
Leveraging Value Locality in Optimizing NAND Flash-based SSDs

Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and Anand Sivasubramaniam
{axg354,rvp116,bhuvan,anand}@cse.psu.edu

Department of Computer Science and Engineering
The Pennsylvania State University, University Park 16802, PA

Abstract: NAND flash-based solid-state drives (SSDs)
are increasingly being deployed in storage systems at dif-
ferent levels such as buffer-caches and even secondary
storage. However, the poor reliability and performance
offered by these SSDs for write-intensive workloads con-
tinues to be their key shortcoming. Several solutions
based on traditionally popular notions of temporal and
spatial locality help reduce write traffic for SSDs. How-
ever, another form of locality - value locality - has re-
mained completely unexplored. Value locality implies
that certain data items (i.e., “values,” not just logical ad-
dresses) are likely to be accessed preferentially. Given
evidence for the presence of significant value locality
in real-world workloads, we design CA-SSD which em-
ploys content-addressable storage (CAS) to exploit such
locality. Our CA-SSD design employs enhancements
primarily in the flash translation layer (FTL) with min-
imal additional hardware, suggesting its feasibility. Us-
ing three real-world workloads with content information,
we devise statistical characterizations of two aspects of
value locality - value popularity and temporal value lo-
cality - that form the foundation of CA-SSD. We observe
that CA-SSD is able to reduce average response times by
about 59-84% compared to traditional SSDs. Even for
workloads with little or no value locality, CA-SSD con-
tinues to offer comparable performance to a traditional
SSD. Our findings advocate adoption of CAS in SSDs,
paving the way for a new generation of these devices.

1 Introduction and Motivation

NAND flash-based SSDs offer several advantages over
magnetic hard disks: lower access latencies, lower power
consumption, lack of noise, and higher robustness to
vibrations and temperature. Several researchers have
explored the performance benefits of employing these
SSDs, either as complete replacements for magnetic
drives or in supplementary roles (e.g., caches) [23].
Whereas a number of other non-volatile memory tech-

nologies - phase-change, ferroelectric, and magnetic
RAM - exist at different levels of maturity and offer
similar benefits, cost/feasibility projections suggest that
NAND flash (simply flash, henceforth) is likely to be at
the forefront of these significant changes in storage for
the next decade [17]. Another trend from EMC sug-
gests that SSD prices will continue to fall to the extent
of becoming cheaper than 15K RPM HDDs by 2017 [7].
Thus, exploring ways to further improve flash technol-
ogy and its use in designing better storage systems will
continue to be worthwhile pursuits in the coming years.

Flash is a unique memory technology due to the sen-
sitivity of its reliability and performance to write traf-
fic. A flash page (the granularity of reads/writes) must
be erased before it may be written. Erases occur at the
granularity of blocks which contain multiple pages. Fur-
thermore, blocks become unreliable after 5K-100K erase
operations [38, 39, 37]. This erase-before-write property
of flash necessitates out-of-place updates to prevent the
relatively high latency of erases from affecting the per-
formance of writes. These out-of-place updates create
invalid pages that contain older versions of data requir-
ing garbage collection. This further exacerbates the re-
liability/performance concerns by introducing additional
write operations. Techniques that reduce the number of
writes to SSDs are, therefore, desirable and have received
a lot of attention. Existing approaches for write reduction
have relied on exploiting the presence of (i) temporal lo-
cality (e.g., buffering writes within file system/SSD/other
media to eliminate duplicate writes to flash [24, 46, 45]),
and/or (ii) spatial locality (e.g., coalescing multiple sub-
page writes into fewer page writes [30]) within work-
loads. However, there is yet another dimension of lo-
cality - value locality - that has remained unexplored for
flash SSDs. The presence of value locality in a work-
load means that it preferentially accesses certain content
(i.e., values) over others. This property facilitates data
de-duplication (storing only one copy of each unique
value), which is especially attractive for SSDs as it nat-

1



urally offers the write reduction that these devices can
benefit from: a SSD employing such data de-duplication
need not do an additional write of a value that it has al-
ready stored. This benefit applies even if the two writes
belong to entirely different logical addresses and even in
the absence of any temporal/spatial correlation between
these two writes. Data de-duplication can also reduce
read traffic, with additional performance benefits.

Content addressable storage (CAS) is a popular de-
duplication technique which operates on data by dividing
it into non-intersecting chunks, and employing a crypto-
graphic hash to represent each chunk. By storing only
unique hashes (and their corresponding data chunks), du-
plicate chunks in data are removed. Hashing can result
in collisions where different data blocks can be mapped
to the same value. However, it has been shown that
such collisions are practically unlikely, with probabili-
ties in the range 10−9 − 10−17 [40, 42] for MD5 and
SHA-1. Additionally, techniques to further reduce this
probability to as low as 10−46 have been shown to be
feasible [40, 43]. Thus, consistent with most CAS re-
search [12, 42, 35], we also assume hash functions to
be collision-resistant. CAS has been extensively used in
archival and backup systems [42, 43, 14], but its bene-
fits specific to SSDs have not been explored. Whereas
SSDs could benefit from existing host-level (e.g., file
system [47]) implementations of CAS, thereby reducing
I/O traffic, there is significant motivation to realize this
functionality within the device itself. It allows incorpora-
tion of value locality without requiring any modifications
to the upper layers (filesystem, block layer etc.), thus al-
lowing quick adoption in existing systems. Several SSD
optimizations that rely upon information about flash data
layout are better implemented within the SSD. For ex-
ample, garbage collection efficiency can be improved by
using data placement policies which reduce overheads of
copying valid pages. Also, scalability of a CAS-based
scheme crucially depends on its ability to carry out fast
calculations/look-ups of hashes. This can be achieved by
using dedicated hardware such as that increasingly avail-
able in SSDs (e.g., those with Full Disk Encryption ca-
pabilities [5, 44, 41]), relieving the host of these compu-
tational overheads.

Key Choices and Challenges: A number of interest-
ing design choices and challenges arise when designing
a SSD that employs CAS for its internal data manage-
ment. First, in order to maintain compatibility with ex-
isting storage software, we choose that our SSD continue
to expose its existing block interface. Modifications to
the SSD interface such as nameless writes [11] can po-
tentially benefit CA-SSD but require changes to the up-
per layers. Second, employing CAS necessitates sev-
eral enhancements to the data structures maintained by

our SSD’s flash translation layer (FTL). This increased
“meta-data” puts additional pressure on the scarce on-
SSD RAM and must be managed carefully. Third, data
de-duplication renders ineffective existing mechanisms
employed by the FTL to recover its meta-data after power
failures. Existing FTLs store information about the logi-
cal address (LPN) stored on a flash page in a special re-
gion called the out-of-band area (OOB) within the page
itself. Due to de-duplication with CAS, a given page
may correspond to multiple LPNs (different LPNs may
contain the same content) , and thus, its OOB area can-
not be used as before. Fourth, with CAS the notion of
when a page becomes invalid changes - a page should
now be invalidated only when all the LPNs having that
content have written a “different content” - implying a
re-consideration of the design of the garbage collector.
Finally, whereas we design our SSD to exploit value lo-
cality whenever present, we would like it not to exhibit
degraded performance or reliability than a state-of-the-
art SSD in the absence of such locality.

