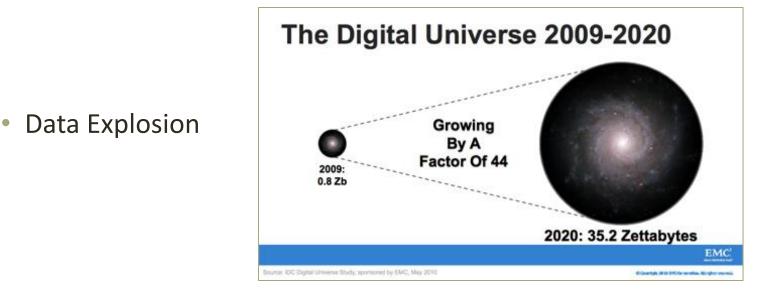
Rethinking Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery and Degraded Reads

Osama Khan and Randal Burns, Johns Hopkins University James Plank and William Pierce, University of Tennessee Cheng Huang, Microsoft Research

What is the problem?



- Much of that data will be stored in the cloud
- Replication too expensive \rightarrow Erasure coding to the rescue
 - As pointed out previously [Zhang '10 and others]

What is the problem?

- Humongous scale + failure rates = Frequent recovery needed
 - Also, rolling software updates result in downtime [Brewer '01]
- Two operations become prominent:
 - Disk reconstruction
 - Degraded reads
- Existing erasure codes are not designed with recovery I/O optimization in mind
 - Need to optimize existing codes for these operations
 - Need new codes which are intrinsically designed for these operations

Minimizing Recovery I/O

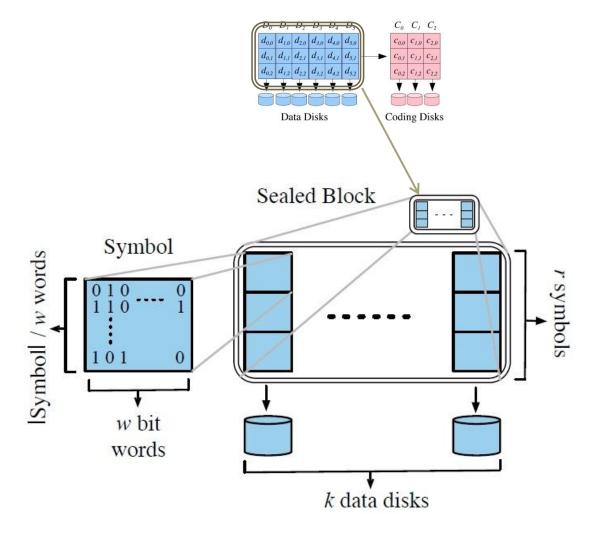
- Algorithm minimizes the amount of data needed for recovery
 - Applicable to any XOR based erasure code
- Existing erasure codes and configurations are not suitable for the cloud
 - Large file system blocks required to extract good recovery performance
- Rotated Reed-Solomon Codes
 - A new class of Reed-Solomon Codes which optimize degraded read performance
 - Better choice than standard Reed-Solomon codes for the cloud

Outline

- Erasure Coded Storage Systems
- Algorithm for minimizing number of symbols
- Rotated Reed-Solomon Codes
- Analysis & Evaluation
- Conclusions

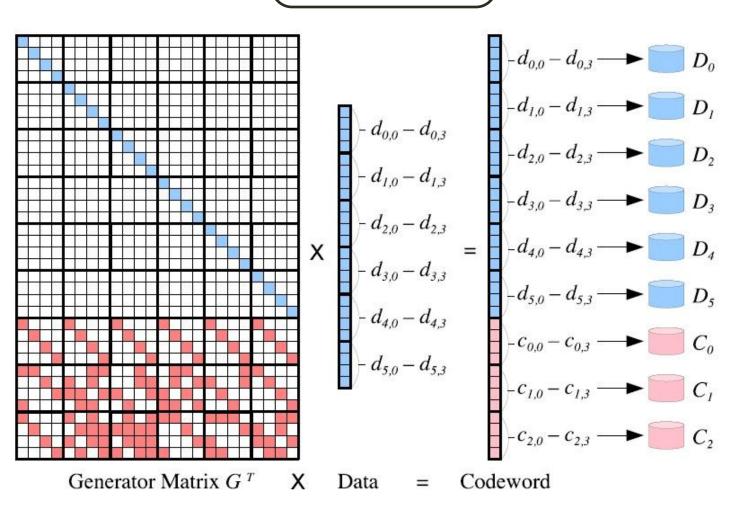
Erasure Coded Storage Systems

Wait until block is full \rightarrow Sealed \rightarrow Erasure coded \rightarrow Distributed to nodes



