
1

Enabling Legacy Applications on Heterogeneous Platforms
Michela Becchi, Srihari Cadambi and Srimat Chakradhar

NEC Laboratories America, Inc.

{mbecchi, cadambi, chak}@nec-labs.com

Abstract
In this paper we make the case for a runtime technique to

seamlessly execute legacy applications on heterogeneous

platforms consisting of CPUs and accelerators. We consider

discrete as well as integrated heterogeneous platforms. In

the former, CPU and accelerators have different memory

systems; in the latter, accelerators share physical memory

with the CPU. Our proposed runtime does not require any

code changes to be made to the application. It automatically

schedules compute-intensive routines found in legacy code

on suitable computing resources, while reducing data

transfer overhead between the CPU and accelerators. To

reduce data movement, our runtime defers data transfers

between different memory systems, and attempts to move

computations to data instead of vice-versa. This could

create multiple copies of the data – one on the CPU, and the

others on the accelerators - leading to coherence issues. To

address this problem, we propose adding an operating

system module that maintains coherence by intercepting

accesses to shared data and forcing synchronization. Thus,

by exploiting existing mechanisms found in system

software, we architect a non-intrusive technique to enable

legacy applications take advantage of heterogeneous

platforms. With neither software changes nor additional

hardware support, the proposed system provides a unified

compute and memory view to the application programmer.

1. Introduction
For many commercial and consumer workloads with

scientific, media-rich and graphically intense portions,

heterogeneous platforms strike a balance between

performance, energy and development cost. One form of

heterogeneity is represented by platforms with one or more

multi-cores (e.g., x86 CPUs) coupled with many-core

processors (e.g., GPUs) and/or other accelerators (FPGAs,

cryptographic processors, etc.). The CPU usually controls

the offloading of computations to different accelerators.

Library-based programming eases the burden of

deploying applications on heterogeneous systems. In this

scenario, applications invoke well-known computational

routines that are made available in pre-compiled libraries.

For some of these, multiple library implementations

targeting different computational units are provided. A

notable example is dense matrix multiplication,

implemented in the sgemm [14] and cublasSgemm [15]

libraries, targeting x86 CPUs and Nvidia GPUs

respectively. In recent years there has been a lot of activity

in porting and accelerating computational routines on

GPUs, and we do not expect this trend to change in the near

future. Selection mechanisms to choose the execution unit

for given computational kernels based on their estimated

performances are described in several recent research

efforts [2][3][8].

In this work we make the case for a runtime to increase

the performance of existing applications on heterogeneous

platforms without requiring any code changes. In

particular, legacy applications written using library APIs

can be transparently accelerated by intercepting library

calls, and invoking a suitable accelerator implementation.

We believe that a runtime that automatically selects

accelerators for legacy code should also take into account

data transfers, especially because large transfers over

conduits such as PCI can overwhelm any speedup achieved

by the accelerator. In [16] we proposed a data-aware

runtime to efficiently run applications on heterogeneous

systems. After an accelerator processes a function, the

runtime defers transferring the function’s data back to the

CPU until the data are required. Such an on-demand

transfer policy enables the runtime to move computations to

the data, rather than the other way around. With the data-

aware runtime on real applications, we measured speedups

of 25% over a data-agnostic runtime.

Such an on-demand transfer policy creates multiple

copies of data and necessitates source-level changes (such

as locks and synchronization points) or hardware support in

order to maintain data coherence. However, our goal is to

address legacy applications, that is, to seamlessly port them

and minimize data transfer with no code changes. To this

end, in this work we propose using the operating system

and runtime to provide the programmer with a unified

memory view of possibly discrete underlying memory sub-

systems. Besides scheduling computations and managing

data movement between CPU and accelerators, the runtime

must ensure coherence of data present in multiple locations

without source code or hardware changes.

The idea of minimizing the overhead due to data

transfers and of moving computation to data has been

previously considered in the context of programming

models for heterogeneous platforms [5][6][7][8][9].

However, our requirement of addressing legacy

applications introduces significant distinctive challenges.

First, our design is driven by the need for avoiding any code

changes in the application. On the contrary, programming

models as those listed above require the application to be

2

written according to given API. Second, we assume that

data access patterns are not known a priori and cannot be

predicted. Therefore, memory access optimizations and

synchronizations must be performed online with no

knowledge of future programs behaviors.

