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Abstract

Hybrid storage solutions use NAND flash memory based

Solid State Drives (SSDs) as non-volatile cache and tra-

ditional Hard Disk Drives (HDDs) as lower level stor-

age. Unlike a typical cache, internally, the flash memory

cache is divided into cache space and over-provisioned

space, used for garbage collection. We show that bal-

ancing the two spaces appropriately helps improve the

performance of hybrid storage systems. We show that

contrary to expectations, the cache need not be filled with

data to the fullest, but may be better served by reserving

space for garbage collection. For this balancing act, we

present a dynamic scheme that further divides the cache

space into read and write caches and manages the three

spaces according to the workload characteristics for op-

timal performance. Experimental results show that our

dynamic scheme improves performance of hybrid stor-

age solutions up to the off-line optimal performance of a

fixed partitioning scheme. Furthermore, as our scheme

makes efficient use of the flash memory cache, it re-

duces the number of erase operations thereby extending

the lifetime of SSDs.

1 Introduction

Conventional Hard Disk Drives (HDDs) and state-of-the-

art Solid State Drives (SSDs) each has strengths and lim-

itations in terms of latency, cost, and lifetime. To alle-

viate limitations and combine their advantages, hybrid

storage solutions that combine HDDs and SSDs are now

available for purchase. For example, a hybrid disk that

comprises the conventional magnetic disk with NAND

flash memory cache is commercially available [30]. We

consider hybrid storage that uses NAND flash memory

based SSDs as a non-volatile cache and traditional HDDs

as lower level storage. Specifically, we tackle the issue

of managing the flash memory cache in hybrid storage.

The ultimate goal of hybrid storage solutions is pro-

Figure 1: Balancing data in cache and update cost for

optimal performance

viding SSD-like performance at HDD-like price, and

achieving this goal requires near-optimal management

of the flash memory cache. Unlike a typical cache, the

flash memory cache is unique in that SSDs require over-

provisioned space (OPS) in addition to the space for nor-

mal data. To make a clear distinction between OPS and

space for normal data, we refer to the space in flash mem-

ory cache used to keep normal data as the caching space.

The OPS is used for garbage collection operations per-

formed during data updates. It is well accepted that given

a fixed capacity SSD, increasing the OPS size brings

about two consequences [11, 15, 26]. First, it reduces

the caching space resulting in a smaller data cache. Less

data caching results in decreased overall flash memory

cache performance. Note Figure 1 (not to scale) where

the x-axis represents the OPS size and the y-axis repre-

sents the performance of the flash memory cache. The

dotted line with triangle marks shows that as the OPS

size increases, caching space decreases and performance

degrades.

In contrast, with a larger OPS, the update cost of data

in the cache decreases and, consequently, performance

of the flash memory cache improves. This is represented

as the square marked dotted line in Figure 1. Note that

as the two dotted lines cross, there exists a point where



performance of the flash memory cache is optimal. The

goal of this paper is to find this optimal point and use it

in managing the flash memory cache.

To reiterate, the main contribution of this paper is in

presenting a dynamic scheme that finds the workload de-

pendent optimal OPS size of a given flash memory cache

such that the performance of the hybrid storage system

is optimized. Specifically, we propose cost models that

are used to determine the optimal caching space and OPS

sizes for a given workload. In our solution, the caching

space is further divided into read and write caches, and

we use cost models to dynamically adjust the sizes of the

three spaces, that is, the read cache, write cache, and the

OPS according to the workload for optimal hybrid stor-

age performance. These cost models form the basis of

the Optimal Partitioning Flash Cache Layer (OP-FCL)

flash memory cache management scheme that we pro-

pose.

Experiments performed on a DiskSim-based hybrid

storage system using various realistic server workloads

show that OP-FCL performs comparatively to the off-

line optimal fixed partitioning scheme. The results indi-

cate that caching as much data as possible is not the best

solution, but caching an appropriate amount to balance

the cache hit rate and the garbage collection cost is most

appropriate. That is, caching less data in the flash mem-

ory cache can bring about better performance as the gains

from reduced overhead for data update compensates for

losses from keeping less data in cache. Furthermore, our

results indicate that as our scheme makes efficient use

of the flash memory cache, OP-FCL can significantly re-

duce the number of erase operations in flash memory.

For our experiments, this results in the lifetime of SSDs

being extended by as much as three times compared to

conventional uses of SSDs.

The rest of the paper is organized as follows. In the

next section, we discuss previous studies that are rele-

vant to our work with an emphasis on the design of hy-

brid storage systems. In Section 3, we start off with a

brief review of the HDD cost model. Then, we move on

and describe cost models for NAND flash memory stor-

age. Then, in Section 4, we derive cost models for hy-

brid storage and discuss the existence of optimal caching

space and OPS division. We explain the implementation

issues in Section 5 and then, present the experimental re-

sults in Section 6. Finally, we conclude with a summary

and directions for future work.

2 Related Work

Numerous hybrid storage solutions that integrate HDDs

and SSDs have been suggested [8, 11, 14, 29]. Kgil et

al. propose splitting the flash memory cache into sep-

arate read and write regions taking into consideration

the fact that read and write costs are different in flash

memory [11]. Chen et al. propose Hystor that integrates

low-cost HDDs and high-speed SSDs [4]. To make bet-

ter use of SSDs, Hystor identifies critical data, such as

metadata, keeping them in SSDs. Also, it uses SSDs as

a write-back buffer to achieve better write performance.

Pritchett and Thottethodi observe that reference patterns

are highly skewed and propose a highly-selective caching

scheme for SSD cache [26]. These studies try to reduce

expensive data allocation and write operations in flash

memory storage as writes are much more expensive than

reads. They are similar to ours in that flash memory stor-

age is being used as a cache in hybrid storage solutions

and that some of them split the flash memory cache into

separate regions. However, our work is unique in that it

takes into account the trade-off between caching benefit

and data update cost as determined by the OPS size.

The use of the flash memory cache with other objec-

tives in mind have been suggested. As SSDs have lower

energy consumption than HDDs, Lee et al. propose an

SSD-based cache to save energy of RAID systems [18].

