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Abstract

Good execution of data placement, caching and consis-

tency policies across a user’s personal devices has always

been hard. Unpredictable networks, capricious user be-

havior with leaving devices on or off and non-uniform

energy-saving policies constantly interfere with the good

intentions of a storage system’s policies. This paper’s

contribution is to better manage these inherent uncertain-

ties. We do so primarily by building a low-power com-

munication channel that is available even when a device

is off. This channel is mainly made possible by a novel

network interface card that is carefully placed under the

control of storage system protocols.

The design space can benefit existing placement

policies (e.g., Cimbiosys [21], Perspective [23],

Anzere [22]). It also allows for interesting new ones. We

build a file system called ZZFS around a particular set of

policies motivated by user studies. Its policies cater to

users who interact with the file system in an ad hoc way

— spontaneously and without pre-planning.

1 Introduction

Much work has been done in developing appropriate

data placement, caching and consistency policies in the

“home/personal/non-enterprise” space (e.g., see [8, 10,

16, 19, 20, 21, 22, 23, 24, 26, 28]). Good policies are

crucial in maintaining good performance, reliability and

availability. Unfortunately, there are many barriers that

make the execution of such policies far from automatic.

These barriers often stem from the unpredictability of ev-

eryday life, reflected in variable network resources, de-

vices being off or dormant at inconvenient times, and

users’ time and priority given to data management.

Consider two mundane examples (Section 2 has

more): In the first example, a busy mom desires to show

a friend in the mall a photo that happens to be on the

home computer. That same person might wish to access

her personal medical file (that she does not trust the cloud

for storing) from the beach while on holidays later in the

week. In all likelihood she will find the above tasks im-

possible given that her home computer is most likely dor-

mant or off, and she has not had time to specify any par-

ticular data replication policy among the computer and

the smartphone, or hoarded the files beforehand.

The second example illustrates a consistency problem

and is taken from Live Mesh’s [14] mailing list. Many

technology-savvy users experienced frequent conflicts

with music files. A single user would listen to music on

device A, then later listen to the same music on device

B while A was turned off (the files were kept in peer-to-

peer sync between A and B because the user did not have

enough space on the cloud to store all files). Because the

particular music player software updated song metadata

(like play count and rating), it turns out that this is not a

read-only workload. As a result, the syncing generated

conflicts requiring manual resolution whenever the user

switched devices. It is unfortunate that even in the ab-

sence of true multi-user concurrency, a single user can

still get an inconsistent view of the system.

This paper’s main contribution is to build a low-power,

always-on communication channel that is available even

when a device is off. The hypothesis is that this channel

reduces the likelihood that a device is unreachable and

thus helps the execution of data placement and consis-

tency policies. We build this channel using new hardware

and storage system protocols.

On the hardware front, we incorporate a novel network

interface card (NIC) in the design of the overall storage

system (Section 3.1). The NIC maintains device network

access with negligible energy consumption even when

the device is dormant. The NIC is able to rapidly turn on

the main device if needed. The ability to turn on the main

device can be thought of as Wake-on-Lan(WoL) [11] “on

steroids,” in that the NIC operates through any firewalls

or NAT boxes, does not need to know the MAC address

of the dormant device, and handles mobility across sub-



nets. The NIC also exports to our storage system a small

on-board flash storage. While the hardware part of the

NIC is not a contribution of this paper, we build the stor-

age system software around it.

We design the I/O communication channel on top of

the NIC by leveraging several technical building blocks.

These are not new individually, but, as we discovered,

work well together to lead to a usable system. In partic-

ular, we use data placement protocols based on version

histories for ensuring consistency (Section 3.3); I/O of-

floading [15, 29] is used to mask any performance laten-

cies of turning on a device on a write request by using

the NIC’s flash storage as a versioned log/journal (Sec-

tion 3.3); and users get a device-transparent view of the

namespace with the metadata by default residing on the

cloud. Metadata can also reside on any device with the

always-on channel implemented (Section 3.2).

Fundamentally, our approach makes good use of any

always-on resources, if available (such as the cloud or

a home server), but also actively augments the number

of always-on resources by turning any personal device

with the new network interface card into an always-on re-

source. Perhaps subtly, however, it turns out that having a

few extra always-on resources allows for interesting data

placement policies that were not possible before. We ex-

plore these through building a file system called ZZFS.

We chose to implement a unique set of data placement

and consistency policies that cater mostly to spontaneous

users (Section 4). These policies were partially influ-

enced by qualitative user research. However, other poli-

cies (e.g., Cimbiosys [21], Perspective [23], Anzere [22])

would equally benefit.

2 Background on the problem

Users often have access to a set of devices with storage

capabilities, such as desktops, laptops, tablets, smart-

phones and data center/cloud storage. Data placement

policies revolve around deciding which user’s data or

files go onto which device. Often, a data placement

policy indicates that the same file should be placed on

multiple devices (e.g., for better reliability, availability

and performance from caching). Consistency policies re-

volve around ways of keeping the multiple file replicas in

sync as to provide the abstraction of a single file to users.

We illustrate problems related to the execution of these

policies through three simple examples, that reflect poli-

cies taken from some recent related work.

Example 1: Two replicas of a file: This example de-

fines the terminology and thus is slightly longer than the

subsequent two. Systems like Perspective [23], Cim-

biosys [21] and Anzere [22], allow a photographer to

say “keep all my photos replicated on my work machine

and tablet.” Imagine a user U and a photo file F . It is

very likely that when U edits F from the work machine,

the tablet is dormant so the changes do not immediately

propagate to the tablet. Typical implementations of this

policy make use of a transaction log L that keeps track of

the changes U makes on the work machine. The log is

later replayed on the tablet to maintain consistency.

