
CloudSense: Continuous Fine-Grain Cloud Monitoring
With Compressive Sensing

H. T. Kung, Chit-Kwan Lin and Dario Vlah
Harvard University

Cambridge, MA 02138
{htk,cklin,dario}@eecs.harvard.edu

Abstract

Continuous fine-grain status monitoring of a cloud data
center enables rapid response to anomalies, but handling
the resulting torrent of data poses a significant challenge.
As a solution, we propose CloudSense, a new switch
design that performs in-network compression of status
streams via compressive sensing. Using MapReduce
straggler detection as an example of cloud monitoring,
we give evidence that CloudSense allows earlier detec-
tion of stragglers, since finer-grain status can be reported
for a given bandwidth budget. Furthermore, CloudSense
showcases the advantage of an intrinsic property of com-
pressive sensing decoding that enables detection of the
slowest stragglers first. Finally, CloudSense achieves
in-network compression via a low-complexity encoding
scheme, which is easy and convenient to implement in
a switch. We envision that CloudSense switches could
form the foundation of a “compressed status information
plane” that is useful for monitoring not only the cloud
data center itself, but also the user applications that it
hosts.

1 Introduction
Status monitoring is an essential component to the
smooth operation of today’s cloud data centers, as quick
responses to anomalies, failures or load have crucial
business and performance ramifications. To be eco-
nomical, clouds must strive for full utilization or high
job throughput; thus, it pays to have the freshest server
load information to avoid idling. Customer service-
level agreements often stipulate system responsiveness
requirements that must be met by rapid remediation of
failures; this can only be achieved with quick notifi-
cation via continuous fine-grain status reporting. Re-
cent trends in cloud design and usage patterns fur-
ther call for fine-grain and low-latency status report-
ing. For instance, frequent system-level status reports
(heartbeats, temperature, network load) are crucial for
better decision-making by automated data center man-
agement systems [8] and for maintaining geographically
distributed, container-based data centers [7], since more
subsystem failures can occur as the total system scales

up. At the application level, the increasing popularity of
NoSQL systems has placed greater emphasis on interac-
tive ad hoc querying, meaning that straggler tasks in the
MapReduce jobs underlying NoSQL queries need to be
quickly detected and mitigated in order to provide the
user with a responsive system.

In short, cloud data centers could greatly benefit from
continuous, fine-grain and low-latency global status re-
ports across many dimensions. But storing, transporting
and processing the sheer volume of information poses a
high data-rate sensing problem. Worse yet, anomaly de-
tection mechanisms must often rely on collecting global
status information in order to make global, relative com-
parisons. For example, straggler detection requires a
relative metric since, by definition, straggling tasks are
those that run slower than most others. This global infor-
mation requirement means that data reduction solutions
based on local comparisons and filtering are unsuitable.
Existing solutions resort to reducing the data volume
by either employing aggregation methods [14] to lower
the resolution of information or by sampling at a low
rate [12]. Unfortunately, neither strategy is amenable to
continuous, fine-grain monitoring. This led us to con-
sider an alternative: in-network compression of status
messages.

We observe that the required bandwidth for each net-
work link in a status collection tree (Figure 1), includ-
ing the top link, depends mostly on the “sparsity” of the
system, which in our case is the number of anomalies,
rather than on a much larger quantity proportional to
the total number of nodes. To exploit this, we rely on
results in compressive sensing [4] (CS), a technique in
signal processing that enables simple encoding and ex-
act reconstruction of a sparse signal given incomplete
samples or measurements. In the literature, CS has been
considered mainly as a compression technique for signal
and imaging problem domains, since natural transforms
into sparse domains (e.g., Fourier) are well-known. A
major challenge in identifying other areas of applicabil-
ity has been finding natural sparsity-inducing transforms
for other kinds of signals. Here, we show that CS is also
useful to discrete applications, such as status monitor-

ing. This is possible because status anomalies are by
definition sparse; in other words, the status signal itself
directly exhibits sparsity, meaning we can simply use the
identity transform.