Research Contributions: We make the following con-
tributions in this paper.

• We propose CA-SSD, a flash solid-state drive that
employs CAS for internal data management and ad-
dresses all the concerns outlined above. We demon-
strate how CA-SSD functionality can be achieved
mostly by modifying the FTL and with minimal
support in the form of additional hardware com-
pared to traditional SSDs. This additional hardware
is similar to that already present in many state-of-
the-art SSDs.

• We identify and characterize salient aspects of value
locality- value popularity and temporal value local-
ity and design CA-SSD algorithms to exploit them.

• Using three real-world workloads with content in-
formation, we evaluate the efficacy of CA-SSD by
simulations. We observe that CA-SSD is able to re-
duce the average response times by about 59–84%
for these workloads. Additionally, from 10 real-
world traces, we synthesize workloads with differ-
ent degrees of value locality. We find that CA-SSD
consistently outperforms traditional SSD with even
small degrees of locality and offers comparable per-
formance when there is little or no value locality.

The rest of this paper is organized as follows. In Sec-
tion 2 we provide an overview of the design of our CA-
SSD comparing it to traditional SSDs. We discuss key
aspects of value locality that affect CA-SSD design in
Section 3. We design CA-SSD using insights gained in
Section 4 and evaluate it in Section 5. Finally, we present
related work in Section 6 and conclude in Section 7.

2



2 Overview of Our CA-SSD

Type

Data Unit Access Time Lifetime
Page (Bytes) Block Read Write Erase Write/Erase
Data OOB (Bytes) (us) (us) (ms) (cycles)

SLC1 2048 64 128K+4K 25 200 1.5 100K
SLC2 4096 128 256K+8K 25 500 1.5 100K
MLC 4096 224 512K+28K 60 800 2.5 5K

Table 1: SLC & MLC NAND Flash characteristics [38, 39,
37]. SLC1/SLC2 represent SLC SSDs with different page
sizes. Read/write latencies are at the granularity of pages while
erase latencies are for blocks.

In this section, we describe how a flash-based SSD
works and provide an overview of the changes to imple-
ment our CA-SSD.

2.1 Flash Solid-State Drives: A Primer

Figure 1(a) presents the key components of a traditional
NAND flash-based SSD. In addition to the read and write
operations which are performed at the granularity of a
page, flash also provides an erase operation which is
performed at the granularity of a block (composed of
64-128 pages). The coarser spatial granularity of erases
makes them significantly slower than reads/writes. Fur-
thermore, there is an asymmetry in read and write la-
tencies, with writes being slower than reads. Blocks are
further arranged in planes which can allow simultane-
ous operations through multi-plane commands thus im-
proving performance [10]. In this paper, we only con-
sider a single plane and our ideas and results apply read-
ily to multiple planes. A page must first be erased be-
fore it can be written. The erase-before-write property of
flash memory necessitates out-of-place updates to pre-
vent the relatively high latency of erases from affecting
the performance of updates. These out-of-place updates
result in invalidation of older versions of pages requir-
ing Garbage Collection (GC) to reclaim certain invalid
pages in order to create room for newer writes. At a high
level, GC operates by erasing certain blocks after relo-
cating any valid pages within them to new pages. A fi-
nal characteristic concerns the lifetime of flash memory,
which is limited by the number of erase operations on its
cells. Each block typically has a lifetime of 5K(MLC) or
100K(SLC) erase operations. Wear leveling (WL) tech-
niques [20, 22, 32] are employed by the FTL to maintain
similar lifetime for all the blocks. Table 1 presents repre-
sentative values for the operational latencies, page/block
sizes, and lifetime for two main flash technologies (SLC
and MLC) [38, 39, 37]. We consider SLC-based flash in
this work, although our ideas apply equally to MLC.

The Flash Translation Layer (FTL) is a software layer
that helps in emulating an SSD as a block device by hid-

ing the erase-before-write characteristics of flash mem-
ory. The FTL consists of three main logical compo-
nents: (i) a Mapping Unit that performs data placement
and translation of logical-physical addresses, (ii) the GC,
and (iii) the WL. A key data structure maintained by the
FTL is a Mapping Table which stores address transla-
tions. Upon receiving a write/update request for a logical
page the FTL: (i) chooses an erased physical page where
it writes this data, (ii) invalidates the previous version (if
any) of the page in question, and (iii) updates its map-
ping table to reflect this change. The Mapping Table is
typically stored on SSD’s RAM to allow fast translation1.

2.2 SSD Enhancements for CAS

In Figure 1(b), we present the additional compo-
nents/functionality (compared to a traditional drive) re-
quired by CA-SSD. For both devices, we also show the
steps involved in processing requests coming from the
block device driver to help understand the difference in
their operation. We refer to the FTL in CA-SSD as CA-
FTL. Read requests are handled identically in both the
SSDs and so we only focus on write requests. Whereas a
traditional SSD requires all writes to be sent to physical
pages, CA-SSD returns a write request without requiring
flash page writes if hashes, representing their content, are
found in RAM. We require four key enhancements to a
traditional SSD to achieve this functionality.

(i) Hashing Unit: CA-FTL requires the ability to com-
pute/compare content hashes such that these operations
only degrade the CA-SSD performance to a negligible
(or tolerable) extent. To ensure this, we propose to em-
ploy a dedicated co-processor to implement our hash-
ing unit. Recently, manufacturers like OCZ [5], Sam-
sung [44] and pureSilicon [41] have developed high per-
formance SSDs with on-board cryptographic processors,
suggesting that the desired fast hashing is feasible.

(ii) Additional Meta-data: Mapping Unit must main-
tain additional data structures for CAS that puts addi-
tional pressure on the on-SSD RAM. These structures
represent CA-FTL’s meta-data (to be distinguished from
the meta-data for software such as the file system) and
the portion of on-SSD RAM used for storing it is re-
ferred as the meta-data cache. We describe these data
structures and space-efficient ways of managing them in
Section 4.1.

(iii) Persistent Meta-data Store: Our CA-SSD de-
sign necessitates a re-consideration of the mechanism
for recovering the contents of the meta-data cache after
a power failure. When writing a physical page (PPN),
a traditional FTL also stores the logical page number
(LPN) in a special-purpose part of the PPN called the

1An SSD typically has a small SRAM and a larger DRAM cache
whose size is in the range 64-512 MB for an SSD with capacity 256-
1024 GB [1, 6]. We ignore this distinction in our discussion.