We believe that a comprehensive solution should

consider two kinds of devices: “distributed” and

“integrated” accelerators (Figure 1). Distributed devices

have their own local memory, and are typically connected

to the CPU via a PCI-bus. Integrated accelerators share

physical memory with the CPU; an example is the Ion

platform [17], where an Nvidia GPU shares memory with

an Intel Atom CPU. As we will discuss in Section 4,

different memory organizations lead to different design

issues, both in terms of memory usage patterns and required

mechanisms for data coherence.

We recognize the existence of obvious similarities

between the memory models we consider in the context of

heterogeneous platforms and the traditional distributed [6]

and shared [5] memory models adopted in the context of

(homogeneous) multi-core architectures. However, the

presence of many-core accelerators introduces some

interesting design questions. First, since GPU (and most

accelerators) do not run an operating system, they do not

offer inherent mechanisms to trap memory accesses. Such

mechanisms are typically needed to synchronize data

accesses across different memories. Tracking of all accesses

to the accelerator memories must therefore be implemented

in the runtime system, and this can be efficiently done only

in a coarse grained fashion (e.g., on transfers of entire

function call parameters). Second, since the accelerator

processing time can be order of magnitude smaller than the

CPU processing time, the synchronization overheads can

weigh differently (and in a more significant way) compared

to the homogeneous case.

Other related research efforts merit discussion.

Harmony [2] is a runtime that schedules functions on

heterogeneous systems taking input size into account. Qilin

[3] presents an adaptive mapping technique to split and

concurrently run a function across a CPU and a GPU with

the goal of improving performance. These two proposals,

however, focus on the compute aspect and do not optimize

memory transfers. StarPU unified runtime system [11]

proposes implementing CPU-GPU memory coherence

using the MSI protocol. However, it requires programmers

to rewrite their application using a new API. The authors of

[8] propose tools to encapsulate different processor-specific

tool-chains and language mechanisms in order to enable

applications on heterogeneous systems. In particular, they

consider using the Merge [9] framework to optimize data

transfers. This mechanism, however, does require analysis

and modification of the application source code. SEJITS

[10] addresses programmability of heterogeneous platforms

by proposing the integration of components written using

productivity and efficiency programming languages,

whereas [4] discusses a programming model for

heterogeneous x86 platforms. However, these two

proposals do not target legacy applications. Finally, GViM

[12] is a Xen-based virtualization framework for

heterogeneous systems that reduces the number of user

space to kernel space copies when moving data between the

CPU and GPU. However, this does not optimize the data

transfers between CPU and GPU. In summary, our proposal

offers a different viewpoint by focusing on compute and

memory unification in the context of legacy applications.

The rest of the paper is organized as follows. In

Section 2, we use a simple example to illustrate the benefits

of data-aware scheduling. In Section 3, we give an

overview of the proposed runtime system. In Section 4, we

provide more details on our solution to the memory

unification problem. We conclude in Section 5.

2. The Case for Data-Aware Scheduling
In this section, we use a real application, Supervised

Semantic Indexing (SSI) matching [13], to illustrate the

performance potential of data-aware scheduling on

heterogeneous systems. SSI is an algorithm used to

semantically search large document databases. It ranks

documents based on their semantic similarity to text-based

queries. Each document and query is represented by a

vector, with each vector element corresponding to a word.

0

0.5

1

1.5

2

2.5

3

3.5

ti
m

e
 i
n

 s
e

c

data transfer

topk_rank

sgemm

C
P

U
,C

P
U

G
P

U
,C

P
U

G
P

U
,G

P
U

G
P

U
,G

P
U

-
d

a
ta

 a
w

a
re

32 queries 64 queries 96 queries

Figure 2: SSI matching performance on a discrete

heterogeneous system.

CPU memory

multi-core

CPU

Integrated

accelerator

accelerator1

(GPU)

device

memory

. . .

memory

controller

PCI bus

accelerator2

(GPU)

device

memory

acceleratork

(FPGA)

device

memory

Distributed

accelerators

Figure 1: Target heterogeneous platform.

3

We omit further algorithmic details in the interest of space,

and refer interested readers to [13].

The SSI matching process has two compute-intensive

functions. The first (sgemm) is a dense matrix

multiplication of the query vectors with all document

vectors. The second routine (topk_rank) must select, for

each query, the top k best matching documents. With

millions of documents to search for each query, these two

functions take up 99% of the SSI execution time.

We perform four runs of SSI matching, each with a

different schedule for the two functions. For each run, we

consider 32, 64 and 96 simultaneous queries into a 1.6M

document database, identifying 64 best matching

documents for every query. The document database

contains documents selected from the Wikipedia [13]. For

matrix multiplication, we use the Intel MKL [14] on the

CPU and the CUBLAS library [15] on the GPU. We use

our custom CPU and GPU implementations for topk_rank.

