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ABSTRACT
Hadoop Distributed File System (HDFS) presents unique chal-

lenges to the existing energy-conservation techniques and makes

it hard to scale-down servers. We propose an energy-conserving,

hybrid, logical multi-zoned variant of HDFS for managing data-

processing intensive, commodity Hadoop cluster. Green HDFS’s

data-classification-driven data placement allows scale-down by

guaranteeing substantially long periods (several days) of idleness

in a subset of servers in the datacenter designated as the Cold

Zone. These servers are then transitioned to high-energy-saving,

inactive power modes. This is done without impacting the perfor-

mance of the Hot zone as studies have shown that the servers in

the data-intensive compute clusters are under-utilized and, hence,

opportunities exist for better consolidation of the workload on

the Hot Zone. Analysis of the traces of a Yahoo! Hadoop clus-

ter showed significant heterogeneity in the data’s access patterns

which can be used to guide energy-aware data placement policies.

The trace-driven simulation results with three-month-long real-

life HDFS traces from a Hadoop cluster at Yahoo! show a 26%

energy consumption reduction by doing only Cold zone power

management. Analytical cost model projects savings of $14.6

million in 3-year total cost of ownership (TCO) and simulation

results extrapolate savings of $2.4 million annually when Green-

HDFS technique is applied across all Hadoop clusters (amounting

to 38000 servers) at Yahoo.

1. INTRODUCTION
Cloud computing is gaining rapid popularity. Data-inten-

sive computing needs include advertising optimizations, user-
interest predictions, mail anti-spam, data analytics and de-
riving search rankings. With the increase in the sheer vol-
ume of the data that needs to be processed, storage and
server demands of computing workloads are on a rapid in-
crease. Yahoo!’s datacenters already have 170 petabytes of
data and deploy 38000 servers [4]. Over the lifetime of IT
equipment, the operating energy cost is comparable to the
initial equipment acquisition cost [9] and constitutes a sig-
nificant part of the TCO of a datacenter [7]. Hence, energy-
conservation of the extremely large-scale, commodity server
farms has become a priority.
Server energy consumption costs can be cut down sig-

nificantly by using low-power, high-energy-saving inactive
power modes during idle periods of utilization1. However,
inactive power modes cannot be used in an adhoc fashion
as there are significant latencies associated with the power

1
Some SATA disks consume only 0.9W in sleep state vs. 7.5W in idle

state and 17W in active state

state transitions. Effective usage of inactive power modes
mandates presence of significantly long periods of idleness
in the system.

There is significant amount of research literature about
datacenter energy management. A large number of these
techniques aim to classify and place the computational load
in an energy-efficient manner [6, 14, 16, 17, 19]. They try to
scale-down servers by manufacturing idleness by migrating
workloads and their corresponding state to fewer machines
during periods of low activity. This can be relatively easy to
accomplish when using simple data models, when servers are
mostly stateless (e.g., serving data that resides on a shared
NAS or SAN storage system). However, in complex data
distribution models that have significant state, such tech-
niques cannot manufacture enough idleness to make usage
of inactive power modes feasible. One such example is the
Hadoop compute cluster.

Given the massive bandwidth requirements and the sheer
amount of the data that needs to be processed, data-intensive
compute clusters such as those running Hadoop have moved
away from NAS/SAN model to completely clustered, com-
modity storage that allows direct access path between the
storage servers and the clients [10]. Hadoop’s data-intensive
computing framework is built on a large-scale, highly re-
silient Hadoop distributed filesystem (HDFS) managed clust-
er-based storage [13]). HDFS distributes data chunks and
replicas across the servers for higher performance, load-bala-
ncing and resiliency. With data distributed across all servers,
any server may be participating in the reading, writing, or
computation of a data-block at any time. Such a data place-
ment complicates power-management and makes it hard to
generate significant periods of idleness in the Hadoop clus-
ters and renders usage of inactive power modes infeasible
[15].

Recent research on increasing energy-efficiency in GFS
and HDFS managed clusters [2, 15] propose maintaining a
primary replica of the data on a small covering subset of
nodes that are guaranteed to be on and which represent the
lowest power setting. The remaining replicas are stored in
larger set of secondary nodes. Performance is scaled up by
increasing the number of secondary nodes. However, these
solutions suffer from degraded write-performance and in-
creased DFS code complexity [3]. These solutions also do
not do any data differentiation and treat all the data in the
system alike.

