
 Sequential reads and random reads on high-end SSD 

 

 

 

 

 

 

 

 

 

 

Our approach highly close to the bare-metal performance 

Seq. Reads by 98% and Rnd. Reads by 95% 

In-VMM device emulation benefit: 2~11% 

Exitless I/O Request benefit: 4~13% 
 

Considering our prototype is not optimized and exitless completion 
notification is not implemented yet, the performance result is quite 
encouraging 

 

 

 

 

  Architecture 

  Motivation and Goal 

Accelerating Virtual Machine Storage I/O  
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 Reducing the I/O virtualization overhead by exploiting multicore architecture 
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(Issue I/O requests to VMM)  

Domain or user-kernel 
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(Emulate requests in a 
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world switching 

(Inject interrupts to guest and signal 

the completion of interrupt) 
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Cache pollution  
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ALL processes on a VM are 

stopped.  

A process on a CPU is stopped.  

  Experimental Results 

 I/O workloads in VM suffer performance degradation due to virtualization overhead.  

I/O Request Device Emulation Completion Notification 

Exitless I/O Request 
 

- Using para-virtualized device driver 
that communicates with VMM through 
shared request queue. 

- Issuing an I/O request is just 
enqueing a request in the shared 
queue. 

- IOCore thread checks if there are new 
requests and dequeues them for 
further processing. 

In-VMM Device Emulation 
 

- IOCore thread passes the dequeued 
request to the device emulation thread. 

- Each emulated device has its own 
emulation thread. 

- Each device thread handles the I/O 
requests for the corresponding device.  

Exitless Completion Notification 
 

- IDT in guest is shadowed and 
configured to directly deliver IPI to the 
guest OS. 

- Configuring x2APIC to directly expose 
EOI register. 

- Guest OS writes the EOI registers 
without exits when guest completes 
interrupt handling.   

Goal : Accelerating I/O performance in VM by reducing the cost induced by exits 
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