CS is well-suited for in-network status message com-
pression for two main reasons. First, it provides a sim-
ple encoding mechanism for switches at all levels of the
network; fan-in at aggregation and core switches can
be handled by simple addition operations. Second, it
has a useful incremental decoding property—with just
a few measurements, the largest anomaly can be recov-
ered first; as more measurements are received, anomalies
of smaller magnitude are recovered next. This “largest
first” decoding property is perfectly suited for cloud
monitoring, as large anomalies are typically revealed
earlier to reporting nodes and need to be handled first.

We propose CloudSense, a compressive sensing
switch design that enables continuous, low-overhead, in-
network compression of status reports. Using MapRe-
duce straggler monitoring as an example, we give ev-
idence of the benefits of CloudSense over conventional
status reporting methods via analysis and emulation. Ul-
timately, we envision that CloudSense, together with
software APIs, will comprise a compressed status in-
formation plane for the cloud data center, providing a
simple platform for monitoring not only the cloud itself
but also the user applications it hosts.

2 Compressive Sensing
A full treatment of compressive sensing is beyond the
scope of this paper; Candès and Wakin [5] provide a
good review for interested readers. Here, we aim to pro-
vide a high-level sketch of the mechanics of CS encod-
ing and decoding and insights into how the technique
can be useful in cloud monitoring.

Consider a real-valued, one-dimensional, length-N
signal as a vector x = 〈x1x2 . . . xN 〉. This signal can be
represented as x = Ψs in a predetermined basis Ψ, and
is called K-sparse if it is a linear combination of only K
out of N basis vectors, i.e., only K coefficients in s are
non-zero while the rest are zero, or if it can be approx-
imated by such a linear combination. When K � N ,
then the signal x is said to be compressible.

In CS, the signal x is sampled or encoded by a process
that produces measurements y = Φx. Normally, when
Φ is a full-rank N×N matrix, the system of equations is
complete and can be solved. However, the case of inter-
est is when Φ is M ×N , where M � N , i.e., when the
signal is compressed. This is a problem with infinitely
many solutions, but compressive sensing theory states
that a K-sparse signal x can be uniquely reconstructed
with high probability when Φ is a random matrix and
when M ≥ cK log(N/K), where c is a small constant.
The reconstruction, or decoding, is usually performed

C

E

nj … n2 n1

TA

x1 x2 xj

. . .

. . .
yA = ΦAxA

nN-1 nN . . .

. . .

xN-1 xN

�
yj

��
yj

Figure 1: A status information collection tree where nodes ni

are reporting entities under CloudSense monitoring. TA, E
and C are CloudSense switches. This represents a simplified
data center network topology.

via a linear programming optimization that solves the
`1-minimization problem:

min
s∈RN

‖s‖`1 subject to y = Φx,x = Ψs (1)

An interesting property of the `1-minimization is that
the quality of the decoding is a function of M . In gen-
eral, the larger the M , the more accurate the reconstruc-
tion. Furthermore, recovery is incremental: with small
M , the largest components of s can be recovered, but as
M grows, the remaining components are decoded.

The low complexity of encoding and the flexibility of
incorporating any Ψ in decoding make CS a potential
solution to cloud status monitoring. Indeed, CS has been
proposed in monitoring data center temperature [11]. In
this paper, we extend the idea to new classes of ap-
plications related to data centers, including, e.g., CPU
load monitoring for VM load spreading, per-flow band-
width monitoring for heavy-hitter identification or even
spam/DDoS detection. As mentioned earlier, we ob-
serve that CS is especially useful in scenarios where the
notion of a “normal” status is relative and can only be
determined by obtaining global information. One such
example is in MapReduce straggler monitoring, which
we will discuss in Section 4.