We take a different approach to generating significant pe-
riods of idleness in a Hadoop cluster. Instead of energy-
efficient placement of computations or replicas, we use energy-



aware placement of data and focus on data-classification
techniques to differentiate the data. A study of Yahoo!’s
Hadoop cluster illustrated in Section 2 shows significant vari-
ation in the access patterns of the data stored in the cluster.
We seek to utilize the heterogeneity in the data towards our
energy-conserving data-classification-driven data placement.
We proposed this approach in the context of cloud storage
in our paper [12].
We propose GreenHDFS, an energy-conserving, self-adap-

tive, hybrid, logical multi-zone variant of HDFS. Green-
HDFS trades performance and power by logically separating
the Hadoop cluster into Hot and Cold zones. Zone’s tem-
perature is defined by its power consumption and the per-
formance requirements. Data’s temperature evolves based
upon its availability/performance requirements. We use data-
clas-sification policies to place data onto a suitable tempera-
ture zone. Since computations exhibit high data locality in
the Hadoop framework, the computations flow naturally to
the data in the right temperature zones.
GreenHDFS technique results in a number of servers in the

Cold zone with very low utilization and guaranteed periods
of idleness. The CPU, DRAM and Disks on these servers
can then be transitioned to inactive power modes resulting
in substantial energy savings. Thus, GreenHDFS provides a
mechanism to have an energy-proportional behavior in data
centers built with non-energy-proportional components.
We argue that zoning in GreenHDFS will not affect the

Hot zone’s performance adversely and the computational
workload can be consolidated on the servers in the Hot zone
without exceeding the CPU utilization above the provision-
ing guidelines. A study of 5000 Google compute servers,
showed that most of the time is spent within the 10% - 50%
CPU utilization range [5]. Hence, significant opportunities
exist in workload consolidation. And, the compute capacity
of the Cold zone can always be harnessed under peak load
scenarios as discussed in Section 3.4.
The remainder of the paper is structured as follows. In

section 2, we describe the data characteristics of a Yahoo!
cluster. In Section 3, we discuss the design, and the concep-
tual basis of the policies in GreenHDFS. We focus on the
major design primitive: an adaptive multi-zoned Hadoop
cluster. In Section 4, we include simulation results demon-
strating the effectiveness of our design in conserving energy
in an enterprise Hadoop cluster at Yahoo!. Finally, we con-
clude.

2. ANALYSIS OF A YAHOO CLUSTER
We analyzed three months of HDFS logs 2 in one of Ya-

hoo!’s enterprise Hadoop clusters. The cluster had 2600
servers and hosted 34 million files, and the data set size was
5 Petabytes. We found existence of a significant amount of
data in the system which either wasn’t accessed at all or
rarely accessed after some amount of elapsed time. We in-
troduced four file lifespan metrics to analyze the evolution
and lifetime of the files in the cluster. FileLifeSpanCFR

metric is defined as the file lifespan between the file creation
and first file read access. This metric is used to understand
the gap between a file’s creation and the start of a file’s
hotness lifespan. FileLifeSpanCLR metric is defined as the

2
HDFS has the ability to log all filesystem access requests. The log-

ging is implemented using log4j and once enabled, logs every HDFS
event in the Namenode’s log [20]. We used the HDFS metadata check-
point and logs for our analysis.

file lifespan between the file creation and the last file read
access. This metric is used to determine the Hotness pro-
file of a file, i.e., the period of the time for which the file
is actively accessed. FileLifeSpanLRD metric is defined as
the file lifespan between last file read access and file deletion.
FileLifeSpanLRD metric helps in determining the Coldness
profile of a file, i.e., the period for which a file lies dormant
in the system without getting accessed.

