
Kiran Srinivasan, Tim Bisson
Garth Goodson, Kaladhar Voruganti

Advanced Technology Group
NetApp

iDedup
Latency-aware inline deduplication

for primary workloads

1

iDedup – overview/context

2

NFS/CIFS/iSCSI

Primary
Storage

Storage
Clients

Secondary
Storage

NDMP/Other

Primary Storage:
•  Performance & reliability are key features
•  RPC-based protocols => latency sensitive
•  Only offline dedupe techniques developed

Dedupe exploited
effectively here

 => 90+% savings

iDedup
•  Inline/foreground dedupe technique for primary
•  Minimal impact on latency-sensitive workloads

3

Dedupe techniques (offline vs inline)

Offline dedupe
•  First copy on stable storage is not deduped
•  Dedupe is a post-processing/background activity

Inline dedupe
•  Dedupe before first copy on stable storage
•  Primary => Latency should not be affected!
•  Secondary => Dedupe at ingest rate (IOPS)!

Why inline dedupe for primary?

4

Provisioning/Planning is easier
•  Dedupe savings are seen right away
•  Planning is simpler as capacity values are accurate

No post-processing activities
•  No scheduling of background processes
•  No interference => front-end workloads are not affected
•  Key for storage system users with limited maintenance windows

Efficient use of resources
•  Efficient use of I/O bandwidth (offline has both reads + writes)
•  File system’s buffer cache is more efficient (deduped)

Performance challenges have been the key obstacle
•  Overheads (CPU + I/Os) for both reads and writes hurt latency

iDedup – Key features

5

Minimizes inline dedupe performance overheads
•  Leverages workload characteristics
•  Eliminates almost all extra I/Os due to dedupe processing
•  CPU overheads are minimal

Tunable tradeoff: dedupe savings vs performance
•  Selective dedupe => some loss in dedupe capacity savings

iDedup can be combined with offline techniques
•  Maintains same on-disk data structures as normal file system
•  Offline dedupe can be run optionally

Related Work

6

Workload/ Method Offline Inline
Primary NetApp ASIS

EMC Celerra
IBM StorageTank

iDedup

Secondary

(No motivation for
systems in this
category)

EMC DDFS,
EMC Cluster
DeepStore,
NEC HydraStor,
Venti,
SiLo,
Sparse Indexing,
ChunkStash,
Foundation,
Symantec,
EMC Centera

zFS*

Outline

¡  Inline dedupe challenges
¡ Our Approach
¡ Design/Implementation details
¡ Evaluation results
¡ Summary

7

Fragmentation with random seeks

Inline Dedupe - Read Path challenges

8

Inherently, dedupe causes disk-level fragmentation !
•  Sequential reads turn random => more seeks => more latency
•  RPC based protocols (CIFS/NFS/iSCI) are latency sensitive
•  Dataset/workload property
Primary workloads are typically read-intensive
•  Usually the Read/Write ratio is ~70/30
•  Inline dedupe must not affect read performance !

Inline Dedupe – Write Path Challenges

9

CPU overheads in the critical write path
•  Dedupe requires computing the Fingerprint (Hash) of each block
•  Dedupe algorithm requires extra cycles

Client
Write

Write
Logging

Compute
Hash

Dedupe
Algorithm

Write
Allocation Disk IO

De-stage phase

Extra random I/Os in the write path due to dedupe algorithm
•  Dedupe metadata (Finger Print DB) lookups and updates
•  Updating the reference counts of blocks on disk

Dedupe metadata

Random
Seeks !!

10

Our Approach

iDedup – Intuition

11

Is there a good tradeoff between capacity savings and

latency performance?

iDedup – Solution to Read Path issues

12

Insight 1: Dedupe only sequences of disk blocks
•  Solves fragmentation => amortized seeks during reads
•  Selective dedupe, leverages spatial locality
•  Configurable minimum sequence length

Fragmentation with random seeks

Sequences, with amortized seeks

iDedup – Write Path issues

13

How can we reduce dedupe metadata I/Os?
Flash(?) - read I/Os are cheap, but frequent updates are

expensive

iDedup – Solution to Write Path issues

14

Insight 2: Keep a smaller dedupe metadata as an in-memory cache
•  No extra IOs
•  Leverages temporal locality characteristics in duplication
•  Some loss in dedupe (a subset of blocks are used)

Time

Cached fingerprints
Blocks

iDedup - Viability

15

Dedup
Ratio

Original Spatial
Locality

Spatial + Temporal
Locality

Is this loss in
dedupe savings
Ok?

Both spatial and
temporal localities
are dataset/workload
properties !