When the photographer later on moves to work on the

tablet, the log will still be on the now-dormant work ma-

chine. Thus, the tablet is not able to replay the log. The

user has two options, neither which leads to great satis-

faction with the system: option 1 is for the user to manu-

ally turn on the work machine and wait until all the data

is consistent. This option is implicitly assumed in Per-

spective, for example. Option 1 may be out of reach for

non tech-savvy users who just want to get on with their

work and do not understand they have to wait (“for how

long?”) for consistency to catch up.

Option 2 is to continue working on the stale copy of

F on the tablet, keep a separate transaction log L2 of the

work in the tablet, and then later on, when both machines

happen to be up at the same time, have a way to reconcile

L and L2. In the best case, the copies can be reconciled

automatically (e.g., the user is working on two different

parts of the photo that can be just merged). In the worst

case, manual conflict resolution is required. Option 2

is in fact the only option if there is truly no other way

the devices can communicate with one another (e.g., if

the user is on a plane with the tablet and with no net-

work connectivity). However, it seems wasteful human

effort that the user has to resort to this option even when

the network bandwidth in many places (e.g., within the

home, or work) would be perfectly adequate for auto-

matic peer-to-peer sync, if only the devices were on.

Example 2: Device transparency: Several systems

advocate device transparency, where the namespace re-

flects ones’ files and data, not the device where they re-

side. Eyo, for example, allows a user to list from any

device the metadata (e.g., name) of all files, residing in

all subscribed devices [26]. We like the idea of the meta-

data being always available, but want to help further by

satisfying the user’s data needs as well. Imagine a user

U having the names of all her documents, photos and

videos, displayed on her tablet. When U meets a friend

in the mall, she wishes to show her a short video from

a birthday party. The video happens to physically re-

side on her home computer (although the metadata is on

the tablet). There is reasonable 3G bandwidth to stream

the video, but the home computer is dormant. The user

knows the video exists, but cannot access it.

Example 3: Cloud storage: Having sufficient storage

space to store all user data in the cloud with fast network

connectivity to access it seems technically likely in the

next few years (perhaps sooner in Silicon Valley). How-

ever, any consideration of data placement must include
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Figure 1: Storage system architecture, basic interfaces and Somniloquy hardware in action.

human factors as well as technology and cost trends. Hu-

man factors include, among others, trust in the cloud and

desire to possess, know and control where one’s data

is located. Section 4 describes qualitative user studies

we did in the context of this paper. From those studies,

we believe that devices will continue to be places where

users store some of their data. As such, we fully em-

brace the cloud as another place to store data, and we let

users ultimately decide how to use that place. We do not

second-guess them or force them to automatically place

everything on the cloud. Internally, the system makes

good use of available cloud space (e.g., for storing meta-

data — Section 3.2, and versioned logs — Section 3.3).

On the technical front, our system helps users who

might have slow network connections to the cloud. Imag-

ine a scenario in which a user decides to store a substan-

tial amount of his data on the cloud. A user editing an

article and compiling code while traveling benefits from

the device’s cache to batch writes before sending them to

the cloud. When the user returns home and wants to con-

tinue working on the data from his home PC, he finds the

PC’s state is stale and incurs large performance penal-

ties until the state is refreshed. A good cache placement

policy would automatically hoard the user’s working set

to the home cache before the user would need to use it.

Such a policy is hampered, however, because the home

PC is likely dormant before the user arrives.

Intuition on how this paper helps: This paper is

about enabling a satisfying execution of a user’s data

placement, caching and consistency policies given the

likelihood that devices they rely on are dormant. One

way our system will help the situation in Example 1 is

by allowing peer-to-peer sync policies to work by turn-

ing devices on and off rapidly and automatically. If peer-

to-peer sync would not be advisable (e.g., because of bat-

tery considerations), the system temporarily offloads the

transaction log L onto the cloud. In Example 2, the sys-

tem will continue to present a device-transparent view of

metadata, and will rapidly turn on the home computer to

get the data to the user. In Example 3, either peer-to-

peer or cloud-to-device cache syncing will be enabled by

turning the devices whose caches need refreshing on.

3 Design

Figure 1 shows several building blocks of the storage

system. First, storage-capable devices strive to always

maintain a low-power communication channel through a

new low-power network card. Second, a metadata ser-

vice maintains a unified namespace, encompassing any

available storage space on devices, cloud and any home

servers. Third, an I/O director, in cooperation with the

metadata service and the new communication channel,

manages the I/O flow through the system.

3.1 Maintaining network awareness

Data placement and consistency protocols are helped if

devices maintain an always-on communication channel,

even when dormant or off. Of course, such a channel

should consume minimal power. We chose to use a new

network interface card, called Somniloquy, that is de-

signed to support operation of network-facing services

while a device is dormant. Figure 1 shows it operating

with one of our desktops. Somniloquy was first described

by Agrawal et al. [2] in the context of reducing PC energy

usage. The hardware is not a contribution of this paper.

This paper reports on Somniloquy’s role and integration

into a distributed personal storage system.

Somniloquy consumes between one and two orders of

magnitude less power than a PC in idle state. Somnilo-

quy exports a 5 Mbps Ethernet or Wireless interface (Fig-

ure 1 shows a prototype with the Ethernet interface) and

a few GB of flash storage. Somniloquy runs an embed-

ded distribution of Linux on a low power 400 MHz XS-

cale processor. The embedded OS supports a full TCP/IP



stack, as well as DHCP and serial port communication.

Power consumption ranges between 290 mW for an idle

wireless interface, 1073 mW for the idle Ethernet inter-

face, and 1675 mW when writing to flash [2].

Somniloquy allows a dormant device to remain re-

sponsive to the network. The NIC can continue to com-

municate using the same IP address as the dormant de-

vice. Somniloquy is more appropriate than Wake-on-

LAN (WoL) [11] for mobile storage devices, because it

operates through firewalls and NAT boxes, and it han-

dles mobility across subnets. The on-board processor

maintains contact with a DNS server to preserve the

hostname-to-IP address mapping, performs basic net-

working tasks, and does I/O to its local flash card.

