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Abstract

In this position paper we argue that concurrency errors
should be fail-stop. We want to put concurrency errors in
the same category as division-by-zero, segmentation fault
in unmanaged languages and cast exceptions in managed
languages. This would make nondeterminism in multi-
threaded execution be much more manageable. Concur-
rency exceptions would improve the debugging process
during development and make crashes due to concurrency
errors that happen in the field be more descriptive. Our
goal in this paper is to justify our position, propose a
general approach to concurrency exceptions and discuss
system requirements and implications. Specifically, we
discuss the semantics of concurrency exceptions at the
language level, their implications in the compiler and run-
time systems, how they should be delivered and, finally,
how they are enabled by efficient architecture support.

1 Introduction

The nondeterministic nature of multithreaded execu-
tion causes concurrency errors to manifest intermittently.
This leads to major difficulties in the debugging pro-
cess. In addition, state dumps of multithreaded program
crashes rarely provide useful information. Concurrency
errors are typically inserted when programmers incor-
rectly use synchronization primitives or simply overlook
the need for synchronization due to wrong assumptions
about the code and system behavior.

There has been a significant amount of work on tools
to detect concurrency bugs such as data-races [14] and
atomicity violations [10, 11]. However, while such tools
are very useful, most past proposals have false positives
and false negatives, and often impose a significant run-
time overhead. With parallel programs becoming perva-
sive, we strongly believe that concurrency errors should
be treated as exceptions. In other words, they should be
detected and treated like a segmentation fault in unman-
aged languages, a division by zero, or cast exceptions in
managed languages.

Treating concurrency errors as exceptions requires that

the system provide strong guarantees of concurrency error
situations, without sacrificing performance. One way to
think of it is as a pervasive, always-on concurrency error
detector that is 100% accurate and causes negligible per-
formance impact. We envision this being done by clearly
specifying conditions that are not allowed and have the
system constantly check for those exact conditions (not
approximations). This, in turn, requires involvement of
all pieces of the system stack, from the specification of
the exceptions’ semantics in languages, to mechanisms for
exception delivery in the runtime system to architecture-
level hooks to precisely and efficiently detect the situ-
ations considered concurrency errors. In this paper we
advocate for concurrency exceptions and discuss their im-
plications and requirements across the system stack.

We discuss exceptions for three types of concurrency
errors: (1) sequential consistency violation, (2) locking
discipline violation, and (3) atomicity violation. For clar-
ity, we now briefly and informally define each one in the
context of this paper. A sequential consistency violation
happens when reorderings of memory operations with re-
spect to the program order and ambiguities in the global
order of writes (non-atomic writes) might change the se-
mantics of the program. For example, two accesses to
two different locations in the same thread were executed
out of program order and a remote thread accesses the
location whose accesses were reordered — i.e., a remote
thread observed the reordered accesses. A locking dis-
cipline violation happens when a piece of code does not
hold the appropriate lock while accessing shared data.
Finally, an atomicity violation occurs when the program-
mer fails to enclose inside the same critical section all ac-
cesses that should be atomic. Note that these categories
of concurrency errors are different. For example, atomic-
ity violations do not necessarily imply locking discipline
violations.

Why Not Simply a Data-Race Exception? The
term data-races is overloaded. It is used to refer to sev-
eral different forms of concurrency errors. However, it is
important to understand what is meant by a data-race
because several memory models are defined for “data-
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Figure 1: Examples of the concurrency exceptions discussed in this paper. In (a) the dashed arrow denotes a happens-
before relationship. In (c) and (d) the locking discipline maps data items A and B to lock l. In (e) atomic specifies the
region intended as atomic by the programmer — i.e., it is not a transaction. The exclamation point (!) indicates where
the exception should be delivered. Notice the overlap between the examples, no SC violation (b) does not imply that
there are no locking discipline violations (c), and no locking discipline violation (d) does not imply that there are no
atomicity violations (e).

