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1 Introduction

Data center computing is becoming pervasive in many

organizations. Computing frameworks such as MapRe-

duce [17], Hadoop [6] and Dryad [25], split jobs into

small tasks that are run on the cluster’s compute nodes.

Through these frameworks, computation can be per-

formed on large datasets in a fault-tolerant way, while

hiding the complexities of the distributed nature of the

cluster. For these reasons, a considerable work has been

done to improve the efficiency of these frameworks.

A popular approach to improve the efficiency of clus-

ter computing frameworks has been to increase disk-

locality – the fraction of tasks that run on nodes that

have the task’s input data stored on local disk. Several

techniques have been proposed to increase disk-locality,

including Delay-scheduling [26] and Scarlett [18]. In

many systems, disk-locality is one of the main perfor-

mance metrics used to evaluate efficiency [15, 17, 25].

Some systems, such as Quincy [21], go as far as defining

fairness in terms of disk-locality, preferring to evict tasks

to ensure fair distribution of disk-locality across jobs.

This paper takes the position that disk-locality is go-

ing to be irrelevant in cluster computing, and considers

the implications this will have on datacenter computing

research. The quest for disk-locality is based on two as-

sumptions: (a) disk bandwidths exceed network band-

widths, (b) disk I/O constitutes a considerable fraction of

a task’s lifetime. We show that current trends undermine

both these assumptions.

As observed many times in the past, networking tech-

nology is improving at a much faster pace than disk

speeds [9]. We confirm these results, showing that –

for a typical hardware setup – reading from local disk

is only about 8% faster than reading from the disk of

another node in the same rack, results which are con-

sistent with the ones published elsewhere [23]. As for

communication across racks, a clear trend is towards full-

bisection topologies [24], which eliminate the bandwidth

over-subscription. Such topologies have already been

adopted in several datacenters [12]. This ensures that

bandwidth across racks will be equal to the bandwidth

within a rack.

Another trend that strengthens our thesis is the need to

save more and more data in clusters. The need for stor-

age space outweighs affordable storage, and the gap is

projected to continue to expand [2]. The ever-increasing

demand for storage not only makes solid state devices

(SSDs) economically infeasible to deploy as a primary

storage medium [5, 9, 16], but more importantly has led

to the use of data compression. Compression signifi-

cantly decreases the size of the data read from the disk,

which correspondingly reduces the fraction of I/O in a

task’s lifetime. The net result is that compression further

decreases the need for disk-locality. Indeed, our analysis

of logs from Facebook show that disk-locality results in

little, if any, improvement of task lengths.

While the above trends imply that tasks whose inputs

are stored on disk can run anywhere, this is not the case

for tasks whose inputs are in memory. Indeed, reading

from local memory is two orders of magnitude faster

than reading from local disk as well as reading from a

remote host’s disk or memory. The advent of full bisec-

tion bandwidth and optical networks are unlikely to have

a material impact on this discrepancy, as inter-host la-

tency still remains an insurmountable barrier. Thus, we

expect memory-locality to play an ever-important role in

the design of cluster computing frameworks.

While faster memory reads presents an opportunity to

significantly speed-up jobs, it comes with its own set of

challenges. In particular, there is at least two orders of

magnitude discrepancy between the disk and memory ca-

pacities in today’s clusters. Thus, replacing disks with

memory is not feasible, which leaves us with one natural

option: use memory as a cache to improve job comple-

tion times. This constitutes a significant difference from

the RAMCloud [22] vision in that only a fraction of the

data will be (and can be) in memory at any given time.
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Figure 1: Comparison of disk and memory read band-

widths locally and across the network from microbench-

mark experiments.

In-memory caching however does not come without

challenges. First, memory is not large enough to fit the

inputs of all jobs. In our Facebook traces, the aggregate

size of job inputs is an order of magnitude more than the

available memory. Second, as many as 75% of blocks are

accessed only once, which reduces the effectiveness of

caching. Finally, to ensure good performance, we would

need to cache all of the job’s inputs. Even if a single task

reads its input from the disk, it may become an outlier,

which prolongs the job completion time.

Surprisingly, despite these challenges, we show that

as many as 64% of all jobs achieve memory locality for

all their tasks when using the LFU replacement policy.

This is in large part due to the heavy-tailed nature of the

workload, i.e., the majority of jobs access only a small

fraction of the blocks. Even more surprisingly, the in-

puts of the vast majority (96%) of active jobs can fit into

a fraction of the cluster’s total memory. This suggests

there is a large potential for further improving most job

completion times by developing new cache replacement

and pre-fetching schemes.

