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Abstract
Distributed systems are difficult to design and develop.
The difficulties arise both in basic safety correctness
properties, as well as in achieving high performance. As
a result of this complexity, the implementation of a dis-
tributed system often contains the basic algorithm cou-
pled with an embedded strategy for making choices, such
as the choice of a node to interact with.

This paper proposes a programming model for dis-
tributed systems where 1) the application explicitly ex-
poses the choices (decisions) that it needs to make as well
as the objectives that it needs to maximize; 2) the appli-
cation and the runtime system cooperate to maintain a
predictive model of the distributed system and its envi-
ronment; and 3) the runtime uses the predictive model
to resolve the choices so as to maximize the objectives.
We claim that this programming model results in simpler
source code and lower development effort, and that it can
lead to increased performance and robustness to various
deployment settings. Our initial results of applying this
model to a sample application are encouraging.

1 Introduction

The difficulties in developing distributed systems arise
both in basic safety correctness properties (as exempli-
fied by the design of the Paxos algorithm [6]), and in
achieving high performance across a wide range of de-
ployment settings [11]. Developers are likely to increas-
ingly face these problems as the vision of cloud comput-
ing starts connecting data and computation across a set of
data centers that are spread over the wide area network.

The implementation of a distributed system often con-
tains the basic algorithm coupled with a strategy for mak-
ing choices. Examples of choice include choosing a node
to join the system, choosing the node to forward a mes-
sage to, or choosing how to adapt to a change in the un-
derlying network. In current frameworks, such choices
are buried in the application source code together with
basic functionality. There is evidence [8, 7, 14] that
changing the strategy for making such choices can re-
sult in better performance and resilience properties. To
make informed choices, many applications perform mea-
surements and derive a model of the distributed system

[2, 5]. The importance of such measurements is sup-
ported by iPlane [10], which proposes to build an in-
formation plane that makes network measurements and
predictions available to all applications on a given node.

We have recently proposed an approach [15] for col-
lecting information based not only on the past behavior,
but also by exploring possible future executions, then us-
ing this information to detect and avoid bugs. Because
of a focus on finding bugs and increasing the resilience
of existingsystems, the impact of this approach was lim-
ited by the way in which the original service was written.
This experience suggested an approach where the devel-
oper is aware of sophisticated runtime mechanisms, and
uses them productively to reduce the development effort.

The hypothesis of this paper is that we can lower the
development effort, and ultimately increase performance
and robustness to various deployment settings by a pro-
gramming model that 1) exposes the choices that the ap-
plication needs to make, as well as the desired properties
it needs to achieve 2) introduces the notion of a predictive
system model that helps make appropriate choices.

We propose two main directions of future research to
realize this approach:

1. Developing a programming model where the appli-
cation exposes the choices it needs to make, and where
the application and the runtime collaborate to create the
model and use it to make predictions;

2. Developing new prediction techniques that integrate
information from source code, past executions, and fu-
ture executions, while leveraging increases in computa-
tional power and bandwidth. Such techniques need to be
extended to at the same time take into account correct-
ness in terms of specified or inferred safety and liveness
properties, as well as performance.

As an initial example supporting our view, we describe
the result of applying the proposed model to a sample ap-
plication. We started from an existing, publicly released
implementation of a random overlay tree, and replaced
the hard-coded policies with exposed choices resolved
by our generic runtime mechanism. Thanks to the pre-
dictions of our runtime mechanism, result was a signifi-
cantly simpler implementation that performs as well as,
or better than, the original version.
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Figure 1:Overview of CrystalBall and its extensions. Existing
components are shown as clear, extensions are shaded.

2 Background: CrystalBall

In this section, we briefly describe our existing work
on predicting and preventing inconsistencies in deployed
distributed systems using CrystalBall [15]. Figure 1
shows the high-level overview of a CrystalBall node (ex-
isting features are shown non-shaded). As in many ex-
isting approaches [4, 6], we assume that the distributed
service is implemented as a state machine that runs on
every node. The CrystalBall runtime interposes between
the network on one side, and the existing runtime (that
manages the timers and invokes the state machine han-
dlers) and the state machine on the other.

CrystalBall has the ability to predict the reliability of
the system. To accomplish this, the CrystalBall con-
troller periodically collects a consistent set of check-
points from each of the node’s neighbors. The size of
the neighborhood is typically limited in scalable sys-
tems, e.g.,O(log n), but CrystalBall also works with
systems with full global knowledge. The controller in-
stantiates local versions of the participants’ state ma-
chines from the checkpoints, and runs a state space ex-
ploration algorithm (termedconsequence prediction) to
predict which of the nodes’ actions lead to violations of
user- or programmer-specified safety properties. Conse-
quence prediction focuses on exploring causally related
chains of events, and is fast enough to look several levels
of state space into the future fairly quickly (e.g., in 10
seconds) on today’s hardware.

