
Exploiting the Client Vulnerabilities in Internet E-voting Systems:
Hacking Helios 2.0 as an Example

Saghar Estehghari
University College London
s.estehghari@cs.ucl.ac.uk

Yvo Desmedt
UCL and RCIS

Abstract
Helios is a web-based open-audit voting system de-

signed using state of the art web technologies and ad-
vanced cryptographic techniques to provide integrity of
ballots and voter secrecy in an insecure Internet envi-
ronment. In this paper, we demonstrate a simple at-
tack against Helios 2.0 that takes advantage of the fact
that every candidate in Helios can provide a URL refer-
ring to his/her candidacy statement. A malicious can-
didate, who wishes to win a Helios-managed election,
uploads a specially crafted PDF file containing a candi-
dacy statement to his/her website. The attack is then trig-
gered against each voter who is using a vulnerable ma-
chine. The security of the machine is undermined, e.g.,
when the voter visits the attacker’s webpage. In essence,
we exploit Adobe Acrobat/Reader’s vulnerabilities to in-
stall a malicious browser extension on the voters’ ma-
chines. Such an extension provides an opportunity for
an attacker which may fool the voter (using Social Engi-
neering) into accepting a hacked ballot. Due to our attack
Helios 2.0 was upgraded to Helios 3.0. We discuss gen-
eralizations and the impact of the latest upgrade of Helios
on security. We also discuss defences against this attack,
generalizations and the impact of the latest upgrade of
Helios on security.

1 Introduction

Voting systems are highly sensitive in nature, and as such
they are a prime target for opportunists interested in bi-
asing the results of an election. Electronic voting sys-
tems have opened new avenues to these adversaries that
might be tempted to exploit any software vulnerability in
these systems to break the integrity and secrecy of ballots
(also called anonymity of the voters). Some of the cur-
rent e-voting systems suffer from exploitation of many
vulnerabilities, e.g. [32], [30], [9], etc. Indeed, these vot-
ing systems are highly dependent on the security of the

software run on the voting terminal, and therefore these
are vulnerable to any flaw in the security design.

Researchers have proposed cryptographic voting
schemes (e.g. Mix-Nets, Homomorphic schemes, etc.),
to provide several desirable properties such as security,
efficiency and accuracy. In this paper we analyze the
impact of software vulnerabilities on such cryptographic
voting schemes.

Web-based voting, among these e-voting systems, are
providing organizations with more flexibility to conduct
their internal elections. In designing and deploying Inter-
net voting systems, advanced cryptographic techniques
and state of the art web technologies can be employed
to protect such systems on the server side. However,
such technologies are limited on the client side which
may make these systems vulnerable to different hacking
techniques. As a result the impact of both server and
client security on the privacy and integrity of the Internet
voting systems must be carefully considered.

In this paper, we focus on Helios 2.0, a promising
web-based open-audit voting system [6], which uses lots
of cryptography to demonstrate how an adversary might
exploit clients machines vulnerabilities to mislead the
voter.

Although we did not break Helios 2.0 from a cryp-
tographic viewpoint, our attack was able to demonstrate
that compromising Helios 2.0 on the client side is more
feasible than previously believed. More precisely, in He-
lios 2.0, except if one is certain that large majority of
voters take extraordinary precautions, our attack under-
mines the integrity of the voting system (for more details,
see the rest of this paper).

We identify potential approaches to allow for a suc-
cessful attack against an Helios-based election and select
one of them which is more feasible and less detectable
(Section 4). We remark how Helios 2.0 was modified to
weaken the impact of our attack (Section 5.1). Then we
discuss the legal issues, costs, impact of the attack (Sec-
tion 6). Along with the flaws we exploit to launch our

1



successful attack, we identify its limitations, and hence
propose defenses and techniques that could prevent such
type of attacks (Section 7).

2 Related Work

2.1 E-voting Systems
Before we survey prior attacks on e-voting systems, we
mention that we discuss here exploits that can be per-
formed on e-voting systems using non-verifiable voting
schemes. From a cryptographic viewpoint there is a
fundamental difference between verifiable cryptographic
voting schemes and non-verifiable ones. Helios, the web-
based e-voting system that is analyzed in this paper, uti-
lizes verifiable voting scheme where each voter is able
to audit the ballots and to verify its correctness (see Sec-
tion 3.1). In Sections 4 we study the impact of our attack
on internet based verifiable voting systems, such as He-
lios.

Prior research has focused on analyzing and evaluat-
ing security measures considered in the context of booth-
based e-voting systems. In such systems, voters go to the
polling stations and submit their ballot electronically us-
ing the voting terminal, i.e. [32], [30], [9], etc. These
systems are highly dependent on the security and cor-
rectness of the software running on the voting terminal.
Any flaws or bugs contained in the software can promote
a malicious voter or insider to exploit the system.

The analysis of Diebold AccuVote-TS carried out by
Kohno et al. [32] was one the first papers in this field.
The researchers had access to the source code of the sys-
tem, since it had appeared on the Internet. According to
[32], Diebold violates confidentiality and integrity of the
ballots and anonymity of voters.

The research conducted by Hursti [30] on Diebold
AccuVote-TS6 and AccuVote-TSx exploited publicly ac-
cessible documentations, “source code excerpts” [30]
and the results were obtained by testing a real system.
According to [30], exploitation of design flaws in these
systems may help an attacker to compromise the security
of an election.

Recently, research was carried out by Appel et al. [9]
on Sequoia AVC Advantage voting machine. Due to the
Court order, the authors could study the actual voting ma-
chine’s hardware and source code for a month. In [9],
they showed that fraudulent firmware can be installed on
the machine, allowing one to tamper with the integrity of
an election.

Other research related to AVC Advantage machines
was carried out by Checkoway et al. [15]. In their work,
the scientists did not have access to the source code of
the voting software or to the documentation. They found
security flaws in the system by reverse engineering the

voting software and hardware. They could successfully
show the possibility of a vote-stealing attack by employ-
ing Return-Oriented Programming [39] technology with-
out code injection (as the system rejects any code injec-
tion).

2.2 Browser Rootkits
The basic idea for our attack is inspired by an attack pro-
posed in [33]. In this paper, researchers have developed
a malicious extension for Firefox called BROWSERSPY.
They installed the extension (without introducing a spe-
cific approach for installation) by injecting it to Google
Toolbar extension. The Browser Rootkit steals saved
passwords in the browser and send them together with
the URL to the remote attacker (also see [42]).

