
To what extent the network affects DFSs?
Gustavo Bervian Brand, Adrien Lèbre

École des Mines de Nantes / ASCOLA Research Group - Nantes, France
Email: {Gustavo.Bervian-Brand, Adrien.Lebre}@mines-nantes.fr

I. INTRODUCTION

Providing an infinite capacity of computing power to
efficiently process a huge amount of data is an old objec-
tive of Computer Science. The prevalent solution consists
in using a large computing facility where a Distributed
File System (DFS) enables users to share files throughout
the nodes composing the infrastructure. Although several
contributions have been done since the first proposals [1],
the design of DFSs has not really evolved and modern
solutions such as Lustre [2], GoogleFS [3] and HDFS [4]
have all been built on the metadata and I/O servers (or
datanodes) model. In such systems, files are divided into
chunks spread across distinct I/O servers and a metadata
server is used to maintain the locality of each chunk.
Unfortunately, with the increasing amount of data that
modern applications manipulate as well as the way of
accessing them, the single metadata model is no more sat-
isfying [5]. Following former proposals such as Ceph [6],
a promising model consists in balancing the management
of both data and metadata across several nodes lever-
aging pre-defined distribution strategies. Although these
systems push forward the limits in terms of scalability and
performance, they are still not considering the network
traffic inherent to their internal structure as a fundamental
concern.

From our point of view, the design of DFSs should
take into account the infrastructure’s physical topology
in order to limit expensive network communications as
much as possible. To have more reference data and
better understanding of the impact of the network traffic,
we conducted several experiments upon the Grid’5000
testbed 1 and discussed the results. The questions we put
forward are:

• Why “local scope” applications should suffer the
penalty of external server communications in charge
of managing either data or metadata?

• Why data should be pushed over the network if it
will be used by local nodes or simply deprecated by
the end of the applications execution?

• Why data has to be pushed from one location to
another instead of using a on-demand pulling model?

• Should all data have the same level of reliability and
how ensure availability minimizing network traffic?

Our ultimate objective is to propose a new model of
DFS that intrinsically reduce the exchanges related to the
DFS to the minimal needs of each application.

1http://www.grid5000.fr

II. ANALYZING NETWORK IMPACTS

We conducted several experiments to analyze the im-
pact of the network exchanges related to DFSs at LAN
and WAN levels. More precisely, five scenarios have been
defined as combinations between the placement of the
clients (C), the datanodes (D), the metadata server (M) and
the way they are interconnected. We used the “-” and “/”
symbols to refer respectively to LAN and WAN intercon-
nections. For example, the C-D-M scenario corresponds to
the experiment where applications run within a single site
interconnected through a LAN whereas the CD/M makes
reference to a WAN-wide scenario where the metadata
server is separated by a WAN interconnection from the
clients and the datanodes, which are installed at the same
node in this case.

Due to the large usage of Map/Reduce applications,
we ran the Grep, Write and Sort benchmarks provided
with the Hadoop suite [4]. The two former ones are data
intensive applications while the latter is more metadata
intensive. Since the cost of the data and metadata manage-
ment depend on the file system protocols, we selected two
well known DFSs which differ in the way they spread data
across I/O servers: Lustre [2] and HDFS [4]. To measure
only the relevant data traffic, we set the replication factor
of HDFS to 1 (default is 3). The chunk sizes were
configured to 64 MB for HDFS and 4 MB for Lustre
(default values). Experiments have been run on the Nancy
site of Grid’5000 inside an subset of nodes isolated from
other applications. WAN constraints have been emulated
using the Linux Traffic control tool (TC) by inserting a
200 ms latency between nodes according to the scenario.

Table I presents results of the first experiments where
the number of nodes grows from 16 to 64 nodes writing
64 slides of 128 MB, summing 8 GB. For each scenario,
the number of clients (tasktrackers) equals the number of
datanodes, leading to a testbed of up to 129 nodes (64
clients, 64 datanodes and 1 metadata server).

As expected, using more nodes improves the perfor-
mance with a better completion time. However, looking
deeper, the more nodes are used, the less significant the
gain is since there are more DFS exchanges. This adds an
overheard, which limits the performance. In most cases, it
is a waste of resources to use additional nodes, especially
if they are placed outside the local infrastructure. This is
particularly true for the HDFS results. As an example, the
completion times for the local instances of the 16 nodes
sort scenarios (CD-M and C-D-M) are similar to the



Systems HDFS Lustre
Scenarios Grep Writer Sort Grep Writer Sort

Tests with 16 nodes
CD-M 81 61 115 110 54 149
C-D-M 83 66 119 114 48 151
CD/M 135 76 153 110 52 148
C-D/M 134 76 164 125 55 159
C/D-M 169 408 715 345 194 590

