
 Sequential reads and random reads on high-end SSD

Our approach highly close to the bare-metal performance

Seq. Reads by 98% and Rnd. Reads by 95%

In-VMM device emulation benefit: 2~11%

Exitless I/O Request benefit: 4~13%

Considering our prototype is not optimized and exitless completion
notification is not implemented yet, the performance result is quite
encouraging

 Architecture

 Motivation and Goal

Accelerating Virtual Machine Storage I/O
for Multicore Systems

Dongwoo Lee, Junghan Kim, Junghoon Kim, Changwoo Min, Young Ik Eom

For Further Information, please contact Dongwoo Lee (dwlee@ece.skku.ac.kr)

 Key Techniques

Disk NIC Frame buffer …

Host Kernel

Virtual Machine

process process

Guest Kernel

IPI
Interrupt
Handler

Disk
Device
Driver

…

VMM

Disk Device
Driver

NIC Device
Driver

FB Device
Driver

…

Disk Emulation
Thread

1. Enqueue
I/O Request

2. Interrupt

IOCore Thread

3. Completion Notification

 Reducing the I/O virtualization overhead by exploiting multicore architecture

I/O

Request Cost

Device

Emulation Cost

Completion

Notification Cost

Direct

Cost

VM-to-VMM

world switching

(Issue I/O requests to VMM)

Domain or user-kernel

mode switching

(Emulate requests in a

separated domain or process)

VM-to-VMM

world switching

(Inject interrupts to guest and signal

the completion of interrupt)

Indirect

Cost

Cache pollution

TLB flush

Cache pollution

TLB flush

Cache pollution

TLB flush

Synchronous

Cost

ALL processes on a VM are

stopped.

A process on a CPU is stopped.

 Experimental Results

 I/O workloads in VM suffer performance degradation due to virtualization overhead.

I/O Request Device Emulation Completion Notification

Exitless I/O Request

- Using para-virtualized device driver
that communicates with VMM through
shared request queue.

- Issuing an I/O request is just
enqueing a request in the shared
queue.

- IOCore thread checks if there are new
requests and dequeues them for
further processing.

In-VMM Device Emulation

- IOCore thread passes the dequeued
request to the device emulation thread.

- Each emulated device has its own
emulation thread.

- Each device thread handles the I/O
requests for the corresponding device.

Exitless Completion Notification

- IDT in guest is shadowed and
configured to directly deliver IPI to the
guest OS.

- Configuring x2APIC to directly expose
EOI register.

- Guest OS writes the EOI registers
without exits when guest completes
interrupt handling.

Goal : Accelerating I/O performance in VM by reducing the cost induced by exits

mailto:dwlee@ece.skku.ac.kr

