scc: Cluster Storage Provisioning Informed by

Application Characteristics and SLAs

Harsha V. Madhyastha^{*}, John C. McCullough, George Porter, Rishi Kapoor, Stefan Savage, Alex C. Snoeren, and Amin Vahdat

UC Riverside* and UC San Diego

Outputs

Cluster Storage Provisioning

• Diverse requirements in cluster applications:

- Sequential throughput for bulk data analysis

Overview of scc

Inputs

Heterogeneous beats scale-out

- IOPS for key-value storage
- Mix of the two in other scenarios
- Currently, requirements roughly characterized
- Configurations typically selected by rule of thumb, often homogeneous

 Homogeneous configurations result in hardto-utilize resources and unnecessary increase in cost

- Storage Configuration Compiler
- Automates cluster configuration
- Combine:
- Formal application specification
- Hardware properties
- Workload specification

Specifying Apps

• Application broken into tasks and datasets

scc achieves $2 - 4.5 \times$ cost average savings vs. scaling fixed server configurations

Storage regimes

		S	torage	unit typ	е	
Uploads/s	Photos		Thumbnails		Tags	
≤ 5	Disk		Disk		Disk	
5 - 25	Disk		Disk		Disk+	DRAM
25 - 330	Disk		SSD		Disk+	DRAM
330 - 930	SSD		Disk+	DRAM	Disk+	DRAM
930 - 10k	Disk+	DRAM	Disk+	DRAM	Disk+	DRAM

• We provide a storage configuration compiler to find low-cost, performant configurations for a given application

Challenge

• Diverse storage options:

	size	MB/s	IOPS	Cost
7.2k-rpm	500GB	90/90	125/125	\$213
15k-rpm	146GB	150/150	285/285	\$296
SSD	32GB	250/80	2500/1000	\$296
DRAM	1GB	13K/13K	1.6B/1.6B	\$35

• Best storage choice:

- Coupled to workload

Model for photo sharing application

- Tasks parametrized by cpu-time, write count and size for each dataset, and dependencies
- Datasets parametrized with overall size
- SLA is throughput of tasks per unit-time

Storage-types transitions with workload

Modeling Storage

• Parametrized by:

- Capacity
- Sequential throughput
- Operation *Gap* (e.g. seeks, erasures)
- *Gap* captures more than IOPS
- Operation latency = $\frac{\text{size}}{\text{rate}} + \text{gap}$

Validation

p					/	\	
sfie	1.1		'	🎍 -			SCC
atis	1.0		'	' _			Alt1
N.	0.9						🔺 Alt2
SLA	0.8	– – –	I 	₁ -			Alt3
of	0.7			· · · · · ·	ı + -	ı + 	🕂 Alt4
UO	0.6	– – –	ı ^I	ı l _	ı <u>-</u> _	,	🗙 Alt5
acti	0.5		 	+ -	 	· 	

- May change with growth
- Storage choice constrained to chassis capacity and bus capacity:

- Need CPU to drive storage and application
- Must understand relationship between application, workload, and storage

0.96 1.00 1.04 1.32 Cost relative to scc Cheaper configurations miss the SLA, and simple scale-out solution requires much higher cost

Robustness

Attribute	Range with same architecture
Photo size	50 KB \leftarrow 200 KB \rightarrow 850 KB
Thumbnail size	$1 \text{ KB} \leftarrow 4 \text{ KB} \rightarrow 30 \text{ KB}$
SSD unit price	$\$200 \leftarrow \$450 \rightarrow \$900$

scc can estimate the robustness of its output