race-free” programs. For example, memory models such
as the Java Memory Model [12] and the upcoming pro-
posal for the C++ memory model [1] specify sequen-
tial consistency behavior at the language level for data-
race-free programs. We believe that lack of data-races
is important only to yield sequentially consistent execu-
tions and therefore not affect the operational semantics
of programs. Given that the exact definition of what is a
data-race varies with the memory model specification of
the language, it becomes very hard to specify a generic
“data-race” exception. Our goal is to provide end-to-end
guarantees about concurrency exceptions, from the lan-
guage to the hardware. Therefore, we choose to advocate
a sequential-consistency violation exception as opposed to
a data-race exception. In addition, we argue that data-
races per se are not very useful indicators of synchro-
nization defects. Both locking discipline violations and
atomicity violations can occur in “data-race-free” execu-
tions and these two defects are much more meaningful to
the programmer. Hence, in this paper we also advocate
exceptions for locking discipline and atomicity violations,
which can happen even in sequentially consistent execu-
tions.

2 Support for Concurrency Ex-
ceptions

Broadly, to support concurrency exceptions we need ex-
actness in the definition of concurrency error conditions,
absolute precision in detecting these conditions, and ab-
solute efficiency, since this feature will be enabled contin-
uously. Given these requirements, there are virtually no
current mechanisms for concurrency error debugging that

could be used to support concurrency exceptions.
We divide the support for concurrency exceptions into

three components: (1) specification of exceptional con-
ditions, (2) detection of these conditions as a program
executes, and (3) exception delivery. Table 1 provides
an overview of the responsibilities of each level the sys-
tem stack. The main trade-off in supporting concurrency
exceptions is one of complexity versus performance cost.
Concurrency exceptions can be provided with software-
only support via either a managed runtime, compiler
or binary instrumentation. This would not involve the
complexity of supporting it in hardware but would likely
cause a significant impact in performance due to dynamic
checks [4, 5]. We believe that the best option is to sup-
port the condition checks in hardware, the same way it is
done for division by zero and segmentation faults.

2.1 Specifying the Exception Conditions
(Programming Language)

Sequential consistency violation exceptions require the
language to convey information about synchronization
operations (i.e., anything that results in fence operations)
to the detection mechanisms in the lower levels of the
system stack. In addition, while not required, convey-
ing what pieces of data are thread-private also aids the
detection mechanism, since violations of sequential con-
sistency involve only shared accesses. Based on this in-
formation, the system determines whether the execution
is guaranteed to be sequentially consistent — i.e., the sys-
tem checks for sufficient conditions to guarantee SC. Fig-
ure 1(a) shows an example of such a violation: writes to A
and B by thread T0 were observed out of order by thread
T1.
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Programming Language • Specifying exception conditions
• Exception event semantics

Compiler • Check as much as it can statically
• Map the necessary dynamic checks to the lower level

Runtime System/OS • Dynamic checks in software
• Exception event delivery
• Determinism (reproducibility)

HW/SW Interface and Architecture • Mechanisms for fast dynamic checks of exceptions
• Semantics of the low-level exception events (state)
• Define the interaction with the HW memory model
• Determinism (reproducibility)

Table 1: The responsibility of each level of the system stack in supporting concurrency exceptions.

Locking discipline exceptions require language support
to declare shared data, declare locks (or other synchro-
nization objects) and the association between locks and
data items. Whenever a data item is accessed and the
thread does not hold the appropriate lock, an exception
is raised (Figure 1(c)). To make this compatible with
languages that support transactional memory, we envi-
sion making transactions implicitly acquire a virtual lock
TL, which is necessarily treated as a different lock than
any other lock in the program.

Atomicity violation exceptions require language sup-
port to allow the programmer to express atomicity spec-
ifications. We define atomic block as a specification of
the intention of the programmer to have a block of code
be atomic. If any execution violates the atomicity of a
block of code declared as atomic, an exception should be
raised (Figure 1(e)). In contrast, we see transactions as
implementation of the enforcement of atomic blocks of
code.