Does the new NIC make the overall system less se-

cure? Our experience is incomplete. Logically, the sys-

tem is running the same storage service as before. How-

ever, because parts of that service now run on the NIC’s

processor, the attack surface on the system as a whole

has increased. Also, while modern processors have ad-

ditional security features such as execute-disable bits to

prevent buffer overflows, our low power processor does

not support these features yet. Denial-of-service attacks

might result in drained batteries. To partially mitigate

these problems we force the NIC to only listen on one

port (5124) that belongs to the storage service. Further,

we require the main device and the NIC’s processor to be

on the same administrative domain.

Somniloquy is the hardware part of the solution, but it

is insufficient without the storage and file system soft-

ware. Here we give intuition on how the I/O direc-

tor (Section 3.3) will use Somniloquy for two common

operations: reads and writes. A read to a file on a

Somniloquy-enabled storage device incurs a worst-case

latency when the request arrives just as the device is go-

ing into standby. Somniloquy will wake up the device

and the latency is at least standby + resume time. Table 1

shows some measurements to understand this worst-case

penalty. Future devices are likely to have faster standby

and resume times. Writes do not have a similar latency

penalty. The I/O director can temporarily offload data to

Somniloquy’s flash card, or nearby storage-capable re-

sources (such as the cloud) if these are available.

Summary, limitations and alternatives: We design

to allow devices to maintain network awareness even

when dormant. Our specific way of enabling the goal is

to introduce new NIC hardware to each device. Agrawal

et al. [2] describes why Somniloquy is more appropriate

than several other hardware-based alternatives (e.g., Tur-

ducken [25]) and we do not list those alternatives further

here. An assumption we make is that it is cost effec-

tive to augment devices with a smarter network interface

card. Further, we assume the NIC would not drastically

change the failure characteristics of the device. These

Device Standby(s) Resume(s)

Lenovo x61 (Win7) 3.8 2.6

Dell T3500 (Win7) 8.7 7.2

HP Pavillon (XP) 4.9 10.25

Macbook Pro (OSX 10.6.8) 1 2

Ubuntu 11.10 11 4.5

Table 1: Example suspend and resume times for com-

modity devices. The device is first rebooted to clear pre-

vious state then it is put into standby followed by a re-

sume. Section 5.2 shows more realistic end-to-end mea-

surements using the Dell T3500 device.

assumptions might turn out to be a limitation of our ap-

proach, depending on the economics of producing a de-

vice and its failure characteristics. Another limitation is

a lack of evaluation of Somniloquy with tablets or smart-

phones. Currently the driver works for Windows Vista/7

only, which limits the experiments in Section 5 to lap-

tops and desktops. Currently, the NIC can only wake up

devices that are placed into standby, and are not fully off.

A software-based alternative would be to maintain de-

vice network awareness by encapsulating a device in a

virtual machine abstraction and then making sure the vir-

tual machine (VM) is always accessible. SleepServer,

for example, migrates a device’s VMs to an always-on

server before the physical device goes dormant [3]. This

alternative might be more appropriate in enterprise envi-

ronments where VMs are used and dedicated always-on

servers are available, rather than for personal devices.

3.2 Metadata service

The metadata service maintains a mapping among an ob-

ject/file ID, the devices that object is stored onto, and

the replication policy used. The MDS uses a flat object-

based API by default, where each object ID is an opaque

128-bit string. The metadata service (MDS) is a logi-

cal component, and it can reside on any device or server.

The metadata service might be replicated for availabil-

ity. Consensus among replicated services could be main-

tained through the Paxos protocol [22]. Furthermore, the

data belonging to the service might be replicated for reli-

ability, or cached on devices for performance. Data con-

sistency needs to be maintained across the replicas.

The low-power communication channel in Section 3.1

helps with MDS availability and reliability in the fol-

lowing way. If the service is replicated among devices

for availability, Somniloquy wakes up dormant devices

that need to participate in the consensus protocol. If the

data belonging to the MDS is replicated, the I/O director

strives to maintain strong consistency through a range of

techniques described in Section 3.3. A reasonable de-



fault for home users is to have a single instance of the

metadata service run on a cloud server with content repli-

cation factor of 1, i.e., instead of being replicated, the

metadata content is cached on all devices (this is what

our file system implementation in Section 4 does). The

metadata content can be cached on all devices since its

size is usually small (Section 5.5).

The client library caches a file’s metadata when a file

is created and pulls metadata updates from the metadata

service when accesses to a file fail. The latter could

happen either because the file has moved or it has been

deleted, the access control policy denies access, or the

device has failed. A client’s library synchronously up-

dates the MDS when metadata changes. Those updates

could be subsequently pushed by the metadata service to

other devices caching the metadata (the push could be

lazy, e.g., daily, or could happen as soon as the change

occurs). For the common case when a device is dormant,

Somniloquy could wake up the device (or absorb the

writes in its flash card temporarily) to update its cache.

A client might choose to pull the latest metadata explic-

itly (e.g., through a Refresh button), rather than using the

push model. While the design supports both models, we

believe a hybrid pull and lazy push model is a reasonable

default for home users.

Our design requires storage devices to be explicitly

registered with the MDS. If a device is removed from

the system, either because it has permanently failed or

because a newer device has been bought that replaces it,

a user needs to explicitly de-register the old device and

register the new device with the MDS. The metadata ser-

vice initiates daily heartbeats to user devices to detect

permanent failures and to lazily refresh a device’s meta-

data cache. A heartbeat wakes up a dormant device. A

device is automatically rebuilt after the user triggers the

rebuild process.

Summary, limitations and alternatives: The novel

aspect of our metadata service is that the execution of

both metadata service consensus (for availability) and

metadata replication consistency protocols (for reliabil-

ity and performance through caching) is helped by the

ability to turn participating devices on and off transpar-

ently. The design allows for several consensus and con-

sistency options. However, by default the MDS resides

on the cloud and its content is cached on all devices. The

implicit assumption for this default is that the user will

have at least (>56 Kbps) broadband connectivity at home

or work and some weak 3G connectivity when mobile.