In this study, an SSD is used to keep recently referenced

data as well as for write buffering. Similarly, to save en-

ergy, Chen et al. suggest a flash memory based cache

for caching and prefetching data of HDDs [3]. Saxena

et al. use flash memory as a paging device for the vir-

tual memory subsystem [28] and Debnath et al. use it

as a metadata store for their de-duplication system [5].

Combining SSDs and HDDs in the opposite direction has

also been proposed. A serious concern of flash mem-

ory storage is its relatively short lifetime and, to extend

SSD lifetime, Soundararajan et al. suggest a hybrid stor-

age system called Griffin, which uses HDDs as a write

cache [32]. Specifically, they use a log-structured HDD

cache, periodically destaging data to SSDs so as to re-

duce write requests and, consequently, to increase the

lifetime of SSDs.

There have been studies that concentrate on finding

cost-effective ways to employ SSDs in systems. To sat-

isfy high-performance requirements at a reasonable cost

budget, Narayanan et al. look into whether replacing disk

based storage with SSDs may be cost effective; they con-

clude that replacing disks with SSDs is not yet so [22].

Kim et al. suggest a hybrid system called HybridStore

that combines both SSDs and HDDs [15]. The goal of

this study is in finding the most cost-effective configura-

tion of SSDs and HDDs.

Besides studies on flash memory caches, there are

many buffer cache management schemes that use the

idea of splitting caching space. Kim et al. present a

buffer management scheme called Unified Buffer Man-

agement (UBM) that detects sequential and looping ref-
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erences and stores those blocks in separate regions in the

buffer cache [13]. Park et al. propose CRAW-C (Clock

for Read And Write considering Compressed file system)

that allocates three memory areas for read, write, and

compressed pages, respectively [24]. Shim et al. suggest

an adaptive partitioning scheme for the DRAM buffer in

SSDs. This scheme divides the DRAM buffer into the

caching and mapping spaces, dynamically adjusting their

sizes according to the workload characteristics [31]. This

study is different from ours in that the notion of OPS is

necessary for flash memory updates, while for DRAM, it

is not.

3 Flash Memory Cache Cost Model

In this section, we present the cost models for SSDs

and HDDs [35]. HDD reading and writing are char-

acterized by seek time and rotational delay. Assume

that CD RPOS and CD W POS are sums of the average seek

time and the average rotational delay for HDD reads and

writes, respectively. Let us also assume that P is the

data size in bytes and B is the bandwidth of the disk.

Then, the data read and write cost of a HDD is derived

as CDR =CD RPOS +
P
B

and CDW =CD WPOS +
P
B

, respec-

tively. (Detailed derivations are referred to Wang [35].)

Before moving on to the cost model of flash mem-

ory based SSDs, we give a short review of NAND flash

memory and the workings of SSDs. NAND flash mem-

ory, which is the storage medium of SSDs, consists of a

number of blocks and each block consists of a number

of pages. Reads are done in page units and take con-

stant time. Writes are also done in page units, but data

can be written to a page only after the block contain-

ing the page becomes clean, that is, after it is erased.

This is called the erase-before-write property. Due to

this property, data update is usually done by relocating

new data to a clean page of an already erased block

and most flash memory storage devices employ a so-

phisticated software layer called the Flash Translation

Layer (FTL) that relocates modified data to new loca-

tions. The FTL also provides the same HDD interface

to SSD users. Various FTLs such as page mapping

FTL [7, 34], block mapping FTL [12], and many hy-

brid mapping FTLs [10, 17, 19, 23] have been proposed.

Among them, the page mapping FTL is used in many

high-end commercial SSDs that are used in hybrid stor-

age solutions. Hence, in this paper, we focus on the page

mapping FTL. However, the methodology that follows

may be used with block and hybrid mapping FTLs as

well. The key difference would be in deriving garbage

collection and page write cost models appropriate for

these FTLs.

As previously mentioned, the FTL relocates modified

(c) 
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Figure 2: Garbage collection in flash memory storage

data to a clean page, and pages with old data become

invalid. The FTL recycles blocks with invalid pages by

performing garbage collection (GC) operations. For data

updates and subsequent GCs, the FTL must always pre-

serve some number of empty blocks. As data updates

consume empty blocks, the FTL must produce more

empty blocks by performing GCs that collect valid pages

scattered in used blocks to an empty block, marking the

used blocks as new empty blocks. The worst case and

average GC costs are determined by the ratio of the ini-

tial OPS to the total storage space. It has been shown

that the worst case and average GC costs become lower

as more over-provisioned blocks are reserved [9].

If we assume that the FTL selects the block with the

minimum number of valid pages for a GC operation,

then the worst case GC occurs when all valid (or invalid)

pages are evenly distributed to all flash memory blocks

except for an empty block that is preserved for GC op-

erations. For now, let us assume that u is the worst case

utilization determined from the initial number of over-

provisioned blocks and data blocks. Then, in Fig. 2(a),

where there are 3 data blocks containing cached data and

4 initial over-provisioned blocks, the worst case u is cal-

culated as 3/(3+4−1). (We subtract 1 because the FTL

must preserve one empty block for GC as marked by the

arrow in Fig. 2(b).) From u, the maximum number of

valid pages in the block selected for GC can be derived

as ⌈u ·NP⌉, where NP is the number of pages in a block.

Then, the worst case GC cost for a given utilization u

can be calculated from the following equation, where NP

is the number of pages in a block, C
E

is the erase cost

(time) of a flash memory block, and CCP is the page copy

cost (time). (We assume that the copyback operation is
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being used. For flash memory chips that do not support

copyback, CCP may be expanded to a sequence of read,

CPR , and write, CPROG, operations.)

