Don’t Thrash: How to Cache your Hash on Flash
Michael A. Bender¥ Martin Farach-Coltor¥ Rob Johnsoh Bradley C. Kuszmauf

Dzejla Medjedovic* Pablo Monted Pradeep Shettff Richard P. Spillan@
Erez Zadok

I ntroduction QF1

As the Internet grows, computers collect, store, search,
and index data at increasingly rapid rates. A recent IDC QF2 c2
study estimates that more than 300 Exabytes of hard-
disk storage will be delivered in the next five years to QF3 c3
data centers and clouds alone. Many large storage sys-
tems use approximate-membership-query (AMQ) data T QF4 C4
structures to deal with the massive amounts of data that

they process. The canonical AMQ data structure is Figure 1: Cascading Filter

well outside of main memory. Bloom filters which are \yhich can support very high data ingestion rates while

performs only100-200 (random) I/Os per second, and traditional (no-delete) Bloom filter.

each Bloom filter operation requires multiple 1/Os. Even

on solid-state drives (SSD), Bloom filters only utilize a nentially increasing size, such that an array at léwein
small fraction of the bits in each block write, and so con-

> ~accommodate all the arrays at levélthroughl — 1. In
tinue to suffer performance problems because of theifhe cascade Filter we replace these arrays with our quo-

appetite for random |/Os. Hence, such storage systemg, filters and use this property for merging quotient
typically organize their Bloom filters as in-memory data ¢jiars As a simple example, in Figure 1, Quotient Filter
structures, which limits the dataset size for which BIoomQFl in RAM is merged with QF2 and QF3 on FLASH

filters can be used. . .) and the resulting Quotient Filter QF4 is placed in the
, we |n.tr0duce '.[hQuotlent Rlter data structur_e,_whmh next free level available C4. After merging, levels C1-
is functionally similar to the popular and efficient dy- =3 5re marked free.

namic Bloom filter. Our data structure requires only one

/O per lookup, compared to the 6-8 1/Os per lookup thatWWor k in progress
dynamic Bloom filters could potentially require. A quo-
tient filter stores a lossy representation of a multi-set o
objects. It maintains a hash tablerebit fingerprints for
each item inserted into the filter. The hash table contain
2¢ buckets. Given a hash functign mapping objects
to (¢ + r)-bit integers, a quotient filter stores an item
2 by insertingh(z) mod 2" into bucketh(z)/2" of the
hash table. To test whether an itemis in the filter,
one simply checks whether any entry in buckeét) /2"
has valueh(z) mod 2". It also supports efficiently iter-
ating over the hashes of all the objects inserted into th o :
filter, in order of increasing hash value. Therefore it is yte keys, our resulis indicate that using chee_ip off-_the-
possible to merge multiple quotient filters into a singIeShelf parts, one can const_rgct a Casc_admg Filter with a
quotient filter using an algorithm analogous to the mergéess than 0.04% false positive rate using 10TB of Flash

operation in merge-sort. By composing several Quo-,d'SKS' This device would be relatively inexpensive, cost-

tient Filters organized into a modified cache-oblivious 'Y less than US$35,000. Th_e Cascading Filter is cur-
rently CPU bound; a parallel implementation could po-

1 RAM

FLASH

The COLA [1] consists of/log, N arrays of expo-

fWe evaluated a prototype of our system on an Intel X25-
M 160GB SSD Il drive. We were able to perform inser-
éions and deletions of more than 8.72 billion elements
at 911,131 insertions/s and 378 lookups/s. To put that
in perspective, our insertion throughput is 607 times
faster than the random write throughput of the Intel X25-
M. The increasing random-read throughput of Flash de-
vices [2] and increasing random IOPS to cost ratio [3]
would boost our lookup throughput. We argue that our
pproach scales. For a data center holding 1PB of 512

*Stony Brook University. tentially perform over 70 million inserts and updates per
mﬁgers University. second with a drive performing 400MB/s serial writes.
§T0k£nek' Inc.. An efficient implementation could potentially be made
9 Author is a student. very cost-effective by utilizing parallel GPU program-

Il Author would be presenting WIP/poster. ming.

We are also exploring applications to traffic routing,
deduplication, replication, write offloading, load balanc
ing, and security in a data center or large network. With
a cost-effective method of determining whether an item
doesn’'t exist in a large petabyte data center frosirgle
point in the network, many new scheduling and architec-
tural possibilities become available.

References

[1] M. A. Bender, M. Farach-Colton, J. T. Fineman, et al.
Cache-oblivious streaming B-trees. 3RAA 2007, 2007.

[2] FusionlO. I0Drive octal datasheet. http:
[/ www. f usi oni 0. conl dat a- sheet s/
iodrive-octal/.

[3] G. Gibson M. Polte, J. Simsa. Comparing performance of
solid state devices and mechanical disksPISW 2008,
November 2008.

