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NAND Flash in Reliable Storage 
• Two main reliability specifications 

– Bit error rate (BER):  10-13 ~ 10-16 
– Data retention:  10 years (cycled to 10% of the max. endurance)  

 1 year (cycled to 100% of the max. endurance) 

• As NAND Flash’s density increases, its raw reliability degrades 
– Need to slow down writes to mitigate the worsening BER 
– Need stronger ECCs  

• When the BER ≥ 10-3, advanced ECCs such as LDPC (low-density parity-check) are 
required* 
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* S. Li and T. Zhang. Approaching the information  
theoretical bound of multi-level NAND Flash memory storage efficiency. IMW '09 



• Retention requirements in real-world applications 
are usually much shorter than a year 

 

 

 

 

 

 

 

 

 

Actual Retention Requirements 
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Unknown (1%) 

≤ 1 min  (53%) 

1 min ~ 1 hr (43%) 

1 hr ~ 1 day (3%) 

Retention breakdown of a TPC-C workload 



Our Contribution 

• Retention Relaxation 

– Exploit the gap between retention specification vs. 
actual retention requirements  to improve write speed 
or ECC cost/performance in Flash-based SSDs 
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Industrial standards: 
1 to 10 years 

Actual requirements: 
days or shorter 

vs. 
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NAND Flash Background 

• NAND Flash memories 
– Composed of floating gate (FG) 

transistors 

– Injecting charge on the FG can 
adjust a transistor’s threshold 
voltage (Vth) 

– Different Vth levels are used to 
represent different data 
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Programming NAND Flash 
• Incremental step pulse programming (ISPP)* 

– Increase Vth step-by-step with step increment = ΔVp 

 
 
 
 
 
 
 

 
• Tradeoffs in ISPP 

– ΔVp ↑  fewer steps (faster) 
– ΔVp ↓  more precise control on Vth (fewer write errors) 
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Vth Target Vth Starting Vth 

11 1 2 10 3 4 5 6 7 8 9 

* Suh et al.. A 3.3 V 32 Mb NAND Flash memory with incremental step pulse programming scheme. JSSC '95 



Vth Distribution of NAND Flash 

• Probability density function of cells’ Vth 

– Modeled using bell-shaped functions in the previous work* 
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* Xie et al.. Using lossless data compression in data storage systems: Not for saving space. TC '11 
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Bit Error Rate vs. Vth Distribution 
• RBER is the integral of the Vth 

distributions that fall into 
wrong states 
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Retention Relaxation vs. Write Speed 
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Retention Relaxation vs. ECC  
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Time 1 year 
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• Shorter retention guarantee  
  Need to tolerate fewer retention errors 
  Allow less capability of the ECC 
  Simpler ECC design 
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Model Extension 

• Base NAND Flash model is not able to capture the 
charge-loss effect which causes the low-Vth tail to 
widen over time* 
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Measurement of charge-loss effect   

* Arai et al.. Extended data retention process technology for highly reliable Flash EEPROMs of 106 to 107 W/E cycles, 
IPRS '98  
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Model Extension 
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Low-Vth tail 

Base model 

Extended model 

• Model the standard deviation of the low-Vth tail 
as a time-increasing function, σlow(t)   
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Modeling Results 
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Retention vs. Write Speed  

• Relax retention from 1 year to 2 weeks 
– 2.3x write speedup is achievable  
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Retention vs. ECCs 

• Relax retention from 1 year to 2 weeks 
– We can use the BCH (24 corrections per 1080B) to replace an 

LDPC whose strength is 2.2*10-2 
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Retention Analysis 
• Retention requirement is defined as 

– The time period from writing the sector until the sector is 
overwritten 

• We analyze 3 sets of real-world applications 
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Category Name Description Span 