CGC(u) = ⌈u ·NP⌉ ·CCP +CE (1)

That is, as seen in Fig. 2(b) and (c), a GC opera-

tion erases an empty block with cost CE and copies all

valid pages from the block selected for GC to the erased

empty block with cost ⌈u ·NP⌉ ·CCP. Then, the garbage-

collected block becomes an empty block that may be

used for the next GC. The remaining clean pages in the

previously empty block are used for subsequent write re-

quests. If all those clean pages are consumed, then an-

other GC operation will be performed.

After GC, in the worst case, there are ⌊(1− u) ·NP⌋
clean pages in what was previously an empty block (for

example, the right-most block in Fig. 2(c)) and write re-

quests of that number can be served in the block. Let

us assume that CPROG is the page program time (cost)

of flash memory. (Note that “page program” and “page

write” are used interchangeably in the paper.) By divid-

ing GC cost and adding it to each write request, we can

derive, CPW (u), the page write cost for worst case utiliza-

tion u as follows.

CPW (u) =
CGC(u)

⌊(1− u) ·NP⌋
+CPROG (2)

Equation 2 is the worst case page update cost of flash

memory storage assuming valid data (or invalid data)

are evenly distributed among all the blocks. Typically,

however, the number of valid pages in a block will

vary. For example, the block marked “Victim for GC”

in Fig. 2(b) has a smaller number of valid pages than the

other blocks. Therefore, in cases where the FTL selects a

block with a small number of valid pages for the GC op-

eration, then utilization of the garbage-collected block,

u′, would be lower than the worst case utilization, u. Pre-

vious LFS and flash memory studies derived and used the

following relation between u′ and u [17, 20, 35].

u =
u′− 1

ln u′

Let U(u) be the function that translates u to u′. (In

our implementation, we use a table that translates u to

u′.) Then the average page update cost can be derived

by applying U(u) for u in Equation 1 and 2 leading to

Equation 3 and 4.

CGC(u) =U(u) ·NP ·CCP +CE (3)

CPW (u) =
CGC(u)

(1−U(u)) ·NP

+CPROG (4)

4 Hybrid Storage Cost Model

In the previous section, the garbage collection and page

update cost of flash memory storage was derived. In

this section, we derive the cost models for hybrid stor-

age systems, which consist of a flash memory cache and

a HDD. Specifically, the cost models determine the op-

timal size of the caching space and OPS minimizing the

overall data access cost of the hybrid storage system. In

our derivation of the cost models, we first derive the read

cache cost model and then, derive the read/write cache

cost model used to determine the read cache size, write

cache size and OPS size. Our models assume that the

cache management layer can measure the hit and miss

rates of read/write caches as well as the number of I/O

requests. These values can be easily measured in real

environments.

4.1 Read cache cost model

On a read request the storage examines whether the re-

quested data is in the flash memory cache. If it is, the

storage reads it and transfers it to the host system. If it

is not in the cache, the system reads it from the HDD,

stores it in the flash memory cache and transfers it to the

host system. If the flash memory cache is already full

with data (as will be the case in steady state), it must in-

validate the least valuable data in the cache to make room

for the new data. We use the LRU (Least Recently Used)

replacement policy to select the least valuable data. In

the case of read caching, the selected data need only be

invalidated, which can be done essentially for free. (We

discuss the issue of accommodating other replacement

policies in Section 5.)

Let us assume that HR(u) is the cache read hit rate for a

given cache size, which is determined by the worst case

utilization u, as we will see later. With rate HR(u), the

system reads the requested data from the cache with cost

CPR, the page read operation cost (time) of flash memory,

and transfers it to the host system. With rate 1−HR(u),
the system reads data from disk with cost CDR and, after

invalidating the least valuable data selected by the cache

replacement policy, stores it in the flash memory cache

with cost CPW (u), which is the cost of writing new data

to cache including the possible garbage collection cost.

Then, CHR, the read cost of the hybrid storage system

with a read cache, is as follows.

CHR(u) = HR(u) ·CPR+

(1−HR(u)) · (CDR +CPW (u)) (5)

Let us now take the flash memory cache size into con-

sideration. For a given flash memory cache size, SF ,

the read cache size, SR and the OPS size SOPS can be
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Figure 3: (a) Read hit rate curve generated using the

numpy.random.zipfPython function (Zipfian distribution

with α = 1.2 and range = 120%) and (b) the hybrid stor-

age read cost graph for this particular hit rate curve, with

optimal point at 92%.

approximated from u such that SOPS ≈ (1− u) · SF and

SR ≈ u ·SF . These sizes are approximated values as they

do not take into account the empty block reserved for

GC. (Recall the empty block in Fig. 2.) Though calcu-

lating the exact size is possible by considering the empty

block, we choose to use these approximations as these

are simpler, and their influence is negligible relative to

the overall performance estimation.

Let us now take an example. Assume that we have a hit

rate curve HR(u) for read requests as shown in Fig. 3(a),

where the x-axis is the cache size and the y-axis is the

hit rate. Then, with Equation 5, we can redraw the hit

rate curve with u on the x-axis, and consequently, the

access cost graph of the hybrid storage system becomes

Fig. 3(b). The graph shows that the overall access cost

becomes lower as u increases until u reaches 92%, where

the access cost becomes minimal. Beyond this point, the

access cost suddenly increases, because even though the

caching benefit is still high the data update cost soars as

the OPS shrinks. Once we find u with minimum cost, the

read cache size and OPS size can be found from SOPS ≈
(1− u) ·SF and SR ≈ u ·SF .

4.2 Read and write cache cost model

Previous studies have shown that due to their difference

in costs, separating read and write requests in flash mem-

ory storage has a significant effect on performance [11].

Hence, we now incorporate write cost to the model by

dividing the flash caching space into two areas, namely

a write cache and a read cache. The read cache, whose

cost model was derived in the previous subsection, con-

tains data that has recently been read but never written

back while the write cache keeps data that has recently

been written, but not yet destaged. Therefore, data in the

write cache are dirty and they must be written to the HDD

when evicted from the cache. When a write is requested

to data in the read cache, we regard it as a write miss.

In this case, we invalidate the data in the read cache and

write the new data in the write cache. We consider the

case of reading data in the write cache later.