3 CloudSense Switch Design
The design of our CloudSense switch prototype dove-
tails with recent work on programmable switches, such
as the SideCar [13] and ServerSwitch [10] projects.
In fact, for our prototype implementation, we assume
a hardware setup similar to SideCar: a CloudSense
switch is comprised of a commodity switch connected
to a general-purpose sidecar processor on a specially-
designated port.

Figure 1 shows a typical data center topology with
CloudSense switches and N rack nodes. Raw status
messages (xi) sent by rack nodes (ni) are marked with
a custom CloudSense IP protocol ID and a status type.

Each status type defines a reporting interval d and is
user-specified. On arrival at a top-of-rack (TOR) switch
(e.g., TA), these packets are steered to the sidecar pro-
cessor, which runs a CloudSense daemon that buffers
messages of the same status type into epochs of dura-
tion d. Every epoch, the buffered messages in vector xA

are encoded as yA = ΦAxA, where ΦA is an M ×NA

random matrix unique to TA with NA being the number
of nodes under TA. (Recall that for status monitoring
applications, Ψ can be the identity matrix. In this case,
s is simply x.) yA, containing M coded measurements,
is forwarded to an end-of-row/aggregation CloudSense
switch E, which performs the same kind of packet steer-
ing as TA. Encoding at E, and subsequently at core
switch C, is simple summing of yj . In a more optimized
design, a CloudSense switch can perform summing op-
erations with hardware, right at the Ethernet ports.

Note that CloudSense requires neither synchroniza-
tion amongst switches or rack nodes, nor reliable deliv-
ery of measurements. While status may be reported in
one epoch but not the next, CloudSense TOR switches
always buffer the latest report and thus sends the fresh-
est report available. This fundamental robustness against
loss is another advantage of CS. Finally, CloudSense is
able to achieve low-latency because CS encoding opera-
tions have such low complexity, meaning latency is just
a function of the depth of the data center tree.

4 MapReduce Straggler Monitoring
We use MapReduce straggler monitoring as an ex-
ample scenario for CloudSense. Stragglers are often
present in MapReduce jobs and can significantly prolong
job completion times [2], reducing both job through-
put and responsiveness. As jobs become even more
parallelized and shorter (e.g., Hadoop plans to support
>200,000 cores [1]) and as users expect ever-faster re-
sponse, rapid straggler detection has become an increas-
ingly important component of various mitigation meth-
ods (e.g., speculative pipelining [9]). A conventional
monitoring approach would need to gather O(N) sta-
tus reports to determine relative task progress and de-
tect stragglers. In contrast, a CS approach would need
just O(K log(N/K)) reports, where K is the number of
anomalies. We expect K � N .

4.1 Emulation Methodology and Results
We evaluated CS for MapReduce straggler monitoring
using the following discrete-time emulation strategy.
First, we generated traces of nominal task progress re-
ports from an emulated MapReduce phase, split across
N = 8000 nodes with one task per node. Each node’s
trace was generated by reading a large file (1GB) from
its local disk and reporting its progress at each time step
(100ms). This captures task progress jitter due to inde-

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1000 2000 3000 4000 5000 6000 7000 8000

P
ro

g
re

s
s
 d

ila
ti
o
n
 f
a
c
to

r
(S

i)

Node

Figure 2: A sorted straggler signal vector x. The signal is the
ground truth task duration of all 8,000 nodes in the emulated
traces. There is an abrupt drop at 800 nodes because the traces
were generated with K = 800 stragglers and all other nodes
were considered normal. Signals such as this, which are sparse
and have rapidly dropping tails, can have their largest compo-
nents decoded early, with just a few measurements.

pendent, random interrupts from other system processes
on each node. Next, we designated K = 800 (10%) of
the nodes to be stragglers and artificially dilated each
of their progress traces by some factor Si, where K
and the Si’s are drawn from distributions published by
Ananthanarayanan et al. ([2], Figure 2). In practice,
1.5 ≤ Si ≤ 10 and we assume, for simplicity, that
each straggler progresses at a constant rate before task
completion. Finally, we emulated status messages arriv-
ing at a single TOR CloudSense switch by aligning the
traces and considering each time step as a signal vector
x. At each time step, the emulated CloudSense switch
encoded y = Φx, resulting in M measurements. Be-
low, we refer to the decoding of each such time step a
separate “CS instance”.