As shown in Figure 1, the FileLifeSpanCFR of 90.26%
of data is less than 2 days. Thus, data is accessed soon after
its creation. 89.61% of data has a FileLifeSpanCLR of less
than 10 days. This indicates that majority of the data is hot
for less than 10 days after its creation in the system. This
clearly illustrates a news-server-like behavior for 89% of the
data whereby the reads to the data are clustered around its
creation and accesses die down after a short hot lifespan.
40% of the data in the cluster has a FileLifeSpanLRD of
higher than 20 days. This indicates that 40% of the data
lies untouched in a dormant state in the cluster for more
than 20 days. We didn’t account for temporary data that
is stored in the grid in this analysis. Had we accounted for
the same, a higher percentage (60%) would be dormant for
more than 20 days.

As shown in Figure 2(mid), in steady-state, almost 60%
data was not accessed at all in a 20 day window. This cold
data amounted to 70% of the files in the system as shown
in the Figure 2(left). This cold data needs to exist in the
system for regulatory compliance and historical trend anal-
ysis. This study indicates that there are tremendous oppor-
tunities to differentiate the data into different temperature
classes in a Hadoop computer cluster.

3. GREENHDFS’S HYBRID MULTI-ZONE
LAYOUT

We give an overview of GreenHDFS’s zones in this section
and we only discuss the functionality and policies which are
relevant to Hadoop cluster’s energy-management. The zone
with the higher temperature is designated as the Hot zone.
The zone with the lower temperature is designated as the
Cold zone. High-level data placement policy decides the
zone on which data will be placed initially based on per-
zone data-classification policies illustrated below. The data
transitions adaptively between the zones as its temperature
changes in response to the energy-management policies cov-
ered in Section 3.3. GreenHDFS requires few changes to
the HDFS code such as differentiating inactive servers from
failed servers in the heartbeat handling mechanism 3 and
directing data accesses to the right zone. We have built a
prototype which is out of the scope of this paper.

3.1 HotZone
Data Class: Consists of hot, popular data that is ac-

cessed very frequently. The popularity can be spatial or
temporal. Hardware Class: consists of high performance,
high power and hence higher cost CPUs. Data Chunking
Policy: Uses a Chunk Server Placement policy that consid-
ers the problem of assigning n chunks f1, f2, . . . , fn among
m servers and aims to optimize the mean response time and
the system throughput by minimizing the queuing delays on

3
This is necessary as HDFS rereplicates the blocks residing on a server

if it doesn’t receive a heartbeat from the server within a configured
threshold of time.
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Figure 1: Cumulative Frequency Distribution of the LifeSpan metrics in the cluster. 90.26% of data has a

FileLifeSpanCFR of less than 2 days. 89.61% of the data has a FileLifeSpanCLR of less than 10 days. 40% of the

data has a FileLifeSpanLRD higher than 20 days.
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Figure 2: Percentage of the Hot and Cold data and the associated file count in a Yahoo! cluster. In steady-state,

60% data is Cold in the system. Cold data was determined as the data that was not accessed within the last 20 days

in this graph. The anamoly during the periods of 04/30-05/15 arose from a planned internal enterprise initiative that

resulted in unprecedented data accesses.

the servers’ disks in Hot zone. We assume m ≥ n. Full
description of the algorithm is beyond the scope of this pa-
per. Power Policy: None, Hot zone has strict service level
agreement (SLA) requirements and hence, performance is
of the greatest importance. We trade-off power savings in
interest of higher performance and servers in Hot zone will
remain in the active mode at all times. Zone Server As-
signment: Majority (70% +) of the servers in the cluster
are assigned to the hot zone upfront. We are working on a
dynamic server assignment policy which is self-adapts to the
changes in the workload patterns similar to [8].

3.2 Cold zone
Data Class: consists of files with low spatial or temporal

popularity with few to rare accesses. We trade-off perfor-
mance for higher energy-conservation in this zone. Hard-
ware Class: We propose using a larger number of disks
per server in these zones compared to the Hot zone to ac-
commodate the huge amount of cold data. This has two
advantages: 1) fewer servers will need to be assigned to the
Cold zone, hence, performance-critical Hot zones will get a
higher share of servers. Higher number of hot servers is crit-
ical in a high-performance and high-availability distributed
systems software which tends to spread data and compu-
tation. Power Policy: Aggressive, Performance and SLA
requirements are not critical for Cold zone and we employ
aggressive power management schemes and policies in Cold
zone to transition servers to a very low power consuming,
inactive power mode. Zone Server Assignment: On-