3



Figure 1: Components of a CA-SSD compared to traditional SSD. CA-SSD has two new hardware elements: (i) a
hashing co-processor and (ii) a battery-backed RAM (BB-RAM). Furthermore, CA-SSD stores hashes instead of LPN
in the page OOB area. Also shown is a comparison of how writes are handled in the two devices. (a) Traditional SSD:
(1-2) On receiving a write request from device driver, SSD controller issues a flash page write. (3-4) On completion,
the Mapping Table in the volatile RAM is updated and driver is notified of request completion. (b) CA-SSD: (1-2) On
receiving a write request, the SSD controller sends the content to the hash co-processor for hash computation. (3-4)
The returned hash is then looked up in the Mapping Table in the BB-RAM. (5-6(a)) On a hit, the mapping structures
are updated and the request completes. (5-9(b)) On a miss, a flash page write is performed, mapping structures are
updated and the request is completed.

out-of-band (OOB) area, which is typically 64-224 B in
size. After a power failure, these entries in the OOB
are used to reconstruct the LPN-to-PPN mappings. In
CA-FTL, multiple LPNs may contain the same value and
hence correspond to the same PPN. The OOB area may
not have enough room for all these LPNs. Furthermore, a
value can be associated with a changing set of LPNs over
its lifetime, requiring multiple writes to the same OOB
area, with corresponding erase/copying operations. We
address this difficulty by requiring that CA-FTL’s Map-
ping Table be kept in a fast persistent storage in the first
place, without any need to store a copy on flash. Storing
a copy on flash would result in large number of meta-
data writes on flash increasing the number of flash page
writes. An alternative approach could be to perform peri-
odic check-pointing of Mapping Table instead of imme-
diate writes on flash to reduce the number of meta-data
writes, thereby providing weaker guarantees on meta-
data consistency. In order to provide consistency guaran-
tees similar to existing SSDs without impacting the over-
all performance, we employ persistent battery-backed
RAM. We indicate this as BB-RAM in Figure 1(b).
Write caches based on such battery-backed DRAM are
commonly used in RAID controllers [3]. Even SSD man-
ufacturers have started providing battery-backed DRAM
as a standard feature to deal with power failures [5, 4].
Such SSDs with both battery-backed DRAM as well as
on-board cryptographic processors have similar perfor-
mance and costs as compared to traditional SSDs [5]
mitigating performance and cost concerns for CA-SSD.
Recent work has considered employing other persistent
media (e.g., PCM [45] and even hard disk [46]) for SSD

write optimizations, and exploring such alternatives for
CA-SSD meta-data cache is part of future work.

(iv) Re-design of GC: CAS results in a change to GC.
In conventional FTLs, each update results in the invalida-
tion of a page requiring an eventual erase operation. But
CA-FTL only needs to invalidate a page when no LPN
points to the value in that page. This redefines the way
garbage is created and distributed in blocks impacting the
efficiency of GC. We study these issues in Section 4.2.
We do not modify WL policy in this work and assume
CA-SSD continues to employ the default WL.

3 Value Locality Characterization

We describe two aspects of value locality (VL) that have
performance/lifetime implications for a CA-SSD. We
propose ways to express these aspects statistically and
discuss their implications for possible improvements in
CA-SSD. Throughout our discussion, we employ three
workload traces [26] described in Table 2 to present ex-
amples of our VL characterization. homes represents a
file server of the home directories of a research group
in FIU’s CIS department. A major source of content
similarity in this workload can be attributed to work
done by different members of the group on copies of
same software codes, technical documents etc. present
in their directories. mail has been collected from the
e-mail server of the same department containing simi-
lar mailing-list emails and circulated attachments result-
ing in content similarity across user INBOXes. Finally,
web is their Web server workload consisting of virtual
machines hosting an online course management system

4



0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.2

0.4

0.6

0.8

1

Values

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 A
cc

es
se

s

 

 

Write
Read

0 2 4 6 8

x 10
5

0

0.2

0.4

0.6

0.8

1

Values

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 A
cc

es
se

s

 

 

Write
Read

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.2

0.4

0.6

0.8

1

Values

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 A
cc

es
se

s

 

 

Write
Read

(a) web (b) mail (c) homes

Figure 2: Value popularity in real-world workloads (1 day traces). The x-axis consists of unique values sorted accord-
ing to their read or write popularity. That is, a given point on the x-axis might correspond to different values for reads
and writes. We also show the number of unique values that correspond to 50% of all write requests.

Size % Req. Unique Request (%) Seq.
Workload (GB) Writes (mill.) Write Read %

web 1.95 77.01 3.8 42.35 32.05 83.8
mail 4.22 77.32 3.6 7.83 80.85 94.7

homes 3.02 96.76 4.4 66.37 80.75 70.8

Table 2: Workload statistics. Workload duration varies
from 1 day (mail) to 7 days (web,homes). Size repre-
sents the total number of unique LPNs accessed in the
trace over the mentioned duration and hence represents a
compacted trace without any intermediate non-accessed
LPNs (The SSD size chosen for evaluation is 4GB for
homes & web and 6GB for mail). The logical address
space exposed to the file-system is much larger [26].
Unique Request denotes the fraction of write(read) re-
quests which write(read) unique 4KB chunks. Requests
are deemed sequential(seq.) if they access consecutive
LPNs.

and email access portal. These workloads are primar-
ily write-dominant, especially homes, which has about
97% write requests. Individual requests in these work-
loads are of size 4KB, along with a 16B hash(MD5) of
the contents.

Value Popularity (VP): The most straightforward
characterization of VL represents the popularity (num-
ber of occurrences) of each unique value, for both reads
and writes separately. The VL for writes and reads have
different implications for CA-SSD: whereas the former
captures reduction in write traffic offered by caching
the corresponding (value, LPN, physical page) informa-
tion in the meta-data cache, the latter captures reduc-
tion in reads due to caching the corresponding content
in the content cache. Table 2 shows the high VP ex-
hibited by real-world workloads. For instance, mail has
only 7.83% unique write requests, representing a huge

potential for de-duplicating the remaining 2.63 million
writes. Similarly, web and homes can provide 57.65%
and 33.63% write reductions respectively, improving the
performance and lifetime of SSDs substantially. Further-
more, only a small fraction of writes in these workloads
are due to same values being written at the same lo-
cations. For example, about 8% overall writes in mail
and homes are due to same LPN writing the same con-
tent successively. A majority of duplicate writes are at-
tributed to same content being written to different lo-
cations requiring sophisticated CAS-based scheme for
de-duplication. In Figure 2, we present VP (as CDFs)
for reads and writes for the three workloads. A given
point on the x-axis can correspond to different values for
reads/writes.

The following insights and observations emerge from
our definition and these statistics. First, all these work-
loads exhibit significant skewness in VP, i.e, a small frac-
tion of total values account for large number of accesses.
For example, the fraction of total unique values that ac-
count for 50% of the overall writes are 14.44%, 8.84%,
and 29.99% for homes, mail and web respectively(shown
by dotted lines). Therefore, pinning these values in
the meta-data cache can offer write traffic reduction of
35.56%, 41.16%, and 20.01%, respectively. Similar
benefits apply for reads upon caching the most popu-
lar (value, content) pairs in the content cache. Second,
we find that these workloads exhibit different degrees
of value popularity (e.g., homes has higher VP for reads
than mail, while mail has higher VP for writes) implying
different degrees of potential benefits for reads/writes.