Hackers have already exploited Internet Explorer ex-
tensions to develop and install Browser Rootkits on
client’s machines. Download.ject [37] is a malware that
installs a malicious extension on Internet Explorer. The
task of such extension was to listen to the browsing his-
tory until detecting an SSL/TLS connection related to
a bank transaction. Then it captured the username and
password of the victim and sent the confidential infor-
mation to the attacker.

3 Background

In this section, we survey Helios 2.0 and a typical vot-
ing process, then we briefly present both software vul-
nerabilities and current browsers capabilities that might
be exploited to allow for remote code execution so as to
compromise an election in Helios 2.0.

3.1 Helios Voting System Version 2.0
Helios is an open-source web-based voting application
which can be deployed by any organization, group or
community to set up an election. A web browser is the
only tool needed by both voters and system administra-
tors to interact with the system. According to [6, 7], it
is a secure by-design Voting system, as it “implements
advanced cryptographic techniques to maintain ballot se-
crecy while providing a mathematical proof that the elec-
tion tally was correctly computed”.

Specifically, Helios is implemented utilizing additive
homomorphic techniques for e-voting and Exponential
ElGamal, a variant of ElGamal where gm is encrypted
instead of m, as the encryption algorithm. Helios sup-
ports threshold decryption [20] with joint key generation
[8].

The web browser plays an important role in Helios’
functionality. In particular JavaScript is extensively used
in the Helios application. The election data, such as the

2



encrypted ballot, the ballot’s plaintext and the random-
ness are stored in browser’s memory before the ballot
submission. In addition, Exponential ElGamal is im-
plemented using the JavaScript language. Because the
JavaScript technology itself is quite slow when perform-
ing computationally complicated tasks such as generat-
ing randomness and modular exponentiation for ElGa-
mal, Java is utilized for such computation. This requires
that the Java Virtual Machine (JVM) needs to be installed
on the web browser. Consequently, the encryption pro-
cesses are primarily performed in the web browser.

The integrity and secrecy of votes are among the main
objectives of the Helios security model. From that per-
spective, Helios designers claim that “ ... even if Helios
is fully corrupt, the integrity of the election can be ver-
ified” and “... assuming enough auditors, even a fully
corrupted Helios cannot cheat the election result without
the high chance of getting caught”. As for any other e-
voting system, different types of attacks may threaten the
security of Helios. By leveraging on the benefits of a so
called open audit election, the Helios system claims to
defeat most, if not all, of these attacks, such as changing
a ballot, voter impersonation, ballot corruption, incorrect
decryption, etc. [6].

3.1.1 Role of Auditing

According to [6], Helios 2.0 uses two verification pro-
grams, the one which can be utilized by the voter during
the voting process and prior to vote submission to audit
the encrypted ballot given by the Ballot Preparation Sys-
tem (BPS), and the other, used by the administrator, to
verify the shuffling, decryption and tallying of the elec-
tion.

Benaloh’s Simple Verifiable Voting [11] is employed
for the purpose of the former verification program. The
key feature of this protocol is the separation of ballot
preparation and the casting of a vote in a voting system,
where authentication of the voter is not required prior to
the ballot casting time. According to [6], this makes test-
ing of BPS by anyone (both eligible/non-eligible voters)
possible and increases auditability.

Using the second verification program, an administra-
tor (or anyone else) can audit the whole election, after
tallying an election. In this process, a list of voters along
with the hash of their ballots is published by the system.
The administrator should republish this list, where the
voters can compare their own hashes with the published
ones and verify the correctness of their submitted bal-
lot. The main intuition behind the auditing process is
that if a vast majority [6] of voters verify the correctness
of their votes then the outcome is not biased by any type
of attack, and the vote result is deemed correct. This
technique gives an opportunity to the voters to complain,

in the case the hashes do not match. Auditing is then of
primordial importance during Helios elections processes.
Its security of this part is analyzed from Section 4 on.

3.1.2 Voting in Helios

A typical voting process starts when a voter receives an
invitation email from the Helios administrator. Once vis-
iting the election webpage, a voter interacts with the Bal-
lot Preparation System (BPS) by going through the ques-
tions and selecting his/her answers. These answers are
then recorded by the BPS. It is interesting to note that
next to each answer, the voter is provided with a link to
the candidates’ personal webpage that typically contain
the candidacy statements.

On the confirmation page, the selected votes/answers
are displayed on the screen. If the voter is not satis-
fied with the choices, he/she can go back and update the
votes/answers. Otherwise he/she confirms them. The
BPS encrypts the ballot and shows the hash of the en-
crypted ballot to the voter in the next step.

The voter may decide to audit the ballot. The BPS re-
turns a data structure, containing the election ID, the bal-
lot’s plaintext, ciphertext, and the randomness used for
encryption, as an audited ballot to the voter. Moreover,
the voter may decide to verify the encrypted ballot. The
BPS displays then a text area inside which he/she should
copy and paste the audited ballot. The BPS then returns
the hash of the election, the hash of the encrypted ballot,
and the ballot’s plaintext as an output and states whether
the encryption was verified and whether the proof is cor-
rect.

Finally, he/she can choose to submit the encrypted bal-
lot. However if the ballot was audited, it cannot be cast
and the selected choice must be encrypted again. At
this step the BPS clears the randomness and the ballot’s
plaintext from the browser’s memory and brings up the
authentication page. The voter should enter the username
and password specified in the invitation email. If the
combination of the username and password is correct,
then the ballot is signed by the BPS and stored in the
database. The voter will receive an email, containing the
hash of the encrypted ballot and the hash of the election,
confirming that his/her ballot has been recorded. Yet, for
insuring the forward secrecy of the vote, the email does
not contain the name of the chosen candidate in the plain-
text.

Note: The Ballot Preparation System (BPS) is imple-
mented by utilizing JavaScript technology and it man-
ages the client side part of the Helios application.

3



3.2 Software Vulnerabilities and Remote
Code Execution

Today buffer overflow is a well known technique en-
abling software exploits [17]. Typically, it consists in
providing a long argument as an input to the program,
so that it may result in the corruption of adjacent parts
of the program’s state, i.e. pointers and stored mem-
ory addresses. This erratic behavior gives the possibil-
ity to an attacker to write arbitrary code in this part of
the program’s state. This injected code is called the pay-
load or shellcode [44]. As a result, the flow of the pro-
gram is diverted to the hacker’s program. The payload is
then executed with privileges of the vulnerable software.
Consequently, the attacker can gain full or partial control
over the victim’s machine. In the following we describe
the buffer overflow vulnerabilities in Adobe Acrobat and
Adobe Reader. We exploit such vulnerabilities in our at-
tack, as described in Section 4.3.