Erasure Coded Storage Systems

k = 6 m = 3 r = 4



Outline

- Erasure Coded Storage Systems
- Algorithm for minimizing number of symbols
- Rotated Reed-Solomon Codes
- Analysis & Evaluation
- Conclusions

Decoding Equations



 $\{R_0, R_2, R_4\}$ is a **decoding equation**

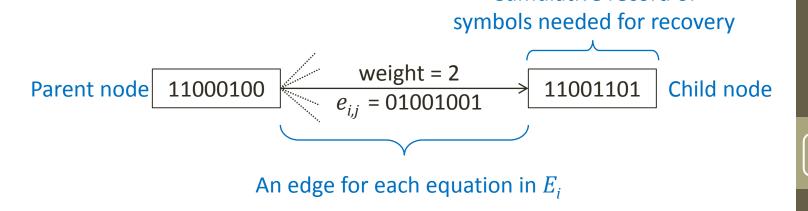
And it can be represented by 10101000

Algorithm to minimize recovery I/O

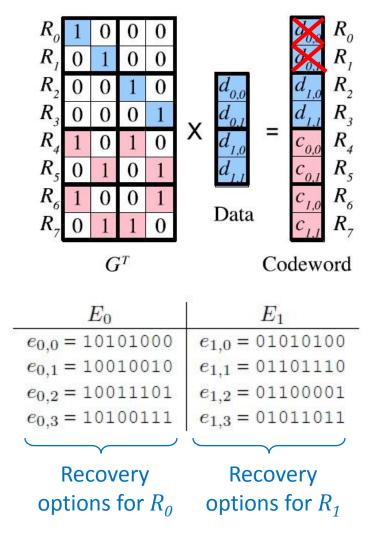
- Finds a decoding equation for each failed bit while minimizing the number of total symbols accessed
- Makes use of data sharing [Xiang '10]
- Given a code generator matrix and a list of failed symbols, the algorithm outputs decoding equations to recover each failed symbol

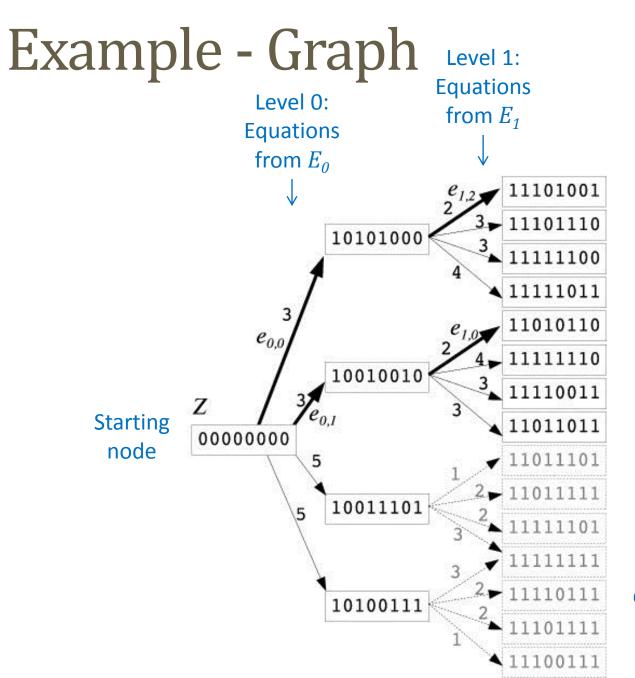
Algorithm Details

- Enumerate all valid decoding equations for each failed symbol
- Directed graph formulation of problem makes it convenient to solve
 - Nodes are bit strings
 - Edges denote equations
 - Child's bit string = parent's bit string OR'ed with equation corresponding to incoming edge
 Cumulative record of



