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Motivation

Disk-based schedulers + Flash-based storage = poor fairness and sub-par performance
Recognize performance pitfalls due to Flash characteristics: I/O asymmetry, read-write interference
Exploit Flash parallelism
Proper I/O anticipation: Deceptive idleness can hurt fairness of Flash I/O

Motivation: Read-Write Interference
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CompactFlash read (with write)

Fast read response is disrupted by interfering writes.
Also note varying performance profiles across SSDs.

Motivation: I/O Anticipation Support

Reduces potential seek cost for mechanical disks
...but largely negative performance effect on Flash
Flash has no seek latency: no need for anticipation?
No anticipation can result in unfairness: short service, I/O
interference
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Linux CFQ, no antic.

SFQ(D), no antic.

Full−quantum antic.

Read slowdown

Write slowdown

Lack of anticipation can lead to unfairness; aggressive anticipation
makes fairness costly.

FIOS Design

Fair timeslice management: Basis of fairness
Read-write interference management: Account for Flash I/O asymmetry and minimize harmful interference
I/O parallelism: Recognize and exploit SSD internal parallelism while fairly accounting for I/O cost
I/O anticipation for fairness: Still necessary on Flash; When and how long to anticipate?

Experimental Setup

SSDs installed in workstation; CompactFlash in low-power node
Random I/O microbenchmarks, SPECweb+TPC-C, FAWNDS
Fairness measured by proportional slowdown: A task running
concurrently with n tasks should experience a factor of n slowdown
compared to running alone.

Results: Fairness for Reads and Writes
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4−reader 4−writer (with thinktime) on Intel SSD

Average read latency Average write latency

FIOS provides fairness with good efficiency under differing I/O loads.

Results: Fairness for Requests of Varying Cost
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4KB−reader and 128KB−reader on Vertex SSD
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Mean read latency
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Mean latency 4KB read
Mean latency 128KB read

FIOS achieves fairness not only with read-write asymmetry but also
requests of varying cost.

Results: SPECweb co-run TPC-C
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SPECweb and TPC−C on Intel SSD
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FIOS exhibits the best fairness compared to the alternatives.

Results: FAWNDS (CMU, SOSP’09) on CompactFlash
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FAWNDS hash gets FAWNDS hash puts

FIOS also applies to low-power Flash and provides efficient fairness.