Adobe and JavaScript Vulnerabilities. Adobe Acro-
bat and Adobe Reader are popular tools for viewing,
searching, printing and digitally signing PDF documents.
In its recent versions, Adobe Acrobat allows creators
to customize PDF documents using JavaScript. To this
aim, Adobe developed a JavaScript API which is only
supported by Adobe Acrobat and Reader in their v7.0.0
versions or later. Using this API, it is possible to bind
JavaScript functions to elements of a PDF file and events,
such as user actions.

However, several Adobe versions, such as 7.0.0, 8.0.0,
8.1.0, 9.0.0 etc. are vulnerable to buffer overflow attacks.
The attack can be launched against machines on which
clients open a specially crafted PDF file with a vulner-
able version of Adobe Acrobat/Reader. As mentioned
earlier, this makes the execution of a payload possible on
these machines. The buffer overflow vulnerabilities are
partially due to the way the JavaScript functions are im-
plemented in Adobe JavaScript API. Some of these func-
tions include, Collab.collectemailinfo() [24], util

.printf() [25], Collab.getIcon() [23] etc. Later, in
Section A.1, we show how the vulnerabilities in Collab

.getIcon() function can be exploited and utilized as a
tool to launch an attack against Helios 2.0.

3.3 Browser Rootkits and Extensions

Browser extensions (or add-ons) are facilities provided
to customize a browser to offer additional features that
fit the personal needs of each user [33, 21]. Browser
extensions are supported by both Internet Explorer and
Mozilla Firefox. For the purpose of our study, in the fol-
lowing we only focus on Firefox extensions. However, it

is worth noticing that our results are generic and our at-
tack is easy to set up using Internet Explorer extensions.

The extensions become part of the browser after instal-
lation and are able to change the browser’s behavior, as
seen by the client. They have the following capabilities:

• They have access to Document Object Model
(DOM) of web pages and are able to add, edit or
remove DOM elements of an HTML document.

• They have access to JavaScript functions of a web
page and are able to edit JavaScript contents.

• They can read from and listen to the session history
of the web browser. This implies that the exten-
sions can wait (listen) for a particular user’s action
(event), such as clicking on the “back” or “forward”
button on the browser, etc., and return the URL of
the page that the user is currently visiting.

Structure of Installed Extensions : Firefox exten-
sions contain two important files: install.rdf and
chrome.manifest. Install.rdf contains metadata about an
extension and its creator. The existence or absence of
this file suggests whether an extension is installed or
not. Chrome.manifest is used by the browser to find and
load the extension’s files corresponding to User Interface
(UI), Locale and Skin.

Exploiting Firefox Extensions : Extensions allow
Firefox users to enhance the functionalities of the
browser. However, attackers can develop malicious add-
ons that are able to steal user’s sensitive data or tamper
with the integrity of such data (e.g. [33, 37] ). These ma-
licious extensions are called Browser Rootkits. Clients
can be tricked to install such an extension on their ma-
chines. Despite the security measures implemented in
Firefox, it is still possible to install an arbitrary extension
on clients’ machines without their permission. Indeed,
the Firefox extension manager never checks the integrity
of extensions on the browser startup, as it is unaware of
the past and present status of these extensions. This gives
an opportunity to an attacker to inject a malicious add-on
to an already installed extension. This is done by copying
UI files into the victim extension’s folder and changing
the chrome.manifest file to point to the malicious files.
The files can be copied by a malware or by a payload,
which is run after exploiting software vulnerabilities as
explained in Section 3.2.

4 Analysis and Design

In this section, we start by providing our motivation for
focusing the research on the Helios Voting system. Then

4



we identify potential approaches to allow for a success-
ful attack against a Helios-based election. Following, the
most feasible approach is selected and a brief overview
of the attack is given. Finally, we describe the as-
sumptions under which our successful attack is launched
against voters.

4.1 Why Analyzing Helios?
There are lots of web-based voting systems available on
the Internet, such as BigPulse [12], Civitas [16], True-
Ballot [41], Adder [36], Helios Voting System [7] etc.
Some of these applications are open source, such as Civi-
tas, Helios and Adder, and some are proprietary, i.e. Big-
Pulse. Our aim was to analyze and evaluate the security
measures of an open source e-voting system, since any-
one can download the source code and deploy the appli-
cation according to his/her need. Moreover, we wanted
to analyze the vulnerabilities of a web-based voting sys-
tem employing the state of the art cryptographic tools.

The International Association for Cryptologic Re-
search (IACR) has decided to move towards e-voting sys-
tems for its internal elections and to explore different op-
tions. In the IACR Board Meeting on E-Voting in August
2008 [5], 8 proposals were presented, including Helios.
Moreover, the deployment of Helios in [8] won the ‘Best
Paper’ award at EVT/WOTE 2009.

For all above reasons, we became confident that the
Helios Voting system was perfectly suited for the objec-
tives of this research.

4.2 Potential Approaches to Launch an At-
tack

For a better understanding of the nature of the attack,
we assumed a particular candidate who wants to fraud-
ulently increase the number of votes that are in favor of
his/her in an election. To prevent detection, the attacker
wants to hide the attack. This implies that the attack must
be implemented in a way that voter’s permission for the
execution/installation of a malicious software is not re-
quired. Moreover, the voter should not notice the modi-
fication of the ballot.

In the rest of this section, we survey potential ap-
proaches towards an attack.

Malware: As mentioned earlier, each candidate can
have a candidacy statement. Such a document can be
in PDF, DOC or HTML formats. Suppose that the at-
tacker has prepared a PDF file in which a virus or worm
is embedded. Prior to the election, the candidate can e-
mail this file to a list of voters. The malware is acti-
vated upon opening of the file by the voters, who trust
the candidate. The malware is set out to infect the web

browser and, consequently, change the behavior of the
application. Therefore, the infected browser may be able
to tamper with the integrity of the election and violate the
voter’s anonymity (except if the voter is very dedicated
to take special measures, as explained in [18] and Sec-
tion 7.2). However, worms and viruses replicate them-
selves and spread over networks and the Internet. The
aim of the research was to mount an attack against the
voters while avoiding any damage to the sensitive infor-
mation on their machines.