Further, we assumed a few hundreds of MB of storage

space at a cloud provider. We believe this is a weak as-

sumption, but, even in the absence of cloud space, the

metadata service and data could still reside on any de-

vice that incorporates Somniloquy.

3.3 I/O director

The I/O director is the third building block of our design.

Its goal is to be versatile, allowing for a range of data

placement and consistency policies. Uniquely to our sys-

tem, the I/O director has new options for data movement.

It can choose either to wake up a device to make reads or

writes, or to temporarily use the flash storage provided by

Somniloquy; it can also opportunistically use other stor-

age resources to mask performance latencies and main-

tain the always-on communication channel.

The operations of the I/O director are best understood

through Figure 2, which shows a client, a metadata ser-

vice (MDS) and two devices D1 and D2. The data is

replicated on both devices with a particular primary-

based concurrency control mechanism to serialize con-

current requests. In this example, each replicated file has

one replica that is assigned the primary role. Figure 2

shows some common paths for read and write requests.

Reads, in the default case, are serviced by the primary for

an object, as seen in Figure 2(a). When all devices are

dormant and a read or write request arrives, Somniloquy

resumes the device and hands it the request as shown in

Figure 2(b) for reads and Figure 2(d) for writes, respec-

tively. Writes are sent to the primary, which serializes

them to the other replicas of the object as in Figure 2(d).

When objects are replicated and a device goes into a

controlled standby, the metadata service receives an RPC

indicating that, as seen in Figure 2(c). This is an op-

timization to give the MDS the chance to proactively

assign the primary role away from that device to de-

vices that are on. As might be expected, transferring the

primary role does not involve data movement, just net-

work RPCs to inform devices of the new assignment. A

client’s metadata cache might be stale with the old pri-

mary information, so a read will initially go to the dor-

mant device. However, the device is not turned on, since

the primary does not reside there. Instead, the client

times out, which triggers an MDS lookup and cache re-

fresh. The read then proceeds to the device with the pri-

mary, which happens to be on in this example.

The I/O director implements I/O offloading [15, 29] to

mask large write latencies and to implement the logging

subsystem. The logging subsystem gives the abstraction

of a single virtual log to the whole distributed storage

system. The actual log might reside on any storage de-

vice. Its size is limited by the size of cloud space, plus

NIC flash space, plus all free hard drive space across all

devices. Figure 2(e) shows offloading to the log (Sec-

tion 5 evaluates the case when the log physically resides

on a nearby device). Remember that if parts of the log

are on the dormant device’s hard drive, that device can be

woken up as needed to access the log. Data is eventually

reclaimed at the expected device at appropriate times,
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e.g., when the device is not in use.

The system is optimized for the common case when

there is some network connectivity among devices and

the cloud. If that is not the case, e.g., when the user is

on a plane without network access, the system will tem-

porarily offload all user writes to the log, and the log will

have to physically reside with the user’s device locally.

When the user gains network connectivity, all partici-

pating devices will have to eventually reclaim data from

the log and do standard conflict resolution (e.g., as in

Bayou [28]), as illustrated in Figure 2(f). Our work does

not add anything novel to this scenario’s logic, but our

implementation makes use of the existing logging infras-

tructure to keep track of write versions.

A user can move the file to a new device, and can

change its replication policy any time. When any of these

options happen, our system allows continuous access to

the file. Any new writes to the file are offloaded to the

versioned log. The I/O director logic maintains the nec-

essary bookkeeping to identify the location of the latest

version of a file. The location could be the old location,

or the log, depending on whether the file has seen any

new writes while being transferred or not. Once the file

has moved to the new location, reclaim is triggered to

copy any bytes that might have changed.

Summary, limitations and alternatives: The novel

aspect of the I/O director is that it has new options

for data movement. It can also choose to turn on a

dormant device. The I/O director is optimized for an

increasingly-common case of at least basic network con-

nectivity among storage devices. It reverts to well-known

conflict resolution techniques otherwise.

We currently use I/O offloading techniques [15, 29]

to augment the base file system (which is not versioned)

with a versioned file system partition. Ursa Minor’s tech-

niques for data placement versatility [1] are a good al-

ternative in case the underlying file system is already

versioned. For example, Ursa Minor uses backpointers

when changing data replication while maintaining data

availability. Also, advanced data encoding policies (e.g.,

the use of erasure codes), and other concurrency control

methods (e.g., based on quorums) could equally benefit

from our always-on communication channel.

3.4 Interaction with energy policies

As remarked above, Somniloquy consumes more than an

order of magnitude less energy than an idle device while

maintaining network awareness. The default interaction

with energy policies is simple. A read overrides the en-

ergy policy and wakes up the device. Writes are fully

buffered in the NIC’s card or cloud before waking up the

device. These policies are similar to the ones offered by

BlueFS [16], in that they actively engineer and divert the

traffic to the right device, but we have more resources

available, in the form of the NIC’s flash card or cloud.

Because the NIC runs a capable operating system,

more complex energy policies can be encoded as part of

the NIC processing. For example, BlueFS reduces en-

ergy usage by reading data from the device that will use

the least amount of energy. That policy could be slightly

modified to take into account the device turn on time, if

the device is dormant. Furthermore, the storage system

could determine whether to wake up a device or not as

a function of whether the device is plugged in or run-

ning on batteries. Also, a more advanced standby strat-

egy might predict future access patterns and prevent the

computer from going into standby. Currently, our de-

vices use simple idle time-based policies, like the ones

implemented on Windows.



4 ZZFS: a file system artifact

Perhaps surprisingly, having a few extra always-on re-

sources allows for interesting data placement policies

that were not possible before. We explore these through

building a file system called ZZFS. We chose to imple-

ment a unique set of data placement and consistency poli-

cies that cater mostly to spontaneous data accesses.