Figure 2 shows the total running time reported on a

heterogeneous platform consisting of a Xeon 2.5GHz quad-

core CPU with an nVIDIA Tesla C870 128-core GPU. For

each number of parallel queries, we evaluate the following

schedules: (i) both functions on CPU, (ii) sgemm on GPU,

topk_rank on CPU, (iii) both functions on GPU and (iv)

both functions on GPU with data transfer deferring (i.e.,

data-aware scheduling). While a significant time reduction

is seen from porting sgemm to the GPU, we note that

topk_rank is actually faster on the CPU. We also note that

data transfer takes up at least half the run time, and that its

contribution to the total runtime increases with the input

size. Using data-aware scheduling, the data transfer after

sgemm is deferred until the runtime sees the next function

(topk_rank). At this point, the runtime weighs the options

of moving topk_rank to the slower GPU, or moving the

data back to the CPU. Figure 2 shows that, for large inputs,

the former choice results in about a 25% speedup.

3. System Overview
We now describe what a system that provides a unified

compute and memory view to legacy applications on

heterogeneous platforms should include. The main

components of the system (Figure 3) are function libraries

and a runtime. The runtime itself consists of a library call

module and an OS memory unification module. Different

implementations of well-known function libraries targeting

CPU and various devices (GPUs, accelerators, etc.) are

provided, possibly by third-parties. Calls to these library

functions are intercepted, and the runtime determines the

implementation to instantiate and the computational unit to

use. This decision depends not only on function execution

time and computational unit availability, but also on the

estimated data transfer overhead. Minimizing this overhead

could be achieved by avoiding useless data transfers and,

whenever possible and desirable, by moving computations

to the data. Since the (legacy) application is not known a

priori, these decisions must be made dynamically. If

minimizing data transfers creates multiple copies of the

data, the OS memory unification module assists the runtime

in keeping the copies coherent.

We assume that function library implementations are

“black boxes” to the runtime, whereas the library API is

exposed. Thus, the only data transfers that the runtime can

optimize correspond to the API function arguments.

Further, data transfers between CPU and device memory

can be triggered only by the runtime. To this end, we make

three assumptions. First, function library implementations

operate on the memory of the target device. The GPU

implementation of sgemm, for instance, will assume that the

matrices pointed to by the function arguments reside on

GPU memory. Second, for each pointer argument, the

function library interface must be annotated with the

following information: (i) whether the corresponding

parameter is read-only, write-only or read-write from the

function’s perspective and (ii) the size of the data structure

the argument points to. The sgemm interface, for instance,

will be annotated as follows:

void sgemm(char transa, char transb,
 int m, int n, int k,
 float alpha, float *a, int lda,
 float *b, int ldb, float beta,
 float *c, int ldc);

Arg ‘a’: read-only :: (transa=’n’) ?
 (lda * k) : (lda * n)
Arg ‘b’: read-only :: (transb=’n’) ?
 (ldb * n) : (ldb * k)
Arg ‘c’: read-write :: (ldc * n)

This annotation allows automatic generation of the code to

intercept library calls and invoke data transfers (more

details are provided in Section 4.2). In addition, for each

device type in use, the runtime must be provided with

primitives to allocate device memory and transfer data

between CPU and device memory. In the case of integrated

devices, the runtime must also be provided with primitives

to allocate page-locked host memory to those devices. For

GPU devices, for instance, CUDA’s cudaMalloc,

GPUs,

accelerators

Multi-core

CPU

Legacy Binaries

Library call interception

Library call analysis

Library call & data transfer

scheduling

Predictions:

Profiling info

Argument location

Argument size

FUNCTION

LIBRARIES

CPU

implementations
GPU

implementations
accelerator

implementations

interfaces

Memory

unification

module

OS

execution

transfer

PCI

HETEROGENEOUS SYSTEM

RUNTIME

Figure 3: Overall System: Runtime and OS Module.

4

cudaMemcpy and cudaHostAlloc primitives can be

used for this purpose.