Going forward, we solicit research on several prob-

lems related to that of providing an in-memory cache

for datacenters. First, our analysis of Hadoop logs from

Facebook show that a large fraction of the data is only

accessed once, calling for techniques to prefetch data.

Second, while traditional cache replacement techniques

like LFU provide encouraging memory-locality, there is

an opportunity for designing replacement schemes that

minimize job-completion time, as opposed to bluntly in-

creasing memory-locality. Finally, the rapid churn of file

blocks in the caches will pose a challenge to servers that

store metadata about block locations [28]. A scalable ar-

chitecture is therefore required.

2 Disk-Locality Considered Irrelevant

We start by highlighting recent advances in networking.

Thereafter we look at storage and data trends and finally

see how SSDs will affect our claims.

2.1 Fast Networks

Advances in networking technology have seen link

speeds in switches and server NICs increasing consider-

ably. Switches with aggregate link speeds of 40Gbps and
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(b) Rack-local/Off-rack

Figure 2: (a) Rack-local tasks progress at the same rate as

node-local tasks. (b) Off-rack tasks are only 1.2x slower at

median despite an over-subscription of 10.

100Gbps are commercially available [1]. Even server

NIC rates of 10Gps and 25Gbps are expected to be pop-

ular in a couple of years [9].

Thus, as observed previously, reads from local disk

are comparable to reads from local network. Figure 1

confirms this by showing that the bandwidth difference

is about 8%1. This is consistent with bandwidth numbers

in a recent Google report [23] over 2, 000 servers.

The main motivation for disk-locality has, how-

ever, mostly been driven by off-rack bandwidth over-

subscription [17]. Network topologies proposed in re-

cent research significantly reduce or eliminate these

over-subscription ratios [24]. These clos-based topolo-

gies have demonstrated full bisection bandwidth even

when all the servers communicate with each other. In ad-

dition to providing full bisection bandwidth, their use of

commodity switches enable remarkable cost savings for

larger datacenters [24]. For these reasons, they have al-

ready been adopted by several datacenters [12], and this

trend is only likely to continue.

Deployment Validation Hadoop tasks running at

Facebook’s datacenter corroborate our thesis. This data-

center consisted of over 3, 000 machines, networked us-

ing the traditional three-tiered topology, and mostly ran

data-intensive jobs, which spent the major fraction of

their lifetime reading input data. To measure the effect

of locality on task durations, we denote a task’s progress

rate as
(data read+data written)

duration
. We use the progress

rate of a task as opposed to its duration to be immune

to imbalance among tasks within a job in the amount of

data they read/write. We compared the progress rates

of node-local and rack-local tasks for a week in October

2010. For each job, we took the ratio between the median

of its progress rates for rack-local and node-local tasks.

Figure 2a plots the CDF for these ratios. We observe that

85% of the jobs have this ratio centered around 1.0 (in the

window of 0.9 to 1.1). Note that only 4% of jobs have it

1The experiments were done on the DETER [4] testbed that have

1Gbps network links.
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less than 0.7 (rack-local tasks being appreciably slower),

essentially indicating that vying for node-locality does

not buy much over rack-locality. This is explained by the

above observation that disk read bandwidths are compa-

rable to rack-local bandwidths.

What if we can stripe data from multiple disks at a

time? This is a reasonable way to increase disk read

throughputs as they have plateaued stand-alone. How-

ever, to compare with imminent network speeds of 10

and 25Gbps, we will need to connect up to 50 disks per

server. In addition to raising scalability questions of the

central disk controller, this is also practically challenging

given the physical space constaints in a rack.

2.2 Storage Crunch

A long standing assumption in data-intensive comput-

ing has been that read durations dominate the lifetime of

tasks. For such I/O-intensive tasks, naturally, speeding-

up reads has significant impact on reducing task com-

pletion times. However, a recent phenomenon in data-

centers challenge this. Under pressure to cope with the

ever-growing volumes of data, datacenters have resorted

to compression and de-replication of data. We first de-

scribe the reasons behind this storage crunch before pro-

ceeding to explain why shooting for data-locality is an

unattractive option in this scenario.

Efficacy of data mining algorithms for online recom-

mendation services (e.g., context-based advertisements),

which form the main source of revenue for modern In-

ternet services, improves with increase in the quantity

of data. This has placed the storage infrastructure un-

der strain (e.g., at Facebook [13] and Microsoft). While

servers are stacked with multiple disks (typically, 2TB

each up to a total of 12TB), they are limited by practi-

cal aspects like the physical space available on the rack.

There is also a limit to the number of servers that can be

deployed in a datacenter. Increasing them beyond a point

has non-linear costs, i.e., migrating to a new datacenter

with additional costs.