4.1 Design rationale

The design rationale for ZZFS is indirectly influenced by

data from qualitative user research, comments on mailing

lists of popular sync tools like Live Mesh [14] and Drop-

box [4], and our desire to explore new policies. ZZFS’s

policies are different from those of say, Cimbiosys [21]

or Perspective [23], but not necessarily “better” or appro-

priate in all cases.

Data from sync programs: To understand how users

perceive consistency and conflict problems and how they

rate them in fix-priority when compared to performance

problems we collected and analyzed user feedback for

Live Mesh [14] and Dropbox [4], two popular rsync

tools. They serve as a rather coarse proxy for understand-

ing consistency in the absence of a distributed file sys-

tem. Feedback from the sync programs is heavily biased

toward early adopters and technology experts, of course,

but it is nevertheless helpful if only because of its volume

(thousands of messages on public forum boards). Exam-

ple 1 in Section 2 was influenced by this data.

Qualitative studies: Our first qualitative study helped

us understand how people understand, organize, store,

and access their content across different devices. The

users for the qualitative studies were picked at random

by a third-party company that specializes in user stud-

ies. We performed “guerrilla” (street) interviews with six

people. We visited two family homes and we then invited

two different families to a conference room (provided by

the third-party company so that our identities would re-

main unknown to avoid perception bias) to further dis-

cuss concepts through storyboards. The raw data we col-

lected is available upon request, but we have not put it

in paper form yet. In parallel, we conducted a second,

larger-scale study on issues around data possession [17].

How the data influenced us: This research influenced

us to try harder to cater to the character of data access

and device management displayed by ordinary (i.e., non

technical) users. We interpret the data as suggesting that

syncing and replication policies are compromised by the

ways users store data, their ad hoc access of networks,

and the priority given to social and economic matters of

data management.

By default, ZZFS caters to spontaneous users with no

data placement policies specified at all by default. No

user effort is required to pre-organize data on devices (by

hoarding, syncing, etc.) Data by default remains on the

device where the user chose to first create it, with a repli-

cation factor of 1. Users showed a greater concern for

and doubts about transferring data between devices than

device failure. This could be interpreted as similar to

Marshall’s observation that only 5% of data loss is due

to a device failure [12].

Whenever a file needs to be accessed, the device it is

on is asked to provide access to that file. If the device is

dormant, the device is woken up through the I/O direc-

tor and the network-aware part of the device. For more

advanced users who worry more about device failure and

thus specify a higher replication factor for files, ZZFS

strives to reduce the time it takes to reach consistency

among replicas by data offloading and by waking up de-

vices as described in Section 3.3.

We found that users made deliberate and intelligent

decisions about wanting to silo their data on different de-

vices and the cloud. From both user studies, we believe

that devices will continue to be places where users store

their data. Any consideration of data placement must

consider human factors as well as technology and cost

trends. Human factors include, among others, trust in

the cloud and desire to possess, know and control where

one’s data is located. Furthermore, different devices

have unique affordances [6] and properties (e.g., screen

size, capacity, weight, security, price, performance, etc.).

Users seem capable of understanding those affordances,

and ZZFS does not second guess. Data movement is in-

curred only when a user explicitly chooses to do so.

4.2 Implementation details and status

We have implemented most of the design space described

in Section 3. ZZFS is a distributed file system that re-

sults from picking a set of policies. It is implemented

at user-level in C. ZZFS supports devices whose local

file system can be NTFS or FAT. ZZFS has implemented

per-object replication and allows for in-place overwrites

of arbitrary byte ranges within an object. Concurrent ac-

cesses to a file are serialized through a primary. ZZFS’s

namespace is flat and it does not have folders, however it

maintains collections of files through a relate() call.

The current implementation addresses a limited set of

security concerns. Data and network RPCs can be en-

crypted (but are not by default). Each object has an ac-

cess control list that specifies which user can access that

object and from what device. We are actively doing re-

search in what security means for home users [13].

In addition to simple benchmarks that directly access

ZZFS through a client library, we run unmodified, legacy

applications (e.g., MS Office, iTunes, Notepad, etc.) for

demoing and real usage. We do so by mounting ZZFS



as a block-device through the use of a WebDav ser-

vice [31]. This technique required us to detour the Web-

Dav service to use our APIs [9]. WebDav file seman-

tics are different from NTFS semantics and often lead

to performance inefficiencies (e.g., any time a change is

made to a file, WebDav forces the whole file to be sent

through the network). The following calls are detoured

to use ZZFS’s calls: CreateFile(), FindFirstFile(), Find-

NextFile(), ReadFile(), WriteFile(), GetFileAttributes()

and DeleteFile(). The interface currently is Windows Ex-

plorer. A more appropriate interface for a distributed file

system is work-in-progress.

ZZFS is robust. We are using it daily as a secondary

partition to store non-critical files. When it crashes, it

usually does so because of the NIC’s device driver. The

driver issues will be resolved over time and were not our

primary focus for this paper. However, we are working

toward having ZZFS as a primary partition for all files.

5 Evaluation

First, we measure how ZZFS performs and locate its

bottlenecks. Second, through a series of real scenarios,

we measure latencies and penalties associated with the

always-on communication channel. This is an evalua-

tion of the underlying storage system and also of ZZFS’s

policies. Third, we provide analytical bounds for perfor-

mance for a range of workload and device characteristics.

Fourth, we examine metadata scalability.

5.1 Exposing throughput bottlenecks

This section focuses on throughput. The other sections

will focus on latency. We compare our system against

local file access through the NTFS file system. This is

the only time we will use a set of homogeneous devices

(obviously not realistic for personal devices), because it

is simpler for revealing certain types of bottlenecks. The

devices are three HP servers, each with a dual-core Intel

Xeon 3 GHz processor and 1 GB of RAM. The disk in

each device is a 15 KRPM Seagate Cheetah SCSI disk.