Example





Grayed out nodes/edges denote pruning

Algorithm Summary

- Minimizes the number of symbols needed to recover from an arbitrary number of failures
- Solutions to all common failure combinations may be computed offline *a priori* and stored for future use
- Works for any XOR-based code
 - Generalizes previous results (EVEN/ODD[Wang '10], RDP[Xiang '10])
 - Other codes turned out to perform better than EVEN/ODD and RDP

Outline

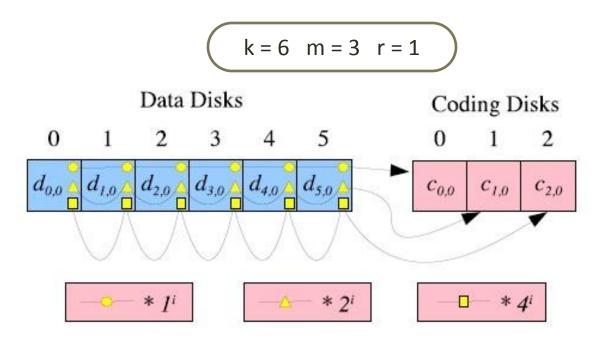
- Erasure Coded Storage Systems
- Algorithm for minimizing number of symbols
- Rotated Reed-Solomon Codes
- Analysis & Evaluation
- Conclusions

Rotated Reed-Solomon Codes

- Vast majority of failure scenarios are single disk failures (99.75% [Schroeder '07])
- 90% of failures are transient and do not involve data loss [Ford '10]
 - Google waits 15 minutes before reconstructing disk
 - Degraded read to missing data requires recovery using erasure code
- New class of codes optimize degraded read performance in case of single disk failure
 - MDS (for certain values of k, m and r)
 - Modification to standard Reed-Solomon codes

Standard Reed-Solomon Codes

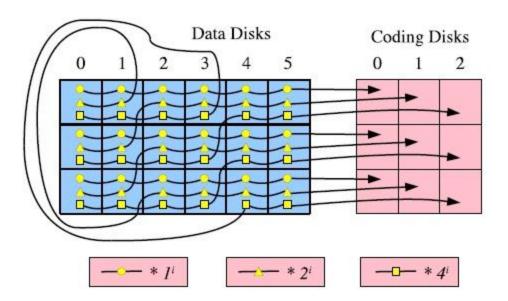
• A sample Reed-Solomon code



• Coding symbols can be calculated by

for
$$0 \le j < 3$$
, $c_{j,0} = \sum_{i=0}^{k-1} (2^j)^i d_{i,0}$

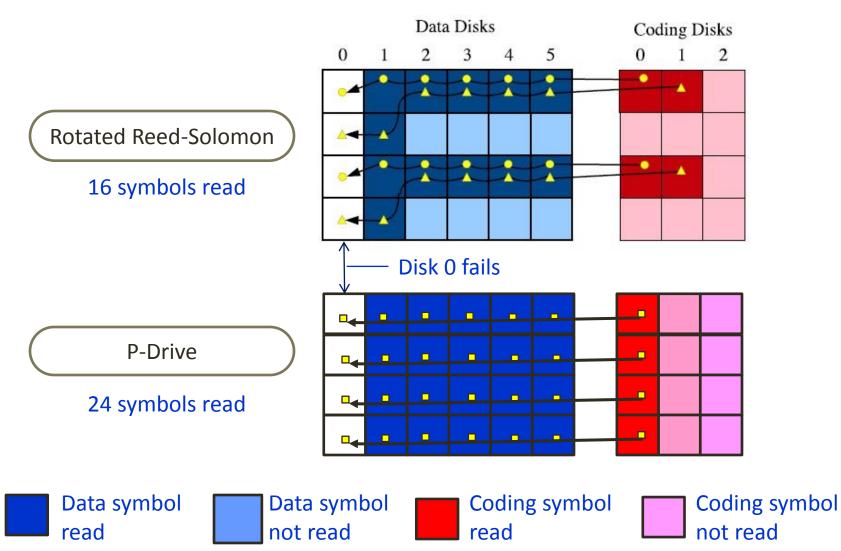
Rotated Reed-Solomon Codes



Coding symbols calculated by

$$c_{j,b} = \sum_{i=0}^{\frac{kj}{m}-1} (2^j)^i d_{i,(b+1)\%r} + \sum_{i=\frac{kj}{m}}^{k-1} (2^j)^i d_{i,b}$$