Compression Facebook datacenters use a number of

techniques to deal with the storage crunch. Data is stored

compressed. Since the primary driver of datacenter jobs

are large text data blobs of structured data (e.g., web

crawls) [3], they can be highly compressed. Tasks now

read compressed data and decompress it before process-

ing. High compression ratios mean significantly less data

to read thereby obviating the need for disk-locality.

Hadoop task durations from Facebook, where data is

compressed with gzip, support this observation. Fig-

ure 2b captures the median progress ratio between tasks

executing rack-locally to off-rack. We expected off-rack

tasks to be significantly slower as the network was over-

subscribed by ten. On the contrary, running a task off-

rack turns out to be only 1.2x and 1.4x slower compared

to rack-local execution, at median and 95th percentile.

We consider this to be a direct effect of compression.

De-replication Aged data has lower number of repli-

cas (as low as one copy) compared to other data. With

just one copy, even under moderate cluster utilization,

the probability of finding a disk-local slot is nearly negli-

gible, making it an unattractive target to vie for. Analysis

of Hadoop jobs from Facebook underscores the difficulty

in attaining disk-locality: overall, only 34% of tasks run

on the same node that has the input data.

Therefore, we conclude that techniques to deal with

the storage crunch, in addition to network speeds im-

proving vis-a-vis disk bandwidths, make data-locality ir-

relevant in datacenter computing.

2.3 Why SSDs will not help

Solid state devices (SSDs) address the traditional prob-

lem of poor bandwidths of disks under random read

workloads. They provide higher bandwidths and lower

latency compared to disks even under random reads [5].

Despite the performance advantages of SSDs, they

have not found as much traction. Recent studies show

that SSDs are unlikely to be deployed as the primary

medium to store the ever-growing large volumes of data

in the near future [16]. The cost-per-byte of these devices

have to reduce by up to three orders of magnitude for

consideration. While the cost of SSDs is reducing over

time (50% every year [9]), an improvement of several or-

ders of magnitude is not predicted [8]. The deployment

scenario envisioned for SSDs is to be operating in con-

junction with disks [5, 7] where relatively small-capacity

SSDs are used as an intermediate tier between memory

and disks. Also, as we described in Section 2.2, the ever-

growing demand for storage space presents further barri-

ers to wholesale migration from disks to SSDs.

In summary, we believe that future datacenters will

continue to have disks as their primary storage medium.

With network speeds equalling or surpassing disk band-

widths, disk reads will be the bottleneck for tasks. A

perhaps bigger implication is that the irrelevance of disk-

locality again re-opens the opportunity to architect clus-

ters, in which storage is not co-located with compute

nodes [19]. Indeed, many of the earlier HPC clusters

had dedicated storage servers through Storage Area Net-

works (SANs) and parallel file systems. Furthermore,

even though disk-locality may not matter, replication

schemes, such as Scarlett [18], might still provide an ad-

vantage in the cases of hot spots, as requests are load

balanced to several machines.

3 Memory Locality

Based on the arguments in Section 2, we believe that fo-

cus should shift from disk-locality to memory-locality.

As shown in Figure 1 and reported in Google’s dat-
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(b) Memory-Locality

Figure 3: (a) Distribution of input sizes of jobs (truncated

to 20TB). (b) Comparison of memory-locality between ag-

gregated and distributed cache for different memory sizes.

Despite cache hit ratios of only 52%, the heavy-tailed dis-

tribution of job input sizes leads to 64% of jobs having all

tasks memory-local.

acenters [23], reading from memory is two orders of

magnitude faster than reading from disk/network. De-

spite the reverse deficit of an equal two orders of magni-

tude between the storage capacities of memory and disk,

we believe memory-locality is likely to provide signif-

icant gains based on the following workload observa-

tion. In the Hadoop workload from Facebook, 96% of

active jobs2 respectively can have their entire data simul-

taneously fit in memory (assuming 32GB memory per

server). This turns out to be due to the heavy-tailed na-

ture of the workload, i.e., the majority of jobs access only

a small fraction of the blocks (Figure 3a). Thus, very few

active jobs could not fit their task data in memory.

We begin with the following strawman for memory-

locality: cache each accessed block in memory (if not al-

ready present), and make way for newer blocks when out

of space by evicting some of the current blocks, which

are selected by the cache eviction policy. Tasks are ex-

ecuted memory-locally if their data is cached in mem-

ory and the corresponding machine has free computation

slots. Through a trace-driven simulation of this scheme

using the Hadoop logs, we highlight the challenges in

achieving memory-locality. Our figure of merit is the

fraction of tasks that achieve memory-locality, i.e., ac-

cess their data from the memory cache, towards the goal

of minimizing job completion times.

