial credit that decreases to zero
as the distance to the cluster increases.

Learning the scoring function. Given the sep-
arate scores for k different features, we call
f(S1(v1), . . . , Sk(vk)) to compute the final score.
For example, suppose that each scoreSi(vi) (1 ≤ i ≤ k)
is the probability ofvi, i.e., Si(vi) = Pr[Vi = vi] or
Si(vi) = Pr[Vi ≥ vi] as in Eq(1). Then a natural way
to combine the scores is to compute the joint probability
of (v1, . . . , vk). As we assume independence between
features, the final score would be the product of these
probabilities:f(s1, . . . , sk) = s1 · s2 · . . . · sk.

Another potential design forf is a weighted sum:

f(s1, . . . , sk) := w1s1 + w2s2 . . . + wksk

The weightsw1, . . . wk should be determined through a
training process.

To learn the scoring function, assume that we collect
activity data form individuals. This set of data is divided
into a training set and a test set. The training set will be
used as postive examples in the training process. We syn-
thetically generate negative examples (attack data) for
training. In particular, we use a splicing method to cre-
ate negative examples. If person A and person B appear
in the vicinity of each other at timet, then we splice the
data for A beforet and the data for B after timet. This
models an attack where B picks up or steals A’s mobile
phone and starts using it on her own. In reality, B could
be a friend, colleague, acquaintance or a stranger.

Now, training the weightsw1, . . . , wk can be ex-
pressed as a minimization problem: suppose we fix the
false negative rate, e.g., we say that a legitimate user is



denied access and has to enter her password at most once
a day on average. Our goal is then to minimize the false
positive rate (failure to detect an attack) and the time till
detection in the presence of an attack.

5 Data Collection and Initial Experiments

Data collection. There are three mainstream mobile
platforms to consider: the iPhone, Android devices, and
Symbian devices (e.g., BlackBerry). We chose to per-
form experiments to validate our approach using the
BlackBerry platform, which supports multi-threading.

We ran an experiment in which we recorded a list
of actions and events for BlackBerry equipped sub-
jects. Information relating to the following types of
events was recorded: emails, calls, SMSs, location,
contacts, calendar, tasks, memos, alerts, battery level,
(un)holstering, USB connections, power on/off, SD card
removal/insertions.

In more detail, we recorded the following email ac-
tivity: New email detection, opening/closing email mes-
sages, adding/removing email messages to/from folders,
creation and sending of new email messages, types and
file extensions of email attachments. For call activity,
we recorded the date, duration, notes, and the status of
calls. We recorded sending and receiving of SMSs. The
location was saved with 5-minute intervals. We recorded
the addition, removal and editing of contacts, calendar
events, task list items and memo pad entries. We also
recorded alerts started and stopped – e.g., calendar ap-
pointment warnings – and battery level changes (high,
medium, low).

Data analysis. Whereas a full-blown system would use
all detectable events to make authentication decisions,
we started by examining a subset of them for the sake
of simplicity. Below we report some initial findings of
the analysis we performed on phone data and location
data.

We collected three months of phone data for each par-
ticipant in the study, and studied their call patterns. We
find that their call history exhibit distinct patterns de-
pending on the time of the day. For example, between
12 am and 4 am over a period of 3 months, one partic-
ipant made only a small number of calls to 3 different
numbers. On the other hand, between 12 pm and 4 pm,
the same participant made a total of 267 calls to 44 dif-
ferent numbers, averaging to about 3 calls per day during
this time period. Among the 267 calls, about a half of
them were made to a family member of the participant.
The second most frequent number which turned out to
be a collaborator of the participant was called 17 times.
Both the numbers called and the call patterns authenti-
cate users – in Figure 2, we plot the cumulative distri-
bution of the time elapsed since the previous call for the
individual described above. The two curves in the figure

represent 3 pm and 5 am respectively. The figure indi-
cates that around 3 pm, the typical (median) lapse since
last call is 108 minutes. By contrast, the typical (median)
lapse at 5 am is around 521 minutes. The patterns vary
for different individuals. For example, another individ-
ual in the study made only 60 calls between 12 pm and
4pm over the course of 3 months, averaging about 0.67
calls per day. The score for the latter individual should
therefore decay more slowly than the former individual
during this period of time.
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Figure 2: CDF of lapse since previous call.

We also analyzed the location traces for participants
in the study. We used the interactive clustering algo-
rithm of [15] to compute clusters of the most frequently
visited locations. The clusters are parametrized by the
maximum distance between points within a cluster, and
by the minimum number of points within a cluster. We
experimented with different values for these parameters.
For a trace representing a few days’ worth of activities
with locations recorded every 5 minutes, we found that a
maximal distance of 1,000 meters and a minimum of 20
points per cluster successfully produced a small number
of clusters corresponding to where the user lives, works
and shops (see Figure 3).

Scoring algorithm. In a full-blown system the
score will combine all features collected. In
our preliminary analysis, we design a scoring al-
gorithm for phone data combining two features:
V1 = time elapsed since last good call, and V2 =
number of consecutive bad calls. For example, if the
most recent call is a good call, thenV2 = 0. If the most
recent three calls are good, bad and bad respectively, then
V2 = 2.

Figure 4 plots the authentication score for one individ-
ual over a period of one day. The x-axis represents the
time of day expressed in hours 0-23. The y-axis repre-
sents the score, which is a value between 0 and 1. Every
time the individual makes a call to a known good num-



Figure 3: Locations clusters computed from a user’s GPS trace.
The height of the cluster is proportional to the time spent within
the cluster.
ber, the score goes up to 1. As marked by red “X” in the
figure, the score is decreased whenever a bad call is made
(i.e., a call to an unknown number). During silent peri-
ods, the score decays over time. Specifically, the figure
shows that the score decays faster in the afternoons than
at night. For example, during a silent period between 7
pm and 9 pm, the score decays fast. By contrast, during
a silent period between 12 am and 5 am, the score de-
cays very little. This is because this user typically makes
more phone calls between 7 pm and 9 pm, but typically
does not make any calls between 12 am and 5 am. The
small local oscillations are due to an artifact in the scor-
ing function defined in Eq(1). Eq(1) does not guarantee
that the score is strictly monotonically decreasing. It is
possible to have small local oscillations while the score
will decay over longer periods of time.
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Figure 4: Score over time. Each red “X” marks a call to an
unknown number, where the score is decreased.

We also ran the scoring algorithm on an adversarial
trace obtained by splicing two individuals’ traces. Not
surprisingly, the adversary’s score quickly decreases to 0
as the adversary calls a disjoint set of numbers from the
owner of the device.

6 Future Work
As future work, we plan to investigate the following: 1)
Make use of all features for the scoring, and report re-
sults on false positive and false negative rates. 2) Re-
search methods to model the dependence between dif-
ferent features (i.e., activities). 3) Research methods to
model adversarial behavior.
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