In the following cost model derivation, we assume

write-back policy for the write cache. This choice is

more efficient than the write-through policy without any

loss in consistency as the flash cache is also non-volatile.

If the write-through policy must be used, our model

needs to be modified to reflect the additional write to

HDD that is incurred for each write to the flash cache.

This will result in a far less efficient hybrid storage sys-

tem.

There can be three types of requests to the flash write

cache. The first is a write hit request, which is a write re-

quest to existing data in the write cache. In this case, the

old data becomes invalidated and the new data is writ-

ten to the write cache with cost CPW (u). The second

is a write miss request, which is a write request to data

that does not exist in the write cache. In this case, the

cache replacement policy selects victim data that should

be read from the write cache and destaged to the HDD

with cost CPR +CDW to make room for the newly re-

quest data. (Note we are assuming the system is in steady

state.) After evicting the data, the hybrid storage system

writes the new data to the write cache with cost CPW (u).
The last type of request is a read hit request, which is a

read request to existing (and possibly dirty) data in the

write cache. This happens when a read request is to data

that is already in the write cache. In this case, the request

can be satisfied with cost CPR, that is, the flash memory

page read cost. Note that there is no read miss request to

the write cache because read requests to data not in cache

are handled by the read cache.

Now we introduce a parameter r, which is the read

cache size ratio within the caching space, where 0≤ r ≤
1. Naturally, 1− r is the ratio of the write cache size. If

r is 1, all caching space is used as a read cache and, if it

is 0, all caching space is used as a write cache. Let SC

denote the total size of the caching space. Then, we can

calculate the read cache size, SR, and write cache size,

SW , from SC such that SR = SC · r and SW = SC · (1− r).
Note that SC is calculated from u such that SC ≈ u · SF .

Then, SR and SW are determined by u and r.

Let us assume that the cache management layer can

measure the read hit rates of the read cache and draw

HR(u,r), the read cache hit rate curve, which now has

two parameters u and r. (We will show that the hit rate

curve can be obtained by using ghost buffers in the next

section.) Then, the read cost of the hybrid storage system

is now modified as follows.

CHR(u,r) = (1−HR(u,r)) · (CDR +CPW (u))

+HR(u,r) ·CPR

Let us also assume that we can measure the write hit,

the write miss, and the read hit rates of the write cache
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Figure 4: (a) Read and (b) write hit rate curves gener-

ated using the numpy.random.zipf Python function ((a)

Zipfian distribution with α = 1.2 and range = 120%, (b)

Zipfian distribution with α = 1.4 and range = 220%) and

(c) the hybrid storage access cost graph for these hit rate

curves.

and draw the hit rate curves. For the moment, let us

regard the read hit in the write cache as being part of

the write hit. Assume that HW (u,r) is the write cache

hit rate for a given write cache size, and it has two

parameters that determine the cache size. Then, with

rate HW (u,r), a write request finds its data in the write

cache, and the cost of this action is HW (u,r) ·CPW (u).
Otherwise, with rate of 1−HW (u,r), the write request

does not find data in the write cache. Servicing this

request requires reading and evicting existing data and

writing new data to the write cache. Hence, the cost is

(1−HW (u,r)) · (CPR +CDW +CPW (u)). In summary, the

write cost of the hybrid storage system can be given as

follows.

CHW (u,r) = (1−HW (u,r))

· (CPR +CDW +CPW (u))

+HW (u,r) ·CPW (u)

Now let us consider the read hit case within the write

cache. Although it is possible to maintain separate read

hit and write hit curves for the write cache, this makes the

cost model more complex without much benefits, espe-

cially in terms of implementation. Therefore, we devise a

simple approximation method for incorporating the read

hit case in the write cache. Assume that h′ is the read

hit rate in the write cache. (Then, naturally, 1− h′ is the

write hit rate in the write cache.) Then, with rate h′, the

read hit is satisfied with cost CPR and with rate 1− h′,

the write hit is satisfied with cost CPW (u). Now we can

calculate the average cost for both read hit and write hit

such that CW H = (1− h′) ·CPW (u)+ h′ ·CPR. By assum-

ing HW (u,r) is the hit rate including both read and write

hits, the write cost of the hybrid storage system now can

be given as follows.

CHW (u,r) = (1−HW (u,r))

· (CPR +CDW +CPW (u))

+HW (u,r) ·CWH

Now, let IOR and IOW , respectively, be the rate served

in the read and write caches among all requests. For ex-

ample, of a total of 100 requests, if 70 requests are served

in the read cache and 30 requests are served in the write

cache, then IOR is 0.7 and IOW is 0.3. Then we can de-

rive, CHY (u,r), the overall access cost of the hybrid stor-

age system that has separate read and write caches and

OPS as follows.

CHY (u,r) =CHR(u,r) · IOR+

CHW (u,r) · IOW (6)

Let us take an example. Assume that, at a certain time,

the hybrid storage system finds IOR, IOW , h′ to be 0.2,

0.8, and 0.2, respectively, and the read and write hit rate

curves are estimated as shown in Fig. 4(a) and (b). In the

graph, both read and write hit rates increase as caches be-

come larger but slowly saturate beyond some point. As

the read and write cache sizes are determined by u and r,

we can obtain the read and write cache hit rates for given

u and r values from the hit rate curves. Then, with the

cost model of Equation 6, we can draw the overall access

cost graph of the system as in Fig. 4(c). In the graph, the

x-axis is u and the y-axis is r. These two parameters de-

termine the read and write cache sizes as well as the OPS

size. In Fig. 4(c), darker shades reflect lower access cost

and we pinpoint the lowest access cost with the diamond

mark pointed to by the arrow.

Specifically, the minimum overall access cost of the

hybrid storage system is when u is 0.64 and r is 0.25 for

this particular configuration. For a 4GB flash memory

cache, this translates to the read cache size of 0.64GB,

the write cache size of 1.92GB, and an OPS size of

1.44GB.