Temporal Value Locality (TVL): The presence of
TVL in a workload implies that if a certain value (as
opposed to LPN) is accessed now, it is likely to be ac-
cessed again in the near future, not necessarily by the
same LPN. We distinguish TVL for writes and reads to
be able to differentiate benefits that could be obtained

5



0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position in LRU Queue

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 W
rit

e 
R

eq
ue

st
s

 

 

Value
LPN

0 500 1000 1500
0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position in LRU Queue

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 W
rit

e 
R

eq
ue

st
s

 

 

Value
LPN

0 2 4 6 8

x 10
4

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position in LRU Queue

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 W
rit

e 
R

eq
ue

st
s

 

 

Value
LPN

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

(a) web (b) mail (c) homes

Figure 3: Temporal value locality and temporal locality(labeled LPN) for writes in real-world workloads (1 day traces).
We show the meta-data cache size that can contribute to 90% of the total writes.

from the use of meta-data vs. content caches. We mod-
ify a standard way of characterizing LPN-based temporal
locality for representing TVL [21]. For each workload,
assuming the meta-data cache to be managed as a queue
with a least-recently-used (LRU) eviction policy for val-
ues, we present CDFs of number of writes of the value
at the (i + 1)st(i ≥ 0) location within the LRU queue in
Figure 3.

1 2 4 8 16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

Cache Size (x 1K hashes)

M
is

s 
ra

te
 o

f p
op

ul
ar

 v
al

ue
s

 

 

Homes(1)
Mail(1)
Web(1)
Homes(2)
Web(2)
Mail(2)

Figure 4: Cache miss rate for popular values. The num-
ber in brackets represent the length of the trace in number
of days. Note that popular values denotes the minimum
number of values which account for 50% of accesses in
the workload. The cache size on the X-axis (logscale) is
in terms of 1K hashes.

Implications for writes: The presence of TVL for writes
implies that even a small meta-data cache could achieve
high hit rates to provide write reduction. For example,
the maximum size of the meta-data cache required for
storing all the values in the 1 day trace of homes is around
7.5MB (each entry in this cache requires 28B for stor-
ing the hashing structures as we explain in Section 4.1).
However, 90% of writes for homes are satisfied within
11046 positions in the LRU queue requiring only about
600KB in the meta-data cache, thus reducing the space

requirements by about 96%. Even mail which shows
lesser TVL provides savings of approximately 65% for
achieving 90% hit rate.

Clearly the size of meta-data cache affects these gains.
Figure 4 shows the miss rate for popular value lookups
done for writes as a function of different sizes of this
cache. Additionally, we use portions of the workloads
over 1-day and 2-day periods and find that TVL sustains
over this duration. We find that for our workloads, a
LRU cache based on TVL is able to hold popular val-
ues, thus offering an easy way to implement a technique
that can recognize VP. Whereas in our workloads, TVL
and skewness in VP occur together, generally speaking,
these could be mutually exclusive. For example, it may
be the case that for a workload with high TVL, all val-
ues are equally popular, i.e., have comparable number
of write accesses, thus displaying low skewness in VP.
Alternately, a workload with high skewness(in VP) can
exhibit low TVL if the popular values have a long time
gap between successive accesses. We design CA-SSD
so that it can exploit these properties whenever present,
but not experience degraded performance (compared to a
regular SSD) when these are absent.
Implications for reads: We observe higher TVL than
temporal locality even for reads suggesting that, for these
workloads, a value-based content cache is likely to out-
perform one using LPNs and offer reduction in read traf-
fic to the SSD. Similar observation was made in [26] for
developing a content based cache for improving I/O per-
formance in the context of HDD-based storage.

Finally, one could also consider a notion of spatial
value locality (SVL). The principal of spatial locality, as
used conventionally, can be stated as follows: if (con-
tent corresponding to) a logical address X is accessed
now, addresses in the neighborhood of X are likely to
be accessed in the near future. SVL emerges from a
generalized take on what the neighborhood or proxim-
ity of a data item means. It posits that a given value,
even when part of different logical data items, is likely

6



to see similarities among the values in its neighborhood.
Stated another way, spatial value locality hypothesizes
that there might exist positive correlations among cer-
tain values in terms of their closeness with respect to
their addresses within (possibly multiple) logical data
objects. SVL has been used for handling disk bottleneck
for meta-data management in CAS systems for backup
applications by prefetching key-value pairs which are ac-
cessed together [48]. For SSDs, it can provide additional
benefits for reads when sub-page level chunks are used.
We do not explore SVL or other optimizations for reads
in this work and leave it as part of our future work.

4 Design of CA-FTL

We develop the CA-FTL mapping unit and GC based on
the issues discussed in Section 2. We assume a CAS
chunk unit to be equal to the flash page size.

4.1 The CA-FTL Mapping Unit

Address Translation and Meta-data Management:
As discussed in Section 2, CA-FTL requires additional
data structures for maintaining information about hashes
and their relationship with LPNs. Figure 5(b) shows the
data structures we employ to realize CA-FTL’s Mapping
Unit. We assume address translations to be kept at the
granularity of a page. Such page-level mappings have
been shown to be desirable and scalable in recent re-
search [16, 25]. First, similar to existing FTLs, we have a
table called LPT which stores translations between LPNs
to PPNs. Each entry requires 4B for storing the LPN and
another 4B for PPN. Thus, the maximum space needed
for LPT in a 4GB SSD is 8MB (for 100% flash utiliza-
tion). Second, an inverted LPT (iLPT) stores the list
of LPNs that correspond to the same value and thus the
same PPN. The iLPT is used to keep track of valid val-
ues. If the LPN list for a PPN is empty, it signifies that
no LPN stores the value present in that PPN and the page
should be invalidated. The iLPT is queried during GC
and WL for updating the LPT whenever the PPN stor-
ing a value changes. Third, we use a hash-to-PPN table
(HPT) to store hash to PPN mappings that is looked up
on a write request to decide whether the write is for an
existing value (no flash write needed) or a new value (re-
quires a flash write). Entries are inserted or updated in
the HPT upon (i) a write request with a new value or (ii)
a page write due to GC/WL, respectively. Page invalida-
tions result in removal of entries. Each hash is 16-20B
long depending on the hashing algorithm used (16B for
MD5 and 20B for SHA1) whereas a PPN is 4B long. For
a 4GB SSD, the maximum space needed for the HPT
is 20-24MB since the maximum number of PPNs it can
store is 1M. All further discussion is in context with MD5

hashes present in the available real-world workloads but
our ideas apply readily for SHA1 hashes also. Fourth,
we employ an inverted HPT (iHPT) which maps PPNs
to hashes by storing the addresses of the corresponding
HPT entries. It stores the same number of valid entries as
HPT. When a flash page is invalidated, iHPT provides the
address of the corresponding HPT entry to be removed
without incurring an OOB read.