Here, it is instructive to note that CS decoding has
three failure conditions. First, CS decoding is only
successful with high probability. However, CS permits
more frequent reporting, meaning a rare decoding failure
can be quickly corrected by decoding a subsequent mes-
sage. Second, CS decoding can fail if the magnitudes
of the sparse signal components do not rise significantly
above the signal noise (i.e., the measured signal is not
sufficiently sparse). This can occur, e.g., when there are
insufficient statistics at the beginning of a MapReduce
phase to reliably report progress. Third, even if progress
is reliably reported, the recovered solution may not iden-
tify all stragglers correctly when M is too small. Fortu-
nately, CS may still recover large anomalies in this case.

Figure 2 illustrates a signal vector x, used in our eval-
uations below, involving 8,000 nodes and sorted accord-
ing to each node’s ground truth task duration. Since
severe stragglers with long durations constitute a small
percentage of the total population, the signal is sparse.
Moreover, the signal tail drops rapidly, meaning the
number of measurements required to accurately decode
the largest magnitude anomalies is low [3] and decoding

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

F
ra

c
ti
o
n

Number of measurements, M

False negatives at t=1s
False negatives at t=10s

False positives at t=1s
False positives at t=10s

Figure 3: Decoding accuracy vs. number of measurements at
two representative points in time. The performance at later
times was not significantly different from that at t = 10s. The
decoding accuracy is computed as the number of false positives
and negatives, when compared to the ground truth.

can occur early, as soon as the first few measurements
are received. In Evaluations 1 and 2 below, we are inter-
ested in knowing the effect of M on decoding accuracy
for such signals, even when M is relatively small. That
is, we want to characterize how the tail behavior of the
straggler signal governs the accuracy of the decoded so-
lution for a given M in order to give a sense of how
useful this early decoding property is.

Evaluation 1: Decoding Accuracy
We first evaluate CS decoding accuracy. In any given

CS instance, we compared the set of stragglers identified
by CS to the known set of stragglers in the ground truth
by computing two quantities: 1) false positives, i.e., the
number of nodes incorrectly identified as stragglers by
CS, and 2) false negatives, i.e., the number of nodes that
were stragglers, but which CS failed to identify.

In Figure 3, we plotted these quantities for a range
of values for M , at two representative points in time.
There are two noteworthy observations; first, the num-
ber of false positives is relatively small regardless of the
M value. Thus, when the number of measurements is in-
sufficient for accurate decoding, CS errs conservatively
by identifying just a few nodes as stragglers. Second, as
M increases, we see that the number of false negatives
decreases at a consistent rate, indicating that by tuning
M , we can control the accuracy over a wide range.

Evaluation 2: Early Detection of Worst Stragglers
Decoding accuracy alone does not tell the whole story

on the effectiveness of CS in straggler monitoring. A
more relevant metric is the maximum duration of un-
detected stragglers; even if complete detection is not
achieved, CS could be deemed successful if it can iden-
tify the most egregious stragglers. Figure 4 shows the
maximum durations of the undetected stragglers for the
same set of CS instances as in the previous section.