The devices have a 1 Gbps NIC. All reads and writes are

unbuffered, i.e., we do not make use of the RAM.

First, we measure peak bandwidth and IOPS (I/Os per

second) from a single device (“Read.1” and “Write.1” in

Figure 3). Bandwidth is measured in MB/s using 64 KB

sequential reads and writes to a preallocated 2 GB file.

IOPS are measured by sending 10,000 random-access

4 KB IOs to the device with 64 requests outstanding at a

time. Figure 3 shows the average from 5 results (the vari-

ance is negligible). Average local streaming NTFS per-

formance (not shown in graph) is 85 MB/s for reads and

writes and 390 IOPS for reads and 270 IOPS for writes;

hence, ZZFS adds less than 8% overhead.
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Figure 3: Baseline bandwidth and IOPS.

Second, we measure maximum bandwidth and IOPS

from all three devices to understand performance scala-

bility (“Read.max” and “Write.max” in Figure 3). Three

clients pick one random 2 GB file to read or write to, out

of a total of 10 available files. Each file is replicated 3-

way. If all clients pick the same file, accesses still go to

disk since buffering is disabled. Figure 3 shows the re-

sults. As expected from 3-way replication, the saturated

write bandwidth is similar to the bandwidth from a sin-

gle device. Saturated read bandwidth is about a third of

the ideal because requests from all three clients interfere

with one another. This problem exists in many storage

systems because of a lack of performance isolation [30].

Saturated IOPS from all devices is close to the ideal of

3x the IOPS from a single device.

Overall, these results show that our system performs

reasonably well with respect to throughput. Optimiza-

tions are still required, however, especially with respect

to reducing CPU utilization. CPU utilization in the sat-

urated cases was close to 100%, mostly due to unneces-

sary memory copies.

5.2 I/O director

This section focuses on read and write latencies resulting

from the always-on channel. We have real measurements

from a home wireless network. We start by illustrating

the performance asymmetry between reads and writes.

The first workload is an I/O trace replay mimicking a

user listening to music. We use trace replay to just focus

on I/O latencies and skip the time when the user listens

to music and no I/O activity is incurred. Half of the mu-

sic is on his laptop, half on the desktop and the setting is

in “shuffle mode” (i.e., uniform distribution of accesses

to files). The music files are not replicated. The desktop

(Dell T3500 in Table 1) is on a 100 Mbps LAN and the

laptop (Lenovo x61) is on a 56 Mbps wireless LAN. The

Somniloquy NIC is attached to the desktop. The MDS
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Figure 4: A scatter plot over time for a client’s re-

quests. Reads latencies are [mean=0.09 s, 99th=0.36 s,

worst=23.3 s]. Write latencies are [mean=0.014 s,

99th=0.022 s, worst=0.058 s]. There are several per-

formance “bands” for local reads (0.001-0.01 s), remote

writes (0.05-0.1 s) and remote reads (0.05-1 s).

resides on the desktop, but all metadata is fully cached

on the laptop as well. The music program issues 64 KB

reads to completely read a music file, then, after the user

has finished listening, a database is updated with a small

write of 4 KB containing ratings and play count updates.

The database resides on the desktop and is not replicated.

Hence, although this is a common workload, it is quite

complex and has both reads and writes. The user sim-

ply wants to listen to music without worrying where the

music files and database are located.

Figure 4 shows a scatter plot (and latency distribution

in the caption) of the worst-case scenario when request to

read a music file comes just as the desktop is starting to

go into standby. Somniloquy intercepts the read request

and signals the computer to wake up. The time it takes

the computer to accept the request is 23.3 s (standby time

+ resume time) and is illustrated in the scatter plot in

the figure. In practice, prefetching the next song would

be sufficient not to notice any blocking; however, when

prefetching is not possible, this serves as a worst-case

illustration. We note that the desktop is rather old, and if

using a newer device (e.g., the Macbook Pro in Table 1)

the worst case latency would be around 4 seconds.

Figure 5 illustrates that writes do not suffer from this

worst case scenario. The workload in this scenario is

a trace replay of I/O activity mimicking a user sending

64 KB writes to a document from the laptop. The user

uses 2-way replication for those files, with the second

replica kept on the desktop. Both laptop and desktop are

on the wired LAN. Similar to the previous case, the desk-

top has gone abruptly into standby. However, there is a

second laptop nearby that is on, and the I/O director tem-
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Figure 5: A scatter plot over time for a client’s write re-

quests. O.start annotates the time the second device en-

ters standby, and thus offloading begins to a third device.

R.start annotates the time when the second device re-

sumes and reclaim starts (offloading thus ends). R.end

annotates the time when all data has been reclaimed.

Write latencies are [mean=0.1 s, 99th=1 s, worst=1.5 s].

porarily offloads the writes onto that laptop (other op-

tions for the offload location are Somniloquy’s flash card

or the cloud). This way, 2-way, synchronous replication

is always maintained. When the desktop comes out of

standby, the data on the third laptop is reclaimed. Re-

claim does not lead to a noticeable latency increase. The

figure shows a slight increase in latency during data of-

fload since the second laptop is on the wireless LAN. A

handful of requests experience high latencies throughout

the experiment. We believe these are due to the perfor-

mance of the wireless router. Note that writes in this

experiment are slower than in Figure 4 because of larger

write request sizes (64 KB vs. 4 KB) and 2-way replica-

tion vs. no replication.

We compare our system against simple ping and av-

erage disk latencies, i.e., we set a relatively high bar to

compare against. We measured a minimum of 0.06 s ping

latency for 64 KB1, 0.005 s for 4 KB sizes and the disk’s

average latency is 0.015 s (these are slow SATA disks,

not the fast SCSI disks used in the previous section).