Let us now understand how to deal with space over-
heads of these data structures. (i) Gupta et al. [16]
have proposed page based FTL which exploits tempo-
ral locality in workloads to reduce the LPT space re-
quirements. As shown in Figure 3, real-world work-
loads also demonstrate significant temporal locality apart
from TVL. Thus, we can utilize variants of page-based
FTLs to reduce the space requirements by only storing
a subset of the LPT/iLPT in our BB-RAM. (ii) Since
the HPT/iHPT’s space needs can be prohibitively large
(recall that on a 4GB flash, they require up to 28MB of
RAM), we are forced to only store a subset. Given our
findings about the presence of TVL in workloads, we im-
plement the HPT as a cache of hash-to-PPN mappings
employing a LRU eviction policy for writes of values.
The size of this cache could be chosen by CA-FTL based
on how much RAM it can afford to use for meta-data
storage. When all of this cache is occupied, to insert a
new entry we discard the least-recently-used entry from
the HPT and the iHPT. A salient aspect of our strategy
is that, unlike a traditional LRU-based queue, we do not
maintain the remainder of the HPT/iHPT (which does not
fit in RAM) on another storage medium (e.g., the flash
medium itself). On an entry’s eviction from the meta-
data cache, we simply discard it. This saves us potential
flash page writes (write-back of evicted dirty entries) and
reads (mapping entry lookup on a HPT/iHPT miss). This
scheme trades off reduction in RAM occupied for meta-
data for a reduction in the degree of data de-duplication
achieved, since some values may be re-written upon HPT
misses. Our findings on TVL in real workloads in Sec-
tion 3 suggest that such misses are likely to be rare even
for nominal cache sizes. This is shown in Figure 4 where
a cache size of 1.75MB (for storing 64K hashes) yields
miss rates less than 7% for mail. For web and homes,
these miss rates are even smaller, being 0.4% and 4%,
respectively. Thus, most of the discarded entries corre-
spond to less popular values which have low write fre-
quency and less impact on de-duplication efficiency. In
Section 5, we evaluate the performance of CA-SSD with
different meta-data cache sizes. Data/meta-data con-
sistency is not impacted due to this scheme since the
LPT which stores the LPN-to-PPN mappings required
for managing consistency (explained earlier in Section
2.2) is managed independent of this strategy. Further-
more, BB-RAM is only needed for persistent storage of

7



Figure 5: (a) Flowchart depicting how writes are handled by CA-FTL. val represents the content to be written. (b)
Example of write requests: (1) Write request (L3,V3) to a new LPN L3 with a new value V3 results in a flash page
write (P3). Entries are added to all four data structures. (2) Update (L2,V1) results in a HPT hit for H1, the entry
is moved to the head of LRU queue(based on TVL) in HPT. L2 is then added to the the LPN list for P1 in the iLPT
and removed from P2’s list. Since P2’s list (in the iLPT) is now empty, the flash page (P2) is invalidated and the
corresponding entries in HPT and iHPT are removed. (Note that iHPT only stores the address of the corresponding
HPT entry and not the complete hash.)

LPT whereas other mapping structures can be stored on
volatile RAM without impacting consistency.

Handling Read/Write Requests: Read requests in
CA-FTL are handled similar to traditional FTLs. LPT
is looked up to locate the PPN storing the value and its
contents are returned to the upper layers. The flowchart
in Figure 5(a) describes the handling the write/update re-
quests in CA-FTL. On receiving a write request, the hash
of the value for each LPN comprising the request is cal-
culated and the HPT is then looked up with this hash. A
miss is deemed to indicate request for a new value and
a flash page write is issued. If the HPT is fully occu-
pied, the least recently used entry is discarded and the
new (hash, PPN) entry is inserted at the head of the LRU
queue based on TVL. Corresponding updates are made
in the iHPT also. Finally, the LPT and the iLPT are up-
dated. On a hit in the HPT, the entry is moved to the head
of the LRU queue and LPT/iLPT are updated. Further-
more, update requests may result in LPN storing a differ-
ent value, requiring modifications to the mapping entries
for the LPN’s earlier value. If the LPN list in iLPT for the
PPN corresponding to the LPN’s earlier value is empty,
the entry and the physical page on flash are invalidated.
Finally, the HPT/iHPT entries for this PPN are also re-
moved (Note that the eviction strategy may have already

discarded the HPT/iHPT entries, hence not requiring an
explicit removal). Figure 5(b) gives examples describ-
ing the handling of writes in CA-FTL including relevant
meta-data cache management.

4.2 Garbage Collection in CA-FTL

Unlike conventional SSDs where all writes are prop-
agated to flash, CA-SSD only requires one write per
unique value (Wunique) except in the case of meta-data
cache misses (due to limited cache size) where some
duplicate values (Wdup) may also be written. Writes
may also be needed for values which have been invali-
dated/erased (when no LPN points to them) and are re-
born (Wreborn) due to subsequent write requests. Similar
to conventional SSDs, the final component is GC writes
(Wgc) which depends on the number of GC invocations
as well as the number of valid pages copied upon each
such invocation. Therefore, the total writes for a CA-
SSD can be expressed as a sum of these components:
Wtotal = Wunique + Wdup + Wreborn + Wgc.

In traditional SSDs, every LPN update results in inval-
idation of the PPN containing the previous LPN version.
CA-SSD only invalidates pages when the value in them
becomes dead in the sense of no LPN being associated
with it any longer. Thus, garbage is likely to be gener-

8



0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Valid Pages Copied per Block erase

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 B
lo

ck
 E

ra
se

s

 

 

CAS
NonCAS

CAS NonCAS
0

10

20

30

40

A
ve

ra
ge

 p
ag

e 
co

py
/e

ra
se

Figure 6: Cumulative distribution of valid pages in
blocks erased during GC in web workload.

ated at a slower rate in CA-SSD. This coupled with the
reduction in write traffic to flash due to de-duplication
decreases the number of GC invocations for the same
GC policy as in a traditional SSD. The other aspect is the
number of pages copied during GC. As shown in Figure 6
for web, the valid content in the victim blocks is much
lower in CA-SSD as compared to that in traditional SSD.
The average number of pages copied per block decreases
from 33.20 to 8.21, a reduction of about 75.27% with
CA-SSD. This is primarily due to data de-duplication
which reduces the amount of total valid content stored
on flash, in turn increasing the fraction of invalid pages
in victims. These observations lead us to conclude that
existing GC mechanisms should work well even in a CA-
SSD. We evaluate the impact of our choice in Section 5.

5 Experimental Evaluation

5.1 Experimental Setup

We simulate both traditional and CA-SSDs using SSD
simulator [10] which has been integrated into Disksim-
4.0 [19]. The SSD simulator is capable of simulating
both SLC and MLC SSDs with multiple planes and dies.
As described in Section 2, we use SLC SSDs with extra
large pages(SLC2) and single plane in this study (refer
to Table 1 for SSD properties). We have modified the
Disksim interface to use block-based traces with content
hashes. We have implemented the FTL for our CA-SSD
(CA-FTL) with the meta-data cache manintained using
LRU eviction based on TVL. We simulate the hashing
unit in CA-SSD by modeling the overheads (32µs [18])
of performing hash calculation along with their impact
on the queueing delays at the SSD controller. Note that
this is a conservative estimate and the hash calculation
overheads are likely to be much lower in CA-SSD (As
discussed in Section 2.2, SSDs with crypto-units have re-

ported similar performance to traditional SSDs [5]). As
explained earlier, we do not simulate read caching in ei-
ther traditional or CA-SSD.

5.2 Real-world Traces

We first focus on the three real workload traces that were
found to exhibit high VL in Section 3. Figure 7(a) shows
the mean response time comparing the standard SSD
with two CA-SSD configurations: (i) sufficient capac-
ity in its RAM to store HPT/iHPT and (ii) capacity to
store only a fixed number of hashes in RAM. For exam-
ple, storing 128K hashes in HPT/iHPT requires 3.5MB.
We also present mean response times for other meta-data
cache configurations. We note the tremendous perfor-
mance benefits obtained with our CA-SSD compared to
the traditional SSD and the benefits directly correlate to
the value locality/popularity in writes. For instance, the
mail workload, which in Figure 2(b) demonstrates the
highest VP of the three for writes, shows a 84% reduc-
tion in response time with CA-SSD compared to the tra-
ditional SSD. The reductions are substantial for homes
and web as well, which show 59% and 65% improve-
ments in response times.