Even though the decoding may not be exact, as M in-
creases, CS tends to detect the more extreme stragglers
first; as a result, the maximum duration of undetected
stragglers drops off relatively early. This property, char-

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000M
a
x
.
d
u
ra

ti
o
n
 o

f
u
n
d
e
te

c
te

d
 s

tr
a
g
g
le

rs

Number of measurements, M

t=1s
t=10s

Figure 4: Maximum duration of undetected stragglers vs.
number of measurements M . The duration is calculated rel-
ative to the median; e.g., a value of 8 indicates a task which
runs 8x as long as the median. Two representative time steps
are shown; beyond t = 10s the error behavior does not change
significantly. The flat portions of the curves at small M are
due to the task duration distribution we used to generate the
ground truth; the maximum duration present there was 10.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

F
ra

c
ti
o
n

Number of measurements, M

Duration > 2x
Duration > 3x
Duration > 4x

Figure 5: At t = 10s, the fraction of undetected stragglers (i.e.,
false negatives) whose durations are 2, 3, and 4 times greater
than the median task duration, respectively.

acteristic of compressive sensing, is useful because it
matches well the goal of our application. With fewer
measurements, CS identifies just the largest—ostensibly
most important—stragglers. With more measurements,
CS can identify the remaining stragglers of progressively
smaller magnitudes. This is behavior is clearly illus-
trated in Figure 5, where we have further broken down
the undetected stragglers at CS instance t = 10s into
those that have task durations greater than 2, 3 and 4
times the median task duration. With small M , most of
the worst stragglers (4x) are successfully detected leav-
ing the remainder to comprise a relatively small fraction
of the undetected straggler population. As M increases,
the fraction of worst stragglers (4x) declines to near zero
earlier—at M ≈ 2, 500—as opposed to at M ≈ 3, 500
for less severe stragglers (2x).

The largest-straggler-first property suggests that an it-
erative method might perform even better in straggler
removal. In particular, one might use CS with small M
at first to identify a few of the slowest stragglers, remove
them from the input, and then have an easier time identi-
fying the remainder in the subsequent iterations. Under
a separate paper, we have developed a theory for this it-

 2

 3

 4

 5

 6

 7

 8

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
 (

x
 1

0
3
)

Time step (s)

Duration > 2x
Duration > 3x
Duration > 4x

Figure 6: Number of measurements M needed over time to
identify stragglers whose durations are larger than 2, 3, or 4
times the median duration, respectively. Only the first 5s of
the emulated job is shown. Data points before 0.5s are artifacts
related to task start time jitter and should be ignored.

erative decoding [6].

Evaluation 3: CS Signal Recovery Over Time
We next examine the performance of CS over time

by reporting the number of measurements per time step
needed to eliminate all stragglers which exceed a speci-
fied maximum duration. Figure 6 shows the resulting M
values for several maximum durations.

The main feature of the results are the peaks in M at
t ≤ 1s. There are three major factors contributing to the
observed shape:

1) Before the onset of the peak, M starts out small,
indicating that the progress vector is sparse. This ex-
plained by jitter in task start times; in the beginning, a
minority of the tasks start early, reporting a non-zero
progress, while the majority of tasks have yet to start,
and so report zero progress. This constitutes a sparse in-
put to CS, although the detected anomalies are not strag-
glers at this point.

2) During the peak itself, M is large, indicating a
lack of sparsity. This is explained by the fact that most
tasks have started by now, reporting a small amount of
progress. The stragglers’ progress at this point is too
small to stand out from the jitter noise; thus, the spar-
sity in the input vector is weak, requiring a large M to
decode at the required level.

3) Finally, after the peak, M decreases again, indicat-
ing that inputs are again sparse. We can explain this by
the fact that stragglers have grown enough to stand out.

It is evident that the earliest time we can detect most
of the stragglers using a low number of measurements
is at the end of the peak in Figure 6, when the stragglers
“reveal” themselves. Given a higher reporting frequency
of CS, on average we can find such points much earlier
than with standard RPC reporting as in Apache Hadoop.