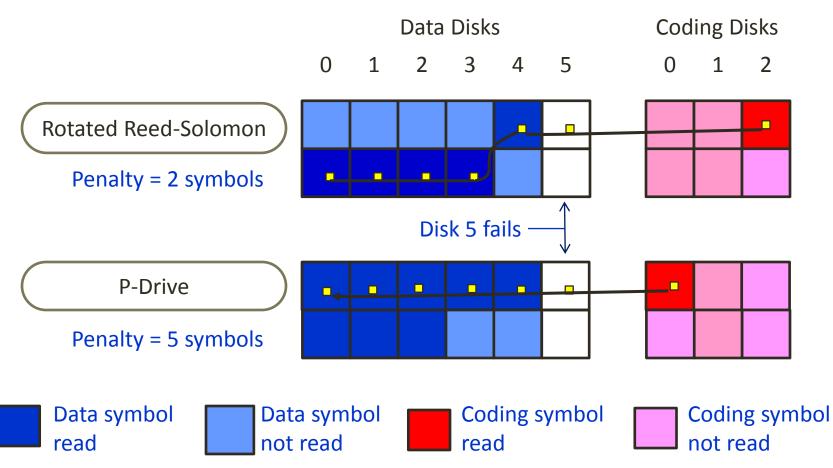
Reconstruction example with Rotated RS Codes



Degraded Read example with Rotated RS Codes

Read request of 4 symbols starting from d_{5.0}

Penalty = # of symbols read in addition to read request

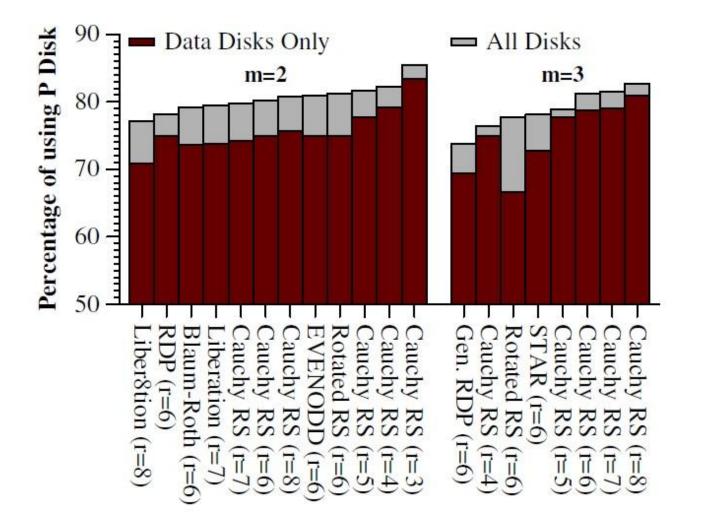


USENIX FAST 2012

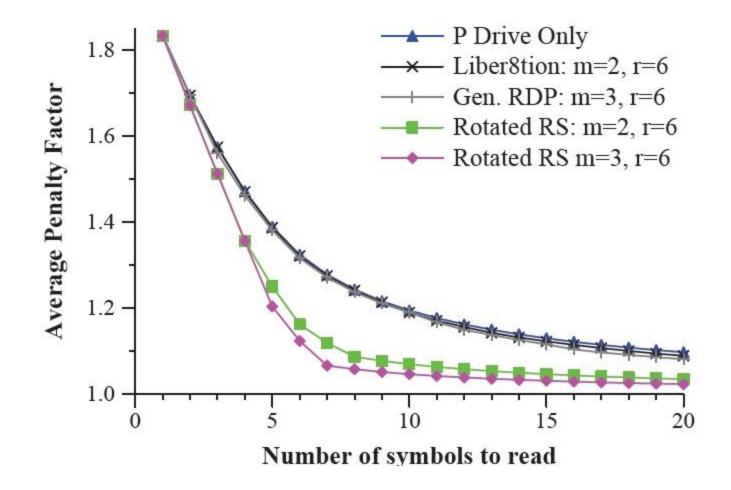
Outline

- Erasure Coded Storage Systems
- Algorithm for minimizing number of symbols
- Rotated Reed-Solomon Codes
- Analysis & Evaluation
- Conclusions