5 Implementation Issues of Flash Cache

Layer

In this section, we describe some implementation is-

sues related to our flash memory cache management

scheme, which we refer to as OP-FCL (Optimal Parti-

tioning of Flash Cache Layer). Fig. 5(a) shows the over-

all structure of the hybrid storage system that we envi-

sion. The storage system has a HDD serving as main
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storage and an SSD, which we also refer to as the flash

cache layer (FCL), that is used as a non-volatile cache

keeping recently read/written data as previous studies

have done [4, 11, 15]. As is common on SSDs, it has

DRAM for buffering I/O data and storing data struc-

tures used by the SSD. The space at the flash cache layer

is divided into three regions: the read cache area, the

write cache area, and the over-provisioned space (OPS)

as shown in Fig. 5(b). OP-FCL measures the read and

write cache hit and miss rates and the I/O rates. Then,

it periodically calculates the optimal size of these cache

spaces and progressively adjusts their sizes during the

next period.

To accurately simulate the operations and measure the

costs of the hybrid storage system, we use DiskSim [2]

to emulate the HDD and DiskSim’s MSR SSD exten-

sion [1] to emulate the SSD. Specifically, the simula-

tor mimics the behaviour of Maxtor’s Atlas 10K IV disk

whose average read and write latency is 4.4ms and 4.9ms,

respectively, with transfer speed of 72MB/s. Also, the

SSD simulator emulates SLC NAND flash memory chip

operations, and it takes 25us to read a page, 200us to

write a page, 1.5ms to erase a block, and 100us to trans-

fer data to/from a page of flash memory through the bus.

The page and block unit size is 4KB and 256KB, respec-

tively, and the flash cache layer manages data in 4KB

units.

In the simulator, we modified the SSD management

modules and implemented additional features as well as

the OP-FCL. OP-FCL consists of several components,

namely, the Page Replacer, Sequential I/O Detector,

Workload Tracker, Partition Resizer, and Mapping Man-

ager.

The Page Replacer has two LRU lists, one each for

the read and write caches, and maintains LRU ordering

of data in the caches. In steady state when the cache is

full, the LRU data is evicted from the cache to accom-

modate newly arriving data. For the read cache, cache

eviction simply means that the data is invalidated, while

for write cache, it means that data must be destaged, in-

curring a flash cache layer read and a disk write oper-

ation. In the actual implementation, the Page Replacer

destages several dirty data altogether to minimize seek

distance by applying the elevator disk scheduling algo-

rithm. However, we do not consider group destaging in

our cost model as it has only minimal overall impact.

This is because the number of data destaged as a group

is relatively small compared to the total number of data

in the write cache.

Previous studies have taken notice of the impact of

sequential references on cache pollution and thus, have

tried to detect and treat them separately [13]. The Se-

quential I/O Detector monitors the reference pattern and

HDD 

Sequential I/O  
Detector 

Page 
Replacer 

Workload Tracker 

Partition 
Resizer 

Mapping  Manager 

SSD 

Miss Hit 

File System 

OP-FCL 

Write 
Area 

OPS 

Read 
Area 

(a) Main Architecture (b) SSD Logical Layout 

File I/O 

Figure 5: OP-FCL architecture

detects sequential references. In our current implemen-

tation, consecutive I/O requests greater than 128KB are

regarded as sequential references, and those requests by-

pass the flash cache layer and are sent directly to disk to

avoid cache pollution.

Besides the Page Replacer that manages the cached

data, the Workload Tracker maintains LRU lists of ghost

buffers to simultaneously measure hit rates of various

cache sizes, following the method proposed by Patter-

son et al. [25]. Ghost buffers maintain only logical ad-

dresses, not the actual data and, thus, memory overhead

is minimal requiring roughly 1% of the total flash mem-

ory cache. Part of the ghost buffer represents data in

cache and others represent data that have already been

evicted from the cache. Keeping information of evicted

data in the ghost buffer makes it possible to measure the

hit rate of a cache larger than the actual cache size. To

simulate various cache sizes simultaneously, we use N-

segmented ghost buffers. In other words, we divide the

ghost buffer into N-segments corresponding to N cache

sizes and thus, hit rates of N cache sizes can be obtained

by combining the hit rates of the segments. From the hit

rates of N cache sizes, we obtain the read/write hit rate

curves by interpolating the missing cache sizes.

Note that though we use the LRU cache replacement

policy for this study, our model can accommodate any

replacement policy so long as they can be implemented

in the flash cache and the ghost buffer management lay-

ers. Different replacement policies will generate dif-

ferent read/write hit rate curves and, in the end, affect

the results. However, a replacement policy only affects

the read/write hit rate curves, and thus, our overall cost

model is not affected.

These hit rate curves are obtained per period. In the

current implementation, a period is the logical time to

process 65536 (216) read and write requests. When the

period ends, new hit rate curves are generated, while a
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Algorithm 1 Optimal Partitioning Algorithm

1: procedure OPTIMAL PARTITIONING

2: step← segment size/total cache size

3: INIT PARMS(op cost, op u, op r)

4: for u← step; u < 1.0; u← u+ step do

5: for r← 0.0; r ≤ 1.0; r← r+ step do

6: cur cost←C
HY

(u, r) ⊲ Call Eq. 6

7: if cur cost < op cost then

8: op cost← cur cost

9: op u← u, op r← r

10: end if

11: end for

12: end for

13: ADJUST CACHE SIZE(op u, op r)

14: end procedure

new period starts. Then, with the hit rate curves gen-

erated by the Workload Tracker in the previous period,

the Partition Resizer gradually adjusts the sizes of the

three spaces, that is, the read and write cache space and

the OPS for the next period. To make the adjustment,

the Partition Resizer determines the optimal u and r as

described in Section 4, and those optimal values in turn

decide the optimal size of the three spaces.