Cross-Site Scripting (XSS) Attacks: These kinds of
attacks are application specific. The exploit largely de-
pends on the security measures considered in the applica-
tion. Helios defeated persistent XSS attacks by avoiding
insertion of any user’s contributed contents in the appli-
cation. In other words, Helios does not provide editing
facilities and candidates cannot compose their candidacy
statement inside the application. Moreover, the designer
was careful about non-persistent XSS attacks by validat-
ing input data and URLs entered by the end user.

Browser Rootkits: As explained in Section 3.3,
browser extensions are able to monitor the user’s navi-
gation history and to manipulate the DOM tree of a web-
page. The attacker can exploit these capabilities of exten-
sions to modify or override the JavaScript functions that
control the client side of the application. Consequently,
he/she can distort the behavior of the voting system. The
candidate can make use of software vulnerabilities to in-
stall a Browser Rootkit on voters’ machine when visiting
the candidate’s webpage. Through this approach, the re-
quired user permission for installation of an extension,
is circumvented. Browser Rootkits go beyond XSS at-
tacks. Like malware, they can change the behavior of
a web browser without replicating and spreading them-
selves.

4.3 The Selected Approach
The attack proposed in this paper and developed in soft-
ware is a combination of two approaches. First, the at-
tacker exploits vulnerabilities in Adobe Acrobat/Reader
to install a Browser Rootkit on a voter’s machine. For
this to work, the attacker prepares a PDF file contain-
ing not only the candidacy statement, but also binds a
malicious JavaScript function to the “open” event of a
file. Second, the payload of the first type of attack is
a Browser Rootkit, which is may be able to fool the
voter (using Social Engineering) into accepting an incor-
rect ballot in Helios 2.0 (for defenses see [18] and Sec-
tion 7.2).

We now briefly describe how the attack works on the
client’s machine. Upon opening the PDF file, a buffer

5



overflow is created and a shellcode will be executed. The
payload installs the malicious extension on the voter’s
machine. More precisely, the Browser Rootkit is injected
into an already installed extension to suppress the notifi-
cation given by the Firefox extension manager. Indeed,
as explained in Section 3.1, Helios requires Java Runtime
Environment (JRE) for its functionality. This implies that
each voter must install JRE on his/her machine. The soft-
ware installs an extension, called Java Console, on Fire-
fox. This insures that Java Console is installed on voters’
machines and makes this extension an ideal victim in the
attack.

After the Browser Rootkit has been installed, the pay-
load closes the browser, as Firefox needs a restart to
reload the changes that have been made to Java Console.
When the client restarts Firefox, the Browser Rootkit lis-
tens to the browsing history of the voter. The browsing
rootkit commences its malicious actions whenever the
voter visits the voting website. The extension then injects
some JavaScript codes into the DOM tree to override the
existing functions and modifies the original functions to
alter the ballots that are in favor of others to become in
favor of the malicious candidate.

Through this attack, the malicious extension has full
control over the client side of the voting system. It is able
to change the behavior of the application and to deceive
the voters to believe that they have voted for the desired
candidate. For more technical details, see Appendix A.1.
For more general scenario, see Section 8.

4.4 Assumptions
We presented a certain number of conditions under
which a successful attack can be launched against vot-
ers. Consequently, if a voter’s machine does not satisfy
these requirements, then the attack will not be triggered.

Assumptions about the voter’s machine : The at-
tack works on the client machine where Windows XP
is the operating system, the voter uses Firefox as the
web browser and Adobe Acrobat/Reader version 7.0.0
to 8.1.2 or 9.0.0, is installed. Moreover, we assume the
voter has the “write” access to the Firefox installation
folder.

Assumptions about the election : A mock IACR
Election was chosen to demonstrate the vulnerabilities
of the Helios 2.0. It is used as the voting system targeted
in the rest of this paper. The election consists of one
question and only one candidate must be chosen. There
are only two candidates, one of the authors of this paper,
we call ‘Alice’ and the other ‘Bart Preneel’ (the current
president of IACR). The names of these candidates are
sorted alphabetically in the question. The administrator

has given extra information about each candidate by pro-
viding a link to their personal web page. The attacker is
‘Alice’ who wishes to win the election.

4.5 Design

Two weeks were spent on the development of the actual
attack software. Around 950 lines of code were written
for this attack. Of these, roughly 50% is dedicated to the
development of the malicious extension. The other 50%
is related to embed JavaScript for Adobe Acrobat and the
executable program. Only 10% of the codes is unique to
Helios. The software does not slow the client machine
down. The only noticeable event during the attack run-
time is the sudden closure of the browser, as the Firefox
needs a restart for loading the changes that have been
made to the victim’s extension.

Comparing the difficulty of hacking Helios 2.0 with
non-cryptographic Internet voting systems, Helios 2.0
has an auditing feature on the client-side. As a result
of this, we add extra code which may fool the voter to
believe that his/her vote was encrypted correctly and the
desired candidate was selected. So, we in fact use So-
cial Engineering to mislead the voter. Although Helios
is a verifiable voting scheme, nothing prevents this at-
tack against Helios 2.0, except voters taking extraordi-
nary precautions (see [18] and Section 7.2).

5 Recent Developments and Their Impact

5.1 Helios version 3.0

In the earlier versions (1.0 and 2.0) of Helios an ad-
versary was able to make the auditing process much
more cumbersome, as explained in Section 4. After our
Crypto 2009 Rump-Session presentation [19] Helios 2.0
has been modified to address the problem we pointed out,
as following.

According to [29], in Helios 3.0 the voters are now
able to post the audited ballot to the Helios server. This
implies that not only the voter is able to check whether
the hash was properly computed, but also the ballot data,
i.e. the randomness, the vote and the hash, can be posted
on some public webpage. This can be done before cast-
ing. The voter can write down the vote and the hash
value on some piece of paper (or can take a picture using
a camera). That allows the voter or others to use a 2nd,
3rd, etc., computer to check the public WWW. Assuming
the server to be trusted (which we do), the public WWW
will compute the correct hash. (In case not, auditors can
check whether the correct hash is posted on that WWW.)
We now discuss whether these modifications address our
security concerns.