If the state-space exploration predicts an inconsis-
tency, for example due to a message that changes the lo-
cal state in a way that causes an inconsistency relative to
the other participants’ state, CrystalBall checks whether
it is safe tosteer executionaway from the possible in-
consistency. If consequence prediction does not find any
new inconsistencies due to execution steering, the con-
troller installs anevent filterinto the runtime. In case
of messages, the event filter works by dropping the of-

fending message and breaking the connection with the
message sender for systems using TCP.

In summary, CrystalBall predicts actions that may
cause inconsistencies in the near future, and prevents
these actions by choosing certain universally possible al-
ternatives, such as TCP connection failure. Our experi-
ence shows that the CrystalBall approach [15] effectively
masks errors in deployed distributed systems. In doing
so, this approach makes an implicit choice between stan-
dard actions and corrective actions. In this paper, we ar-
gue that such choices should become explicit in the pro-
gramming model.

3 Towards an Explicit-Choice Architecture

Next, we describe the features of the new architecture
(shown shaded in Figure 1).

3.1 Exposing Choices

Distributed systems often rely on a choice as a means
of adapting to improve reliability and performance. We
illustrate this through a number of examples.

Gossip Protocols. Nodes in epidemic dissemination
protocols periodically pick a node from their views to
exchange data. A random choice can improve reliability
and help improve performance under some conditions.
The work on BAR Gossip [8] shows that carefully re-
stricting this random peer choice (to one node per round)
can have a positive impact on the system performance in
the presence of rational and Byzantine nodes. However,
the performance might suffer if, e.g., the only target is
behind a slow network connection. This system is an ex-
ample of designing primarily for reliability. The follow-
on to this work by the same authors [7] shows that it
is necessary to relax the choice the nodes have in peer
selection for better performance.

Overlay Trees. Given the lack of global (or even neigh-
borhood) information, the programmer is often forced to
use complex logic and to make random choices. In a ran-
dom overlay tree (RandTree [4]), a node has the choice
of forwarding an incoming join request to its parent or
to one of its children, to meet the expected goal of a bal-
anced tree. In this state machine-based implementation,
a single message handler serves the join request. The
logic for making the forwarding decision is fairly com-
plex, and involves a few calls to a pseudo-random num-
ber generator.

Content Distribution. It is difficult to devise adap-
tive mechanisms that work optimally across a range of
deployment settings, especially those in which the sys-
tem has not been tested prior to deployment. The Bul-
letPrime [5] and BitTorrent [2] content distribution sys-
tems have two different mechanisms for choosing the
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next block to request from any given peer, namely ran-
dom and rarest-random. Experimental results show [5]
that neither of these strategies is decidedly superior. Bul-
letPrime chooses to run the rarest-random strategy, while
BitTorrent has an ad-hoc mechanism to make a one-time
switch from one to the other. This is an example of a case
in which the system developer cannot predict all possi-
ble system environments and is forced to make some de-
cisions. In other cases there might not be enough time
to program complex adaptive mechanisms that will per-
form well. We argue that the distributed service should
cooperate with the runtime, because the latter might have
more information available, and is capable of predicting
the performance and reliability.

In addition, systems often rely on random decisions to
help them probe the environment. For example, the Bit-
Torrent [2] nodes connect to a random subset of the ex-
isting participants to discover which file blocks are avail-
able. Potential peers are chosen via an external interface,
i.e., a remote tracker which chooses a subset of peers
from all the participants. Given this design choice, it was
fairly straightforward to manipulate the peer choice made
by the tracker [14] to bias it in a way that reduces ISP
costs. Here, exposing the choice made it easy to improve
system performance and meet ISP goals.

Consensus. The Paxos algorithm solves the consen-
sus problem in the face of node and network failures.
Its description [6] uses sufficient safety properties to im-
plicitly present a non-deterministic algorithm, with many
deterministic implementations possible. The original al-
gorithm was successfully implemented and deployed in
cluster settings. However, this algorithm does not of-
fer a choice as to which node is allowed to propose a
new value, and can suffer from reduced performance due
to CPU overload or network congestion. A recent im-
provement [11] achieves significant performance gains
across wide-area networks by allowing every node to
propose according to a round-robin schedule. We ar-
gue that an implementation can expose the choice of a
proposer and let the runtime pick the best proposer for
high-performance across a range of deployment settings.