To obtain the optimal u and r, we devise an iterative al-

gorithm presented in Algorithm 1. Starting from u=step,

the outer loop iterates the inner loop increasing u in ‘step’

increments while u is less than 1.0. The two extreme

configurations that we do not consider are where OPS is

0% and 100%. These are unrealistic configurations as

OPS must be greater than 0% to perform garbage collec-

tion, while OPS being 100% would mean that there is no

space to cache data. The inner loop starting from r=0

iterates, calculating the access cost of the hybrid stor-

age system as derived in Equation 6, while increasing r

in ‘step’ increments until r becomes greater or equal to

1.0. The ‘step’ value can be calculated as the segment

size divided by the total cache size, as shown in the sec-

ond line of Algorithm 1. The nested loop iterates N×M

times to calculate the costs, where N is the outer loop

count, 1/step-1, and M is the inner loop count, 1/step+1.

A single cost calculation consists of 10 ADD, 4 SUB, 11

MUL, and 4 DIV operations. Finer ‘step’ values may be

used resulting in finer u and r values, but with increased

cost calculation overhead. However, computational over-

head for executing this algorithm is quite small because

they run once every period and the calculations are just

simple arithmetic operations.

Once the optimal u and r and, in turn, the optimal sizes

are determined, the Partition Resizer starts to progres-

sively adjust the sizes of the three spaces. To increase

OPS size, it gradually evicts data in the read or write

caches. To increase cache space, that is, decrease OPS,

GC is performed to produce empty blocks. These empty

blocks are then used by the read and/or write caches.

The key role of our Mapping Manager is translating

the logical address to a physical location in the flash

cache layer. For this purpose, it maintains a mapping ta-

ble that keeps the translation information. In our imple-

mentation, we keep the mapping information at the last

page of each block. As we consider flash memory blocks

with 64 pages, the overhead is roughly 1.6%. Moreover,

we implement a crash recovery mechanism similar to

that of LFS [27]. If a power failure occurs, it searches

for the most up-to-date checkpoint and goes through a

recovery procedure to return to the checkpoint state.

6 Performance Evaluation

In this section, we evaluate OP-FCL. For comparison, we

also implement two other schemes. The first is the Fixed

Partition-Flash Cache Layer (FP-FCL) scheme. This is

the simplest scheme where the read and write cache is

not distinguished, but unified as a single cache. The OPS

is available with a fixed size. This scheme is used to

mimic a typical SSD of today that may serve as a cache

in a hybrid storage system. Normally, the SSD would not

distinguish read and write spaces and it would have some

OPS, whose size would be unknown. We evaluate this

scheme as we vary the percentage of the caching space

set aside for the (unified) cache. The best of these results

will represent the most optimistic situation in real life

deployment.

The other scheme is the Read and Write-Flash Cache

Layer (RW-FCL) scheme. This scheme is in line with the

observation made by Kgil et al. [11] in that read and write

caches are distinguished. This scheme, however, goes a

step further in that while the sum of the two cache sizes

remain constant, the size between the two are dynami-

cally adjusted for best performance according to the cost

models described in Section 4. For this scheme, the OPS

size would also be fixed as the total read and write cache

size is fixed. We evaluate this scheme as we vary the per-

centage of the caching space set aside for the combined

read and write cache. Initial, all three schemes start with

an empty data cache. For OP-FCL, the initial OPS size

is set to 5% of the total flash memory size.

The experiments are conducted using two sets of

traces. We categorize them based on the size of requests.

The first one, ‘Small Scale’, are workloads that request

less than 100GBs of total data. The other set, ‘Large

Scale’, are workloads with over 100GBs of data requests.

Details of the characteristics of these workloads are in

Table 1.

The first two subsections discuss the performance as-

pects of the two class of workloads. Then, in the next
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Type Workload

Working Avg. Req. Request

Read RatioSet Size (GB) Size (KB) Amount (GB)

Total Read Write Read Write Read Write

Small Scale

Financial [33] 3.8 1.2 3.6 5.7 7.2 6.9 28.8 0.19

Home [6] 17.2 13.5 5.0 22.2 3.9 15.3 66.8 0.18

Search Engine [33] 5.4 5.4 0.1 15.1 8.6 15.6 0.001 0.99

Large Scale
Exchange [22] 79.35 74.12 23.29 9.89 12.4 114.36 131.69 0.46

MSN [22] 37.98 30.93 23.03 11.48 11.12 107.23 74.01 0.59

Table 1: Characteristics of I/O workload traces
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Figure 6: Mean response time of hybrid storage

Type Description Config. 1 Config. 2

OP-FCL

NP 64

CPROG 300us

CPR 125us

CCP 225us

CE 1.5ms

CD RPOS 4.5ms

CD WPOS 4.9ms

B 72MB/s

P 4KB

segment size 256MB

SSD

Total Capacity 4GB 16GB

No. of Packages 1 4

Blocks Per Package 16384

Planes Per Package 1

Cleaning Policy Greedy

GC Threshold 1%

Copyback On

HDD
Model Maxtor Atlas 10K IV

No. of Disks 1 3

Table 2: Configuration of Hybrid Storage System

subsection, we present the effect of OP-FCL on the life-

time of SSDs. In the final subsection, we present a sen-

sitivity analysis of two parameters that needs to be deter-

mined for our model.

6.1 Small scale workloads

The experimental setting is as given in Fig. 5 described

in Section 5. The specific configuration of the HDD and

SSD used in these experiments is shown in Table 2 de-

noted as ‘Config. 1’. All other parameters not explicitly

mentioned are set to default values. We assume a single

SSD is employed as the flash memory cache and a single

HDD as the main storage. This configuration is similar

to that of a real hybrid drive [30].

For small scale workloads we use three traces, namely,

Financial, Home, and Search Engine that have been used

in numerous previous studies [7, 11, 15, 16, 17]. The Fi-

nancial trace is a random write intensive I/O workload

obtained from an OLTP application running at a finan-

cial institutions [33]. The Home trace is a random write

intensive I/O workload obtained from an NFS server that

keeps home directories of researchers whose activities

are development, testing, and plotting [6]. The Search

Engine trace is a random read intensive I/O workload ob-

tained from a web search engine [33]. The Search Engine

trace is unique in that 99% of the requests are reads while

only 1% are writes.