Evaluation 4: Compression Ratio
Finally, we consider the compression performance

of CS. Since the major advantage of CS lies in its
unique ability to detect the largest magnitude anoma-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Time step (s)

CS, K=800 (10% stragglers)
CS, K=400 (5% stragglers)
CS, K=80 (1% stragglers)

Entropy bound, K=80

Figure 7: The CloudSense compression ratio improves as the
percentage of straggling nodes decreases, i.e., as the sparsity
of the straggler signal increases. For comparison, we show the
lower bound on compression given by the entropy of the trace
where only 1% of nodes are stragglers. In this case, Cloud-
Sense approaches the bound.

lies early, we define the CloudSense compression ratio
to be the number of messages needed to detect the worst
(4x) stragglers relative to the M = 8, 000 required by
Hadoop’s RPC method. Figure 7 (K = 800, red) shows
the compression ratio of CS over the first 5s of our emu-
lated MapReduce job, for the case where stragglers com-
prise 10% of nodes. Given the same bandwidth budget,
CloudSense allows ∼2.7x more status messages to be
sent, or a 60% shorter reporting interval.

This compression ratio can be improved significantly
when there are fewer stragglers, since the number of
messages required by CS to decode is dependent on the
sparsity K (i.e., the number of stragglers) of the sig-
nal. Figure 7 illustrates the improved compression ratios
when stragglers comprise only 5% (K = 400, green)
and 1% (K = 80, blue) of nodes. In these cases, Cloud-
Sense can send ∼4.2x and ∼16.3x more status mes-
sages, respectively. For comparison, Figure 7 also shows
the compression lower bound (grey), as dictated by the
entropy of the 1% straggler signal; CloudSense can ap-
proach the bound in this case.

Such compression ratios could also be achieved by
conventional compression methods such as entropy cod-
ing. However, these methods suffer from several signif-
icant qualitative drawbacks. First, unlike CS, entropy
coding requires correlation amongst messages near the
sources in the routing topology to achieve low com-
pression ratios; maximizing this would require jointly
optimizing routing and compression. Second, stan-
dard algorithms such as Lempel-Ziv are more diffi-
cult to implement in switches than CS encoding, even
on programmable ones [13, 10]. Third, at tree fan-in
points, conventionally compressed messages must either
be decompressed and recompressed in order to be com-
bined (which introduces latency) or be simply forwarded
(which wastes bandwidth). In contrast, CS encoding can
be performed at all levels of the network tree quickly.

Finally, CS offers unique advantages, such as “largest
first” partial decoding, that conventional methods do not.

5 Conclusions
We have presented a novel use of compressive sens-
ing: in-network compression of data center status mes-
sages. We argue that compressive sensing is a natural
fit for this problem domain for two main reasons: (1)
its low-complexity compression scheme enables contin-
uous, fine-grain and low-latency cloud status monitor-
ing; and (2) its “largest first” partial decoding property
allows for early detection of the most severe anomalies.
Additionally, the false positives that arise from such par-
tial recovery do not severely impact the performance of
cloud applications, such as MapReduce jobs. In the con-
text of MapReduce straggler monitoring, we have devel-
oped a framework to analyze the tradeoff between com-
munication costs (M) and decoding accuracy/straggler
improvement. Finally, our proposed CloudSense switch
design illustrates that compressive sensing provides a
convenient, low-complexity encoding method for in-
network compression that is simple to implement.

6 Towards a Compressed Status Informa-
tion Plane

We envision a general monitoring service, or com-
pressed status information plane for the cloud data cen-
ter, comprised of three components. First, a central-
ized registry would track each status message type (e.g.,
by allocating unique IDs), inform CloudSense switches
of each type’s requisite reporting interval and act as
a lookup service for type discovery by monitoring ap-
plications (“monitors” for short). Second, CloudSense
switches would encode multiple status streams of differ-
ent types at the same time, with each stream possibly be-
ing tapped by multiple monitors simultaneously. Third,
a software API would permit monitors to look up status
types of interest in the centralized registry and to tap into
those streams at any switch in the data center network.
Different monitors tapping into the same status stream,
but requiring different levels of status fidelity, can be
supported naturally by exploiting CS’s “largest first” de-
coding property: those requiring less fidelity could sim-
ply collect fewer measurements and decode earlier than
those requiring higher fidelity.

