
FIOS: A Fair, Efficient Flash I/O Scheduler
Stan Park Kai Shen

University of Rochester
Motivation

Disk-based schedulers + Flash-based storage = poor fairness and sub-par performance
Recognize performance pitfalls due to Flash characteristics: I/O asymmetry, read-write interference
Exploit Flash parallelism
Proper I/O anticipation: Deceptive idleness can hurt fairness of Flash I/O

Motivation: Read-Write Interference

0 1 2

P
ro

ba
bi

lit
y 

de
ns

ity

I/O response time (in msecs)

Intel SSD read (alone)

0 0.2 0.4 0.6

P
ro

ba
bi

lit
y 

de
ns

ity

I/O response time (in msecs)

Vertex SSD read (alone)

0 100 200 300

P
ro

ba
bi

lit
y 

de
ns

ity
← all respond quickly

I/O response time (in msecs)

CompactFlash read (alone)

0 1 2

P
ro

ba
bi

lit
y 

de
ns

ity

I/O response time (in msecs)

Intel SSD read (with write)

0 0.2 0.4 0.6

P
ro

ba
bi

lit
y 

de
ns

ity

I/O response time (in msecs)

Vertex SSD read (with write)

0 100 200 300

P
ro

ba
bi

lit
y 

de
ns

ity

I/O response time (in msecs)

CompactFlash read (with write)

Fast read response is disrupted by interfering writes.
Also note varying performance profiles across SSDs.

Motivation: I/O Anticipation Support

Reduces potential seek cost for mechanical disks
...but largely negative performance effect on Flash
Flash has no seek latency: no need for anticipation?
No anticipation can result in unfairness: short service, I/O
interference

0

1

2

3

4

I/O
 s

lo
w

do
w

n 
ra

tio

 

 

Linux CFQ, no antic.

SFQ(D), no antic.

Full−quantum antic.

Read slowdown

Write slowdown

Lack of anticipation can lead to unfairness; aggressive anticipation
makes fairness costly.

FIOS Design

Fair timeslice management: Basis of fairness
Read-write interference management: Account for Flash I/O asymmetry and minimize harmful interference
I/O parallelism: Recognize and exploit SSD internal parallelism while fairly accounting for I/O cost
I/O anticipation for fairness: Still necessary on Flash; When and how long to anticipate?

Experimental Setup

SSDs installed in workstation; CompactFlash in low-power node
Random I/O microbenchmarks, SPECweb+TPC-C, FAWNDS
Fairness measured by proportional slowdown: A task running
concurrently with n tasks should experience a factor of n slowdown
compared to running alone.

Results: Fairness for Reads and Writes

0

8

16

24

32

I/O
 s

lo
w

do
w

n 
ra

tio

4−reader 4−writer on Intel SSD

 

 

proportional
slowdown

←

Raw device I/O

Linux CFQ

SFQ(D)

Quanta
FIOS

0

8

16

24

32

proportional
slowdown

←

Raw device I/O

Linux CFQ

SFQ(D)

Quanta
FIOS

I/O
 s

lo
w

do
w

n 
ra

tio

4−reader 4−writer (with thinktime) on Intel SSD

Average read latency Average write latency

FIOS provides fairness with good efficiency under differing I/O loads.

Results: Fairness for Requests of Varying Cost

0

8

16

proportional
slowdown

←

I/O
 s

lo
w

do
w

n 
ra

tio

4−reader 4−writer on Vertex SSD

 

 

Raw device I/O

Linux CFQ
SFQ(D)

Quanta
FIOS

0

2

4

6

8

proportional
slowdown

←I/O
 s

lo
w

do
w

n 
ra

tio

4KB−reader and 128KB−reader on Vertex SSD

 

 

Raw device I/O

Linux CFQ
SFQ(D)

Quanta
FIOS

Mean read latency
Mean write latency

Mean latency 4KB read
Mean latency 128KB read

FIOS achieves fairness not only with read-write asymmetry but also
requests of varying cost.

Results: SPECweb co-run TPC-C

0

2

4

6

8

10

12

R
es

po
ns

e 
tim

e 
sl

ow
do

w
n 

ra
tio

SPECweb and TPC−C on Intel SSD

 

 
28

Raw device I/O

Linux CFQ

SFQ(D)

Quanta
FIOS

SPECweb

TPC−C

FIOS exhibits the best fairness compared to the alternatives.

Results: FAWNDS (CMU, SOSP’09) on CompactFlash

0

1

2

3

T
as

k 
sl

ow
do

w
n 

ra
tio

 

 

← proportional slowdown

Raw device I/O

Linux CFQ

SFQ(D)

Quanta
FIOS

FAWNDS hash gets FAWNDS hash puts

FIOS also applies to low-power Flash and provides efficient fairness.