The New Programming Model. Based on all these
examples, we claim that many distributed Algorithms
already contain choices. However, current distributed
system frameworks force the developer to resolve these
choices, often leading to suboptimal decisions or com-
plex code. We propose a programming model for dis-
tributed systems in which the programmer exposes the
key choices to the runtime. For example, the programmer
would expose the peer selection. The runtime can then
consider several peers and return one. Another way of
presenting the choices is to implement a distributed sys-
tem as a non-deterministic finite state automaton (NFA)
with multiple applicable handlers. Instead of hard cod-

ing the logic for making several choices into one message
handler, the programmer can write several, simpler han-
dlers for the same type of message. Each of the handlers
is likely to be shorter as well as easier to maintain and
reason about. It is then the runtime’s task to resolve the
non-determinism arising from multiple applicable han-
dlers in a way that leads to good reliability and perfor-
mance.

3.2 Exposing Objectives

To influence the strategy for resolving choices, the devel-
oper may specify the objectives that the runtime needs
to maximize. Systems such as MaceMC [4] and Crys-
talBall already contain the ability to specify safety and
liveness properties. Given such properties, a generically
useful objective can be computed from the number of
safety and liveness properties that are expected to hold at
various points in the future.

Specifying performance objectives in a developer-
friendly and flexible way is an important design question.
The problem is especially interesting in the light of the
weaker consistency guarantees provided by scalable dis-
tributed services, compared to their centralized counter-
parts. Such weaker properties are often best expressed in
terms of performance. An expressive performance spec-
ification language can, in fact, subsume safety and live-
ness specification languages.

3.3 Predictive System Models

Central to our architecture is the notion of a system
model, which incorporates information about system-
wide state and contains performance parameters. Such
a system model needs to be up-to-date, and needs to sup-
port mechanisms for efficiently resolving the choices to
maximize the objectives.

3.3.1 Rationale for Exposing Models

To achieve good performance, distributed systems typi-
cally collect some information about the network and, of-
ten implicitly, build anetwork modelto predict network
performance. This is done either by explicitly probing
various network conditions such as bandwidth, latency,
and packet loss rate, or by passively inferring them. Ev-
ery node also maintains some amount of local state, and
collects information about other participants. We refer to
this information as thestate model. For example, a Bul-
letPrime [5] node keeps track of the bandwidth to/from
each of its peers, and the round-trip time file blocks take
to be delivered from each sender. In addition to the
network model, each receiver constructs a file map de-
scribing the set of available blocks at each of its sender.
The applications typically feed the network and the state
model to one or more adaptive mechanisms to predict
performance and make an educated choice of action.
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Keeping the collected information only within the ap-
plication limits the runtime’s ability to predict the future
system behavior. We therefore argue that the network
and the system model should be exported and kept in the
runtime. This approach has the additional advantage of
allowing the runtime to leverage other information ser-
vices, enabling cost and overhead reductions when build-
ing a network performance model. For example, iPlane
[10] proposes to build an information plane which makes
the network measurements and predictions available to
all applications on a given node.

Our long-term goal is to have developers implement
new systems in the proposed programming model, and
contribute to the models and parts of the runtime. Ul-
timately, we expect these to be reused across different
systems, much like software libraries. While the added
dependence on CrystalBall mandates that it is itself reli-
able, the added scrutiny over this shared component will
help it achieve a reliability higher than that of protocol-
specific individual system components, which are cur-
rently used by developers to resolve choices. Current
frameworks result in time-consuming and expensive du-
plication of developer effort for building network and
state models. In addition, building sophisticated mod-
els (e.g., to predict network performance) is difficult. We
argue that it is better to make one concentrated effort to
accomplish this task and let future developers leverage
this information. We expect that such an effort will make
the development of future systems easier, enabling de-
velopers with less expertise to build systems. They can
also result in systems that adapt to various deployment
settings, including those that have not been envisioned at
development time.

Deciding on the data that should be kept in the run-
time is potentially one new challenge that the program-
mer will face. Some of these decisions resemble those
encountered when separating policy and mechanism in
system design. Static and dynamic analysis tools might
help identify parts of state that belong to the runtime.

3.3.2 Efficiently Maintaining Models

Our recent work revealed a number of challenges and
possible solutions for maintaining useful system models
at runtime.

How to deal with the lack of global information?
Obtaining global information about the distributed sys-
tem is a fundamental problem in distributed algorithms.
To move the horizon beyond the currently collected
node neighborhood, we propose the notion of a generic
(dummy) node. The state of such a node is under-
specified, which allows the model to explicitly take the
partial nature of the available information. Taking into
account the actions of generic node in principle requires
the use of symbolic execution. Distributed service it-

self can contribute to efficiently maintaining the model
by exporting state whose goal is to keep track of infor-
mation in other nodes (e.g., file bitmaps in BulletPrime),
and specifying how such a state could be computed. The
runtime can then automatically maintain such informa-
tion and use it to obtain a more accurate global model.