In order to understand these benefits further, we break
down the write traffic into those that are (a) directly im-
posed by the workload and (b) additional writes imposed
due to GC when valid pages need to be copied across
blocks. The number of writes in each category is shown
in Figure 7(b) for the traditional SSD and our CA-SSD.
Overall, the reductions in write traffic for CA-SSD are
77%, 93% and 70% for web,mail and homes, respec-
tively over a traditional SSD. We see significant reduc-
tions in writes of both categories. The drop in category
(a) is intuititve to follow given the value popularity in
the workloads. Additionally, there is significant reduc-
tion in category (b) writes as well - 94%, 100% and 87%
for web, mail , and homes, respectively. In fact, in per-
centage terms, these GC write reductions overshadow the
category (a) reductions. Note that GC overhead is a func-
tion of the amount of garbage in the flash, and the distri-
bution of this garbage across the blocks. Since a page
in CA-SSD is treated as invalid only when all the LPNs
having that content have written a “different value,” it
is less likely to be marked as garbage compared to a
traditional SSD where “any” (including the prior identi-
cal) LPN write necessitates a page invalidation. Further-
more, the decrease in the amount of valid content on the
SSD due to de-duplication directly reduces pages copied
during GC. All these reasons contribute to the substan-
tial benefits that CA-SSD experiences in lower induced
writes/copies compared to a traditional SSD. In fact, for
the mail workload we observe no GC writes since the to-
tal number of unique values seen for this workload fits

9



10

15

20

25

30

R
es

po
ns

e 
Ti

m
e 

(m
s)

NON CAS
CAS(infinite)
CAS(16K)
CAS(64K)
CAS(128K)

0

5

10

web mail home

R
es

po
ns

e 
Ti

m
e 

(m
s)

Workloads

�

�

� �

� �

� �

� �

To
ta

l W
rit

es
 (

in
 M

ill
io

ns
)

GC writes

Workload Writes

�

�

�

�

To
ta

l W
rit

es
 (

in
 M

ill
io

ns
)

Workloads
web mail home

100

150

200

250

N
um

be
r 

of
 e

ra
se

s 
(in

 th
ou

sa
nd

s) NON CAS
CAS(infinite)
CAS(16K)
CAS(64K)
CAS(128K)

0

50

100

web mail homes

N
um

be
r 

of
 e

ra
se

s 
(in

 th
ou

sa
nd

s)

Workloads

(a) Response Time (b) Total Writes (c) Block Erases

Figure 7: Performance of CA-SSD vs traditional SSDs. (b)The reborn writes fraction is extremely low and hence
not shown. The bars for each workload should be read in the following order: NonCAS, CAS(infinite), CAS(16K),
CAS(128K), CAS(256K). Note that CAS(x) represents the meta-data cache size in terms of number of hashes(x) it
can store. For response times, we also present the standard deviation, and observe that CA-SSD offers reduction in the
variance in addition to the average.

within the chosen SSD size without triggering GC.

Another important characteristic is the lifetime of
SSD which depends on the write-erase cycles of blocks.
Higher incoming write traffic results in higher block
erases, reducing the useful lifetime of SSD. Write reduc-
tion benefits from CA-SSD on both workload and GC
writes directly translate into reduced block erases. As
shown in Figure 7(c), the number of block erases in mail
reduces from 47819 to 2876, more than 15-fold decrease.
Similarly, homes and web experience 70% and 77% re-
ductions in block erases, respectively.

In Figure 7, we showed results for CA-SSD with both
unlimited RAM capacity to store the HPT/iHPT, as well
as finite capacities of 16K, 128K, and 256K entries that
require about 450KB, 3.5MB and 7MB of space respec-
tively. Even for meta-data cache capacities less than
1MB, CA-SSD shows significant improvements over tra-
ditional SSD. For example, the mean response time for
homes decreases by about 7ms (for 16K hashes) in CA-
SSD as compared to traditional SSD whereas the block
erases reduce by 65%. As we had seen in Section 3, mail
shows lower TVL for writes and hence requires a larger
meta-data cache to exploit CA-SSD benefits. However,
we note that beyond 128K entries, we observe close to
the infinite CA-SSD behavior for all workloads, reiter-
ating the observations made in Section 3 regarding the
ability to hold a substantial portion of the working set
of the meta-data in these workloads within a relatively
small space because of presence of TVL. 3.5MB of RAM
is a relatively small amount of space to support in to-
day’s SSDs - for instance, a 1TB [6] SSD has 512MB of
DRAM which can be used for storing the meta-data. Re-
gardless of the actual amount of available space to store
this meta-data, CA-SSD can avail of whatever space is
allocated to it, and as we will show in the next subsec-
tion, even “complete absence of value locality” makes

CA-SSD only slightly worse than a traditional SSD.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

zipf parameter(a)

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

 

 

Non CAS
web
mail
homes
financial
cello99
proxy
hm
ts
mds
src1

Figure 8: Impact of VL. zipf parameter on X-axis repre-
sents the extent of VP skewness in the workload. Higher
zipf paramter indicates higher skewness in VP. The aver-
age response times on Y-axis are normalized with respect
to average response times for traditional SSDs. Note
that these response times are for unlimited cache-space.
We observe similar response times for meta-data cache
which can store 128K hashes.

5.3 Impact of Value Locality on CA-SSD

We next conduct a more extensive analysis of the impact
of value locality on CA-SSD performance to demonstrate
that it is beneficial across a broad spectrum of work-
load behaviors and not just for the three real workloads
used above which exhibit good value locality. One dif-
ficulty in considering a wide range of workloads is the
lack of real workload traces for which content of each
write is made available in the trace (most traces con-
tain just the timestamp, address and size fields). On
the other hand, considering a purely synthetic workload,

10



Workload Description Size Requests %
(GB) (in mill.) Writes

financial OLTP 0.50 6.50 79.60
cello99 HP-UX OS 0.46 0.44 70.79
proxy Proxy server 0.33 2.44 95.64

hm H/W Monitor 2.43 11.11 54.74
ts Terminal Server 0.91 4.17 74.06

mds Media Server 3.09 2.89 70.46
src1 Source Control 1.47 5.00 93.73

Table 3: Workload description. Apart from the above 7
workloads, we use mail, web, and homes that were de-
scribed in Section 3. The workload size represents the
total number of unique logical addresses(LPNs) accessed
in the trace. The logical address space exposed to the file
system can be much larger.

may mandate assumptions on parameters - such as ar-
rival rate, sequentiality, temporal locality, etc. - over and
beyond those pertaining to value locality. Instead, we
pick a set of 10 real workload traces(refer to Table 2
and Table 3) that have been studied in prior literature
- financial from UMass [8], cello99 from HP Labs [2],
proxy,hm,ts,mds and src1 from MSR [9] including the
three workloads(homes,web and mail) from FIU [26] .
We use the arrival times, block addresses and sizes from
these traces, and only synthesize the “content”(v) for
the blocks using a zipf distribution, given as: P (vi) =

