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Motivation

Cloud Storage at Block Level:

Level below the disk in the storage hierarchy

Higher latency and higher storage capacity

Provides reliability and mobility

Potential to further simplify file systems[1]
Why is Block Level interesting and hard?

Backwards compatible with existing file system

Lacks file system information and semantic inference at Block level is hard
Why is Strawman Block Level Approach bad?

Existing file systems are Cloud unaware and makes assumptions about underlying
storage as disk. These assumptions affect the performance and capacity of the system

heavily in case of a disk cache, cloud backed storage.
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File System View of Storage
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Disk is used as a cache . Cloud Blocks are stored in Disk Frames. The Mapping information (Blockld -> Frameld) is stored in a map-table
with other in-memory state. The Mapping Information is persisted in the disk cache to allow usage of cached data across system
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System Components
- Device Driver(Cloud Cache) responsible for

serving read/write request from page cache.

- The Driver manages the Disk as a cache and
requests Cloud Client Process for eviction/
installation requests .

- Cloud Client Process - responsible for
eviction/installation from Cloud to the disk
and writeback of dirty data.

Making Block-level Storage Smarter

Consistency:
- Transactional updates to disk
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Performance - Fast Writes

File System writes do not require Cloud = {4
Blocks to be installed on Disk for
execution.

- An optimization to provide Disk Like
Latencies for writes.

- Pose concurrency challenges with
transactional update to disk frame
and suggests check-pointing as a
smart method to ensure disk cache

Capacity - Deletes
File Systems like ext3 assumes the storage device

be a disk.

In ext3, data liveness is inferred by block
bitmaps.

Files are deleted and data blocks are released,
Bitmaps are reset

The data still sits on the Disk.

Release the data blocks which are no more in
use by the File System.

Snoop journal => infer liveness[2] at Block

consistency. Level

In Future, implement the trim command for

explicitly deleting data

Evaluation

Microbenchmark

Reads
- Disk-like Performance for cached Data.

- Cloud-like Performance for uncached data.
Writes

- Disk-like performance always!!!

Disk Cache Size: 16G
Cloud Storage Size : 128G

Cache Consistency Performance:
Hot Cache Cold Cache

Random Read 6.19ms 1713ms/10.03ms
Random Write 8.14ms 2904ms/12.17ms
Sequential Read 39.3MB/s 3.89MB/s

Sequential Write 32.8MB/s 3.06MB/s

Fast Writes with Transactional Update

Random Write 6.69ms 31.89ms/22.75ms
Fast Writes with Journal Guided Checkpointing
Random Write 6.69ms 21.34ms/8.87ms
Raw Disk
Random Read 6.00ms 8.36ms
Random Write 7.54ms 9.28ms
Sequential Read 40MB/s 40MB/s
Sequential Write 32.3MB/s 36.7MB/s
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