Within the rubric outlined above, standard status mes-
sages such as CPU or network load could be registered
by the data center operator as default status streams. But,
as we have illustrated using MapReduce, cloud software
infrastructures and even user applications could be in-
strumented to report statuses (e.g., performance counter
values) in a standard way via the compressed status in-
formation plane. We believe this general framework

could open up new possibilities for performance mon-
itoring of cloud-hosted applications in the future.

Acknowledgments
This material is based on research sponsored by Air
Force Research Laboratory under agreement number
FA8750-10-2-0180. The U.S. Government is autho-
rized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted
as necessarily representing the official policies or en-
dorsements, either expressed or implied, of Air Force
Research Laboratory or the U.S. Government. The au-
thors would like to thank the Office of the Secretary of
Defense (OSD/ASD(R&E)/RD/IS&CS) for their guid-
ance and support of this research.

References
[1] http://developer.yahoo.com/blogs/hadoop/

posts/2011/02/mapreduce-nextgen/.
[2] ANANTHANARAYANAN, G., KANDULA, S., GREENBERG, A.,

STOICA, I., LU, Y., SAHA, B., AND HARRIS, E. Reining in the
Outliers in Map-Reduce Clusters using Mantri. In OSDI (2010).

[3] CANDÈS, E. J. The restricted isometry property and its implica-
tions for compressed sensing. Comptes Rendus de l’AcadÃ c©mie
des sciences, Paris. Series I, vol. 346, pp. 589, 2008.

[4] CANDÈS, E. J., ROMBERG, J., AND TAO, T. Robust uncertainty
principles: exact signal reconstruction from highly incomplete
frequency information. IEEE Trans. Info. Theory 52, 2 (2006),
489–509.

[5] CANDÈS, E. J., AND WAKIN, M. B. An Introduction To Com-
pressive Sampling. IEEE Sig. Proc. Mag. 25, 2 (2008), 21–30.

[6] CHEN, H.-C., AND KUNG, H. T. Separation-based joint de-
cided in compressive sensing. In ICCCN (2011).

[7] GREENBERG, A., HAMILTON, J., MALTZ, D. A., AND PATEL,
P. The cost of a cloud: research problems in data center net-
works. SIGCOMM Comp. Comm. Rev. 39 (2008), 68–73.

[8] ISARD, M. Autopilot: automatic data center management.
SIGOPS Op. Sys. Rev. 41, 2 (2007), 60–67.

[9] KUNG, H. T., LIN, C.-K., VLAH, D., AND
BERLANDA SCORZA, G. Speculative pipelining for com-
pute cloud programming. In MILCOM (2010).

[10] LU, G., GUO, C., LI, Y., ZHOU, Z., YUAN, T., WU, H.,
XIONG, Y., GAO, R., AND ZHANG, Y. Serverswitch: A pro-
grammable and high performance platform for data center net-
works. Tech. Rep. MSR-TR-2011-24, Microsoft Research Asia,
2011.

[11] LUO, C., WU, F., SUN, J., AND CHEN, C. W. Compressive
data gathering for large-scale wireless sensor networks. In Mo-
biCom (2009).

[12] MASSIE, M. The ganglia distributed monitoring system: de-
sign, implementation, and experience. Parallel Computing 30, 7
(2004), 817–840.

[13] SHIEH, A., KANDULA, S., AND SIRER, E. G. SideCar: build-
ing programmable datacenter networks without programmable
switches. In HotNets (2010).

[14] VAN RENESSE, R., BIRMAN, K. P., AND VOGELS, W. As-
trolabe: A robust and scalable technology for distributed system
monitoring, management, and data mining. ACM Trans. Comp.
Sys. 21, 2 (2003), 164–206.