The library call module must intercept library calls,

analyze argument size and location, estimate data transfer

and execution time on the available computational units,

and redirect calls to the most suitable unit after having

triggered necessary data transfers. We assume that each

library implementation has been profiled on the available

computational units for different input sizes. The gathered

profile information, along with the actual arguments, can be

used to estimate execution time. The data transfer time

depends on the size and location of the function call

parameters. The location information can be provided by

the memory unification module. Note that, as far as

execution time estimation is concerned, mechanisms

proposed in related work [2][3][8] can be adopted. In

particular, an additional requirement should be considered

when using GPU-CPU work splitting [3]: the function

library interface should be annotated with a mechanism for

splitting computations into sub-computations and merging

intermediate results. This can be done by using a Sequoia-

like [1] syntax.

4. Memory Unification: Our Proposal
The memory unification module provides a homogeneous

view of the memory system, optimizes data transfers, and

ensures coherence across the different memory modules.

When targeting heterogeneous systems such as those in

Figure 1, these requirements lead to a set of design issues.

4.1 Design Issues
The first issue is data coherence. In a traditional,

distributed accelerator-based system, the input arguments of

a function call are copied to device memory before

invocation, and the outputs are transferred back to host

memory afterwards. This can trigger unnecessary data

transfers, especially between multiple function calls that are

invoked in sequence on the same device. Prior work [9]

addressed this by defining new library functions obtained

by composing existing ones. This, however, leads to the

need for an a priori application analysis, and optimizes only

a class of data transfers. In our view, data transfers between

different memory elements should be triggered by the

runtime only on demand. At any given time a data structure

may reside on multiple memory elements, and not all the

copies may be up-to-date. In this situation, the runtime must

ensure that every access is coherent.

A second design issue is whether data replication on

more than one accelerator should be allowed. Being the

“master” unit, a (possibly outdated) copy of the data will

always reside on CPU memory. Copying data between two

accelerator memories involves an intermediate copy on the

CPU memory. If an application consists of a sequence of

library calls, and one library call is scheduled on a device, it

is likely that the next call will be scheduled on the same

device. We believe that allowing data to reside in parallel

on multiple devices would complicate coherence handling

without performance pay-offs. Therefore, we opt to limit

data replication to a single accelerator memory.

A third design issue pertains to the use of two kinds of

devices: “distributed” and “integrated”. In the former case,

the device has its own memory and data transfers between

CPU and device memory are required. In the second, shared

address spaces on CPU memory can be created by using

page-locked memory, mapping it into the device space and

“relocating” the shared data into it. Note that if not enough

page-locked memory is available, the CPU and the

integrated device will access separate memory regions on

the same physical memory, and the coherency problem is

addressed as in the distributed case.

4.2 Design Direction
Here we describe a possible implementation of the

proposed runtime. In order to control data transfers and

handle data coherence, the memory unification module

must maintain a mapping between CPU and device memory

regions and provide an API to query the binding between

different memory spaces, obtain the location of data

structures, and perform device memory allocation, de-

allocation and data transfers. This API can be invoked by

the library call module when intercepting function calls.

However, if data are distributed across different

memories and data transfers are deferred, synchronizing at

the library call granularity is not sufficient to guarantee data

coherence. Data accesses happening outside the intercepted

function calls would be unsynchronized, leading to possibly

incorrect operation. To address this, we integrate the

memory unification module within the operating system.

The idea is to handle data synchronizations outside library

function calls by forcing page faults and having the page

fault exception handler invoke the memory unification

module. Thus, the memory unification module API can be

invoked by two entities: the library call module and the

page fault exception handler. We now describe a design

under the Linux operating system.

Linux associates each running process with a list of

memory regions each assigned a set of access rights and a

set of virtual addresses [18]. Similarly, our memory

unification module associates each process with a list of

non-overlapping data blocks, each one representing virtual

address regions that have been mapped onto a device. Each

data block may cover a subset of a memory region or may

span across several memory regions.

Each data block, shown in the top part of Figure 4,

consists of a pointer to the CPU’s memory region, a device

address where the memory contents were transferred, its

size, a location (identifier of the device in case of multiple

devices) and a synchronization status, indicating whether

the up-to-date copy of the data in the block resides in CPU

or device memory. Additionally, in the case of integrated

5

devices, an additional field indicates the address in page-

locked memory where the data block has been relocated.

Data block creations are invoked by the library call

module. A new data block is instantiated when a virtual

address range is first accessed by a device implementation

of a library function. Data synchronizations outside library

function calls are forced by manipulating the page table

entries of the interested memory regions and extending the

page fault exception handler. Data block creation and CPU

data access handling are performed as described below.