6



5.2 Impact of Alterations on Anonymity
In Section 8 we explain how the Browser Rootkit can
be further extended to mount an attack against the
anonymity (privacy) of the voters in Helios. The afore-
mentioned upgrade of Helios does not protect against
such an attack.

6 Discussion

In this section we wonder how realistic it is for someone
to actually use the above attack. To answer this question
several issues need to be taken into account, which in-
clude: the motivation of the attacker (financial, political,
etc.), legal ones, the cost to the attacker (e.g., setting it
up, possible legal fees, etc.), the likelihood of being able
to change the outcome, whether alternative attacks are
more effective. We now discuss these and conclude by
reflecting back on our original scenario.

6.1 Motivation of the Attacker
Although we focused on having the candidate hack the
elections, in reality the attack might come from out-
siders. Although hacking was originally done for “fun,”
or to show off, in today’s Internet many attacks have fi-
nancial motivations. So, obviously both motivations ap-
ply to the scenario of electronic elections. To better un-
derstand these motivations, it is evidently important to
wonder for what position the election is for. Examples
include: private clubs, associations (e.g., professional
ones), inside a board of (large) corporation, or political
ones. In the last case an election for mayor of some small
village will be very different from one for the election of
a president of a country where the attacker may also have
political motivation.

Today several countries, such as Estonia [34], Fin-
land [1], Switzerland [4] have already moved towards In-
ternet voting and others as Norway [2] and the UK [3] are
considering it or have done pilot tests. Moreover, due to
several people being unable to vote in the recent UK elec-
tion, there has been a call for e-voting as a possible so-
lution to prevent future problems at election polling sta-
tions [10]. Since there are several problems with this ap-
proach, the Netherlands [22, 27] did not make this move.
In such political elections, hackers could be lobbyists (or
working for them), or politicians (e.g., these already in
power), or by foreign countries.

On the other hand, as point out by an anonymous re-
free, web-based voting systems like Helios are likely
to be used in contests with somewhat smaller stakes,
and that candidates (attackers) in these scenarios some-
times still have large incentives to cheat but face smaller
chances of being caught.

6.2 Legal issues
In certain countries launching our attack might be ille-
gal. However, due to the openness of the Internet, at-
tacks could be launched from abroad where such attacks
are not illegal or the likelihood of being prosecuted are
small. Furthermore, in case the attack is launched by
a well financed organization, as a large lobbying group,
legal fees maybe secondary and ways to bypass prosecu-
tion might be analyzed in detail by legal experts.

6.3 Costs
In the case of the proposed attack, the size of the elec-
tion decides the number of alternative servers required
to manage concurrent requests to download the files (the
PDF and the executable). This may include a small fee
for hosting subscriptions. The attacker may use free host-
ing services to minimize the costs. On the other hand, as
explained in Section 4.5, the amount of time and effort
spent by the attacker to develop such an attack is quite
low.

6.4 Impact
In Section 6.1 we listed some countries interested in
moving towards internet voting. In such circumstances
there might be a clear incentive to hack the election, and
thousands of computers would be used for voting. The
impact might be that computers that were unlikely to be
the target of an attack become compromised.

Adobe Acrobat and Readers were likely the most-
hacked software products of the year 2009 [28]. Accord-
ing to [31], 83.5% of the 2.5 million users run a vul-
nerable version of Adobe Acrobat/Reader on their ma-
chines. As remarked by the report, this is mainly due to
the obstacles in the software update mechanism, which
results in ineffective distribution of security patches. On
the other hand, nearly 30% [35] of Internet users utilize
Mozilla Firefox as the browsing tool, and more than 80%
[26] of these users have Adobe Acrobat/Reader plugin
installed on their browsers. In addition, Windows XP
is currently one of the most popular operating system
among users [43][40].

Consequently, using Internet elections at a national
scale might make millions of computers vulnerable and
the proposed attack effective with profound impact (also
see Sections 7 and 8).

6.5 The IACR Elections
Our attack was motivated by IACR’s (International As-
sociation for Cryptologic Research) decision to move
towards electronic voting. One can wonder whether
a hacker would really target their elections. However,

7



since IACR is an association of researchers working on
aspects of information security, a successful attack could
embarrass their association. An interesting observation
made by [38] is:

A truly “successful” attack against IACR
wouldn’t be discovered, and so wouldn’t em-
barrass them. IACR members are probably
better equipped to pull off such an attack
than members of typical organizations, so I
wouldn’t dismiss the threat so readily.

The impact of having an IACR election hacked are be-
sides a potential embarrassment, rather minimal in com-
parison to scenarios discussed in Section 6.1.

7 Limitations and Defenses

In this section, we discuss the limitations of the proposed
attack. Then we present a number of defenses against the
attack and highlight their shortcomings.

7.1 Limitations

The attack has a number of limitations which are related
to:

Adobe Acrobat/Reader Updates: The attack takes
advantage of buffer overflow vulnerability in Adobe Ac-
robat/Reader. This vulnerability has appeared in Adobe
Acrobat/Reader versions 7.0.0 to 8.1.2 and 9.0.0, and it
was claimed to have been fixed in later versions of the
software. As a result, in its current form, the attack will
fail when the voter updated the Adobe Acrobat/Reader
to the latest version.

Other PDF Viewer Software: There are other PDF
viewer tools that have similar functionalities as Adobe
Acrobat/Reader. These tools do not support Acrobat
JavaScript API. Since the attack exploits Adobe Acro-
bat/Reader vulnerabilities, voters that use other applica-
tions, than Adobe, to view the PDF file, cannot be tar-
geted using our approach.

The attack only targets Firefox browser: In our fea-
sibility study, the malicious extension was designed and
developed for Firefox. On the other hand, there are other
popular browsers. According to [26] , around 70% of
clients used Internet Explorer. As a result, the candidate
may lose a considerable proportion of votes unaffected
by the proposed attack.

The attack is platform specific: The executable is im-
plemented in a way that installs the malicious extension
only on machines where Windows XP is the operating
system. However, around 50% [40] of clients uses other
operating systems, such as Linux, Mac etc., which were
not considered when designing the attack.

Windows Vista Security Measures: Due to security
measures considered in Windows Vista, the malicious
extension cannot be installed on this operating system
using the buffer overflow vulnerabilities in Adobe Ac-
robat/Reader. When the malicious PDF document is
opened on the victim’s machine, Adobe Acrobat/Reader
crashes but the operating system prevents the execution
of the payload. As a result the executable will not be
downloaded and executed by the payload. However, if
the attacker employs a virus or a worm to install the ex-
tension, he/she can make the attack work on this platform
as well.

