O CloudDrive: Smarter Block Level Cloud-Backed Storage

TTTTTTTTTTTTT

WISCONSIN Ishani Ahuja, Suli Yang, Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau

AAAAAA

Motivation

Cloud Storage at Block Level:

Level below the disk in the storage hierarchy

Higher latency and higher storage capacity

Provides reliability and mobility

Potential to further simplify file systems[1]
Why is Block Level interesting and hard?

Backwards compatible with existing file system

Lacks file system information and semantic inference at Block level is hard
Why is Strawman Block Level Approach bad?

Existing file systems are Cloud unaware and makes assumptions about underlying
storage as disk. These assumptions affect the performance and capacity of the system

heavily in case of a disk cache, cloud backed storage.

Memory
(Page
Cache)

Disk
(Disk
Cache)
Cloud
(infinite Storage)

Memory

(Page

Disk
(Limited,
Unreliable
Storage)

1 2 3 4 5 6

Basics of Block Level Cloud Storafe
1 6 4 3

File System View of Storage

Storage in Cloud Bucket in 4MB Files

Disk as a cache On = disk
mapping table

* Locksto protect

Uner Space
Kerrel S F
space

= the Queue
-/" M Clowd Cache
: | ¢ Locktoprotect Eyiction/Installation request Queue
e o the Maptable

Cloudld-> Frameld

Frameld -> CloudId Map Table
Dirty

Valid bit

In_use

Write_back_in_progress
Sent_dirty

| Ref count/lastaccess(cache

reptacementpoticy based)

in-memory state

Buffered Bios

Disk is used as a cache . Cloud Blocks are stored in Disk Frames. The Mapping information (Blockld -> Frameld) is stored in a map-table
with other in-memory state. The Mapping Information is persisted in the disk cache to allow usage of cached data across system

System Architecture

Get/
Fetch(4M Blocks)

Cloud Client
Process
User Space
Kernel Space File System Eviction/
Installlation
Page Cache
Read/Write(4K Blocks) '
Cloud Cache
Serves File

System R est

Regular Disk

Disk Cache Consistency Across Crashes

Disk Frames
0 1 2 0 1

System Components
- Device Driver(Cloud Cache) responsible for

serving read/write request from page cache.

- The Driver manages the Disk as a cache and
requests Cloud Client Process for eviction/
installation requests .

- Cloud Client Process - responsible for
eviction/installation from Cloud to the disk
and writeback of dirty data.

Making Block-level Storage Smarter

Consistency:
- Transactional updates to disk

2
frames and on-disk map-table

Step 1, 1000 643 79 ﬂ 1000 125 79 are required.

Frameld Cloudid_
0

1000

Step 2

1 643 Dick
2 79 Crash 2
On-Disk Map Table
Disk State

- Updates require extra disk

seek per first write to a disk
Frameld | CloudId
0

frame
1000 - Have huge cost penalty.
125 - Use journal commit block and
79 super block update to

checkpoint map-table entry
improving performance cost.

Performance - Fast Writes

File System writes do not require Cloud = {4
Blocks to be installed on Disk for
execution.

- An optimization to provide Disk Like
Latencies for writes.

- Pose concurrency challenges with
transactional update to disk frame
and suggests check-pointing as a
smart method to ensure disk cache

Capacity - Deletes
File Systems like ext3 assumes the storage device

be a disk.

In ext3, data liveness is inferred by block
bitmaps.

Files are deleted and data blocks are released,
Bitmaps are reset

The data still sits on the Disk.

Release the data blocks which are no more in
use by the File System.

Snoop journal => infer liveness[2] at Block

consistency. Level

In Future, implement the trim command for

explicitly deleting data

Evaluation

Microbenchmark

Reads
- Disk-like Performance for cached Data.

- Cloud-like Performance for uncached data.
Writes

- Disk-like performance always!!!

Disk Cache Size: 16G
Cloud Storage Size : 128G

Cache Consistency Performance:
Hot Cache Cold Cache

Random Read 6.19ms 1713ms/10.03ms
Random Write 8.14ms 2904ms/12.17ms
Sequential Read 39.3MB/s 3.89MB/s

Sequential Write 32.8MB/s 3.06MB/s

Fast Writes with Transactional Update

Random Write 6.69ms 31.89ms/22.75ms
Fast Writes with Journal Guided Checkpointing
Random Write 6.69ms 21.34ms/8.87ms
Raw Disk
Random Read 6.00ms 8.36ms
Random Write 7.54ms 9.28ms
Sequential Read 40MB/s 40MB/s
Sequential Write 32.3MB/s 36.7MB/s
Classification of read request(4k)
. _n

0-10ms 10-20ms 20-30ms 30-50ms >100ms

Classification of write requests(4k)

1000000

100000

10000

1000

100

No. of requests (logarithmic )

10

1
0-10ms 10-20ms 20-30ms 30-50ms

References and Related Work

[1] V. Chidambaram, T. Sharma, Andrea C. Arpaci-Dusseau and Remzi H.
Arpaci-Dusseau: Consistency With Ordering. In FAST ’12.

[2] M. Sivathanu, L. Bairavasundaram, Andrea C. Arpaci-Dusseau and Remzi H.
Arpaci-Dusseau: Life or Death at Block-Level In OSD/I’ 04.

[3] T. Denehy, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau: Journal-
guided Resynchronization for Software RAID in FAST'05.

[4] M. Vrable, S. Savage, and G. M. Voelker: Cumulus: File System Backup to the
Cloud in TOS’09.