Demand servers are powered-on and assigned to Cold zone
on-demand. Data Chunking Policy: None, For optimal
energy savings, it is important to increase the idle times of
the servers and limit the wakeups of servers that have transi-
tioned to the inactive-power-saving mode. Keeping this ra-
tionale in mind and recognizing the low performance needs
and infrequency of data accesses to the Cold zone; this zone
will not chunk the data. By not chunking the data, we en-
sure that future access to a particular data is limited to just
one server hosting that data. File Allocation Policy tries
to avoid powering-on a server and maximizes the use of the
existing powered-on servers in its server allocation decisions
in interest of maximizing the energy savings. We used In-
order placement policy where a data structure maintains a
sorted list of all the server IDs and the first few servers in
the data structure are chosen as a target for data placement.
These servers are kept powered-on and are filled completely
to capacity before the next set of servers is chosen from the
list. Data Integrity To ensure data integrity in the Cold
zone, disks in the Cold zone are scrubbed from time to time.
Every block on the disk is read and checked for agreement
with its signature. 4

3.3 Energy-management Policies
Files are moved from the Hot zone to the Cold zone as

their temperature changes over time. In this paper, we use
age of a file, as defined by the last access to the file, as the

4
We have added 1 day per month per server to the servers in the Cold

zone, to account for a monthly scrub in our evaluation.



measure of temperature of the file. File Migration Policy
monitors the age of the files and moves old files to the Cold
Zone. The advantages of this policy are two-fold: 1) it leads
to higher space-efficiency as space is freed up on the Hot
zone for files which have higher SLA requirements by moving
rarely accessed files out of the servers in these zones; further-
more, these files can be aggressively compressed on the lower
zone to save on storage capacity2) it leads to higher energy-
efficiency as the concentration of the cold data on these
servers allows for aggressive power management techniques
illustrated earlier. Server Power Conservation Policy de-
termines the servers which can be transitioned into a power
saving standby/sleep mode in the Cold zone. We rely on
Wake-on-LAN to wake the system upon arrival of a packet.
Servers transition back to active power state upon receipt of
data access, data migration or disk scrubbing events. All the
components in the servers typically illustrate poor energy-
proportionality and servers consume 50% peak power even
when idle [5]. Thus, it is not sufficient to just scale-down
one component in the system and we scale-down all the com-
ponents (CPU, DRAM, Disks) in the system. File Reversal
Policy: ensures that the QoS, bandwidth and response time
of files which become popular again after a period of dor-
mancy is not impacted. A once-again-popular file is moved
back from the Cold zone to the Hot zone if the number of
accesses to the file exceed a certain threshold.

3.4 Discussion
Based on our observation that a large amount of data in

the cluster is cold, GreenHDFS will move this data to the
Cold zone. The observation that the accesses to the data
have a news-server-like access pattern, ensures that once a
data is deemed cold (i.e., was not accessed in past n days),
the probability of it being accessed again is lower. This will
guarantee significant periods of idleness in the Cold zone
and allow a large number of servers in the Cold zone to
transition to inactive power modes. Hence, there can be a
significant reduction in the energy costs of the cluster.
Given that the servers are under-utilized, the workload

can be consolidated in the Hot zone servers. Furthermore,
the boundary between the Hot and Cold zone is a logical
boundary and in periods of peak utilization, the compute
power of the Cold zone servers can still be harnessed. We
also argue that the resulting power reduction courtesy of a
percentage of always-sleeping servers could allow for provi-
sioning more servers in the data center than a baseline case
within the same power budget. [11] quotes in favor of our
argument that - ’Maximizing usage of the available power
budget is also important for existing facilities because it can
let the computing infrastructure grow or enable upgrades
without requiring the acquisition of new datacenter capacity,
which can take years if it involves new construction’. These
additional servers can be provisioned to the Hot zone, allow-
ing the Hot zone to offer similar availability, performance
and bandwidth as the baseline case.
Finally, Oozie, which is used to manage and schedule

Hadoop workflows, can be used to proactively power-on in-
active servers since it knows upfront when/where a job needs
to be launched [1]. Such proactive powering-on will help
hide and amortize the wakeup latency of the power state
transition. Also, given the batch-processing mode of the
workloads, the wakeup penalty is of less concern. Still, we
are taking several steps to mitigate the performance penalty

of state transitions in our ongoing research.