7.2 Defenses
There are possible ways to defeat the proposed attack,
including:

Disable the JavaScript in Adobe Acrobat/Reader.
Adobe Acrobat/Reader vulnerabilities can be exploited
only when the JavaScript is enabled in the software.
Clients can disable this option in the preferences’ sec-
tion of the application (by default it is enabled). When a
document containing JavaScript code is opened with the
software, where the JavaScript is disabled, the program
pops up a dialog box saying “This document contains
JavaScripts. Do you want to enable JavaScripts from now
on? The document may not behave correctly if they’re
disabled”. If the voter trusts the malicious candidate then
s/he may click on ‘OK’ button to turn on the JavaScript
and as a result the attack will be launched. Otherwise the
attack will not work on his/her machine.

Third Party Verifiers. As mentioned in Section 3.1.1,
auditing plays an important role in the Helios applica-
tion. Contribution of third party trustees to audit and ver-
ify the voter’s ballots may help to detect the alteration of
its contents which is similar to what has been suggested
in Helios 3.0 (see Section 5.1). However, if those sys-
tems use web-based technology to display the results of
verification, the voting approach will be discussed in [18]
should be used.

Malware Analysis of Candidacy Statements. The e-
vote administrator can analyze the candidacy statements
to check whether they contain malware or malicious

8



JavaScript. However, the attacker can upload an innocent
document to his/her website. So, the administrator will
not become suspicious. On the other hand, the malicious
PDF document maybe emailed to voters by endorsers or
a third party.

Using hack-free dedicated hardware As pointed out
by a referee, one solution is to use a certified hack-free
device that allows to check the result of the hash func-
tion. Current versions of Helios do not come with such a
device.

Avoiding Helios Let us consider an alternative solution
to Internet e-voting. “Code Voting” has been proposed
in [14]. We briefly explain its ideas and discuss its ad-
vantages and disadvantages.

A voter needs to receive by post or other out-of-band
channel a list with a unique code for for every candi-
date. To vote the voter just enters the code received cor-
responding to his/her candidate of choice.

At first glance our attack can barely work, as the
client-side interface of the system is completely differ-
ent and makes launching a client-side attack against such
system more difficult, if not impossible. It seems a
hacked machine cannot change the vote to another one
(even a random one). Code Voting also protects the
anonymity (privacy) better than Helios (see Section 8 for
more details on privacy concerns). However, there are
assumptions, which must be satisfied to guarantee these
properties.

To guarantee privacy, one needs to guarantee there
is no collaboration between the postal service with the
returning officer. Moreover, if the party that generates
these codes is corrupted, integrity can be undermined
(e.g., using ballot stuffing). One could observe that there
is no inherent verifiability to this scheme. (One can com-
pare this with the verifiability Helios 2.0 provides/does
not provide in practice, see from Section 4.3 on.)

8 Future Work and Generalization

We first discuss potential extensions of our attack. The
attack can be adapted to target more computers of voters,
e.g., to include machines running Mac and UNIX oper-
ating systems. Although Firefox is platform-specific, the
extensions are platform-independent. Adobe Reader is
available for several operating systems and some of these
versions are also vulnerable to buffer overflow attacks.
This implies the attacker can install the same Browser
Rootkit on above platforms. On these platforms a differ-
ent payload should be executed after the buffer overflow.

The second generalization would target voters using
Internet Explorer (IE). Browser Helper Object (BHO) is

a DLL module used to extend and customize IE. Like
Firefox extensions, BHO can fully access an HTML
Document Object Model (DOM) tree and monitor user’s
navigations.

Besides attacking the integrity, the Browser Rootkit
can be further extended to mount an attack against the
anonymity of the voters in Helios. The extension can
be designed to capture the name of the selected candi-
date before the encryption of the ballot and the email
of the voter, at the authentication stage. By develop-
ing a client email, using the SMTP service, the mali-
cious extension can email the recorded information to
the attacker from the voter’s browser. Another option,
as pointed out by [38], is that the malicious extension
sends the information to the attacker using HTTPS con-
nection, so nothing can be detected from the communi-
cation. Note that the Helios 3.0 remains vulnerable to
this type of attack on privacy.

In our text we assumed that the candidate performs
the attack and our attack focuses on exploiting Adobe
Acrobat/Reader vulnerabilities to launch an attack. We
came to the conclusion that this is the most realistic way
to perform the attack, since Helios allows URLs point-
ing to the candidacy statements, which can be assumed
to be in a PDF format. However, the attack could eas-
ily be launched by anonymous supporters of a candi-
date. They could use Social Engineering techniques to
get the voter’s machine infected, e.g., using mail or lur-
ing a voter into opening a PDF file written by a supporter.
The attacker can also develop malware, such as a virus,
a worm, etc., to install the malicious extension and dis-
tribute it using a USB device, or a DOC file.

Another generalization is that in our attack, we assume
that the voter’s vote is modified into one for a particular
candidate. Other attacks include to modify a vote into a
random one [38]. This may prevent the favorite candi-
date to win and might be harder to detect. The attacker
may use the techniques mentioned earlier to install the
malicious extension on the voter’s machines. For a dis-
cussion on the security of Helios 3.0, see [18].

9 Conclusion

This paper demonstrates the feasibility of hacking a pre-
liminary version of Helios. Only two weeks were spent
on developing this attack. Due to this limited effort,
our attack is quite platform dependent. However, with
the right incentives real world hackers may work on a
broader attack affecting more platforms. Indeed, botnets
have shown the progress hackers have made.

Although Helios 2.0 was modified into Helios 3.0 due
to our attack, several issues remain. As pointed out by
an anonymous referee, it is not clear how many voters
will exploit the new security mechanisms (see Section 5).

9



We therefore leave it to the reader to decide whether
the fundamental difference between non-verifiable and
verifiable internet e-voting systems, pointed out in Sec-
tion 2.1, has any practical relevance. Moreover, Helios
privacy (anonymity) protection remains its Achilles’ heel
(see Section 8).

Although many engineers have argued against using
internet voting for large political elections, several coun-
tries (e.g., Estonia [34], Finland [1] etc.) are already
moving towards this. In the light of this, we believe
only history will be able to judge whether our feasibil-
ity study was an overly cautious warning, or whether, to
quote Bollyn [13], internet voting will be the “Death of
Democracy.”