Tests with 32 nodes
CD-M 76 45 73 89 41 87
C-D-M 76 57 77 89 45 81
CD/M 121 62 117 88 41 92
C-D/M 122 63 118 99 48 95
C/D-M 136 245 470 275 175 512

Tests with 64 nodes
CD-M 68 44 60 73 36 68
C-D-M 82 62 65 90 56 80
CD/M 110 63 102 80 36 92
C-D/M 127 72 105 101 60 90
C/D-M 141 224 354 272 176 525

TABLE I: Runtime of the tests with 8 GB file size

WAN ones with twice or four times more nodes (CD/M,
C-D/M and C/D-M). Regarding the Lustre results, the
DFS exchanges’ impact is less significant when compared
to the HDFS values. This is due to the way HDFS and
Lustre manage their data and metadata. In Lustre, data
is spread on a 4MB chunk basis, leading to more traffic
related to data accesses in comparison with the metadata
ones. Indeed, the impact becomes significant when both
the metadata and the datanodes are separated from the
clients by WAN interconnections. In such situations, the
overhead becomes critical (in average 4 times worse).

In the following experiments, we grew the size of the
file from 8 GB to 32 GB with 64 clients, 64 datanodes and
1 metadata server with the best and the worst scenarios
of the sort benchmark from Table I. As we can see on
Figures 1 and 2, the impact of the DFS exchanges gets
worse when the file size increases.

Fig. 1: Sort runtime at HDFS Fig. 2: Sort Runtime at Lustre

Although we didn’t conduct experiments where client
nodes are spread between distinct sites (such as C-D-M/C,
C-D-M/C-D or CD-M/CD scenarios), we can assume that
the impact on the performance will be significant. A
Map/Reduce program spread between several sites will
be penalized by the DFS’s structure.

III. MODEL OVERVIEW AND PERSPECTIVES

Our goal is to investigate a new DFS model that takes
into account the impact on the performance implied by
the physical topology. Our idea is to keep both data
and metadata as close to the processes as possible. More
precisely, we promote to place them along the locations
where the new content is written. We define this concept
as implicit striping strategy: files will be split into chunks
as usual but their size and location will be adapted

according to the access pattern of each application and
the physical topology.

We assume that a physical infrastructure can be divided
into subgroups interconnected by links with physical
limitations in terms of latency and bandwidth. A group
can be either a node (HDD/SSD), a cluster (LAN) or a
federation of clusters (WAN). Our model aims at optimiz-
ing the “local” data placement in order to maximize each
application’s performance by leveraging these groups.

Applying such an approach to both data and metadata
management will enable us to limit the scope of DFS
exchanges to the application’s scope. By such a way, once
retrieving its data, an application that is LAN-wide will
not suffer the penalty of relying on remote entities in
charge of managing either data or metadata. In the mean-
time, it will be possible to extend a LAN-wide application
to a WAN-wide scope dynamically while restricting the
expensive traffic between sites to the minimal, providing
the concept of solicited vs unsolicited traffic. Finally,
several applications will be able to run simultaneously,
using its own scope of data and metadata management.
This can also reduce bottlenecks that may occur when
several applications compete for the same metadata or data
nodes (the impact of an I/O intensive application should
not be significant on the performance of the others).

As an example, the performance we target for one
application dealing with 16GB upon two sites should be
close to the performance of two applications, each using
half of the nodes, dealing with 8 GB and running as if
they were independent (on each site with their own DFS).

The concept of adapting the DFS behavior according
to its effective usage and to applications’ needs/behaviors
may be extended to support solicited reliability aspects,
dealing with hotspots, etc. We are currently leveraging a
symmetric DFS proposal [7] to finalize a proof of concept.

REFERENCES

[1] E. Levy and A. Silberschatz, “Distributed file systems:
concepts and examples,” ACM Comput. Surv., 1990.

[2] P. Schwan, “Lustre, Building a file system for 1000
node clusters,” in Proc. of the Linux Symposium, 2003.

[3] S. Ghemawat, H. Gobioff, and S. T. Leung, “The
Google file system,” in Proc. of the 19th ACM SOSP,
2003.

[4] D. Borthakur, The Hadoop Distributed File System:
Architecture and Design. The Apache Software Foun-
dation, 2007.

[5] M. K. McKusick and S. Quinlan, “Gfs: Evolution on
fast-forward,” Queue, 2009.

[6] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E.
Long, and C. Maltzahn, “Ceph: A scalable, high-
performance distributed file system,” in Proc. of the
7th OSDI, 2006.

[7] P. Riteau, A. Lebre, and C. Morin, “Handling persis-
tent states in process checkpoint/restart mechanisms
for hpc systems,” in CCGRID, 2009.