All these exceptions discussed above can co-exist but
do not depend on each other. Also note that all cases
discussed in this section might also apply to languages
such as C/C++, where threads are supported as libraries.
However, this might require lightweight program annota-
tions and needs to be integrated into the exception model
of the language.

2.2 Detecting Exception Conditions
(Compiler/Architecture)

Detecting exception conditions involves the compiler and
the hardware. Once the programmer provides a specifica-
tion of the desired synchronization, locking discipline and
the atomicity properties, the compiler should convey this
information to the runtime system and the hardware. Ide-
ally, if the languages allows, the compiler should attempt
to statically determine whether exceptions are guaran-
teed to occur. If so, it should generate a compilation
error. However, given limited knowledge at compile time,

it is likely that a majority of checks for exceptions are
going to happen dynamically, i.e., by the runtime system
or the hardware.

The role of the architecture is to provide the neces-
sary mechanisms to make detection of concurrency ex-
ceptions essentially free, i.e., no performance cost. Con-
sequently, we need to define the hardware/software in-
terface for these mechanisms and the semantics of their
use.

The key challenge in detecting exception conditions for
concurrency errors is that it needs to be 100% accurate.
Below we describe how each type of exception can be
detected and the challenges involved in doing so.

SC Violations. Precisely detecting violation of SC in
executions of arbitrary programs is an NP-complete prob-
lem [8]. Past work proposed to check for sufficient con-
ditions for SC [7] — i.e., these conditions guarantee that
the execution is sequentially consistent, however lack of
these conditions do not necessarily imply a violation of
sequential consistency. The approach we chose for this
position paper was proposed by Gharachorloo and Gib-
bons in [7]. Their mechanism detects when two or more
memory operations are in flight in a processor and there
are remote coherence events that conflicts with any in-
flight access. Memory operations are considered in flight
when they have not been globally performed yet — i.e.,
not all processors are guaranteed to have observed the ef-
fect of these memory operations. This is sufficient for SC
because if this does not happen, it is guaranteed that no
remote processors have observed the possible reordering
of in-flight memory operations. Synchronization opera-
tions do not participate in this detection.

Figure 1(b) shows an example of an execution that
does not violate SC. The synchronization operations in
this example act as fences and therefore prevent two ac-
cesses to shared memory to be in-flight simultaneously
and reordered, preventing an SC violation. However, as
discussed later in this section, this execution has a concur-
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rency error that will result in a locking discipline violation
exception.

The mechanism just described detects possible viola-
tions of sequential consistency on the binary code gen-
erated by the compiler when running on systems weaker
than sequential consistency. However, the memory con-
sistency model of a language needs to be obeyed across
the system stack; the compiler and the hardware together
need to make sure that the programmer gets the specified
behavior. Broadly, this is implemented by: (1) the com-
piler not reordering memory accesses across fences and
(2) and the compiler conveying information about syn-
chronization to the processor, generally in the form of
fences. The first criterion guarantees that any execution
violating SC in the binary program is possible even in
the source program, thereby avoiding the compiler being
a possible source of false SC violation exceptions. The
second criterion prevents harmful dynamic reordering of
memory operations by the hardware.

Note that the mechanism described earlier may de-
tect violations of sequential consistency even if they were
caused by the compiler reordering memory operations.
However, unless the compiler conveys to the detection
mechanism information about the order of operations
in the original program (what the programmer actually
wrote), it is not possible to pinpoint the exact cause of
the possible violations of sequential consistency. In other
words, since violations of sequential consistency need to
be detected with respect to the original program, if com-
piler reorderings cause violations of sequential consis-
tency, it can only be detected if information of the original
ordering is available.

Locking discipline violation. The programmer spec-
ifies either directly or indirectly the lock objects associ-
ated with each piece of shared data. Note that depend-
ing on the synchronization model of a language, some of
this information might be implicit — e.g., synchronized
methods in Java implicitly use a lock. The compiler then
conveys this information about shared data, locks and
their association down to the runtime system and the
hardware. The system keeps track of, for each thread,
which locks are held. When a thread accesses a piece of
shared data, the system determines whether the thread
holds the appropriate lock. The actual hardware detec-
tion mechanism for this exception would be very similar
to support for data-centric synchronization, as described
in Colorama [2].