Cvi
−a, where, C = 1/

N∑

i=1

v−a
i , N is the total unique

values in the workload and a is the zipf parameter rep-
resenting the skewness in value popularity. Many prior
studies [13] have shown content popularity can be char-
acterized by this distribution. Furthermore, we vary
the exponent(a) characterizing the distribution from 0
(which corresponds to no VP) to 1.0 (which corresponds
to a very highly skewed VP behavior). In the experi-
ments, we use this zipf probability distribution to pick a
value for each incoming request. This exercises only the
popularity of values and ignores the spatial and tempo-
ral dimensions of value locality, and can thus be viewed
as a pessimistic evaluation of CA-SSD since any spa-
tial/temporal VL will only benefit it further (and not af-
fect the performance of a traditional SSD which only re-
lies on LPN-based spatial/temporal locality). Figure 8
shows mean response times for these workloads on CA-
SSD normalized with respect to traditional SSD response
times. Similar to results in Section 5.2, as VP increases,
the response times for these workloads decreases. Fur-
thermore, even when VP is low, the response times for
CA-SSD and traditional SSDs are comparable. We ob-
serve that when the workloads show no VP (a=0.0), the

average response time of CA-SSD only increases by at-
most 10% (for src1). This is primarily due to the over-
heads of the hashing unit for write requests which we
have chosen conservatively. Thus, we expect the average
response time to be lower with a more aggressive esti-
mate (If needed, one could even explore the possibility of
dynamically turning off CAS in CA-SSD in complete ab-
sence of VL). On the other hand, for high VP (a = 1.0),
we see tremendous benefits with CA-SSD. We observe
around 25 times reduction in average response times for
financial trace and on average all workloads show an im-
provement of about 74%. Furthermore, the number of
values which account for 50% of the write requests in
hm workload decreases from 4.5M for no VP (a = 0.0)
to 1.3M for moderate VP (a = 0.4), a reduction of ap-
proximately 71%. This clearly illustrates that the ben-
efits accrued through VP specifically and value locality
in general, strengthen the case for adoption of content
addressability in SSDs, paving the way for a new gener-
ation of SSDs.

6 Related Work
Value Locality/Content Addressability: CAS has
been extensively used in archival and backup systems
such as Venti [42], Foundation [43], Pastiche [14] etc for
space savings , Internet suspend/resume [27], LBFS [35]
for saving network bandwidth file system and buffer
cache design [35, 47, 34], etc. Some recent work has
evaluated real-world workloads and demonstrated signif-
icant value locality which bodes well for CA-SSD [26,
36]. However, to the best of our knowledge, this paper is
the first to focus on issues that arise when designing an
SSD that uses CAS internally.

Meta-data Management for CAS: The scalability of
a system employing CAS depends on careful manage-
ment of CAS related meta-data. Larger-sized chunks
help in reducing the amount of meta-data to be stored
while smaller chunks provide good duplicate elimina-
tion. Pasta [33], Pastiche [14], REBL [29] and Foun-
dation [43] have explored more complex chunking meth-
ods. Bimodal chunking attempts to combine the benefits
of two different chunk sizes [28] CA-SSD could bene-
fit from all of these techniques and evaluating the bene-
fits of different/variable chunk sizes is part of our future
work. Sparse indexing divides the incoming data stream
into large segments which are then de-duplicated against
a few similar segments found using sampling [31]. Like
sparse indexing, the degree of de-duplication in CA-SSD
depends on the available meta-data cache space. Re-
searchers have developed CAS meta-data management
techniques which utilize HDD/SSDs for storing chunk
indexes [48, 15]. These techniques utilize spatial lo-
cality in data segments for reducing index lookups by

11



pre-fetching meta-data in RAM. Unlike these techniques,
CA-SSD does away with index lookups on HDD/SSD
and utilizes TVL for reducing meta-data misses.

7 Conclusion

Given evidence for the presence of significant VL in real-
world workloads, we designed CA-SSD which employed
CAS for its internal data management. Using three real-
world workloads with content information, we devised
statistical characterizations of two aspects of VL - value
popularity and temporal VL - that formed the foundation
of CA-SSD. The design of CA-SSD presented us with
interesting choices and challenges related to exploiting
VL for write reduction and maintaining meta-data con-
sistency under constrained cache space. Using several
real-world workloads, we conducted an extensive eval-
uation of CA-SSD. We found significant improvements
(59-84%) in average response times. Even for workloads
with little or no value locality, we observed that CA-SSD
continued to offer comparable performance to a tradi-
tional SSD.

Acknowledgments

We would like to express our gratitude to our shep-
herd Ohad Rodeh of IBM Almaden Research Center
and the anonymous reviewers for their detailed com-
ments that helped us improve the quality of our paper.
This research was supported in part by NSF grants CCF-
0811670, CNS-0720456, CNS-0615097, and CAREER
award CNS-0953541.

References

[1] 64MB Cache on SSD. http://www.tomshardware.com/
news/A-DATA-OCZ-64MB-Cache,7263.html.

[2] HP Labs. Tools and Traces. http://tesla.hpl.hp.com/
public_software.

[3] HP Memory Smart Array Controller. http://www1.hp.com.
[4] Intel’s 3rd Generation X25-M SSD Specs Revealed.

http://www.anandtech.com/show/3965/
intels-3rd-generation-x25m-ssd-specs%
-revealed.

[5] OCZ Vertex 2 EX Series SATA II 2.5” SSD. http://www.
ocztechnology.com.

[6] OCZ Z-Drive R2 e88 PCI-Express SSD. http://www.
ocztechnology.com.

[7] Raw Drive Capacity Cost Trends. http:
//wikibon.org/w/images/a/a4/
EMCRawDriveCapacityCostTrends.jpg.

[8] UMass Trace Repository, 2007. http://traces.cs.
umass.edu.

[9] SNIA. IOTTA repository, January 2009. http://iotta.
snia.org/.

[10] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS,
J. D., MANASSE, M. S., AND PANIGRAHY, R. Design Tradeoffs
for SSD Performance. In ATC 08: Proceedings of the USENIX
Annual Technical Conference (2008).

[11] ARPACI-DUSSEAU, A., ARPACI-DUSSEAU, R. H., AND PRAB-
HAKARAN, V. Removing The Costs Of Indirection in Flash-
based SSDs with Nameless Writes. In HotStorage 10: Proceed-
ings of the 2nd Workshop on Hot Topics in Storage and File Sys-
tems (2010).

[12] BLACK, J. Compare-by-hash: a reasoned analysis. In ATC ’06:
Proceedings of the USENIX ’06 Annual Technical Conference
(2006).

[13] CHERVENAK, A. L. Challenges for tertiary storage in multime-
dia servers. Parallel Computing (1998).

[14] COX, L. P., MURRAY, C. D., AND NOBLE, B. D. Pastiche:
Making Backup Cheap and Easy. In OSDI ’02: Proceedings of
the 5th symposium on Operating systems design and implemen-
tation (2002).

[15] DEBNATH, B., SENGUPTA, S., AND LI, J. ChunkStash: Speed-
ing up Inline Storage Deduplication using Flash Memory. In
ATC’10: Proceedings of the USENIX 2010 Annual Technical
Conference (2010).