Fig. 6 shows the results of the cache partitioning

schemes, where the measure is the response time of the

hybrid storage system. The x-axis here denotes the ratio

of caching space (unified or read and write combined) for

the FP-FCL and RW-FCL schemes. For example, 60 in

the x-axis means that 60% of the flash memory capacity

is used as caching space and 40% is used as OPS. The

y-axis denotes the average response time of the read and

write requests. In the figure, the response times of FP-

FCL and RW-FCL schemes vary according to the ratio

of the caching space. In contrast, the response time of

OP-FCL is drawn as a horizontal line because it reports
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Figure 7: Cumulative garbage collection time
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Figure 8: Hit rate

only one response time regardless of the ratio of caching

space as it dynamically adjusts the three spaces accord-

ing to the workload.

Let us first compare FP-FCL and RW-FCL in Fig. 6. In

cases of the Financial and Home traces, we see that RW-

FCL provides lower response time than FP-FCL. This is

because RW-FCL is taking into account the different read

and write costs in the flash memory cache layer. This re-

sult is in accord with previous studies that considered dif-

ferent read and write costs of flash memory [11]. How-

ever, in the case of the Search Engine trace, discriminat-

ing read and write requests has no effect because 99% of

the requests are reads. Naturally, FP-FCL and RW-FCL

show almost identical response times.

Now let us turn our focus to the relationship between

the size of caching space (or OPS size) and the response

time. In Fig. 6(a) and (b), we see that the response time

decreases as the caching space increases (or OPS de-

creases) until it reaches the minimal point, and then in-

creases beyond this point. Specifically, for FP-FCL and

RW-FCL, the minimal point is at 60% for the Financial

trace and at 50% for the Home trace for both schemes. In

contrast, for the Search Engine trace, response time de-

creases continuously as the cache size increases and the

optimal point is at 95%. The reason behind this is that

the trace is dominated by read requests with rare modi-

fications to the data. Thus, the optimal configuration for

this trace is to keep as large a read cache as possible with

only a small amount of OPS and write cache.

For the FP-FCL and RW-FCL schemes, the response

time at the optimal point can be regarded as the off-line

optimal value because it is obtained after exploring all

possible configurations of the scheme. Let us now com-

pare the response time of OP-FCL and the off-line opti-

mal results of RW-FCL. In all traces, OP-FCL has almost

the same response time as the off-line optimal value of

RW-FCL. This shows that the cost model based dynamic

adaptation technique of OP-FCL is efficient in determin-

ing the optimal OPS and the read and write cache sizes.

We now discuss the trade-off between garbage collec-

tion (GC) cost and the hit rate at the flash cache layer.

Fig. 7 and 8 depict these results. In Fig. 7, we see that

for all traces, GC cost increases, that is, performance de-

grades, continuously as caching space increases. The hit

rate, on the other hand, increases, thus improving perfor-

mance as caching space increases for all the traces as we

can see in Fig. 8. For clear comparisons, we report the

sum of the read and write hit rates for RW-FCL and OP-

FCL. Note that both schemes measure read and write hit

rates separately.

These results show the existence of two contradicting

effects as caching space is increased, that is, increasing

cache hit rate, which is a positive effect, and increasing

GC cost, which is a negative effect. The interaction of

these two contradicting effects leads to an optimal point

where the overall access cost of the hybrid storage sys-

tem becomes minimal.

To investigate how well OP-FCL adjusts the caching
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Figure 9: Dynamic size adjustment of read and write caches and OPS

space and OPS sizes, we continuously monitor their sizes

as the experiments are conducted. Fig. 9 shows these re-

sults. In the figure, the x-axis denotes logical time that

elapses upon each request and the y-axis denotes the to-

tal (read + write) caching space size and the read cache

size. For the Financial and Home traces, we see that

the caching space size increases and decreases repeat-

edly according to the reference pattern of each period as

the cost models maneuver the caching space and OPS

sizes. Notice that out of the 4GB of flash memory cache

space, only 2 to 2.5GBs are being used for the Financial

trace and less than half is used for the Home trace. Even

though cache space is available, using less of it helps per-

formance as keeping space to reduce garbage collection

time is more beneficial. Note, though, that for the Search

Engine trace, most of the 4GB are being allotted to the

caching space, in particular, to the read cache. This is a

natural consequence as reads are dominant, garbage col-

lection rarely happens. Also note that it is taking some

time for the system to stabilize to the optimal allocation

setting.

6.2 Large scale workloads

Our experimental setting for large scale workloads is as

shown in Fig. 5 with the configuration summarized as

‘Config. 2’ in Table 2. In this configuration the SSD

is 16GBs employing four packages of flash memory and

the HDD consists of three 10K RPM drives.

To test our scheme for large scale enterprise work-

loads, we use the Exchange and MSN traces that have

been used in previous studies [15, 21, 22]. The Exchange

trace is a random I/O workload obtained from the Mi-

crosoft employee e-mail server [22]. This trace is com-

posed of 9 volumes of which we select and use traces

of volumes 2, 4, and 8, and each volume is assigned to

each HDD. The MSN trace is extracted from 4 RAID-10

volumes on an MSN storage back-end file store [22]. We

choose and use the traces of volumes 0, 1, and 4, each as-

signed to one HDD. The characteristics of the two traces

are summarized in Table 1.
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Figure 10: Response time of hybrid storage
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Figure 11: Cumulative garbage collection time
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Figure 12: Hit rate
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Figure 13: Dynamic size adjustment of read and write

caches and OPS
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Figure 14: Average erase count of flash memory blocks

Fig. 10, which depicts the response time for the two

large scale workloads, show similar trends that we ob-

served with the small scale workloads, in that, as caching

space increases, response time decreases to a minimal

point, and then increases again. The response time of

OP-FCL, which is shown as a horizontal line in the fig-

ure, is close to the smallest response times of FP-FCL

and RW-FCL. From these results, we confirm again that

a trade-off between GC cost and hit rate exists at the flash

cache layer.