Hence, an end-to-end read request (and ack) should take

on average 0.075 s and an end-to-end write request (and

ack) should take on average 0.02 s2. Looking at the per-

formance “bands” in Figure 4, we see that local read la-

tency and remote write latency is very good, while re-

mote read latency is 33% slower than ideal. We have

1Exact size is 65500 B, the maximum ping size.
2Although read requests are sequential, the disk head incurs at least

a full disk rotation before receiving the next request, since the requests

are sent one at a time. Also, experienced disk average latencies are

sometimes better than the above theoretical value because our disk is

not full and the files are on its outer tracks.
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Figure 6: A scatter plot over time showing the ef-

fects of moving a file on concurrent operations on

that file. Without offloading, the concurrent work-

load blocks; with offloading, the concurrent workload

makes progress. When offloading, read latencies are

[mean=0.7 s, 99th=8.6 s, worst=17 s]. Write latencies

are [mean=0.5 s, 99th=7.3 s, worst=14 s].

started collecting detailed performance profiles, but we

note that the delay is unnoticeable to the applications.

File move: The next experiment demonstrates how

moving an object affects performance of concurrent op-

erations on that object. As discussed in Section 3.3, in-

stead of locking the file for the duration of the move,

the I/O director offloads any new writes to the file while

the copy is in progress. In this experiment, we move a

1 GB file from one device to another while simultane-

ously running a series of 64 KB read and write (with

a 1:1 read:write ratio) operations on that object. Fig-

ure 6 shows that, with offloading turned off, the read

and write operations must block until the data move is

complete; with offloading turned on and another laptop

temporarily absorbing new writes, these operations make

progress. The devices are limited by the 56 Mbps wire-

less LAN, and the network is saturated during the file

move, hence access performance during that time is slow

(around 10 s). We believe this is better than blocking for

more than 400 s (the latency of “blocked request” in the

figure). Note that after the move completes, performance

improves because the client is co-located with the device

the file is moved onto.

5.3 ZZFS’s placement policy

Next, we measure ZZFS’s performance in a 3G city-wide

network and an intercontinental network. We look at the

performance resulting from the simple policy of leaving

data on the device it was first created. We illustrate the

performance of our system when a user on the move is

accessing music files stored on the home desktop. Unlike
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Figure 7: A CDF plot for a client’s read and write re-

quests over a 3G city-wide network and intercontinen-

tal network. For the 3G network, read latencies are

[mean=0.21 s, 99th=0.35 s, worst=3.39 s]. Write laten-

cies are [mean=0.17 s, 99th=0.3 s, worst=0.3 s]. For the

intercontinental network read latencies are [mean=0.7 s,

99th=8.2 s, worst=11 s]. Write latencies are [mean=0.2 s,

99th=0.4 s, worst=0.4 s].

the music scenario above, the client has no music files

or metadata cached on the laptop and always reads and

writes to the home desktop. Access sizes are the same as

before (64 KB reads and 4 KB writes).

First, when the user is on a city-wide 3G network, she

is connected to the Internet through a ZTE MF112 mo-

bile broadband device connected to her laptop. Figure 7

shows the latency results. The first request incurs a first-

time setup cost from the 3G provider, which is also the

worst-case latency (we do not know what the provider is

doing; subsequent runs do not incur this penalty, but we

show the worst case). We measured a minimum of 0.23 s

ping latency for 64 KB sizes, 0.13 s for 4 KB sizes in this

environment, and ZZFS’s overhead is comparable. The

latency is good-enough for listening to music.

Second, when the user is on the west coast of the US

(Redmond, Washington) she is connected to the Internet

through a 56 Mbps wireless LAN. The location of the

music files is on a desktop in Cambridge, UK. Figure 7

shows the results. We measured a minimum of 0.25 s

ping latency for 64 KB sizes, 0.19 s for 4 KB sizes in

this environment. ZZFS’s write overhead is comparable,

but its average read latency is 60% higher than ping. We

believe this is due to the unpredictable nature of the in-

tercontinental network. Nevertheless, the user does not

perceive any noticeable delay once the music starts.

A takeaway message from this section is that ZZFS’s

performance is good enough in all cases for the appli-

cations involved. Data is never cached in these experi-

ments, so we expect even better performance in practice.
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Figure 8: Latency tradeoffs for a client’s read requests.

5.4 Sensitivity to parameters

This section reexamines the above scenarios and others

analytically while changing several tunable parameters.

In the next analysis, we revisit the music scenario.

We still have two devices D1 and D2. First, we vary

the amount of idle time I before D1 enters standby (D2

never enters standby since it is the device with the mu-

sic player). Without loss of generality, we assume D1’s

average access latency when D1 is on, L1
ON , is slower

than D2’s average access latency L2 (e.g., D1 could be on

the 3G network). L1
ST DBY is the average access latency

when D1 is on standby. It is the time to resume the device

plus L1
ON .

Second, we vary the fraction of files p1 that reside on

the slower device (p2 = 1 − p1). For example, if D1

enters into standby after I = 15 idle minutes and each

song is on average M = 5 minutes in length, D1 will en-

ter standby if at least ⌊I/M⌋ = 3 consecutive songs are

played from D2 (with no loss of generality, we assume

the writes go to a database also on D2 this time, other-

wise D1 will never enter standby). Figure 8 shows the

expected average latency given by:

E[L] = E[L|D1 = ON]p{D1 = ON}+

E[L|D1 = STDBY ]p{D1 = STDBY}
(1)

The above equation further expands to

E[L] = (p1L1
ON + p2L2)p{D1 = ON}+ (p1L1

ST DBY +
p2L2)p{D1 = STDBY}. The analysis assumes a user

is forever listening to songs, and this graph shows the

long-running latency of accesses. All the lines assume

the switch-on times of the Dell T3500, except for the

low switch-on cost line that is the Mac.

