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Serving Large-scale Batch Computed !
Data with Project Voldemort!

Challenges of Serving Data-Derived Features"

Motivation"

•  Requires an almost complete refresh of the data"

•  Problem 1: Serving latency degradation during bulk load"
• Due to updates on serving index"

•  Problem 2: Potential long time in error state"
• Error in algorithm = Bulk load bad data = Bad state till next load"

Serving system with fast bulk loads and minimal read latency penalty"

Voldemort"
•  Distributed key/value system "
•  Pluggable storage layer"
•  A cluster has multiple stores!
   (~ tables)"

Hadoop / HDFS"
•  Suitable for batch algorithms"
•  De-facto for storing large logs"

Our solution"

•  Custom storage engine leveraging Hadoop"
•  Building store offline solves online performance problem"
•  Store kept on HDFS in directories per Voldemort node"

Chunk set"

•  Voldemort nodes pulls store data in parallel"
•  Every store saved into multiple versioned directories"
•  One version of every store is serving, rest for rollback"
•  Swap = close old store files, open new ones"
•  Rollback = close new store files, open old ones"

•  A store consists of multiple chunk sets (data + index file)"
•  Increase parallelism by increasing reducers "
•  Swap = memory map index files of all chunk sets"
•  Key search = binary search in index + jump in data file"
•  Subset of key of key in index = Increase cache locality"
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Single node (24 GB RAM) latency 
for 100 GB data"

32 node latency for varying data size"
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•  Running at LinkedIn for the past 2 years"
•  Pushing ~ 4 TB of new data to production daily"
•  Open source (Apache License) – http://project-voldemort.com"

•  Latency grows linearly with"
   data size"

•  Scales to twice the throughput 
of MySQL while maintaining 
latency"