We first estimate the upper-bound for achievable

memory-locality. Distribution of access counts show that

75% of the blocks get accessed only once. These single-

accessed blocks, in turn, are used by 42% of the tasks.

Since we cache a block in memory only after its first ac-

cess, the maximum memory-locality achievable is 58%.

For our evaluation, we assume a distributed memory

model where each machine maintains its own memory

cache, and sixteen computation slots per machine. Fig-

2By active jobs we mean jobs that have at least one task running.

ure 3b shows that, with an LFU replacement of cache

blocks, 52% of tasks get memory-locality (90% of the

upper-bound of 58%). The figure also compares the LRU

and LFU cache replacement schemes. We see that LFU

replacement is consistently better than LRU by over 15%

in providing memory-locality. This is explained by big

skew in access counts where 75% of the blocks are ac-

cessed only once. A block with a low access count is

more unlikely to be accessed again as opposed to the

oldest accessed block. As a side note, Figure 3b also

includes results for a common pool model, in which all

the memory is considered to be in a single machine with

aggregated slots. This model barely improves upon the

more realistic distributed model, indicating that the load

is spread out over blocks and machines.

Finally, we proceed to see how memory-locality af-

fects job completion times. We conservatively assume

that jobs are sped-up only when all their tasks read data

from memory. This is because memory-locality for only

some of the tasks in the job could result in the rest

becoming outliers, holding up overall completion [14].

Our evaluation shows 64% of jobs have all their tasks

memory-local. This measure is conservative, but shows

at the very least that those jobs would experience a reduc-

tion in job completion time. While we believe this to be

an encouraging early result, there is also a large poten-

tial for further improvement, by developing new cache

replacement and pre-fetching schemes.

We conclude with the following three challenges:

1. Cache Eviction Current eviction schemes are de-

signed to improve the cache-hit ratio. But as earlier

mentioned, an improvement in a job’s hit ratio might

not improve its completion time. We thus solicit evic-

tion schemes that focus on reducing job completion

times. Our present evaluation with the LFU replace-

ment scheme improves 64% of the jobs out of the po-

tential 96%. Hence, there is room for designing cache

replacement schemes more tailored to the datacenter set-

ting. Towards our goal of reducing completion times,

replacement schemes should aim to increase the number

of “whole” files that are present in cache.

2. Pre-fetching Blocks Tasks that access singly-

accessed blocks cannot obtain memory-locality. These

42% of the tasks are distributed across 11% of the jobs.

Speeding up these jobs requires an “out-of-band” mecha-

nism that predictively pre-fetches such blocks in to mem-

ory. One option could be to load recently created data,

like the output of jobs, in to memory. For jobs with mul-

tiple waves, we can use the first wave as a cue to load all

the other input blocks to memory.

3. Scalable Cache Management File system masters

that store metadata about blocks already operate under

pressure [28]. An in-memory cache is expected to have
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higher churn in the location of blocks.Therefore, a suffi-

ciently scalable architecture is required for caching and

serving data blocks.

4 Related Work

Disk-Locality While memory-locality presents an at-

tractive opportunity to speed-up jobs, we believe that the

principles from prior work that dealt with disk-locality

are still applicable. Dealing with slot contention [18] –

evictions [21] versus ceding locality [26] – is pertinent

when there are no free slots on a machine for a task that

has its input data cached on it. The principle of repli-

cating popular blocks [18] across memories of different

machines will avoid such contentions. Even when blocks

are not in memory, multiple replicas reduce contention

for disk bandwidths during concurrent block accesses.

Global Memory Prior work has noted falling network

latencies and the advantage of remote memory reads.

The NOW project [11] proposed using a remote ma-

chine’s memory as opposed to local disk. GMS [10] in-

corporated global memory management in a production

system with resilience under churn. As network speeds

are not likely to compare against local memory reads [9],

we solicit a distributed cache management system as op-

posed to an aggregated pool. In other words, reading

from a remote node’s memory is unlikely to provide large

gains over reading from disk due to sequential reads.

Memory Storage Systems like MMDB [20] and

RAMCloud [22] envisions storing all data in memory.

However, the two orders of magnitude more disk than

memory capacity in many a typical data centers implies

that we use memory as only a cache.

Iterative Jobs New cluster computing frameworks

(Piccolo [29], and Spark [27]) are optimized to support

machine learning applications and interactive data anal-

ysis, that iteratively read the same data. While the first

iteration reads data from disk, these frameworks cache

the data and make the subsequent iterations read from

memory. Our proposal is much broader, targeting all the

jobs in the datacenter (iterative as well as non-iterative)

which raises a different set of challenges. Furthermore,

unlike these other approaches, the in-memory cache we

advocate will enable accessing data cached by other jobs.
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