We make several observations. In both extremes,

where all files accessed are on D2 or all files are on D1,

the latency is simply that of D2 or D1 respectively. If a

device goes into standby, the worst latency tends to hap-

pen when the user accesses it infrequently, thus giving it

time to standby and then resuming it.
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Figure 9: Latency tradeoffs for a client’s requests when

data is replicated on both devices.

The next analysis examines the impact of the

read:write ratio of the workload. 2-way replication is

used, and the same arguments are made about standby.

The difference is that, in this case, D1 enters standby if

there are consecutive reads on D2 (a write would wake

up D1 since it needs to be mirrored there.) Without loss

of generality, we assume a read or write comes every 5

minutes and D1 enters standby after I = 15 minutes. We

illustrate the impact of turning on the device vs. always

offloading (unrealistic in practice) vs. temporarily of-

floading while the device switches on. We assume with-

out loss of generality that data is offloaded to a slow de-

vice, e.g., a data center.

Figure 9 shows the expected average latency E[L] (a

similar formula to the previous example is used, but the

standby latency is the offload latency). We make several

observations. For an all-read workload all files are read

from D2 (faster device). For an all-write workload the

latency is determined by the slowest device. This slower

device is either the offload device, if we always offload,

or D1. In all cases, offloading masks any switch-on costs.

5.5 Metadata

Table 2 shows the number of files for four families the

authors of this paper are part of. This data is biased to-

wards families with tech-savvy members. However, the

point we make in this section is not that this data is repre-

sentative of the population at large. We only confirm an

observation made by Strauss et al. [26] that the amount

of metadata involved is small in all cases and could eas-

ily reside in a data center today, and/or be fully cached

on most consumer devices. We do this while showing

that ZZFS’s metadata structures are reasonably efficient.

We measured the amount of data with R = 1 and ex-

trapolated for R = 3. The amount of metadata is calcu-

lated from ZZFS’s metadata structures and is a function

of the replication factor and number of files. It is in-



teresting to observe that the second family has relatively

fewer media files, and hence the average file size is much

smaller than the other families. This translates to a higher

relative metadata cost. Intuitively, the ratio of metadata

to data decreases with larger file sizes.

6 Related work

Data placement on devices and servers: AFS [8] and

Coda [10] pioneered the use of a single namespace to

manage a set of servers. AFS requires that client be

connected with AFS servers, while Coda allows discon-

nected operations. Clients cache files that have been

hoarded. BlueFS [16] allows for disconnected opera-

tion, handles a variety of modern devices and optimizes

data placement with regard to energy as well. Ensem-

Blue [19] improved on BlueFS by allowing for a peer-

to-peer dissemination of updates, rather than relying on

a central file server. In Perspective, Salmon et al. use the

view abstraction to help users set policies, based on meta-

data tags, about which files should be stored on which

devices [23]. Recent work on Anzere [22] and Pod-

Base [20] emphasizes the richness of the data placement

policy space for home users.

An implicit assumption of the above work is that home

users know how to set up these policies. This assump-

tion might have been borrowed from enterprise systems,

where data placement decisions can be automated and

are guided by clear utility functions [27]. Our low-

power communication channel can help with the exe-

cution of the above policies and can be used by most

of the above systems as an orthogonal layer. It ensures

that devices are awoken appropriately when the storage

protocols need them to. While our design is compatible

with the above work, ZZFS’s choice of specific policies

for data placement is arguably simpler than in the above

work. It stems from our belief that, for many users, it

takes too much time and effort to be organized enough

to specify placement and replication policies like in Per-

spective or Anzere. ZZFS shows that in many common

cases, no user involvement is required at all.

Consistency: Cimbiosys [21] and Perspective [23]

allow for eventual consistency. Cimbiosys permits

content-based partial replication among devices and is

designed to support collaboration (e.g., shared calen-

dars). Bayou [28] allows for application-specific conflict

resolution. Our work can help the user’s perception of

consistency and reduces the number of accidental con-

flicts. In a system with eventual consistency, the low-

power communication channel can be seen as helping re-

duce the “eventual” time to reach consistency, by turning

dormant devices on appropriately.

File system best practices: ZZFS builds on consider-

able work on best-practices in file system design. For ex-

Family R #files data(GB) metadata(MB)-%

1 1 23291 582 11 (0.0019%)

3 23291 1746 68 (0.0038%)

2 1 3177 2.44 1.6 (0.06%)

3 3177 7.32 9.3 (0.12%)

3 1 31621 705 15 (0.002%)

3 31621 2116 93 (0.004%)

4 1 124645 164 61 (0.036%)

3 124645 492 365 (0.07%)

Table 2: In ZZFS, the size of metadata is O(numfiles

x numdevices). This table shows the total data and

metadata size for existing files of some of the authors.

Files included are “Documents,” “Pictures,” “Videos”

and “Music.” R is the replication factor.

ample, our distributed storage system has a NASD-based

architecture [7], where metadata accesses are decoupled

from data accesses and file naming is decoupled from lo-

cation. The system is device-transparent [26]. The I/O

director maintains versioned histories of files that can

later be merged and is based on I/O offloading [15, 29].

User-centered design: We were inspired by a user-

centered approach to system design. This was manifest

not only in undertaking a small version of user research

ourselves (Section 4), but by reference to the findings in

the HCI literature in general. This literature still remains

small on the topic dealt with here (e.g., see [20, 23]

and also [5, 13, 17, 18]), but nevertheless helped provide

some of the insights key to the technical work which is

the main contribution of the paper.

7 Summary

Unpredictable networks and user behavior and non-

uniform energy-saving policies are a fact of life. They

act as barriers to the execution of well-intended personal

storage system policies. This paper’s contribution is to

manage better these inherent uncertainties. We designed

to enable a world in which devices can be rapidly turned

on and off and are always network aware, even when off

or dormant. The implications for the file system were

illustrated through the implementation of ZZFS, a dis-

tributed device and cloud file system, designed for spon-

taneous and rather ad hoc file accesses.
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