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Metadata Integrity is Crucial 

You don’t know what 

you’ve got ’til it’s gone… 
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File Systems Have Bugs 

Why can’t existing solutions handle this problem? 
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Bugs in Linux Ext3 File System Closed 

panic/ext3 fs corruption with RHEL4-U6-re20070927.0 2007-11 

Re: [2.6.27] filesystem (ext3) corruption (access beyond end) 2008-06 

linux-2.6: ext3 filesystem corruption 2008-09 

linux-image-2.6.29-2-amd64: occasional ext3 filesystem 

corruption 

2009-06 

 

ENOSPC during fsstress leads to filesystem corruption on ext2, 

ext3, and ext4 

2010-03 

ext3: Fix fs corruption when make_indexed_dir() fails 2011-06 

Data corruption: resume from hibernate always ends up with 

EXT3 fs errors 

Not yet 



“Solutions” 
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None of these protect against bugs in file systems 

Existing approaches assume file systems are correct 
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RAID? 

Checksums? Journals? 



Offline Checking 

• Check consistency offline, e.g., fsck 

• Consistency properties necessary for correctness 
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Problems with Offline Checking 

• Slow, getting slower with larger disks 

• Requires taking file system offline 

• After the fact, repair is error prone 
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Outline 

• Problem 

• Metadata can be corrupted by bugs and existing 

techniques are inadequate 

• Our Solution: Recon  

• a system for protecting metadata from bugs 

• Key idea 

• Runtime consistency checking 

• Design 

• Evaluation 
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Runtime Consistency Checking 

• Ensure every update results in a consistent file 

system 

• Makes repair unnecessary! 

• “What happens in DRAM stays in DRAM” 

BUT 

• Consistency properties are global 

• Global properties require full scan 

• We can’t run fsck at every write 
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Consistency Invariants 

• We transform global consistency properties to 

fast, local consistency invariants 

• Assume initial consistent state 

• New file system is clean 

• Use checksums/redundancy to handle errors below FS 

• At runtime, check only what is changing 

• Do so before changes become persistent 

• Resulting new state is consistent 
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size 

Example: Block Allocation in Ext3 

• Ext3 maintains a block bitmap – every allocated 

block is marked in the bitmap 
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Example: Block Allocation in Ext3 

• Consistency Invariant 

 

 

 

• Invariant fails if either update is missing 

• Should not mark allocated without setting block pointer 

• Should not set block pointer without marking allocated 

 

• Can any consistency property be transformed? 

• File systems should maintain consistency efficiently 
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When to Check Invariants 

• Invariants involve changes to multiple blocks 

• When should they be consistent? 

• Transactions are used for crash consistency 

• Consistency can be checked at transaction 

boundaries 
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Outline 

• Problem 

• Metadata corruption cause by bugs 

• Solution 

• Recon 

• Key idea 

• Runtime checking 

• Design 

• Metadata interpretation 

• Logical change generation 

• Evaluation 
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The Recon Design 
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Metadata Interpretation 

• To check invariants, we need to determine the 

type of a block on a read or write 

 

• Take advantage of tree structure of metadata 

• Superblock is the root of the tree 

• Parents are read before children 

• For example, inode is read before indirect blocks 

• We see the pointer to the block before the block, and 

• The pointer within the parent determines the type of 

the child block 
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Logical Change Generation 

• Invariants are expressed in terms of logical 

changes to structures, e.g., bitmaps, pointers 

 

 
 

• Recon generates these changes based on 

• Block types 

• Comparing the blocks in the write and read cache 

• Logical changes to metadata structures are 

represented as a set of change records: 
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Checking with Change Records 

 

17 

type id field oldval newval 

inode 12 blockptr[1] 0 501 

inode 12 i_size 4096 8192 

inode 12 i_blocks 8 16 

Bitmap 501 -- 0 1 

BGD 0 free_blocks 1500 1499 

Transaction appends a new block to inode 12 

Bitmap bit X flip  

from “0” to “1”  

Block pointer  

set to X 



Outline 

• Problem 

• Metadata corruption cause by bugs 

• Solution 

• Recon 

• Key idea 

• Runtime checking 

• Design 

• Evaluation 

• Complexity 

• Corruption detection 

• Performance overhead 
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Complexity 

• Much simpler than FS code 

• Only need to verify result of file system operations 

• Each invariant can be checked independently 

 

• Code divided into three sections 

• Generic Recon framework: 1.5 kLOC 

• Ext3 metadata interpretation: 1.5kLOC 

• 31 Ext3 invariants: 800 LOC 
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Corruption Detection 
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Performance Evaluation 

• Used Linux port of Sun’s FileBench 

• Used 5 different emulated workloads 

• webserver, webproxy, varmail, fileserver, ms_nfs 

• ms_nfs configured to match metadata 

characteristics from Microsoft study (FAST’11) 

 

• 3 GHz dual core Xeon CPUs, 2 GB RAM 

• 1 TB ext3 file system 
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Performance Evaluation 

22 

webserver    webproxy       varmail      fileserver       ms_nfs  

Cache Size = 128MB 

For reasonable cache sizes, performance impact is modest 



Handling Violations 

Several options 

• Prevent all writes, remount read-only 

• Preserves correctness 

• Reduces availability 

• Take snapshot of filesystem and continue 

• Minimal availability impact, snapshot is correct 

• Requires repair afterwards 

• Micro-reboot file system or kernel 

• Transparent to applications 

• Overcomes transient failures 
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Conclusion 

• All consistency properties of fsck can be 

enforced on updates without full disk scan 

• Checking can be done outside the file system, 

entirely at the block layer 

 

• Preventing corruption from being committed is a 

huge win over after-the-fact repair! 

24 



Thanks! 

• To our anonymous reviewers 

• To our shepherd, Junfeng Yang 

• To the Systems Software Reading Group @ U of T 
 

For their many insightful comments & suggestions! 
 

• To Vivek Lakshmanan 

For early insights that helped start the project! 

 

This work was supported by NSERC through the Discovery 

Grants program 

25 