MSRC 

prn_0 

proj_0, proj_2 

prxy_0, prxy_1 

src1_0, src1_2 

src2_2 

usr_1, usr_2 

Print server 

Project directories 

Web proxy 

Source control 

Source control 

User home directories 

1 week 

Hadoop 
hd1 

hd2 
WordCount benchmark 1 day 

TPC-C 
tpcc1 

tpcc2 
OLTP benchmark 1 day 



Retention Analysis 

• MSRC 
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Retention Analysis 

• Hadoop and TPC-C 
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Two-Level Retention Guarantee  
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Host writes Background writes 

Description Writes from the host E.g., cleaning, wear-leveling 

Importance of 
performance 

High  Low 

Retention  
requirements 

Low High (cold data) 

Write  
operation  

Short  
retention guarantee Normal  

retention guarantee 
Fast write Less-strong ECCs 

SSD
OS 



• FTL (Flash Translation Layer) 
– Software layer emulating a block device over NAND Flash 

memories in SSDs 

Retention-Aware FTL Design 
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Retention-Aware FTL 
• Two new components employed in the FTL 

– Mode Selector 
• Invoke different NAND Flash write commands or different ECC engines for 

blocks with different retention guarantees 

– Retention Tracker 
• Monitor the remaining retention time of blocks  
• Reprogramming a block when the block is about to run out of retention 
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CPU 

Retention Relaxation for Write Speedup 

• Write stream 
– a, b, b, a, c, a … 
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Concatenated BCH-LDPC  Retention-Aware Architecture 

Issue: 
Since all host writes go through the 
LDPC encoder, a high-throughput 
LDPC encoder is required, 
otherwise it will become the 
bottleneck  
 

Advantages: 
• Time-consuming LDPC is kept out of the 

critical performance path 
• LDPC encodes only data with retention 

longer than what the BCH guarantees 
• LDPC encoding can be scheduled over a 

period of time in the background 
 Reduce the throughput requirements of 
the LDPC 

Retention Relaxation for ECC Optimization 
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Experimental Setup 
• Simulations using Disksim 4.0 & SSDsim 
• Workloads 

– 11 traces from MSRC, Hadoop, and TPC-C 

• Two configurations are evaluated 
– Baseline: SSDs with 1-year retention for all writes  
– Proposed retention-relaxation design: RR-2week 

• 2-week retention guarantee for host writes 
• Blocks not overwritten in one week are reprogrammed with full 

retention guarantees 
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Parameter Value

Over-provisioning 15%

Cleaning threshold 5%

Page size 8 KB

Pages per block 256

Blocks per plane 2000

Planes per die 2

Dies per channel 1~8

Number of channel 16

Mapping policy Full stripe

Parameter Value

Page read latency 75 μs

Page write latency 1.3 ms

Block erase latency 3.8 ms

NAND bus bandwidth 200 MB/s

Trace Name Dies per Disk Exported Capacity (GB)

prn_0, proj_0, prxy_0, src1_2 16 106

src2_2 32 212

src1_0 64 423

proj_2, hd1, hd2, 

tpcc1, tpcc2, tpcc1_n, tpcc2_n
128 847



Improving Write Speed 

• Typical 2× to 2.5× speedup 
• 3.9× to 5.7× for hd1 and hd2 

– Due  to long queuing time  
– Retention relaxation reduces queuing time by 5.4 to 6.1× 
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Improving Cost & Performance of ECCs 

• SSD performance vs. various LDPC throughput 
– Under the same LDPC throughput (HW cost) 

• RR-2week outperforms the baseline 

– RR-2week approaches the ideal performance with 20MB/s LDPC 
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) * The curve of the baseline 
presents a zigzag appearance 
because several traces cause 
the I/O queue saturation in the 
SSD simulator.  



Conclusions 

• First work to exploit retention relaxation for 
optimizing NAND Flash-based SSDs  
– Improving write speed 

– Improving the cost & performance of ECCs 

• Quantitative analysis on the retention requirements 
of datacenter workloads 
– In most cases, 49% to 99% of writes have retention less 

than a week.  

• Retention-aware FTL design  
– Enabling retention relaxation without hampering reliability 

– Achieving 2x to 5.7x write speedup or 8x less LDPC 
throughput requirements for SSDs 
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