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iDedup – overview/context 
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Primary Storage: 
•  Performance & reliability are key features 
•  RPC-based protocols => latency sensitive 
•  Only offline dedupe techniques developed 

Dedupe exploited  
effectively here 

 => 90+% savings 

iDedup 
•  Inline/foreground dedupe technique for primary 
•  Minimal impact on latency-sensitive workloads 
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Dedupe techniques (offline vs inline)  

Offline dedupe 
•  First copy on stable storage is not deduped 
•  Dedupe is a post-processing/background activity 

Inline dedupe 
•  Dedupe before first copy on stable storage 
•  Primary => Latency should not be affected! 
•  Secondary  => Dedupe at ingest rate (IOPS)! 



Why inline dedupe for primary? 

4 

Provisioning/Planning is easier 
•  Dedupe savings are seen right away 
•  Planning is simpler as capacity values are accurate 

No post-processing activities 
•  No scheduling of background processes 
•  No interference => front-end workloads are not affected 
•  Key for storage system users with limited maintenance windows 

Efficient use of resources 
•  Efficient use of I/O bandwidth (offline has both reads + writes) 
•  File system’s buffer cache is more efficient (deduped) 

Performance challenges have been the key obstacle 
•  Overheads (CPU + I/Os) for both reads and writes hurt latency 



iDedup – Key features 
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Minimizes inline dedupe performance overheads 
•  Leverages workload characteristics 
•  Eliminates almost all extra I/Os due to dedupe processing 
•  CPU overheads are minimal 

Tunable tradeoff: dedupe savings vs performance 
•  Selective dedupe => some loss in dedupe capacity savings 

iDedup can be combined with offline techniques 
•  Maintains same on-disk data structures as normal file system 
•  Offline dedupe can be run optionally 



Related Work 

6 

Workload/ Method Offline Inline 
Primary NetApp ASIS 

EMC Celerra 
IBM StorageTank 

 
iDedup 

Secondary 
 
 
 

(No motivation for 
systems in this 
category) 

EMC DDFS,  
EMC Cluster  
DeepStore,  
NEC HydraStor,  
Venti,  
SiLo,  
Sparse Indexing,  
ChunkStash, 
Foundation,  
Symantec,  
EMC Centera 

zFS* 



Outline 

 
¡  Inline dedupe challenges 
¡ Our Approach 
¡ Design/Implementation details 
¡ Evaluation results 
¡ Summary 
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Fragmentation with random seeks 

Inline Dedupe - Read Path challenges 
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Inherently, dedupe causes disk-level fragmentation ! 
•  Sequential reads turn random => more seeks => more latency 
•  RPC based protocols (CIFS/NFS/iSCI) are latency sensitive 
•  Dataset/workload property 
Primary workloads are typically read-intensive  
•  Usually the Read/Write ratio is ~70/30 
•  Inline dedupe must not affect read performance ! 



Inline Dedupe – Write Path Challenges 
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CPU overheads in the critical write path 
•  Dedupe requires computing the Fingerprint (Hash) of each block 
•  Dedupe algorithm requires extra cycles 

Client 
Write 

Write 
Logging 

Compute 
Hash 

Dedupe 
Algorithm 

Write  
Allocation Disk IO 

De-stage phase 

Extra random I/Os in the write path due to dedupe algorithm 
•  Dedupe metadata (Finger Print DB) lookups and updates 
•  Updating the reference counts of blocks on disk 

Dedupe metadata 
 
 
 
 
 
 
 
 

Random 
Seeks !! 
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Our Approach 



iDedup – Intuition 
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Is there a good tradeoff between capacity savings and 

latency performance? 



iDedup – Solution to Read Path issues 
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Insight 1: Dedupe only sequences of disk blocks 
•  Solves fragmentation => amortized seeks during reads 
•  Selective dedupe, leverages spatial locality 
•  Configurable minimum sequence length 