4. EVALUATION RESULTS
We used a trace-driven simulator 5 to evaluate Green-

HDFS and used HDFS traces generated by a Hadoop cluster
at Yahoo! as an input to the simulator. We used models for
the power levels of the disk, processor and the DRAM in
the simulator 6. Table 1 lists the power values used in the
Simulator. There were 34 million files in the trace file and
the total size of the dataset was 5 PetaBytes.

All experiments and analysis were performed on the nodes
of a development cluster at Yahoo. We used PIG exten-
sively for the data analysis of the traces. We used a hybrid-
model with storage-heavy servers (12, 1TB disks/server) in
the Cold zone and normal (4, 1TB disks/server) servers in
the Hot zone. Our comparisons were done with the base-
line HDFS which doesn’t do any energy-management. The
Simulator assumed 2600 servers to be consistent with the
Hadoop cluster under consideration. For performance, load
balancing and availability reasons, we provisioned 70% (i.e.,
1820) servers to the Hot zone and 30% (i.e., 780 servers) to
the Cold zone in the simulator.

Server Active
Power
(W)

Idle
Power
(W)

Sleep
Power
(W)

Hot server (2 CPU, 8
DRAM DIMM, 4 HDD)

442.7 105.3 14.1

Cold server (2 CPU, 8
DRAM DIMM, 12 HDD)

578.7 165.3 21.3

Table 1: Power Number Used in Simulator

Energy-Conservation In this section, we show the en-
ergy savings made possible by GreenHDFS over three months
in comparison to the baseline HDFS. The cost of electricity
was assumed to be $0.063/Kwh [11]. Applying GreenHDFS
to 2600 servers results in $41,607 energy savings in a three-
month period which is 26% of the baseline energy costs.
If GreenHDFS technique is applied to all of the Yahoo!
Hadoop clusters (amounting to 38000 servers), $2,432,417
can be saved in the energy costs annually. And, these re-
sults are with power management only in Cold zone. Energy
saving from off-power servers will be further compounded in
the cooling system of a real datacenter. For every Watt of
power consumed by the compute infrastructure, a modern
data center expends another one-half to one Watt to power
the cooling infrastructure [18].

Cold Zone Reliability Consideration We analyzed
the frequency distribution of the power transitions incurred
by the servers in the Cold zones. As shown in Figure 3,
the maximum number of power state transitions incurred
by a server in a three-month simulation run was 70 times.
Frequently starting and stopping disks is suspected to affect
disk longevity. Given the very small number of transitions
incurred by a server in the Cold zone in a year, there is no
risk of exceeding the start/stop cycles 7 during the typical
5 year service life time of the disks.

5
The GreenHDFS simulator was implemented in Java and MySQL

distribution 5.1.41 and executed using Java 2 SDK, version 1.6.0-17.
6
Information was extracted from the datasheet of Seagate Barracuda

7200.7 which is a SATA hard drive, and a Quad core Intel Xeon X5400
processor. This is an approximation of the cluster hardware.
7
Most of the SATA disks can tolerate 50,000 start/stop cycles
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Analytical Cost Model Projections We changed the
homogeneous Analytical Cost Model used in [11] to allow
heterogeneity 8 in the power consumption rate and in the
costs of the servers in the hybrid model. In the hybrid model
with 4, 1TB disks server (lower cost) in the Hot zone and
12, 1TB disks server (higher cost) in the Cold zone, the 3-
year TCO with no energy management is $15.1million for
2600 servers. In our simulation run, on average only 198
servers were awake in the Cold zone out of the assigned 780
servers. Taking the sleeping servers into consideration, the
Analytical Cost Model shows savings of $1 million in the 3-
yr TCO for 2600 servers in the hybrid model while giving an
extra 6.8 Petabytes of storage. 3-yr TCO saving will amount
to $14.6 million by applying GreenHDFS technique across
all the hadoop clusters (around 38000 servers overall),

