
Don’t Thrash: How to Cache your Hash on Flash
Michael A. Bender∗§ Martin Farach-Colton†§ Rob Johnson∗ Bradley C. Kuszmaul‡§

Dzejla Medjedovic¶∗ Pablo Montes∗¶ Pradeep Shetty‖∗¶ Richard P. Spillane∗¶

Erez Zadok∗

Introduction
As the Internet grows, computers collect, store, search,
and index data at increasingly rapid rates. A recent IDC
study estimates that more than 300 Exabytes of hard-
disk storage will be delivered in the next five years to
data centers and clouds alone. Many large storage sys-
tems use approximate-membership-query (AMQ) data
structures to deal with the massive amounts of data that
they process. The canonical AMQ data structure is
the Bloom filter. Bloom filters, however, do not scale
well outside of main memory. Bloom filters which are
larger than main memory would choke on disks with
rotating platters and moving heads. A rotational disk
performs only100–200 (random) I/Os per second, and
each Bloom filter operation requires multiple I/Os. Even
on solid-state drives (SSD), Bloom filters only utilize a
small fraction of the bits in each block write, and so con-
tinue to suffer performance problems because of their
appetite for random I/Os. Hence, such storage systems
typically organize their Bloom filters as in-memory data
structures, which limits the dataset size for which Bloom
filters can be used.

We introduce theQuotient Filter data structure, which
is functionally similar to the popular and efficient dy-
namic Bloom filter. Our data structure requires only one
I/O per lookup, compared to the 6–8 I/Os per lookup that
dynamic Bloom filters could potentially require. A quo-
tient filter stores a lossy representation of a multi-set of
objects. It maintains a hash table ofr-bit fingerprints for
each item inserted into the filter. The hash table contains
2ℓ buckets. Given a hash functionh mapping objects
to (ℓ + r)-bit integers, a quotient filter stores an item
x by insertingh(x) mod 2r into bucketh(x)/2r of the
hash table. To test whether an itemx is in the filter,
one simply checks whether any entry in bucketh(x)/2r

has valueh(x) mod 2r. It also supports efficiently iter-
ating over the hashes of all the objects inserted into the
filter, in order of increasing hash value. Therefore it is
possible to merge multiple quotient filters into a single
quotient filter using an algorithm analogous to the merge
operation in merge-sort. By composing several Quo-
tient Filters organized into a modified cache-oblivious

∗Stony Brook University.
†Rutgers University.
‡MIT.
§Tokutek, Inc..
¶Author is a student.
‖Author would be presenting WIP/poster.

Figure 1: Cascading Filter

lookahead array (COLA) [1] we create aCascade Filter,
which can support very high data ingestion rates while
maintaining good lookup times, and consuming1/4 the
space of a dynamic Bloom filter, and2× the space of a
traditional (no-delete) Bloom filter.

The COLA [1] consists of⌈log
2
N⌉ arrays of expo-

nentially increasing size, such that an array at levell can
accommodate all the arrays at levels1 throughl − 1. In
the Cascade Filter we replace these arrays with our quo-
tient filters and use this property for merging quotient
filters. As a simple example, in Figure 1, Quotient Filter
QF1 in RAM is merged with QF2 and QF3 on FLASH,
and the resulting Quotient Filter QF4 is placed in the
next free level available C4. After merging, levels C1-
C3 are marked free.

Work in progress

We evaluated a prototype of our system on an Intel X25-
M 160GB SSD II drive. We were able to perform inser-
tions and deletions of more than 8.72 billion elements
at 911,131 insertions/s and 378 lookups/s. To put that
in perspective, our insertion throughput is 607 times
faster than the random write throughput of the Intel X25-
M. The increasing random-read throughput of Flash de-
vices [2] and increasing random IOPS to cost ratio [3]
would boost our lookup throughput. We argue that our
approach scales. For a data center holding 1PB of 512
byte keys, our results indicate that using cheap off-the-
shelf parts, one can construct a Cascading Filter with a
less than 0.04% false positive rate using 10TB of Flash
disks. This device would be relatively inexpensive, cost-
ing less than US$35,000. The Cascading Filter is cur-
rently CPU bound; a parallel implementation could po-
tentially perform over 70 million inserts and updates per
second with a drive performing 400MB/s serial writes.
An efficient implementation could potentially be made
very cost-effective by utilizing parallel GPU program-
ming.

1

We are also exploring applications to traffic routing,
deduplication, replication, write offloading, load balanc-
ing, and security in a data center or large network. With
a cost-effective method of determining whether an item
doesn’t exist in a large petabyte data center from asingle
point in the network, many new scheduling and architec-
tural possibilities become available.

References
[1] M. A. Bender, M. Farach-Colton, J. T. Fineman, et al.

Cache-oblivious streaming B-trees. InSPAA 2007, 2007.

[2] FusionIO. IODrive octal datasheet. http:
//www.fusionio.com/data-sheets/
iodrive-octal/.

[3] G. Gibson M. Polte, J. Simsa. Comparing performance of
solid state devices and mechanical disks. InPDSW 2008,
November 2008.

2