10 Acknowledgment

We thank Stelios Erotokritou and Rebecca Wright for
permission to cite unpublished work. We thank anony-
mous referees for suggestions on how to improve on the
attack and Josh Benaloh for useful discussions. We thank
Mohamed-Ali Kaafar at INRIA Grenoble - Rhône-Alpes
for his feedback and support. A part of this work was
done while the second author was in part funded by EP-
SRC EP/C538285/1 and by BT, (as BT Chair of Infor-
mation Security).

References

[1] About electronic voting in Finland.
http://www.vaalit.fi/
sahkoinenaanestaminen/en/
yleistietoa.html.

[2] The e-vote 2011-project.
http://www.regjeringen.no/en/dep/
krd/kampanjer/election_portal/
electronic-voting.html.

[3] Implementing electronic voting in the UK. - UK
Local Governmernt
http://www.communities.gov.
uk/archived/general-content/
localgovernment/
implementingelectronicvoting/.

[4] Official State of Geneva e-voting site.
http://www.geneve.ch/evoting/
english/welcome.asp.

[5] The International Association for Cryptologic
Research (IACR), August 2009.
http://www.iacr.org/elections/
eVoting/presentations.html.

[6] Ben Adida. Helios: Web-based Open-Audit Vot-
ing. In Paul C. van Oorschot, editor, USENIX Se-
curity Symposium, pages 335–348. USENIX Asso-
ciation, 2008.

[7] Ben Adida. Helios Voting System Blog, August
2009.
http://blog.heliosvoting.org/.

[8] Ben Adida, Oliver de Marneffe, Oliver Pereira, and
Jean J. Quisquater. Electing a University President
using Open-Audit Voting: Analysis of real-world
use of Helios. EVT/WOTE’09, Electronic Voting
Technology Workshop / Workshop on Trustworthy
Elections, August 2009.

[9] Andrew W. Appel, Maia Ginsburg, Harri Hursti,
Brian W. Kernighan, Christopher D. Richards,
Gang Tan, and Penny Venetis. The new jersey
voting-machine lawsuit and the avc advantage dre
voting machine. EVT/WOTE’09, Electronic Voting
Technology Workshop / Workshop on Trustworthy
Elections, August 2009.

[10] BBC News. Chaotic polling problems lead to calls
for e-voting.
http://news.bbc.co.uk/2/hi/
technology/10102126.stm.

[11] Josh Benaloh. Simple verifiable elections. In
EVT’06: Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop 2006 on
Electronic Voting Technology Workshop, pages 5–
5, Berkeley, CA, USA, 2006. USENIX Associa-
tion.

[12] BigPulse. Online voting software and services, Au-
gust 2009.
http://www.bigpulse.com/.

[13] Christopher Bollyn. Death of Democracy or May
the Best Hacker Win.

[14] David Chaum. Surevote: technical overview.
in: Proceedings of the Workshop on Trustworthy
Elections (WOTE’01), August 2001. presentation
slides.
http://www.vote.caltech.edu/
wote01/pdfs/surevote.pdf.

[15] Stephen Checkoway, J. Alex Halderman, U Michi-
gan, Ariel J. Feldman, Edward W. Felten, Brian
Kantor, and Hovav Shacham. Can dres provide
long-lasting security? the case of return-oriented
programming and the avc advantage. EVT/-
WOTE’09, Electronic Voting Technology Workshop
/ Workshop on Trustworthy Elections, August 2009.

10



[16] Michael Clarkson, Stephen Chong, and Andrew
Myers. Civitas: A secure voting system, August
2009.
http://www.cs.cornell.edu/
projects/civitas/.

[17] Crispin Cowan, Perry Wagle, Calton Pu, Steve
Beattie, and Jonathan Walpole. Buffer Overflows:
Attacks and Defenses for the Vulnerability of the
Decade. DARPA Information Survivability Confer-
ence and Exposition,, 2:1119, 2000.

[18] Yvo Desmedt and Saghar Estehghari. Weaknesses
of Helios 3.0. In preparation.

[19] Yvo Desmedt and Saghar Estehghari. Hacking
Helios and Its Impact, August 2009.
http://rump2009.cr.yp.to/
1b884ce772d84af05f0f4b07bf019053.
pdf.

[20] Yvo Desmedt and Yair Frankel. Threshold Cryp-
tosystems. In Gilles Brassard, editor, CRYPTO,
volume 435 of Lecture Notes in Computer Science,
pages 307–315. Springer, 1989.

[21] Mozaill Developer Center, August 2009.
https://developer.mozilla.org/en/
Extensions.

[22] Digital Civil Rights in Europe. Electronic Voting
Machines Eliminated In The Netherlands. http:
//www.edri.org/edrigram/number5.
20/e-voting-machines-netherlands.

[23] Security Focus. Adobe Acrobat and Reader
collab ‘getIcon()’ Javascript Method Remote Code
Execution Vulnerability, August 2009.
http://www.securityfocus.com/bid/
34169/discuss.

[24] Security Focus. Adobe Acrobat and Reader
Multiple Arbitrary Code Execution and Security
Vulnerabilities, August 2009.
http://www.securityfocus.com/bid/
27641/discuss.

[25] Security Focus. Adobe Reader ’util.printf()’
Javascript Function Stack Buffer Overflow Vulner-
ability, August 2009.
http://www.securityfocus.com/bid/
30035/discuss.

[26] Stefan Frei, Thomas Duebendorfer, Gunter Oll-
mann, and Martin May. Understanding the Web
browser threat. Technical Report 288, TIK, ETH
Zurich, June 2008. Presented at DefCon 16, Aug
2008, Las Vegas, USA.

http://www.techzoom.net/
publications/insecurity-iceberg/
index.en.

[27] Rop Gonggrijp and Willem-Jan Hengeveld. Study-
ing the Nedap/Groenendaal ES3B voting computer:
a computer security perspective. In EVT’07: Pro-
ceedings of the USENIX Workshop on Accurate
Electronic Voting Technology, pages 1–1, Berkeley,
CA, USA, 2007. USENIX Association.

[28] Andy Greenberg. The year’s most-hacked soft-
ware, December 2009.
http://www.forbes.com/2009/12/10/
adobe-hackers-microsoft-technology.
-cio-network-software.html.