Specifically, for the Exchange trace shown in

Fig. 10(a), the minimal point for FP-FCL is at 70%,

while it is at 80% for RW-FCL. The reason behind this

difference can be found in Fig. 11 and Fig. 12. Fig. 12(a)

shows that RW-FCL has a higher hit rate than FP-FCL

at cache size 80%. On the other hand, Fig. 11(a) shows

that for cache size of 70% to 80% the GC cost increase is

steeper for FP-FCL than for RW-FCL. These results im-

ply that, for RW-FCL, the positive effect of caching more

data is greater than the negative effect of increased GC

cost at 80% cache size, and vice versa for FP-FCL. These

differences in positive and negative effect relations for

FP-FCL and RW-FCL result in different minimal points.

From the results of the MSN trace shown in

Fig. 10(b), we observe that FP-FCL and RW-FCL have

almost identical response times. This is because they

have almost the same hit rate curves, which means that

discriminating read and write requests has no perfor-

mance benefit for the MSN trace. The minimal points

for FP-FCL and RW-FCL are at cache size 80% for this

trace.

As with the small scale workloads, Fig. 13 shows how

OP-FCL adjusts the cache and OPS sizes according to

the reference pattern for the large scale workloads. Ini-

tially, the cache size starts to increase as we start with

an empty cache. Then, we see that the scheme stabilizes

with OP-FCL dynamically adjusting the caching space

and OPS sizes to their optimal values.

6.3 Effect on lifetime of SSDs

Now let us turn our attention to the effect of OP-FCL

on the lifetime of SSDs. Generally, block erase count,

which is affected by the wear-levelling technique used by

the SSDs, directly corresponds to SSD lifetime. There-

fore, we measure the average erase counts of flash mem-

ory blocks for all the workloads, and the results are

shown in Fig. 14. With the exception of the Search En-

gine, we see that, for FP-FCL and RW-FCL, the aver-

age erase count is low when caching space is small. As

caching space becomes larger, the average erase count

increases only slightly until the caching space reaches

around 70%. Beyond that point, the erase count increases

sharply as OPS size becomes small and GC cost rises. In

contrast, OP-FCL has a low average erase count drawn

as a horizontal line in Fig. 14.

In contrast to the other traces, the average erase count

for the Search Engine trace is rather unique. First, the

overall average erase count is noticeably lower than that

of the other traces. Also, instead of a sharp increase ob-

served for the other traces, we first see a noticeable drop

as the cache size approaches 80%, before a sharp in-

crease. The reason behind this is that 99% of the Search

Engine trace are read requests and the footprint is so
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Figure 15: Sensitivity analysis of sequential unit size and

period length on OP-FCL performance

huge that the cache hit rate continuously increases al-

most linearly with larger caches as shown in Fig. 8(c).

This continuous increase in hit rate continuously reduces

new writes resulting in reduced garbage collection, and

then eventually to reduced block erases. Beyond the 80%

point, block erases increase because GC cost increases

sharply as the OPS becomes smaller.

6.4 Sensitivity analysis

In this subsection, we present the effect on the choice

of the sequential unit size and the length of the period on

the performance of OP-FCL. The results for all the work-

loads are reported relative to the parameter settings used

for all the results presented in the previous subsections:

the sequential unit size of 128 and period length of 216.

Recall that the sequential unit size determines the con-

secutive request size that the Sequential I/O Detector re-

gards as being sequential, and that these requests are sent

directly to the HDD. Fig. 15(a) show the effect of the se-

quential unit size. When the sequential unit size is 4 KB,

OP-FCL performs very poorly. This is because too many

requests are being considered to be sequential and are

sent directly to the HDD. However, when the sequential

unit size is between 16 KB ∼ 512 KB, OP-FCL shows

similar performance showing that performance is rela-

tively insensitive to the parameter of choice.

Fig. 15(b) shows the performance of OP-FCL as the

length of the period is varied from 212 to 220 requests.

Overall, the performance is stable. The Home trace per-

formance deteriorates somewhat for periods of 214 and

below, with worse performance as the period shortens.

The reason behind this is that the workload changes fre-

quently as observed in Fig. 9. As a result, by the time

OP-FCL adapts to the results of the previous period, the

new adjustment becomes stale, resulting in performance

reduction. We also see that performance is relatively

consistent and best for periods between 214 to 216. For

periods beyond 218, OP-FCL performance deteriorates

slightly. As the period increases to 220, performance of

the Exchange and MSN traces start to degrade. This is

because the change in the workload spans a relatively

large range compared to those of small scale workloads

as shown in Fig. 13. For this reason, OP-FCL of longer

periods is not dynamic enough to reflect these workload

changes effectively. Overall though, we find that for a

relatively broad range of periods performance is consis-

tent.

7 Conclusions

NAND flash memory based SSDs are being used as non-

volatile caches in hybrid storage solutions. In flash based

storage systems, there exists a trade-off between increas-

ing the benefits of caching data and increasing the ben-

efit of reducing the update cost as garbage collection

cost is involved. To increase the former, caching space,

which is cache space that holds normal data, must be

increased, while to increase the latter, over-provisioned

space (OPS) must be increased. In this paper, we showed

that balancing the caching space and OPS sizes has a sig-

nificant impact on the performance of hybrid storage so-

lutions. For this balancing act, we derived cost models

to determine the optimal caching space and OPS sizes,

and proposed a scheme that dynamically adjusts sizes of

these spaces. Through experiments we show that our dy-

namic scheme performs comparatively to the off-line op-

timal fixed partitioning scheme. We also show that the

lifetime of SSDs may be extended considerably as the

erase count at SSDs may be reduced.

Many studies on non-volatile cache have focussed on

cache replacement and destaging policies. As a miss at

the flash memory cache leads to HDD access, it is criti-

cal that misses be reduced. When misses do occur at the

write cache, intelligent destaging should help ameliorate

miss effects. Hence, we are currently focusing our ef-

forts on developing better cache replacement and destag-

ing policies, and in combining these policies with our

cache partitioning scheme. Another direction of research

that we are pursuing is managing the flash memory cache

layer to tune SSDs to trade-off between performance and

lifetime.
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