How to keep the model up to date? As the dis-
tributed system evolves, the model can become out-of-
date. Moreover, the acceptable amount of communica-
tion overhead limits the rate at which information can
be exchanged, especially in systems with rapid state
changes. To overcome the fact that the model is not al-
ways up-to-date, our system starts from the latest known
consistent snapshot, but also explores the near future of
the system. To obtain information about the future, it
currently uses an explicit-state model checker. To quan-
tify the quality of the information in the model, it may be
productive to incorporate confidence in the information
as a function of its age.

How to model performance in detail? Previous results
with distributed service-specific measurements and tun-
ing suggest that there is a number of generic aggregate
properties of interest that should be part of the model.
This includes modelling the network, including latency,
bandwidth, and loss information for the individual con-
nections. Integrating this information into a state-space
exploration algorithm turns a model checker into a sim-
ulator that runs a large number of simulations.

3.4 Using Models to Resolve Choices

Given a system model, the problem remains of how to
use this information to maximize the objectives. Because
objectives ultimately refer to future behavior (requiring
that, for example, a state invariant will not be violated
in the future), we use the model along with the system
specification to predict the future behavior of the system
in the environment. The challenge is that the predictions
must happen fast enough to enable resolution of choices,
without substantially slowing down the system. A use-
ful design decision is removing complex mechanisms for
making the choices from the critical path, using choices
based on previous similar scenarios as a fast alternative,
and updating the choices as more information becomes
available. This design leverages the increases in compu-
tational power on multi-core machines.

We expect that new algorithms for online prediction
of future behaviors will become available. Currently, we
have used state space exploration up to a certain depth.
Alternatives include variants of abstract interpretation
adapted to deal with large initial states, as well as sym-
bolic execution approaches. A useful way to speed up
all these analyses is to precompute the impact of actions
on system behaviors before the system is deployed. Such
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off-line computations can be performed using any of the
currently existing approaches for static analysis.

Even with perfect prediction of future system states,
optimizing complex performance-related objectives can
pose non-trivial challenges, and may require the online
deployment of constraint solvers that can deal with quan-
titative constraints [3]. Another challenge is the design
of the execution steering module that avoids unwanted
interaction and coupling among the system participants
(e.g., emergent behavior [12]).

4 A Case Study
To highlight the benefits of exposing choice and using
performance prediction at runtime, we replace the hard-
coded policies with exposed choices in the released pro-
tocol for constructing a random overlay tree (RandTree),
and contrast it with the baseline. Both systems are im-
plemented in the Mace [4] framework. Our performance
and correctness prediction is implemented within the
Mace model checker, and we run the model checker as
a separate thread. We conducted our live experiments
with 31 participant over an Internet-like network using
ModelNet on a cluster of dual-core machines.

Exposing choices results in a 43% decrease in lines
of code (from 487 to 280). Using the number of if-else
statements per handler to capture complexity, we observe
that the complexity of the new code is 0.28, which is
significantly lower than the baseline (1.94).

Next, we show that using the CrystalBall execution
steering module to make the choices results in compa-
rable or better performance. We install the objective that
prioritizes building a balanced tree. We use two ways of
resolving the choices in the new code: Choice-Random,
and Choice-CrystalBall, which gives us a total of three
different setups (including the Baseline). One of the met-
rics we use to observe the tree balance is maximum tree
depth. After all 31 participants join the tree, the maxi-
mum depth is 6 in all cases (close to the optimal of 5).
We then fail an entire subtree (about half of the nodes),
and then let these nodes rejoin. Baseline and Choice-
Random exhibit identical maximum depth (10), while the
Choice-CrystalBall version is better with 9 levels.

5 Related Work
Win et al. [13] use simulated execution to verify dis-
tributed algorithms specified as nondeterministic I/O au-
tomata. Relative to these efforts, our work offers a mech-
anism for resolving nondeterminism at runtime. The
general problem of optimizing objectives arises in the
field of planning, which has also been related to the
model checking [1].

There has been a large body of work on performance
modeling, and our work will directly benefit from it.
There has also been a substantial amount of work on per-
formance tuning, to change system parameters based on

past behavior. In contrast, our work predicts distributed
system behavior at runtime, while taking into account the
current state.

There has been recent work on program steering [9]
by using machine learning techniques to let a program
deal with unexpected inputs by matching an environment
to program’s mode of operation. This work does not con-
sider distributed systems, and it does not try to anticipate
future behavior.

6 Conclusions
We are calling for a programming model where the
choices that a programmer of a given competence cannot
easily resolve are left to a sophisticated runtime system.
Such a runtime system accumulates techniques and algo-
rithms that proved useful in a number of scenarios, and
makes the developers of distributed systems more pro-
ductive.
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