Fragmentation with random seeks 

Sequences, with amortized seeks 



iDedup – Write Path issues 
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How can we reduce dedupe metadata I/Os? 
Flash(?) - read I/Os are cheap, but frequent updates are 

expensive 



iDedup – Solution to Write Path issues 
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Insight 2: Keep a smaller dedupe metadata as an in-memory cache 
•  No extra IOs 
•  Leverages temporal locality characteristics in duplication 
•  Some loss in dedupe (a subset of blocks are used) 

Time  

Cached fingerprints 
Blocks  



iDedup - Viability 
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Dedup 
Ratio 

Original Spatial 
Locality 

Spatial + Temporal 
Locality 

Is this loss in 
dedupe savings 
Ok? 

Both spatial and 
temporal localities 
are dataset/workload 
properties ! 
 
⇒  Viable for some 

important primary 
workloads 
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Design and 
Implementation 



iDedup Architecture 
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NVRAM  
(Write log 
blocks) 

iDedup 
Algorithm 

I/Os (Reads + Writes) 

Dedupe 
metadata 
(FPDB) 

Disk 

De-stage 

File system (WAFL) 



iDedup - Two key tunable parameters 

18 

Minimum sequence length – Threshold 
•  Minimum number of sequential duplicate blocks on disk  
•  Dataset property => ideally set to expected fragmentation 
•  Different from larger block size – variable vs fixed 
•  Knob between performance (fragmentation) and dedupe 

Dedupe metadata (Fingerprint DB) cache size 
•  Workload’s working set property 
•  Increase in cache size => decrease in buffer cache 
•  Knob between performance (cache hit ratio) and dedupe 



iDedup Algorithm 
The iDedup algorithm works in 4 phases for every file: 
¡  Phase 1 (per file):Identify blocks for iDedup 

–  Only full, pure data blocks are processed 
–  Metadata blocks, special files ignored 

¡  Phase 2 (per file) : Sequence processing 
–  Uses the dedupe metadata cache 
–  Keeps track of multiple sequences 

¡  Phase 3 (per sequence): Sequence pruning 
–  Eliminate short sequences below threshold 
–  Pick among overlapping sequences via a heuristic 

¡  Phase 4 (per sequence): Deduplication of sequence 
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Evaluation 



Evaluation Setup  
¡ NetApp FAS 3070, 8GB RAM, 3 disk RAID0 
¡ Evaluated by replaying real-world CIFS traces 

–  Corporate filer traces in NetApp DC (2007)  
¡  Read data: 204GB (69%), Write data: 93GB 

–  Engineering filer traces in NetApp DC (2007) 
¡  Read data: 192GB (67%), Write data: 92GB  

¡ Comparison points  
–  Baseline: System with no iDedup 
–  Threshold-1: System with full dedupe (1 block) 

¡ Dedupe metadata cache: 0.25, 0.5 & 1GB 
21 
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Results: Deduplication ratio vs Threshold 
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Dedupe ratio vs Thresholds, Cache sizes (Corp) 

Less than linear 
decrease in dedupe 
savings 
⇒ Spatial locality in 

dedupe 

Ideal Threshold = 
Biggest threshold 
with least decrease 
in dedupe savings 
⇒  Threshold-4 
⇒  ~60% of max 



Results: Disk Fragmentation (req sizes) 
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Results: CPU Utilization 
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Results: Latency Impact 
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baseline 

⇒  Diff between 
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Summary 

¡  Inline dedupe has significant performance challenges 
–  Reads : Fragmentation, Writes: CPU + Extra I/Os 

¡  iDedup creates tradeoffs b/n savings and performance 
–  Leverage dedupe locality properties 
–  Avoid fragmentation – dedupe only sequences 
–  Avoid extra I/Os – keep dedupe metadata in memory 

¡  Experiments for latency-sensitive primary workloads 
–  Low CPU impact – < 5% on the average 
–  ~60% of max dedupe, ~4% impact on latency 

¡  Future work: Dynamic threshold, more traces 
¡  Our traces are available for research purposes 
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