⇒  Viable for some

important primary
workloads

16

Design and
Implementation

iDedup Architecture

17

NVRAM
(Write log
blocks)

iDedup
Algorithm

I/Os (Reads + Writes)

Dedupe
metadata
(FPDB)

Disk

De-stage

File system (WAFL)

iDedup - Two key tunable parameters

18

Minimum sequence length – Threshold
•  Minimum number of sequential duplicate blocks on disk
•  Dataset property => ideally set to expected fragmentation
•  Different from larger block size – variable vs fixed
•  Knob between performance (fragmentation) and dedupe

Dedupe metadata (Fingerprint DB) cache size
•  Workload’s working set property
•  Increase in cache size => decrease in buffer cache
•  Knob between performance (cache hit ratio) and dedupe

iDedup Algorithm
The iDedup algorithm works in 4 phases for every file:
¡  Phase 1 (per file):Identify blocks for iDedup

–  Only full, pure data blocks are processed
–  Metadata blocks, special files ignored

¡  Phase 2 (per file) : Sequence processing
–  Uses the dedupe metadata cache
–  Keeps track of multiple sequences

¡  Phase 3 (per sequence): Sequence pruning
–  Eliminate short sequences below threshold
–  Pick among overlapping sequences via a heuristic

¡  Phase 4 (per sequence): Deduplication of sequence

19

20

Evaluation

Evaluation Setup
¡ NetApp FAS 3070, 8GB RAM, 3 disk RAID0
¡ Evaluated by replaying real-world CIFS traces

–  Corporate filer traces in NetApp DC (2007)
¡  Read data: 204GB (69%), Write data: 93GB

–  Engineering filer traces in NetApp DC (2007)
¡  Read data: 192GB (67%), Write data: 92GB

¡ Comparison points
–  Baseline: System with no iDedup
–  Threshold-1: System with full dedupe (1 block)

¡ Dedupe metadata cache: 0.25, 0.5 & 1GB
21

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 2 4 8

D
e

d
u

p
lic

a
tio

n
 r

a
tio

 (
%

)

Threshold

.25 GB
.5 GB
1 GB

Results: Deduplication ratio vs Threshold

22

Dedupe ratio vs Thresholds, Cache sizes (Corp)

Less than linear
decrease in dedupe
savings
⇒ Spatial locality in

dedupe

Ideal Threshold =
Biggest threshold
with least decrease
in dedupe savings
⇒  Threshold-4
⇒  ~60% of max

Results: Disk Fragmentation (req sizes)

23

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 8 16 24 32 40

P
e
rc

e
n
ta

g
e
 o

f
T

o
ta

l R
e
q
u
e
st

s

Request Sequence Size (Blocks)

Baseline (Mean=15.8)
Threshold-1 (Mean=12.5)
Threshold-2 (Mean=14.8)
Threshold-4 (Mean=14.9)
Threshold-8 (Mean=15.4)

Fragmentation for
other thresholds are
between Baseline
and Thresh-1

⇒  Tunable

fragmentation

Least
fragmentation

Max
fragmentation

CDF of block request sizes (Engg, 1GB)

Results: CPU Utilization

24

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

P
e
rc

e
n
ta

g
e
 o

f
C

P
U

 S
a
m

p
le

s

CPU Utilization (%)

Baseline (Mean=13.2%)
Threshold-1 (Mean=15.0%)
Threshold-4 (Mean=16.6%)
Threshold-8 (Mean=17.1%)

CDF of CPU utilization samples (Corp, 1GB)

Larger variance
(long tail) compared
to baseline

⇒  But, mean

difference is less
than 4%

Results: Latency Impact

25

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30

P
e

rc
e

n
ta

g
e

 o
f

R
e

q
u

e
st

s

Response Time (ms)

Baseline
Threshold-1
Threshold-8

CDF of client response time (Corp, 1GB)

Affects >2ms

Latency impact for
longer response
times (> 2ms)

⇒  Thresh-1 mean

latency affected
by ~13% vs
baseline

⇒  Diff between
Thresh-8 and
baseline <4%!

Summary

¡  Inline dedupe has significant performance challenges
–  Reads : Fragmentation, Writes: CPU + Extra I/Os

¡  iDedup creates tradeoffs b/n savings and performance
–  Leverage dedupe locality properties
–  Avoid fragmentation – dedupe only sequences
–  Avoid extra I/Os – keep dedupe metadata in memory

¡  Experiments for latency-sensitive primary workloads
–  Low CPU impact – < 5% on the average
–  ~60% of max dedupe, ~4% impact on latency

¡  Future work: Dynamic threshold, more traces
¡  Our traces are available for research purposes

26

Acknowledgements

¡ NetApp WAFL Team
–  Blake Lewis, Ling Zheng, Craig Johnston,

Subbu PVS, Praveen K, Sriram Venketaraman
¡ NetApp ATG Team

–  Scott Dawkins, Jeff Heller
¡ Shepherd

–  John Bent
¡ Our Intern (from UCSC)

–  Stephanie Jones

27

28