[29] Stuart Haber, Josh Benaloh, and Shai Halevi. The
Helios e-Voting Demo for the IACR, May 2010.
http://www.iacr.org/elections/
eVoting/heliosDemo.pdf.

[30] Harri Hursti. Diebold TSx Evaluation: Critical Se-
curity Issues with Diebold TSx. Black Box Voting,
May 2006.

[31] Trusteer Inc. Flash security hole advisory trusteer,
August 2009.
www.trusteer.com/files/Flash_
Security_Hole_Advisory.pdf.

[32] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Ru-
bin, and Dan S. Wallach. Analysis of an Electronic
Voting System. In IEEE Symposium on Security
and Privacy, pages 27–. IEEE Computer Society,
2004.

[33] Mike Ter Louw, Jin Soon Lim, and V. N.
Venkatakrishnan. Extensible Web Browser Secu-
rity. In Bernhard M. Hämmerli and Robin Sommer,
editors, DIMVA, volume 4579 of Lecture Notes in
Computer Science, pages 1–19. Springer, 2007.

[34] Epp Maaten. Towards remote e-voting: Estonian
case. In Electronic Voting in Europe - Technology,
Law, Politics and Society, volume 47 of LNI, pages
83–100. GI, 2004. July 7th–9th 2004, Bregenz,
Austria.

[35] Mozilla. Mozilla’s Q1 2010 Analyst Report - State
of the Internet, August 2009.
http://blog.mozilla.
com/metrics/2010/03/31/
mozillas-q1-2010-analyst-report.
-state-of-the-internet/.

11



[36] University of Connecticut. Adder: an Internet-
based Voting System, August 2009.
http://cryptodrm.engr.uconn.edu/
adder/.

[37] Microsoft PressPass. Microsoft Statement Regard-
ing Download.Ject Malicious Code Security Issue,
August 2009.
http://www.microsoft.com/
presspass/press/2004/jun04/
0625download-jectstatement.mspx.

[38] Anonymous Referee.

[39] Ryan Roemer, Erik Buchanan, Hovav Shacham,
and Stefan Savage. Return-Oriented Programming:
Systems, Languages, and Applications, 2009. In
review.

[40] StatOwl.com. Operating Systems Market Share,
2010.
http://statowl.com/operating_
system_market_share.php.

[41] TrueBallot, August 2009.
http://www.trueballot.com/
trueballot.aspx.

[42] Julian Verdurmen. Firefox extension security. Mas-
ter’s thesis, Radboud University Nijmegen, the
Netherlands, January 2008.

[43] W3Schools. Web Statistics and Trends, OS,
August 2009.
http://www.w3schools.com/browsers/
browsers_os.asp.

[44] Jun Xu, Zbigniew Kalbarczyk, Sanjay Patel, and
Ravishankar K. Iyer. Architecture support for de-
fending against buffer overflow attacks, 2002.

A Appendix

A.1 The Attack: Details
On Election Day, the voter uses the provided link in the
invitation email to access the election webpage. After the
voter starts the voting process, a question is displayed on
the screen where he/she should choose one of the candi-
dates. In the meantime, he/she may decide to visit Al-
ice’s candidacy statement. By clicking on the provided
link (next to her name), the voter is redirected to her web-
page. After the page is loaded, a JavaScript function is
called that checks whether the current browser is Fire-
fox and the Adobe Acrobat plug-in is installed on the
web browser. If these conditions are satisfied, it loads
the PDF document.

The loaded PDF document contains a malicious
JavaScript function which is called upon opening of the
file. This function is designed to wait for 10,000 mil-
liseconds (until the voter has read some parts of the
file). This delay partially covers the traces of the at-
tack and reduces the probability that the voter becomes
suspicious about the maliciousness of the PDF. Then the
function calls Collab.getIcon() function (from Adobe
JavaScript API) by passing a long argument to it. If the
Adobe Acrobat/Reader running on the machine has the
specification assumed earlier, then buffer overflow vul-
nerabilities in this function are exploited. This gives an
opportunity to Alice to remotely execute an arbitrary pro-
gram on the victim’s machine by running a ‘Download
and Exec’ payload. This type of payload is able to con-
nect to a specified host server over the Internet, down-
load an exe file and execute the file on the client’s ma-
chine. For the purpose of this attack, the executable in-
jects a malicious extension into the Java Console exten-
sion. This is done by copying the extension’s essential
files into a folder and altering chrome.manifest to load
those files. Since Firefox needs a restart to load changes
made to Java Console, the program closes the browser.
Also, it terminates Acrobat’s process, as the software
does not function properly after the buffer overflow at-
tack.

The voter should restart the browser and start the elec-
tion from the beginning. This time the UI files of the
malicious extension are loaded into the browser instead
of the Java Console’s. The extension starts listening to
the browser’s history, until the voter visits the election
webpage. Then it injects malicious JavaScript code snip-
pets into the DOM tree of the Helios application. This is
done only once because Helios has employed a ‘single-
page application’ technology, where clicks cause back-
ground actions rather than full-page loads [6]. The in-
jected JavaScript codes override some JavaScript func-
tions in the application. In other words, the injected
JavaScript functions will be executed instead of the orig-
inal ones.

The voter may decide to read Alice’s candidacy state-
ment again. In order to prevent a repetition of the attack,
the overridden function changes the link to her webpage,
where an innocent PDF document is opened instead.

On the question page, if the voter votes for the non-
malicious candidate (Bart Preneel), the ballot is pro-
cessed by the overridden function and altered to Alice.
However, in order to fool the voter, on the confirmation
page Bart Preneel is displayed as the chosen candidate.
In the encryption stage, the voter may decide to audit the
ballot. Each candidate is given a number, so Alice (the
first candidate) corresponds to 0 and Bart Preneel to 1.
The plaintext part of the audited ballot is also modified,
to show that the desired answer is chosen (in this elec-

12



tion the answer equals to 1). However, above alterations
are insufficient. Indeed, if the voter decides to verify the
ballot, then the system shows the “Encryption doesn’t
match” message as the result. To prevent the voter be
able to detect this, the malicious extension was modi-
fied. This was achieved by reprogramming the JavaScript
function used to check the actual encryption. The cor-
responding hacked JavaScript now always outputs “En-
cryption is verified”, regardless whether the encryption
is correct or not. After the vote is submitted, the voter
receives a confirmation email that does not contain the
name of the candidate and as a result the voter may not
realize that he/she has voted for another candidate.

13