If the function call is scheduled on a PCI-connected

device, then the access rights of the function call arguments

are important1. If the argument is read-only, then device

memory is allocated and data are initially synchronized by

performing a host-to-device memory transfer. To handle

coherence, all OS page table entries corresponding to the

given address range are marked as read-only. Any

subsequent read access to the data block will be allowed,

whereas any write access will trigger a page fault. Note that

a write access implies that the CPU code is modifying a

data structure which has been copied to a device. Therefore,

in this situation the page fault handler will resolve the fault

by setting the synchronization status of the data block to

“up-to-date on CPU”. Any subsequent device access to the

data block will trigger synchronization. Note that this

mechanism defers data transfer.

If the argument is write-only, then device memory is

allocated but no data transfer is initially required (in fact,

the data block is supposed to be written by the function call

that executes on device memory). All OS page table entries

corresponding to the given address range are marked as

invalid. In this case, any subsequent CPU access to the data

block will trigger a page fault. Faults caused by read

operations will be resolved into device-to-host memory

transfers unless the data block is already in synchronized

status. Faults caused by write operations will be resolved by

setting the data block synchronization status to “up-to-date

on CPU.”

If the argument is read-write, then device memory is

allocated and data synchronized by performing a host-to-

device memory transfer. All OS page table entries

corresponding to the given address range are marked

invalid. Page fault handling is similar to the write-only case.

If the function call is scheduled on an integrated

device, then the system tries to allocate page-locked

memory. If this operation is not successful, then the data

block handling described in the distributed case will be

performed. Otherwise, data will be relocated to the newly

allocated region, which is shared between CPU and device.

To ensure coherence, any subsequent CPU access to the

virtual addresses in the data block should be redirected to

the shared area. This is accomplished by marking all OS

1 Note that arguments access rights are considered from the library

function perspective.

page table entries corresponding to the virtual address

ranges in the block as invalid. The page fault handler will

resolve the fault by redirecting the access to the shared area.

After the initial copy, no additional data transfer is required.

The operation of the resulting page fault handler and its

interactions with the memory unification module are

summarized in Figure 5. Note that no page faults are

triggered in case of read accesses to read-only arguments.

We consider the structure of the library call module to

illustrate its interactions with the memory unification

module. For each library func having (read-only) input

parameters r_pars and (write-only) output parameters

w_pars, the module contains a function whose structure is

exemplified in the pseudo-code below. Handling integrated

devices is omitted here for brevity.

(1) void func(r_pars, *w_pars){

(2) target = eval_target(&func,r_pars);

(3) if(target==CPU){

(4) cpu_func(r_pars,w_pars);

(5) for (p in w_pars) mum->touch(p);

(6) }else{

(7) r_pars_d = w_pars_d = Ø;

(8) for (p in r_pars)

(9) r_pars_d U= mum->get(target,p,T);

(10) for (p in w_pars)

(11) w_pars_d U= mum->get(target,p,F);

(12) dev_func(r_pars_d, &w_pars_d);

(13) for (p in w_pars) mam->set(p);

(14) }

(15) }

The cpu_func and dev_func routines represent the

CPU and device implementation of the intercepted function,

whereas the mum object represents the memory unification

module API. The eval_target routine evaluates the

target computational element based on size and location of

the input parameters and on profiling information.

If the eval_target routine establishes that the

execution must happen on the CPU (lines 4-5), then

Original host virtual address (VA)

Device address (DA)

Relocated CPU address (RA)

Size (SZ)

Location

Synchronized?

DATA BLOCK

DISCRETE
INTEGRATED

CPU

VIRTUAL

MEMORY

VA

SZ

DA

SZ
DEVICE

MEMORY

VA

SZ

RA

SZ

Original

CPU

Memory

Region

Relocated

Memory

Region:

Visible to both

CPU and device

DA

Device

Driver

D
e

fe
rr

e
d

 t
ra

n
sf

e
rs

,

O
S

-f
o

rc
e

d
 s

y
n

ch
ro

n
iz

a
ti

o
n

Previous

Data

Block

Next

Data

Block

Figure 4: Data block (top) and CPU, device memory

regions (bottom).

6

cpu_func must be invoked. After execution, the touch

primitive marks the output parameters as residing on the

CPU memory. This operation does not imply any

immediate data transfer.

If the function execution must take place on the device

(lines 7-13), then dev_func is invoked. However, this

operates on device memory. Therefore, a local copy of all

input and output parameters (r_pars_d and w_pars_d)

must be created (lines 7-11). For each parameter, the get

function returns the pointer to that copy (and, if necessary,

instantiates a new data block, allocates the corresponding

memory on device and performs data synchronization). The

last parameter of the get call specifies whether the device

must have an up-to-date copy of the data, which is

necessary only for the input parameters. After function

execution, the output parameters are marked as residing on

the GPU by the set primitive (line 13). Again, this does

not imply any data transfer.

