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1 Introduction
In a virtualized system, virtual machine monitor (VMM)
decouples a logical device in guest OS from its physi-
cal implementation in host OS. It provides many advan-
tages: time- and space-multiplexing of I/O devices for
higher utilization, seamless portability even across het-
erogeneous systems, and live migration of a running vir-
tual machine (VM) between physical machines.

In classical trap-and-emulate virtualization, execut-
ing an I/O instruction in a guest device driver triggers an
exit to the VMM since I/O instruction is a sensitive in-
struction that cannot be handled in guest mode. To emu-
late the trapped instruction, VMM passes an I/O request
to a separated driver domain (dom0 in Xen) or a user
process (QEMU in KVM) that actually issues a request
to a physical device. When the physical device finishes
the I/O request, a completion notification is delivered to
the guest OS by traversing in the reverse order.

Previous work [1, 2, 4, 5, 6], however, shows that
I/O intensive workload might suffer unacceptable per-
formance degradation due to virtualization overhead. I/O
virtualization overhead induced by exits can be clas-
sified into three: The first is direct cost, which is the
cost of world switching between guest OS and VMM.
The second is indirect cost, incurred by the slowdown
due to cache pollution results from executing guest OS
and VMM on a single CPU. While VMM deals with an
exit, all processor in the guest OS become completely
stopped. It introduces the third type of cost, synchronous
cost. Landau et al. [4] showed that the direct cost on its
own is high and the indirect and synchronous cost can
be even an order of magnitude higher.

Many previous studies identified exits as a major
source of overhead [2, 4, 5], and proposed several tech-
niques to reduce the number of exits. However, they still
have limitations: Virtualization polling engine (VPE) [5]
requires a polling device driver in the host OS. The hard-
ware extension proposed in SplitX [4] is not available
on commodity processor. Exitless interrupts (ELI) [2] is
efficient only for direct device assignment and focuses
only on exits induced by interrupts.

We propose a novel I/O virtualization framework, ac-
celerating I/O performance in a virtual machine towards
bare-metal performance, and show experimental results
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Figure 1: Architecture of the proposed I/O virtualization
framework

on a storage device using our prototype implementa-
tion. Comparing to the previous work, our approach is a
software-only approach that does not require any special
hardware extension on CPU or I/O device supporting di-
rect access from a guest OS.

2 I/O Virtualization Framework towards
Bare-Metal Performance

Our I/O virtualization framework is designed for reduc-
ing the cost induced by exits. Figure 1 shows the over-
all architecture of the proposed framework. We propose
three techniques to reduce the virtualization overhead by
exploiting multicore architecture.

Exitless I/O Request: Instead of costly trap-and-
emulate technique, a guest OS uses a para-virtualized
device driver that communicates with VMM through
shared request queue. Issuing an I/O request is just
enqueuing a request in the shared queue. The polling
thread, hereafter IOCore thread, in VMM checks if there
are new requests in the queue and dequeues them for
further processing. Since there is no exit to VMM, this
process can be performed efficiently.

In-VMM Device Emulation: Typically, I/O request
is emulated in a separated driver domain or user pro-
cess. Since it involves additional switching, it increases
the synchronous cost. To reduce the synchronous cost
and latency, we emulate the I/O request in VMM, i.e.
host kernel. IOCore thread passes the dequeued requests
to the corresponding per-device emulation thread that
handles the I/O requests for a particular device. Since
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Figure 2: Performance comparison

the device emulation thread is in the host kernel, no ad-
ditional mode switching is needed.

Exitless Completion Notification: After the device
emulation thread completes the I/O requests, it sends
back the completion notification to the CPU running the
guest OS via an inter-processor interrupt (IPI). An IPI
incurs two additional exits: one for injecting the inter-
rupt to the guest OS and the other for signaling the com-
pletion of interrupt handling by letting the guest kernel
write end-of-interrupt (EOI) register in local advanced
programmable interrupt controller (LAPIC). To remove
the first exit, interrupt descriptor table (IDT) in the guest
OS is shadowed just in a similar way as page table
shadowing. Since the shadow IDT is configured to di-
rectly deliver IPI to the guest OS, there is no exit. To
remove the second exit, we use the newest LAPIC in-
terface, x2APIC [3]. x2APIC can be configured to di-
rectly expose EOI register to the guest OS without any
exits, when the guest OS writes the EOI register for sig-
naling the completion of interrupt handling. These two
techniques are proposed in Gordon et al. [2] in the I/O
virtualization for direct device assignment. However, we
adopt them in the context of IPI delivery to minimize the
exit cost.

The proposed techniques can completely eliminate
exits in I/O virtualization and significantly reduce the
latency induced by mode switching. Therefore, we can
significantly accelerate the I/O performance by reducing
the three costs.

3 Experimental Results
To verify the proposed I/O framework, we implemented
a prototype using KVM on Linux. Our prototype in-
cludes exitless I/O request and in-VMM device em-
ulation for a block device. Exitless completion noti-
fication is still under development. We measured the
performance of sequential reads and random reads on
a high-end SSD in four different configurations: trap-
and-emulate using KVM and QEMU (KVM-QEMU),
para-virtualized device driver using virtio [7] (KVM-
virtio), in-VMM device emulation (In-VMM), and in-
VMM device emulation with the exitless I/O request
technique (In-VMM + IOCore). As Figure 2 shows, in

comparison with KVM-virtio, the in-VMM device em-
ulation technique improves performance by 2-11%, and
the exitless I/O request technique improves performance
by 4-13%. As a result, our proposed approach closely
reaches the bare-metal performance – 95% for sequen-
tial read and 98% for random read – without any special
hardware support. Considering our prototype is not op-
timized and does not include the exitless completion no-
tification technique, the performance result is quite en-
couraging.
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