One complicating factor of specifying a locking disci-
pline is that it might change dynamically. For example,
consider a data hand-off scenario, when a thread hands
ownership of a data object to another thread. This might
imply that the locking discipline changes. Therefore, we
need a way of specifying locking discipline as a dynamic

property. A straightforward way of doing this is using
annotations that allow the programmer to convey when
there is a remapping between the data-structure and the
associated lock.

Atomicity Violations. Based on the atomicity specifi-
cation provided by the language, the detection mechanism
determines if there is any interleaving that might violate
the atomicity of the specified region. This can be done by
determining the serializability of the remote accesses that
touch any of the same data objects as the region speci-
fied as atomic. The actual detection mechanism in this
case cannot directly use typical eager conflict-detection
techniques used in transactional memory systems. Con-
flict serializability is a conservative approximation of true
serializability, and of course for exceptions we need true
serializability. In other words, the point in the execution
where the exception should be delivered might be long
after a conflict was detected. For additional information,
see next section on exception delivery.

Discussion. Data object granularity is an important
concern in the detection of all exception conditions de-
scribed above. For example, SC violation detection can-
not be blindly done at a cache-line granularity — if the
data object is smaller than a cache line, it might yield false
positives and if the data object is larger than a cache line,
it might be yield false negatives. Supporting data objects
at a byte granularity is the right choice. This implies that
the languages/compiler should convey information about
data objects boundaries to the runtime/OS/architecture.
The hardware, in turn, needs to provide primitives for
the detection of coherence events in objects that might be
smaller or larger than a cache line. Proposals like Mon-
drian [16] for fine-grain memory protection are a good
starting point for such support.

Also note that it is not necessary to have a sequen-
tially consistent execution to enforce atomicity violation
or locking discipline exceptions. One can think of it as
the compiler and processor providing an execution that
will be subject to the detection of exceptions. This makes
it easier to reason about cases where the presence of data-
races does not yield a sequentially consistent execution at
the language level.

2.3 Exception Delivery
(OS/Architecture)

Concurrency exception conditions involve memory oper-
ations from multiple threads. This creates two challenges
for exception delivery: (1) which thread should receive
the exception and (2) what are the guarantees of process
state at the time the exception is delivered.
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A concurrency exception should be delivered when the
event that would make an execution incorrect is about to
be executed but has not been executed yet. In addition, it
should be delivered to the thread that is about to perform
the memory operation that triggers the detection mecha-
nism. For example, as Figure 1(e) illustrates, consider an
atomicity violation where thread T0 performs operation
wrA followed by wrB. These operations were interleaved
by rdB and rdA from thread T1, which makes this in-
terleaving unserializable and therefore characterizes an
atomicity violation. We claim that the ideal place for the
delivery of the exception is at wrB. This is because this
is the memory operation that distinguishes a correct exe-
cution from an incorrect execution. If wrB had not been
performed, the execution would not lead to an atomicity
violation. Analogously, an SC violation exception should
be delivered to the thread that issued the access that was
reordered (e.g., wrB or rdA in Figure 1(a)) and led to the
potential violation of SC. In summary, we believe the ex-
ception should be delivered at the event in the execution
that distinguishes a correct execution from an incorrect
execution.

The state of a multithreaded program includes the state
of all its threads. Therefore, once an exception is de-
tected, all threads in the program should be stopped.
However, given the nondeterministic nature of multipro-
cessor systems, it is hard to provide a notion of precise
state. There are at least two options to solve this prob-
lem. First, and most ambitious, is to make multiproces-
sor execution fully deterministic [3]. This would provide
a deterministic total order of state transitions in the exe-
cution of a multithreaded program and therefore provide
true notion of precise concurrency exceptions. Second,
the system can choose to offer precise state only for the
thread to whom the exception is delivered. We believe
the former is a longer term and cleaner solution and dis-
cuss it later in this section. However, the latter is less
complex.