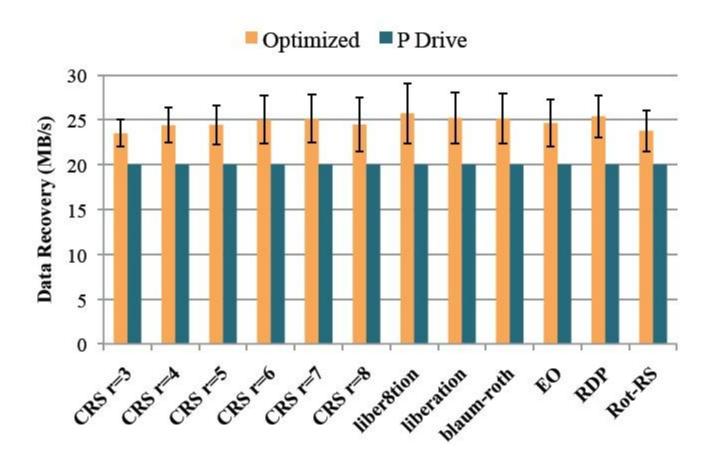
Analysis of Reconstruction



Analysis of Degraded Reads

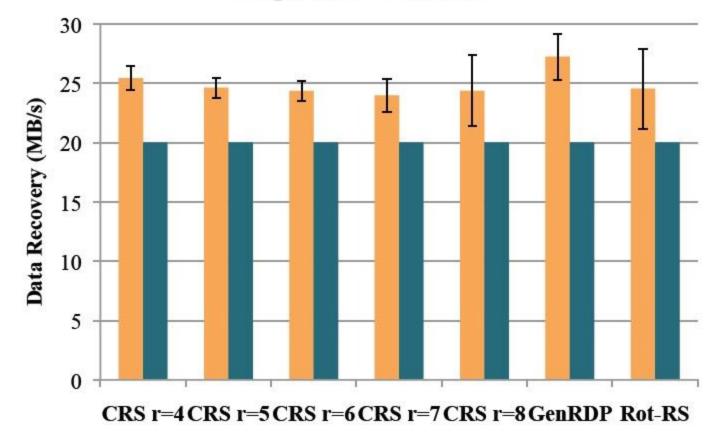


Evaluation of Disk Reconstruction (m = 2)

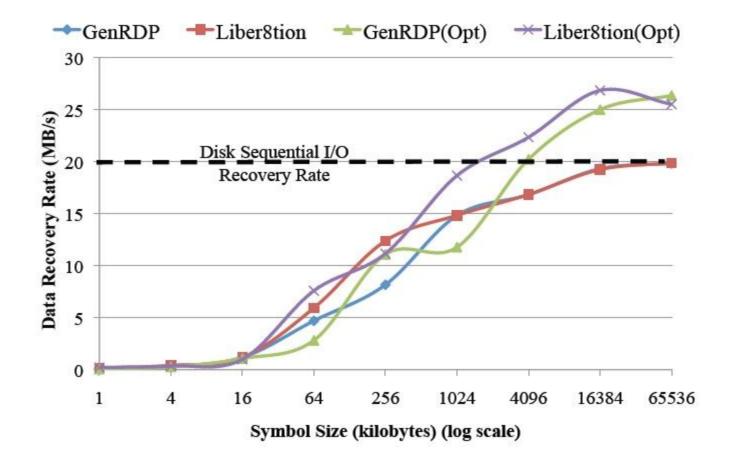


Evaluation of Disk Reconstruction (m = 3)

Optimized P Drive



The Need for Large Symbols



Outline

- Erasure Coded Storage Systems
- Algorithm for minimizing number of symbols
- Rotated Reed-Solomon Codes
- Analysis & Evaluation
- Conclusions

Conclusions

- Traditional RAID based configurations do not give good recovery performance with cloud based erasure coded storage systems
 - Large sealed blocks recommended (at least around 100 MB, preferably > 500 MB)
- Minimizing the number of symbols needed for recovery does result in lower I/O cost
- Generally, optimally-sparse and minimum-density codes perform best for disk reconstruction
- Rotated Reed-Solomon Codes are a better alternative to standard Reed-Solomon for cloud storage

Thank you!

