
A Centralized Failure Handler for File Systems
Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Computer Sciences Department, University of Wisconsin - Madison

1 Motivation
Failure handling in file system is broken. Commodity file
systems are built under the assumption that disks fail in a
fail-stop manner. However, in reality, portions of a disk
can fail by latent sector errors or block corruptions. The
code that handles disk failures is distributed throughout
the file system along with the I/O calls. This diffusion of
failure handling results in several problems:
• Illogically inconsistent failure handling policies: File

systems use different failure handling techniques even un-
der similar fault scenarios [3].
• Tangled policies and mechanisms: It becomes harder

to separate failure policies from detection and recovery
mechanisms.
• Diffusion of bugs: There are several bugs in the file

system failure handling code. Block I/O failures are even
ignored sometimes. Since the failure handling is repeated
at several places, it is hard to fix them all [2, 3].

In this work, we propose to design, implement, and
evaluate a centralized failure handler that detects and re-
covers from I/O failures with well-defined failure policies
that are easier to understand and debug.

2 Centralized Failure Handling
A centralized failure handler is a file system sub-
component, similar to the buffer cache manager or the
journaling layer. It controls all the I/O initiation and com-
pletion. It detects block read-write failures and corrup-
tions, and invokes the specified recovery policy.

A centralized failure handler gives several benefits. By
handling failures in one place, inconsistent policies can
be eliminated. New functions that manipulate I/Os can
be added relatively easily since the developer is relieved
of the burden of writing a failure handler for each such
function. The failure handler can be viewed as a way
to separate failure policies from detection and recovery
mechanisms [1]. Policy decisions such as whether to pro-
tect blocks using replicas or parity can be separated from
their implementation details. Finally, placing all the fail-
ure handling mechanisms at one place makes them easier
to debug and fix.

A centralized failure handler can be used to support fine
grained failure policies. File system can specify different
failure policies for different block types and I/O contexts.
Applications can also specify failure policies appropriate
to their needs. For example, an application might want
to replicate an important directory while requesting no re-
dundancy for a temporary file.

There are three main issues in designing and building a
centralized failure handler. They are:

Architecture: The failure handler interacts with the
core file system that manages the data and metadata, and
with other components of the file system such as the
cache and journal. The failure handler contains two sub-
components: a file system aware part that deals with dif-
ferent block types, transaction semantics, and I/O con-
texts; and a generic part that implements the detection
and recovery mechanisms, which can be used commonly
across several file systems.

Information: I/O requests can be issued under dif-
ferent contexts for different block types, and failure poli-
cies can change accordingly. Therefore, the failure han-
dler needs semantic information about block I/Os to se-
lect the appropriate failure policies. The failure handler
must be aware of semantic information such as the logical
boundaries of a file, contents of a transaction, and block
to file mapping. The file system must provide appropri-
ate interfaces to get such information. The failure handler
maintains a table that maps the block types and context
information to their appropriate failure policies.

Machinery: Implementing a centralized failure han-
dler requires re-architecting parts of the file system. New
machinery must be added to direct the I/O calls to go
through the failure handler. I/O paths are time critical.
Completion of blocks I/Os are notified in the interrupt
context. Complex failure handling mechanisms cannot be
executed under the interrupt context. The failure handler
contains additional machinery to separate I/O completion
path from failure handling.

3 Summary
Failure handling is diffused in file systems. This results
in inconsistent policies, tangled policies and mechanisms,
and diffusion of bugs. We are currently working on build-
ing a centralized failure handler as a way to support logi-
cally consistent failure policies and separate policies from
mechanisms. It requires file system specific semantic in-
formation to support fine-grained failure policies.

References
[1] R. Levin, E. Cohen, W. Corwin, F. J. Pollack, and W. Wulf. Pol-

icy/mechanism separation in Hydra. InProceedings of the 5th ACM
Symposium on Operating Systems Principles (SOSP ’75).

[2] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Model-Based Failure Analysis of Journaling File Systems. In Pro-
ceedings of the International Conference on Dependable Systems
and Networks (DSN-2005), pages 802–811.

[3] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S.Gunawi,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON File Sys-
tems. InProceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05).