The system should also allow the programmer to spec-
ify a handler for the exception. This would enable the
use of a data-collection or “fix-up” handler and allow the
system to collect state or repair the situation and proceed
with the execution (i.e., survive the error [11]). One pos-
sibility is to enable user-level handling [15] of concurrency
exceptions, which has much lower overhead. This might
be important in cases when there are frequent benign ex-
ceptions. In addition, the system could provide ways to
selectively disable exception delivery either based on code
or data regions.

Deterministic Shared Memory Multiprocessing.
Deterministic Shared Memory Multiprocessing (DMP) [3]
is a family of execution models that remove all internal
nondeterminism from multithreaded-execution. The exe-

cution of a multithreaded program on a DMP system is
only function of its inputs. The key to providing deter-
minism is making inter-thread communication via shared
memory be deterministic. The easiest way to accomplish
this is to allow only one processor at a time to access
memory in a deterministic order. However, this com-
pletely serializes execution and removes the performance
benefits of parallelism. DMP provides two strategies to
recover parallelism, one that does not employ speculative
execution and one that does. The first strategy leverages
the fact that threads do not communicate all the time:
threads run concurrently as long as they are not com-
municating; as soon as they attempt to communicate,
communication is deterministically serialized. The sec-
ond strategy speculate that periods of a thread execution
do not communicate and rolls back and re-executes in a
deterministic order if they do communicate. Simulations
show that a hardware implementation of a DMP system
can have negligible performance degradation over nonde-
terministic systems. This demonstrates that expecting
deterministic execution from the ground-up is reasonable
and would significantly increase the value of concurrency
exceptions by making them reproducible.

3 Discussion

While we think the categories of exceptions we chose pro-
vides good coverage of concurrency bugs, we do not claim
to have necessarily covered a canonical set. One category
of bugs we have not addressed is ordering violations [9],
which can happen in programs free of any of the excep-
tions we discussed in this paper. However, they can be
difficult to specify. Another possibility we are investigat-
ing is detecting unspecified inter-thread communication
and treat that as exceptions.

Concurrency exceptions might not be desired in lock-
free code, as the programmer might intentionally allow
situations that would normally be treated as exceptions.
For that reason, it will likely be useful to allow concur-
rency exceptions to be disabled for periods of a program
execution.

One could question why repeatability of exceptions (de-
terminism) is useful if the system is able to accurately
detect precise conditions for exceptions. That question is
especially relevant if the system can collect enough infor-
mation about the state of the program when the exception
was delivered. We believe that being able to reproduce an
exception significantly improves the ability of a program-
mer to fix the code to avoid the defect that lead to the
exception. In other words, exceptions with precise state
and repeatability of errors are useful by themselves but
they are even more useful if offered together.
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4 Related Work

To the best of our knowledge, Goldilocks [4] is the first pa-
per in the literature to advocate that data races should
be exceptions and to propose a way of providing such
functionality. However, Goldilocks cause significant per-
formance degradation which prevents it from being a vi-
able option for deployment. In addition, Goldilocks was
tailored to the Java programming language.

Eraser [14] is a tool to detect locking discipline viola-
tions. It includes the lockset algorithm, whose goal is to
infer a locking policy based on the locks held when pieces
of data are accessed. Flanagan and Qadeer [6] proposed
a type system for Java to verify the atomicity of java
methods. The analysis determines, based on the syn-
chronized blocks and the atomic annotations whether the
code might lead to a violation of atomicity. Velodrome [5]
is a dynamic atomicity checker that is both sound and
complete. While these tools and systems provide strong
guarantees for concurrency error detection, they either
don’t offer soundness and completeness or cost too much
performance.

ReEnact [13] is a hardware proposal for race detection
based on vector clocks and on using support for specula-
tive execution. ReEnact aims to be an always-on race de-
tection mechanism suitable for production runs. Finally,
HARD [17] is a proposal for a hardware implementation
of the lockset algorithm.
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