5. CONCLUSION AND FUTURE WORK
We presented GreenHDFS, an energy-conserving, hybrid,

logical multi-zoned variant of Hadoop’s compute cluster. We
rely on data classification driven data placement to realize
guaranteed, substantially long periods of idleness in a subset
of servers designated as the Cold zone in the Hadoop clus-
ter. These long periods of idleness allow us to use aggres-
sive inactive power modes in all components (CPU, disks,
DRAM) of this subset of servers projecting significant en-
ergy cost savings. We argue that the multi-zone data center
layout won’t have an adverse impact on the performance
of the Hot zone as there are ample opportunities for work-
load consolidation given the low utilization (10-50%) in com-
pute servers [5]. Simulation results show that GreenHDFS
is capable of achieving 26% savings in the energy costs of a
Hadoop cluster in a three-month simulation run. Analytical
cost model projects a savings of $14.6 million in 3-year TCO
and simulation results extrapolate a savings of $2.4 million
annually when GreenHDFS technique is applied across all
Hadoop clusters (amounting to 38000 servers) at Yahoo.
We are working on optimizations to enhance the energy-
efficiency by using low-cost processors, amortizing the power
transition penalties, reducing replication by exploring RAID
alternatives and compression mechanisms to make the Cold
zone more energy- and storage-efficient.

6. ACKNOWLEDGEMENT
We are thankful to Ryota Egashira and Viraj Bhat at Yahoo! for

giving us a jump-start on the cluster analysis. We are thankful to

8
The spreadsheets used in these calculations are located at the au-

thor’s website and can be tweaked for individual clusters

Raj Merchia at Yahoo! Inc and the anonymous reviewers for their
comments. Lastly, we are grateful to Prof. Klara Nahrstedt, and
Prof. Roy Campbell for their feedback in the initial version of this
work.

7. REFERENCES
[1] http://yahoo.github.com/oozie/.

[2] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch,
and K. Schwan. Robust and flexible power-proportional
storage. In SoCC, 2010.

[3] H. Amur and K. Schwan. Achieving power-efficiency in clusters
without distributed file system complexity. 2010.

[4] E. Baldeschwieler.
http://developer.yahoo.com/events/hadoopsummit2010/agenda.html.

[5] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. Computer, 40(12), 2007.

[6] C. Bash and G. Forman. Cool job allocation: measuring the
power savings of placing jobs at cooling-efficient locations in
the data center. In ATC’07.

[7] C. Belady. In the data center, power and cooling costs more
than the it equipment it supports. Electronics Cooling,
February, 2010.

[8] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao. Energy-aware server provisioning and load dispatching
for connection-intensive internet services. In NSDI, 2008.

[9] Y. Chen, A. Ganapathi, A. Fox, R. H. Katz, and D. A.
Patterson. Statistical workloads for energy efficient mapreduce.
Technical report, UC, Berkeley, 2010.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[11] U. Hoelzle and L. Barroso. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines.
Morgan and Claypool Publishers, May 29, 2009.

[12] R. T. Kaushik, L. Cherkasova, R. Campbell, and K. Nahrstedt.
Lightning: Self-adaptive, energy-conserving, multi-zoned,
commodity green cloud storage system. HPDC, 2010.

[13] S. Konstantin, H. Kuang, S. Radia, and R. Chansler. The
hadoop distributed file system. MSST, 2010.

[14] K. Le, R. Bianchini, M. Martonosi, and T. Nguyen. Cost- and
energy-aware load distribution across data centers. In
HotPower, 2009.

[15] J. Leverich and C. Kozyrakis. On the energy (in)efficiency of
hadoop clusters. SIGOPS Operating Systems Review, 2010.

[16] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making
scheduling ”cool”: temperature-aware workload placement in
data centers. In ATC ’05.

[17] D. Narayanan, A. Donnelly, and A. Rowstron. Write
off-loading: Practical power management for enterprise storage.
Trans. Storage, 4(3):1–23, 2008.

[18] C. Patel, E. Bash, R. Sharma, and M. Beitelmal. Smart cooling
of data centers. In IPACK, 2003.

[19] R. K. Sharma, C. E. Bash, C. D. Patel, R. J. Friedrich, and
J. S. Chase. Balance of power: Dynamic thermal management
for internet data centers. IEEE Internet Computing, 9:42–49,
2005.

[20] T. White. Hadoop: The Definitive Guide. O’Reilly Media,
May, 2009.


