
Roshan Sumbaly, Jay Kreps, Lei Gao,  
Alex Feinberg, Chinmay Sonam, Sam Shah"

Serving Large-scale Batch Computed !
Data with Project Voldemort!

Challenges of Serving Data-Derived Features"

Motivation"

•  Requires an almost complete refresh of the data"

•  Problem 1: Serving latency degradation during bulk load"
• Due to updates on serving index"

•  Problem 2: Potential long time in error state"
• Error in algorithm = Bulk load bad data = Bad state till next load"

Serving system with fast bulk loads and minimal read latency penalty"

Voldemort"
•  Distributed key/value system "
•  Pluggable storage layer"
•  A cluster has multiple stores!
 (~ tables)"

Hadoop / HDFS"
•  Suitable for batch algorithms"
•  De-facto for storing large logs"

Our solution"

•  Custom storage engine leveraging Hadoop"
•  Building store offline solves online performance problem"
•  Store kept on HDFS in directories per Voldemort node"

Chunk set"

•  Voldemort nodes pulls store data in parallel"
•  Every store saved into multiple versioned directories"
•  One version of every store is serving, rest for rollback"
•  Swap = close old store files, open new ones"
•  Rollback = close new store files, open old ones"

•  A store consists of multiple chunk sets (data + index file)"
•  Increase parallelism by increasing reducers "
•  Swap = memory map index files of all chunk sets"
•  Key search = binary search in index + jump in data file"
•  Subset of key of key in index = Increase cache locality"

Driver
program

Voldemort
cluster

1 - Trigger
Build

2 - Build

5 - Trigger
Swap

6 - Swap

Hadoop

HDFS

3 - Trigger
Fetch

4. Parallel Fetch

Upper 8
bytes of
md5 of

key

Offset to
start of
collided
tuples in
data file

Index file Data file

Tuple Other
collided
tuples

Sorted
by top
8 bytes

Number
of

collided
tuples

Key
size
(k)

Value
size
(v)

Key Value

Results"

Single node (24 GB RAM) latency
for 100 GB data"

32 node latency for varying data size"

output size (TB)

la
te

nc
y

(m
s)

0

10

20

30

40

median

●

●

●

●

●

●

●

●

●
●

0 25 50 75 100

0

50

100

150

99th percentile

●

●

●

● ●

●

●

●
●

●

0 25 50 75 100

● Uniform ● Zipfian

throughput (qps)

la
te

nc
y

(m
s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

median

● ●

●
● ●

●

●

●
●

●

●

● ●

●

●

100 200 300 400 500 600 700

0

50

100

150

200

250

99th percentile

●
● ●

● ●
●

●

● ●
●

●

●
●

●
●

100 200 300 400 500 600 700

● MySQL ● Voldemort

•  Running at LinkedIn for the past 2 years"
•  Pushing ~ 4 TB of new data to production daily"
•  Open source (Apache License) – http://project-voldemort.com"

•  Latency grows linearly with"
 data size"

•  Scales to twice the throughput
of MySQL while maintaining
latency"