[16] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: a flash
translation layer employing demand-based selective caching of
page-level address mappings. In ASPLOS ’09: Proceeding of the
14th international conference on Architectural support for pro-
gramming languages and operating systems (2009).

[17] HANDY, J. PCM becomes a reality, 2009. http://www.
objective-analysis.com.

[18] HELION. Fast hashing cores. http://www.heliontech.
com/fast_hash.htm.

[19] JOHN S. BUCY, J. S., SCHLOSSER, S. W., AND GANGER,
G. R. The DiskSim Simulation Environment Version 4.0 Refer-
ence Manual. http://www.pdl.cmu.edu/DiskSim/.

[20] JUNG, D., CHAE, Y.-H., JO, H., KIM, J.-S., AND LEE, J.
A group-based wear-leveling algorithm for large-capacity flash
memory storage systems. In CASES ’07: Proceedings of the
2007 International Conference on Compilers, Architecture, and
Synthesis for Embedded systems (2007).

[21] KAREDLA, R., LOVE, J. S., AND WHERRY, B. G. Caching
strategies to improve disk system performance. Computer 27, 3
(1994), 38–46.

[22] KAWAGUCHI, A., NISHIOKA, S., AND MOTODA, H. A flash-
memory based file system. In TCON’95: Proceedings of the
USENIX 1995 Technical Conference (1995).

[23] KGIL, T., AND MUDGE, T. N. FlashCache: a NAND flash mem-
ory file cache for low power web servers. In CASES 06: Proceed-
ings of the 2006 International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems (2006).

[24] KIM, H., AND AHN, S. BPLRU: A buffer management scheme
for improving random writes in flash storage. In FAST’08: Pro-
ceedings of the 6th USENIX Conference on File and Storage
Technologies (2008).

[25] KIM, J. K., LEE, H. G., CHOI, S., AND BAHNG, K. I. A PRAM
and NAND flash hybrid architecture for high-performance em-
bedded storage subsystems. In EMSOFT 2008: Proceedings of
the 8th ACM & IEEE International conference on Embedded soft-
ware (2008).

[26] KOLLER, R., AND RANGASWAMI, R. I/O Deduplication: Utiliz-
ing Content Similarity to Improve I/O Performance. In FAST’10:
Proceedings of the 8th USENIX Conference on File and Storage
Technologies (2010).

12



[27] KOZUCH, M., AND SATYANARAYANAN, M. Internet sus-
pend/resume. In WMCSA ’02: Proceedings of the Fourth
IEEE Workshop on Mobile Computing Systems and Applications
(2002).

[28] KRUUS, E., UNGUREANU, C., AND DUBNICKI, C. Bimodal
Content Defined Chunking for Backup Streams. In FAST’10:
Proceedings of the 8th USENIX Conference on File and Storage
Technologies (2010).

[29] KULKARNI, P., DOUGLIS, F., LAVOIE, J., AND TRACEY, J. M.
Redundancy elimination within large collections of files. In ATC
’04: Proceedings of the USENIX Annual Technical Conference
(2004).

[30] LEE, S.-W., AND MOON, B. Design of flash-based DBMS: an
in-page logging approach. In SIGMOD ’07: Proceedings of the
2007 ACM SIGMOD international conference on Management of
data (2007).

[31] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,
V., TREZISE, G., AND CAMBLE, P. Sparse indexing: large scale,
inline deduplication using sampling and locality. In FAST ’09:
Proccedings of the 7th USENIX conference on File and storage
technologies (2009).

[32] LOFGREN, K. M. J., NORMAN, R. D., THELIN, G. B., AND
GUPTA, A. Wear leveling techniques for flash EEPROM sys-
tems. In United States Patent, No 6850443 (2005).

[33] MORETON, T. D., PRATT, I. A., AND HARRIS, T. L. Stor-
age, Mutability and Naming in Pasta. In Revised Papers from the
NETWORKING 2002 Workshops on Web Engineering and Peer-
to-Peer Computing (2002).

[34] MORREY, C. B., AND GRUNWALD, D. Content-Based Block
Caching. In MSST 06: 23rd IEEE, 14th NASA Goddard Confer-
ence on Mass Storage Systems and Technologies (2006).

[35] MUTHITACHAROEN, A., CHEN, B., AND MAZIÈRES, D. A
low-bandwidth network file system. In SOSP ’01: Proceedings
of the 18th ACM Symposium on Operating systems principles
(2001).

[36] NATH, P., URGAONKAR, B., AND SIVASUBRAMANIAM, A.
Evaluating the Usefulness of Content-Addressable Storage for
High-Performance Data-Intensive Applications. In HPDC 08:
Proceedings of the ACM/IEEE International Symposium on High
Performance Distributed Computing (Jun 2008).

[37] NUMONYX MEMORY SOLUTIONS. 16-Gbit MLC NAND
flash memories. http://numonyx.com/Documents/
Datasheets/NAND16GW3D2B.pdf.

[38] NUMONYX MEMORY SOLUTIONS. 2-Gbit SLC NAND
flash memories. http://numonyx.com/Documents/
Datasheets/NAND02G-BxD.pdf.

[39] NUMONYX MEMORY SOLUTIONS. 64-Gbit SLC NAND
flash memories. http://numonyx.com/Documents/
Datasheets/NAND64GW3FGA.pdf.

[40] PRIMMER, R., AND HALLUIN, C. D. Collision and preimage
resistance of the centera content address. Tech. rep., 2005.

[41] PURESILICON. Puresi 1TB SSD with hardware based encryp-
tion. http://www.marketwire.com.

[42] QUINLAN, S., AND DORWARD, S. Venti: A new approach
to archival data storage. In FAST ’02: Proceedings of the 1st
USENIX Conference on File and Storage Technologies (2002).

[43] RHEA, S., COX, R., AND PESTEREV, A. Fast, inexpensive
content-addressed storage in foundation. In ATC’08: Proceed-
ings of the USENIX 2008 Annual Technical Conference (2008).

[44] SAMSUNG. Samsung self encrypting ssd.
"http://www.engadget.com/2009/04/16/
samsung-comes-clean-with-self-encry%
pting-ssds.

[45] SMULLEN, C. W., COFFMAN, J., AND GURUMURTHI, S. Ac-
celerating enterprise solid-state disks with non-volatile merge
caching. In IGCC’10: Proceedings of the 1st International Con-
ference on Green Computin (2010).

[46] SOUNDARARAJAN, G., PRABHAKARAN, V., BALAKRISHNAN,
M., AND WOBBER, T. Extending SSD Lifetimes with Disk-
Based Write Caches. In FAST 10: Proceedings of the 8th USENIX
Conference on File and Storage Technologies, 2010 (2010).

[47] VILAYANNUR, M., NATH, P., AND SIVASUBRAMANIAM, A.
Providing Tunable Consistency For a Parallel File Store. In
FAST05: Proceedings of the 4th conference on USENIX Confer-
ence on File and Storage Technologies (2005).

[48] ZHU, B., LI, K., AND PATTERSON, H. Avoiding the disk bottle-
neck in the data domain deduplication file system. In FAST’08:
Proceedings of the 6th USENIX Conference on File and Storage
Technologies (2008).

13