Data blocks can be resized or merged during execution:

the interested reader can refer to [16] for a detailed

description of data resizing and merging scenarios. Data

block de-allocation (and device memory de-allocation) is

performed in two situations: when a process terminates, and

when device memory gets full. In this case, a LRU policy

can be used to determine which data blocks to de-allocate.

5. Conclusion
In this paper, we make the case for a runtime system to

seamlessly execute legacy applications on heterogeneous

nodes consisting of CPUs and accelerators, thus hiding the

underlying heterogeneity in terms of computing and

memory elements. The runtime intercepts function calls to

well known libraries, and schedules them on the appropriate

computing resource after having analyzed the arguments

and determined the location of the corresponding data. The

overhead due to memory transfers is minimized by moving

computations to data and deferring memory transfers until

required by data accesses. Data coherence is ensured by

extending the operating system with a memory unification

module. With neither software changes nor additional

hardware support, the proposed system provides a unified

compute and memory view to the programmer.

References
[1] K. Fatahalian et al, “Sequoia: Programming the memory

hierarchy,” in Proc. of the 2006 ACM/IEEE Conference on

Supercomputing, Tampa, FL.

[2] G. Diamos and S. Yalamanchili. “Harmony: an execution

model and runtime for heterogeneous many core systems,” in

Proc. of HPDC 2008, New York, NY.

[3] C. Luk, S. Hong and H. Kim, “Qilin: Exploiting Parallelism

on Heterogeneous Multiprocessors with Adaptive Mapping,”

in Proc. of MICRO 2009, New York, NY.

[4] B. Saha et al, “Programming model for a heterogeneous x86

platform,” in Proc. of PLDI 2009, Dublin, Ireland.

[5] OpenMP: http://openmp.org/wp/

[6] A. Basumallik, S. Min and R. Eigenmann, “Programming

Distributed Memory Sytems Using OpenMP,” in Proc. of

HIPS’07.

[7] “Writing Applications for the GPU Using the RapidMind™

Development Platform”, http://tinyurl.com/rapidmind.

[8] M. D. Linderman et al, “Embracing Heterogeneity – Parallel

Programming for Changing Hardware,” in Proc. of

HotPAR’09, Berkeley, CA, March 2009.

[9] M. D. Linderman et al, “Merge: A Programming Model for

Heterogeneous Multi-core Systems,” in Proc. of ASPLOS

2008, March 2008.

[10] Bryan Catanzaro et al, “SEJITS: Getting Productivity And

Performance With Selective, Just-In-Time Specialization,” in

Proc. of PMEA’09, Raleigh, NC, Sept. 2009.

[11] Cédric Augonnet et al, “StarPU: A Unified Platform for Task

Scheduling on Heterogeneous Multicore Architectures,” in

Proc. of Euro-Par 2009, Delft, The Netherlands, August

2009.

[12] V. Gupta et al, “GViM: GPU-accelerated virtual machines,”

in Proc. of HPCVirt '09, New York, NY, 2009.

[13] B. Bai et al, “Learning to Rank with (a lot of) word

features,” in Special Issue: Learning to Rank for Information

Retrieval. Information Retrieval. 2009.

[14] MKL Library: http://software.intel.com/en-us/intel-mkl/.

[15] CuBLAS Library:

http://developer.download.nvidia.com/compute/cuda/1_0/CU

BLAS_Library_1.0.pdf.

[16] M. Becchi et al, “Data-Aware Scheduling of Legacy Kernels

on Heterogeneous Platforms with Distributed Memory”, in

Proc. of SPAA 2010, June 2010.

[17] Zotac Ion board (Tom’s Hardware review):

http://www.tomshardware.com/reviews/zotac-ion-

atom,2300.html.

[18] D. Bovet and M. Cesati, “Understanding the Linux Kernel,”

3rd edition, O’Reilly.

virtual

address in

data block list

page fault

data block on

integrated

device

read access

standard page

fault handling

Redirect access

from VA

to RA

CPU data

block

up-to-date

block sync

status =

ON_CPU

invoke

dev-to-host

transfer resume

block sync

status =

SYNCED

CPU data

block

up-to date

invoke

dev-to-host

transfer

YES

YES

YES

YESYES

NO

NO

NO

NO NO

Figure 5: Page fault handler flow diagram.

